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It has been argued that the recently detected ring-down gravity waveforms could be indicative only of the
presence of light rings in a horizonless object, such as a surgical Schwarzschild wormhole, with the
frequencies differing drastically from those of the horizon quasinormal mode frequencies ωQNM at late
times. While the possibility of such a horizonless alternative is novel by itself, we show by the example of
the Ellis-Bronnikov wormhole that the differences in ωQNM in the eikonal limit (large l) need not be drastic.
This result will be reached by exploiting the connection between ωQNM and the Bozza strong field lensing
parameters. We shall also show that the lensing observables of the Ellis-Bronnikov wormhole can be very
close to those of a black hole (say, SgrA� hosted by our galaxy) of the same mass. This situation indicates
that the ring-down frequencies and lensing observables of the Ellis-Bronnikov wormhole can remarkably
mimic those of a black hole. The constraint on wormhole parameter γ imposed by experimental accuracy is
briefly discussed. We also provide independent arguments supporting the stability of the Ellis-Bronnikov
wormhole proven recently.
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I. INTRODUCTION

Direct detection of gravity waves that originated 1.4
billion years ago from a binary merger is one of the great
discoveries of this century [1,2], once again confirming
Einstein’s theory of gravity. The detected waves are
assumed to contain the signatures of quasinormal modes
(QNM) characteristic of the formation of a final black hole
horizon. Theoretically, these modes are resonant nonradial
deformations induced by external perturbations and are
dictated strictly by the boundary conditions at the horizon,
with the Schwarzschild horizon remaining stable under
external perturbations. For the first time, an alternative
source of such waves has been proposed by Cardoso et al.
[3], which is a horizonless, static surgical Schwarzschild
thin-shell wormhole joined at the throat r0 > 2M.
However, the surgical wormhole risks collapse to a point

r0 ¼ 0 under perturbations caused by a moving particle
destroying the unstable photon spheres at r ¼ 3M. Because
of the negative unbound potential of the problem, the throat
would at best be metastable against collapse to r0 ¼ 0 and
at worst, if the joining surface is a classical membrane, be
completely unstable [4]. Granting that the radial test
particle motion somehow causes nonradial deformations
of spacetime needed for QNM emission, stability of the
surgical wormhole against such perturbations remains a
“completely uncharted territory” [4].
Stability issues aside, the drastic difference, concluded in

[3], in the fundamental ring-down frequencies between the
surgical wormhole and a black hole of the same mass M
seems to highlight the topological differences between a
throat and a horizon. We shall exemplify that the difference
need not always be drastic—there could be situations

where wormhole ring-down modes in the eikonal limit
could be very close to those of a black hole of the same
mass. To this end, we note that Jordan frame Brans
solutions can represent wormholes and naked singularities
[5], but never black holes, as has been reported recently by
Faraoni et al. [6]. We here add that their conclusion holds
true as long as the relevant parameter of the Brans worm-
hole solution assumes real values as opposed to imaginary
ones (meaning that a throat is not topologically changing to
a horizon). If the parameter takes on an imaginary value,
the black hole solution with a vanishing scalar field could
result, but several arguments in Sec. V indicate that such an
end state is unlikely to occur in practice. As an example,
note that the Brans II solution can be rephrased in the
Einstein conformal frame as what is (not widely) known
as the horizonless regular Ellis-Bronnikov wormhole [7,8].
It does not represent a black hole for real values of
parameters but does so for an imaginary value, which is
unreachable from a real regime. Therefore, we should
regard the wormhole as an independent entity by itself that
is distinct from a black hole of the same mass.
With regard to the ring-down modes, Konoplya and

Zhidenko [9] very recently studied the dominating low l
modes in the gravitational radiation.1 They showed that
(i) the l ¼ 2 (n ¼ 0) mode qω ¼ 1.246 − 0.192i of the
Ellis-Bronnikov wormhole has different quality factor
∼ReðωÞ=ImðωÞ from that of the Schwarzschild black hole

1We thank R. A. Konoplya and A. Zhidenko for pointing out in
private correspondence the similarity of the problem they dealt
with in their paper, especially the late-time behavior of the
gravitational radiation.
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for whichMω ¼ 0.3737–0.0890i. This means that one can
always differentiate a wormhole from a spherically sym-
metric black hole in general relativity, even if the corre-
sponding mass parameters, q andM, are unknown. (ii) The
late-time behavior of ring-down modes for the l ¼ 2 axial
gravitational perturbations of the Ellis-Bronnikov worm-
hole with scalar field mass q ¼ 2.16M shows the same
decay rate as that of a Schwarzschild black hole of massM
but higher oscillation frequency and finally (iii) the worm-
hole, despite the different behavior of the effective potential
compared to that of the black hole, either rings as a black
hole at all times or rings differently also at all times,
depending on the chosen values of its parameters. In the
large l limit, however, it will turn out that the wormhole and
black hole modes of ωQNM are almost, but not exactly, the
same. In an earlier work, Konoplya and Zhidenko [10]
developed generic formulas for ωQNM in the low l limit for
the Morris-Thorne wormhole, static and rotating, using the
Wentzel–Kramers–Brillouin (WKB) method.
The purpose of this paper is to consider the analytic (as

opposed to surgical) horizonless Ellis-Bronnikov worm-
hole and compare its practically observable properties with
those of a Schwarzschild black hole to see how far they
tally with each other. We shall show that the quantitative
deviations in the large l limit of ωQNM and strong field
Bozza lens parameters [11] between the SgrA� and Ellis-
Bronnikov wormhole need not be too drastic, indicating
that the latter can very well observationally mimic the black
hole. The precision required to distinguish between the two
types of objects imposes a constraint on the wormhole
parameter. Some arguments supporting the recently proven
stability of the Ellis-Bronnikov wormhole are also provided.
We wish to emphasize that we are considering a static

compact object merely as a toy model for SgrA� as has
been considered, for instance, by Lacroix and Silk [12],
where they commented that a spinning object would be
more appropriate. The reason is that many astrophysical
observations of black holes are not consistent with the static
Schwarzschild metric. For instance, the detection of
106-day radio variability in the λ > 1 cm emission from
SgrA� signals a small spin (a≃ 0.088M) [13] that could
lead to new physical phenomenon like superradiance [14].
Additionally, the eikonal limit of Kerr QNMs is not yet
fully understood (see the review in [15]). Given these
complications, the results of the present paper, though
limited by the assumption of staticity, could nevertheless be
useful from the heuristic point of view.
In Sec. II, we review the Ellis-Bronnikov wormhole

including its Schwarzschild limit. In Sec. III, we quanti-
tatively compute QNM frequencies using strong field
wormhole lensing. In Sec. IV, lensing observables are
calculated, and a constraint on the wormhole parameter
is obtained. In Sec. V some arguments supporting the
recently proven stability of the Ellis-Bronnikov wormhole.
Section VI concludes the paper. We choose units such that
8πG ¼ 1, c ¼ 1 unless specifically restored.

II. ELLIS-BRONNIKOV WORMHOLE

We start with the Einstein field equations that follow
from the action with a minimally coupled scalar field ϕ.
The action and the resulting field equations are

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x½R − εgμνϕ;μϕ;ν�; ð1Þ

Rμν ¼ εϕ;μϕ;ν; ð2Þ
□ϕ≡ ϕ;μ

;μ ¼ 0; ð3Þ
where ε is a constant, ϕ;μ ≡ ∂ϕ=∂xμ, and the semicolon
denotes a covariant derivative with respect to gμν. The
source scalar field ϕ is assumed to be a ghost field, defined
by ε ¼ −1, that violates all energy conditions. The Ellis-
Bronnikov wormhole solution of Eqs. (2) and (3) is given
by [7,8]

dτ2EB ¼ Adt2 − Bdl2 − Cðdθ2 þ sin2θdφ2Þ�; ð4Þ

AðlÞ ¼ exp
�
−πγ þ 2γtan−1

�
l
m0

��
; ð5Þ

BðlÞ ¼ A−1ðlÞ; CðlÞ ¼ BðlÞðl2 þm2
0Þ; ð6Þ

ϕðlÞ ¼ κ

�
π

2
� 2tan−1

�
l
m0

��
; 2κ2 ¼ 1þ γ2; ð7Þ

where l ∈ ð−∞;∞Þ, and m0 and γ are arbitrary constants
of integration. This horizonless, traversable, everywhere
regular wormhole for real values of γ > 0 has manifestly
two asymptotically flat regions, one with positive Keplerian
mass M (¼ m0γ) and the other with negative mass −Meπγ ,
situated on either side of a regular throat at lth ¼ M.
The throat radius is obtained by minimizing the areal
radius, or from dC=dl ¼ 0. The photon sphere is defined
by the positive root of

A0

A
¼ C0

C
; ð8Þ

where primes denote differentiation with respect to l.
Thus, the photon sphere appears at lps ¼ 2M. Without
loss of rigor, we henceforth regardM > 0, together with the
constant γ > 0, as independent arbitrary parameters of the
solution. Studying circular null geodesics, Cardoso et al.
[16] in an earlier work showed that the QNM frequencies of
a black hole in the eikonal limit (l ≫ 1), restoring c and
retaining their notation, is

ωQNM ¼ Ωml − i

�
nþ 1

2

�
jλj; ð9Þ

Ωm ¼ c

ffiffiffiffiffiffiffi
Am

Cm

s
; λ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AmC00

m − A00
mCm

2BmCm

s
; ð10Þ
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Am ≡ AðlpsÞ; Cm ≡ CðlpsÞ; C0 ≡ dC
dl

etc;

where n and l, respectively, are the number of overtone and
angular momentum of the perturbation, Ωm is the angular
velocity of the last circular null geodesic (photon sphere),
and λ is the Lyapunov exponent determining the instability
time scale. The significance of the subscript m throughout
the paper is that the functions are calculated at theminimum
radial distance that is the radius of the photon sphere.
Stefanov et al. [17] connected the QNM coefficients in

Eq. (9) with the strong lensing parameters as follows:

Ωm ¼ c
um

; λ ¼ c
umā

; ð11Þ

where ā and the minimum impact parameter of the light
rays um both appear in the strong field Bozza deflection
angle αðθÞ given by

αðθÞ ¼ −ā ln
�
θDOL

um
− 1

�
þ b̄; ð12Þ

ā ¼ Ωm

λ
; um ¼

ffiffiffiffiffiffiffi
Cm

Am

s
; ð13Þ

and b̄ is another parameter to be found in [11] and
calculated explicitly in the Appendix for the Ellis-
Bronnikov wormhole, DOL is the observer-lens distance,
and θ is the independent angular variable such that θDOL
represents the closest approach distance of light rays. The
deflection angle logarithmically diverges when the two
distances, θDOL and um, coincide (meaning photon cap-
ture). It can be verified for the Ellis-Bronnikov wormhole
(4)–(7) that

ā ¼ 1; ð14Þ

independently of the values of M and γ, sharing the same
fundamental property as that of the Schwarzschild black
hole. Because of this remarkable sameness, one would be
encouraged to know if the Ellis-Bronnikov wormhole has a
Schwarzschild limit.
Schwarzschild limit
It seems little known that the Ellis-Bronnikov wormhole

(1) reduces analytically, though by no means trivially, to the
exact Schwarzschild black hole. This can be shown
rigorously as follows: Identify the constant m0 ¼ 2B in
AðlÞ of Eq. (5), and transform l → r by

l ¼ r −
B2

r
; ð15Þ

where l ∈ ð−∞;∞Þ now maps to r ∈ ð0;∞Þ. Then
one has AðlÞ → PðrÞ ¼ exp ½−πγ þ 2γtan−1ðxBÞ�, where

x ¼ 1
2
ðr − B2

r Þ. Using the identity tan−1ðxBÞ≡
2tan−1ðxþ

ffiffiffiffiffiffiffiffiffiffi
x2þB2

p
B Þ − π

2
, we end up finally with a form of

the wormhole solution that happens to be just the Jordan
frame Brans Class II solution [18], rewritten in the Einstein
frame [19],

dτ2EB → dτ2Brans II ¼ Pdt2 −Qdr2 − Rðdθ2 þ sin2θdφ2Þ;
ð16Þ

PðrÞ ¼ exp ½2ϵþ 4γtan−1ðr=BÞ�; ð17Þ

QðrÞ ¼
�
1þ B2

r2

�
2

exp ½2ζ − 4γtan−1ðr=BÞ�; ð18Þ

RðrÞ ¼ r2QðrÞ; ð19Þ

ϕðrÞ ¼ κ½π − 2tan−1ðr=BÞ�; 2κ2 ¼ 1þ γ2; ð20Þ

where ϵ ¼ −πγ and ζ ¼ πγ are determined by the condition
of asymptotic flatness.
As a first step, we want to know the extent to which the

Ellis-Bronnikov wormhole yields post-post-Newtonian
(PPN) Schwarzschild values, so we use the identity

tan−1
�
r
B

�
≡ π

2
− tan−1

�
B
r

�
; ð21Þ

for r > 0, and identifying as before the positive mass of one
mouth as M (¼ m0γ ¼ 2Bγ), it can be verified that the
metric functions (17)–(19) admit a Robertson expansion
[20] as follows:

dτ2Brans II ¼
�
1 − 2α1

M
r
þ 2β1

M2

r2
−
3

2
ξ1

M3

r3
þ � � �

�
dt2

−
�
1þ 2γ1

M
r
þ 3δ1M2

2r2
þ η1

2

M3

r3
þ � � �

�
× ½dr2 þ r2ðdθ2 þ sin2θdφ2Þ�; ð22Þ

where the PPN parameters turn out to be

α1 ¼ β1 ¼ γ1 ¼ 1; δ1 ¼
4

3
þ 1

3γ2
; ξ1 ¼

8γ2 − 1

9γ2
;

η1 ¼
8γ2 þ 5

3γ2
: ð23Þ

Since α1 ¼ β1 ¼ γ1 ¼ 1, the known weak field tests
cannot distinguish between the Ellis-Bronnikov wormhole
and the Schwarzschild black hole as the central gravitating
object. To distinguish them, one would require higher order
strong field tests that would in principle put constraints on
δ1, ξ1, and η1. However, looking at Eqs. (23), it is clear that
for real values of γ, there is no way that the parameters may
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assume the Schwarzschild values δ1 ¼ ξ1 ¼ η1 ¼ 1.
The PPN parameters acquire values nearest to, but not
the same as, the Schwarzschild values of unity only when
γ → ∞. To put an observational constraint, say at least on
δ1, hence on γ, one could think about measuring the two-
way light deflection δφ by the Sun up to second order in
ðMb Þ, which for the metric (22) works out to (using the
method of Keeton and Petters [21])

δφ≃ 4M
b

þ π

4

�
16þ 1

γ2

��
M
b

�
2

; ð24Þ

where b is the impact parameter. Unfortunately, because of
unsurmountable technical difficulties, this measurement
program has been abandoned [22]. Measuring second order
light deflection by the central galactic object is out of the
question at this moment. However, it is of interest to note
that a constraint on γ can still be imposed from the
comparison of the shadows of the Schwarzschild black
hole and Ellis-Bronnikov wormhole (see Sec. III).
Interestingly, the expansion coefficients (23) suggest that,
for the exclusive value γ ¼ −i, it is possible to obtain all the
Schwarzschild values: α1 ¼ β1 ¼ γ1 ¼ δ1 ¼ ξ1 ¼ η1 ¼ 1.
The next step is to apply on Eqs. (16)–(20) a combina-

tion of inversion, Wick rotation, redefinition of the constant
B, and an identity,

r ¼ −
B2

ρ
; γ ¼ −i; B ¼ M

2γ
;

tanh−1ðxÞ≡ 1

2
ln

�
1þ x
1 − x

�
: ð25Þ

The final outcome is the Schwarzschild metric

dτ2Brans II → dτ2Sch

¼
�
1 − M

2ρ

1þ M
2ρ

�2

dt2 −
�
1þ M

2ρ

�
4

× ½dρ2 þ ρ2ðdθ2 þ sin2θdφ2Þ�; ð26Þ
which is what we promised to show.
Returning to the wormhole (16), the radius of the throat

and the photon sphere can be obtained as follows: Using
lth ¼ M in Eq. (15), we have rth − B2

rth
¼ M, from which it

follows that the throat appears at the isotropic radius

r�th ¼
M
2γ

�
γ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q �
; ð27Þ

but the negative sign has to be discarded as r−th can become
negative for the wormhole range γ > 0. However, for the
black hole value γ ¼ −i, the throat has a radius r�th ¼ M

2
.

Since r ¼ M2

4ρ , this radius converts to the Schwarzschild

horizon r�th → ρhor ¼ M
2
, as it should. Similarly, using lps ¼

2M in Eq. (15), we have rps − B2

rps
¼ 2M, which yields the

isotropic radius of the photon sphere for the Ellis-
Bronnikov wormhole

r�ps ¼
M
2

"
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 1

γ2

s #
: ð28Þ

The sign is to be decided by the physical condition
that r�ps > r�th ¼ M

2
¼ 3.12 × 1011 cm (for SgrA� mass

M ¼ 4.22 × 106 M⊙; see [23]). For the wormhole, the
negative sign has to be discarded as r−ps can become
negative for γ > 0. Thus, for the wormhole having the
mass of SgrA�, one has rþEB

ps ¼ 2M ¼ 1.25 × 1012 cm,
obtained at γ → ∞. However, for the black hole value
γ ¼ −i, the photon sphere has a radius rþSch

ps ¼
ρps ¼ M

2
ð2þ ffiffiffi

3
p Þ ¼ 1.16 × 1012 cm > M

2
, while r−ps < M

2

is to be discarded. Note that r�th can also be obtained
directly from the metric (16) by minimizing its areal radius,
and similarly, r�ps by solving Eq. (8).

III. STRONG FIELD LENSING OBSERVABLES

We shall consider the metric (4)–(7) and the latest
observed data for the supermassive black hole SgrA�
exemplar, believed to be residing at the core of our galaxy,
for the computation of strong field lensing observables. The
incoming light rays that pass very near to the photon sphere
yield strong field lensing observables. For quantitative
comparison, the most suitable quantity is [11,12]

um ¼ DOLθ∞; ð29Þ

where θ∞ is the observable angular separation between
each set of relativistic images with respect to the central
lens. The minimum impact parameter um, also called the
radius of the shadow of the lens, is the central observable to
be measured in the currently planned experiments [12]. As
is evident from Eqs. (11), the quantitative values of Ωm and
λ depend solely on the strong lensing observable ā, and the
minimum impact parameter um, and this information alone
can already provide distinction between Schwarzschild and
Ellis-Bronnikov wormholes. Therefore, we consider sit-
uations that guarantee um > lps ¼ 2M for lensed images to
be possible, that is, when light is not captured by the photon
sphere. We find from the second of Eq. (13) that

uEBm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CðlpsÞ
AðlpsÞ

s

¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4þ 1

γ2

�
exp ½2πγ − 4γtan−1ð2γÞ�

s

¼ DOLθ∞: ð30Þ

This equation will be used below to constrain the wormhole
parameter γ.
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Constraint on γ: Experimental situation
It is evident from Eq. (30) that, for γ ¼ −i, we retrieve just

the Schwarzschild value uSchm ¼ 3
ffiffiffi
3

p
M. Our idea is to

constrain the real values of γ in uEBm in such a manner that
it approaches uSchm as closely as possible in order to support
the claim that theEllis-Bronnikovwormhole could be a black
hole mimicker. In this regard, note that the lowest value of
uEBm is 2Me that appears only at γ → ∞. In this case,

uEBm
uSchm

¼ 2e

3
ffiffiffi
3

p ¼ 1.04627: ð31Þ

The value of γ can be constrained from below by noting that
the angular radius θ∞ depends only on γ once the mass-to-
distance ratio, M=DOL, is provided by independent mea-
surements. Experimental uncertainties in the values of the
ratio would induce uncertainties in θ∞, which in turn would
constrain γ.
Let us look at the current experimental situation focusing

on the most recent work by Johannsen et al. [23]. It is to be
noted that, although the realistic situation should involve
spin, a final proof of the Kerr nature of black holes is still
lacking [23,24], and worse, unlike the static case, a regular
spinning wormhole reducing to a Kerr black hole in some
limit is a far cry. Further, it has been pointed out in [23] that
the central observable, viz., the angular radius θ∞ of the
shadow of a Kerr-like solution (that reduces to the Kerr
black hole when the deviation parameters are set to zero), is
primarily determined by its mass-to-distance ratio and
depends only weakly on its spin and inclination. Relying
on this weak dependence on spin, we use the simulated
mass-to-distance ratio for SgrA� to constrain the real
parameter γ of the toy Ellis-Bronnikov wormhole, hope-
fully without committing errors. For the Kerr-like metric
with an assumed spin parameter a ¼ 0.5M, Johannsen
et al. [23] combined the seven-station Event Horizon
Telescope (EHT)2 data at 230 GHz with relevant simu-
lations to obtain the SgrA� mass M ¼ 4.22 × 106 M⊙ and
its distance DOLð¼ 8.33 kpcÞ. Using these values, we get,
from the second in Eq. (30),

θEB∞ ðγ → ∞Þ − θSch∞ ðγ ¼ −iÞ ¼ 27.253–26.048

¼ 1.205microarcsec: ð32Þ

Since θEB∞ ðγ → ∞Þ is the lowest value of θEB∞ ðγÞ, the exact
difference above cannot be reduced further, which signals
the intrinsic difference between the two types of lenses.3

To find the constraint on γ, we plot, for the above M, the
difference function

ΔðγÞ≡ θEB∞ ðM; γÞ − θSch∞ ðM; γ ¼ −iÞ ð33Þ
against γ to see for what value of γ, Δ becomes closer to
1.205 microarcsec. Figure 1 shows that this happens at
γ ≥ 80. This is the desired constraint on γ from below.
The question now is whether the uncertainty in the

current level of measurement of θ∞ is smaller than the
difference 1.205 microarcsec just calculated. Once again,
based on a reconstructed circular image of SgrA� from a
simulated one-day observing run of the EHT array, and
employing a Markov Chain Monte Carlo algorithm,
Johannsen et al. [23] have demonstrated that such an
observation can measure the angular radius θ∞ of the
shadow of SgrA� to be ð26.4� 1.5Þ microarcsec, i.e., with
an uncertainty of 1.5 microarcsec (6%), and that tight
constraints on potential deviations from the Kerr metric can
be obtained.4 We see that the current uncertainty 1.5
microarcsec is larger than, but quite close to, the needed
accuracy ≤ 1.205 microarcsec. Hence, as of now,

FIG. 1. The function ΔðγÞ vs the dimensionless parameter γ.

2The latest EHT, a global network of millimeter-wave very
long baseline interferometry (VLBI) array, is expected to provide
high-angular-resolution observation of SgrA� andM87. The EHT
comprises multiple different telescopes at multiple different sites
all over the world. Because the EHT telescopes are so far-flung,
the effective size of the telescope is the size of the whole Earth.
The shadow of the lens (be it black or a wormhole) is the main
observable target in a direct imaging survey, and this is what the
EHT collaboration aims to observe in the near future, using the
technique of VLBI. The eight observatories comprising EHT
are together capable of directly imaging the shadow of the lens.
See the site for details: http://www.eventhorizontelescope.org/.

3Illustrative numerologies are as follows: θ∞ ¼ ðum=DOLÞ ×
ð206265 × 106Þ microarcsec. For the Ellis-Bronnikov wormhole
of mass M ¼ 4.22 × 106 × 1.48 × 105 cm ¼ 6.245 × 1011 cm,
um ¼ 2Me ¼ 3.395 × 1012 cm, DOL ¼ 8.33 × 3.085 × 1021 ¼
2.569 × 1022 cm, we have θEB∞ ¼ 27.253 microarcsec. For the
Schwarzschild case, um ¼ 3

ffiffiffi
3

p
M ¼ 3.245 × 1012 cm, and sim-

ilarly θSch∞ ¼ 26.048 microarcsec.
4There appears to be a small gap of 0.36 microarcsec in θ∞

between the simulated value 26.4microarcsec for theKerr-like case
and the Schwarzschild value 26.04 microarcsec (a ¼ 0). However,
this gap is expected to be much reduced since the observed SgrA�
spin a≃ 0.088M is far less than a ¼ 0.5M, assumed in [23]. The
Kerr lens “identity card” (ā; b̄; um) differs little for a ≈ 0.088M
from that of the Schwarzschild lens (a ¼ 0) as the plots in [25]
readily show. Therefore, the value θSch∞ ¼ 26.048 microarcsec
seems quite acceptable at small to moderate spin values.
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measurement of the angular radius of the shadow of our
central galactic object cannot distinguish between the types
of lenses, but in the near future it should be possible.
We can also calculate other lensing observables

defined in [11] such as the separation of images
sEB ¼ θ∞ exp ½1ā ðb̄ − 2πÞ� ¼ 0.0315, sSch ¼ 0.0321, and
the ratio of fluxes r ¼ exp½2πā � converted to magnitudes
rEBm ¼ rSchm ¼ 2.5 × log10ðrÞ ¼ 6.821. (ā ¼ 1 and for b̄,
see Appendix).
The zero-mass wormhole (M ¼ m0γ ¼ 0) is obtained by

putting γ ¼ 0, m0 ≠ 0, which leads to the wormhole metric

dτ2EB ¼ dt2 − dl2 − ðl2 þm2
0Þðdθ2 þ sin2θdφ2Þ�; ð34Þ

ϕðlÞ ¼ 1ffiffiffi
2

p
�
π

2
� 2tan−1

�
l
m0

��
≃ const ∓

ffiffiffi
2

p
m0

l
: ð35Þ

The constant m0 is often interpreted as scalar charge à la
the Wheeleresque mantra “charge without charge” (see
[4,26]). In the limit γ → 0, the impact parameter uEBm → m0,
which satisfies um > lps ¼ 0. Thus, choosing numerical
values for m0 equaling the positive mass of the Ellis-
Bronnikov wormhole (which is the SgrA�), we can have
exactly the same observables as in Table I. However, it
means that the entire mass of SgrA� has to be made up of
scalar charges without any molecular structure. This is
intriguing but absurd.

IV. QNM FREQUENCIES

Since ā ¼ 1, we can intuitively insert the lensing
observable um in the equation for ωQNM derived using
the eikonal limit WKB approximation for the
Schwarzschild black hole (for details, see [27]), viz.,

ωQNM ¼
�

1

um

���
lþ 1

2

�
−
1

3

�
5α2

12
− β þ 115

144

�
l−1

þ 1

6

�
5α2

12
− β þ 115

144

�
l−2

�

− iα
�

1

um

��
1þ 1

9

�
235α2

432
þ β −

1415

1728

�
l−2

�
;

ð36Þ

where α≡ nþ 1
2
and β ¼ 0; 1;−3 for scalar, electromag-

netic, and gravitational perturbations, respectively. We
noted that the original expression for ωQNM derived in

Eq. (3.1) of [27] had the same form as above except that, in
the denominator on the left-hand side, there was the
expression 3

ffiffiffi
3

p
M in place of um. The surprising thing is

that no concept of the radius of the Schwarzschild black
hole shadow um was used in the WKB method. This led us
to guess that a more generic expression for ωQNM should
involve um in place of the specific Schwarzschild 3

ffiffiffi
3

p
M.

The motive for this intuitive generalization is the hope that
the frequency formula (36) be applicable to any spherically
symmetric compact object having a shadow radius um
(including horizonless wormholes) and remains valid from
moderate to large values of l. Then one obtains the ratio of
frequencies as

ωSch
QNM

ωEB
QNM

¼ 2e

3
ffiffiffi
3

p ¼ 1.04627; ð37Þ

which is independent of γ, β, l, and n. Note that, for l ≫ 1,
one anyway recovers the eikonal approximation (9) and the
same ratio of frequencies (37) follow. A consequence of our
guesswork is a generic relation from Eqs. (31) and (37),
viz.,

ωSch
QNMu

Sch
m ¼ ωEB

QNMu
EB
m ⇒ ωQNMum ¼ complex constant;

ð38Þ

indicating that the shadows of the lens contain information
on ωQNM and vice versa of any spherically symmetric
compact object.
We emphasize that the isotropic form (16) of Ellis-

Bronnikov was derived to show its passage to the
Schwarzschild black hole, but it is also an equally valid
coordinate form. We could do all the calculations of
observables using the isotropic form equally well since
coordinate choice is a matter of convenience that does not
alter the values of actual observables. It can be straight-
forwardly verified using the isotropic metric (16) that
the observables (ā, b̄, um; r; s;ωQNM) again have exactly
the same values. The comparison between SgrA� and the
wormhole are summarized at one place in Table I for easy
view (M ¼ 4.22 × 106 M⊙; the Schwarzschild case has
γ ¼ −i; and the Ellis-Bronnikov case has γ ≥ 80).

V. STABILITY

For the wormhole to be an observationally valid alter-
native to black holes, the former has to be stable for its very
existence. The situation is that, probably due to the inherent

TABLE I. Bozza lensing observables for Schwarzschild black hole and Ellis-Bronnikov wormhole.

Lens ā b̄ um rm s MωQNM (n ¼ 0, l ¼ 50) ReðωÞ=ImðωÞ
Sch 1 −0.4002 5.196 6.821 0.0321 9.718 − 0.096i 101.23
EB 1 −0.4658 5.437 6.821 0.0315 10.168 − 0.101i 100.67
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freedom in the choice of perturbation modes, there have
been many differing claims in the literature, of which some
are mentioned here. Previously, Armendáriz-Picón [28]
showed that the massless Ellis-Bronnikov wormhole and at
least a nonzero measure set of massive Ellis-Bronnikov
wormholes are stable. But it is subsequently argued by
González et al. [29,30] that the linear stability analysis in
[28] applies only to a restricted class of perturbations,
which requires the perturbed scalar field to vanish at the
throat, δϕðlthÞ ¼ 0. Using numerical simulations, they
conclude that the wormhole is unstable under both linear
and nonlinear perturbations such that it either expands
away to infinity or collapses into the Schwarzschild black
hole. The conclusion of instability for the phantom scalar
field has been supported also by Bronnikov et al. [31].
Below, we point out that, while the emergence of an

apparent horizon in the simulation in [30] is an interesting
result based on the particular mode of perturbation, the
conclusion of the collapse to the black hole seems arguable
for the following reasons:
First, González et al. [30] take the appearance of the

apparent horizon to be a “strong indication” for the
formation of an event horizon at a later stage of collapse.
Such a hope might be belied since, as they too noted, the
apparent horizon is both foliation and observer dependent
notion [32]. The main thing is that its existence is not even
mandatory for the event horizon. It is quite possible to
foliate the Schwarzschild geometry in such a way that there
is never any apparent horizon, despite the fact that there is
certainly an event horizon [33].
Second, a more recent stability analysis by Novikov and

Shatskiy [34] shows that the zero mass wormhole, with the
stress decomposed in a clever way, is stable under spherical
perturbations (no collapse, no expansion). The stress
structure being exactly the same for massive Ellis-
Bronnikov wormhole as well,5 the same analysis can be
extended to this case. However, there is a simpler, and
mathematical, argument: Note that only the exclusive value
of the parameter γ ¼ −i in metric (16) yields the exact
Schwarzschild black hole, with ϕ ¼ 0 as was shown. If the
wormhole, for which γ must always be real, has to really
collapse to a black hole, the parameter γ has to jump from a
real line into a point on the complex line, augering a sudden
topology change. This is absurd, since topology change is
against normal experience, at least, on a macroscopic scale
[35]. Avery recent work by Faraoni et al. [6] concludes that
Brans solutions cannot collapse into black holes. The Ellis-

Bronnikov wormhole is just such a solution being the
Einstein frame variant of the Brans II solution [18], and the
same conclusion holds.
Third, we should note that ring-down gravity waves are

generated by nonspherical deformations induced by external
perturbations. Meanwhile, Bronnikov and Rubin [36] argue
that the nonspherical perturbation modes must probably be
more stable than the spherical ones, since the effective
potential for the perturbations contains centrifugal (and other
higher multipoles) barriers, as in the Regge-Wheeler or
Zerilli potentials. In fact, stability under nonspherical per-
turbation is indirectly supported by the negative imaginary
part ωI of the QNM modes as argued in [15,27].
Equation (11) with a positive ā guarantees that λ > 0 or
ωI < 0. By the same token, a precise observation of QNM
modes would also constitute a test for the existence or
otherwise of scalar hair ϕ in the wormhole [15,37].
There exists yet another entirely different window to

look at the stability issue, viz., via Tangherlini’s approach
[38] of “non-deterministic, pre-quantal statistical simula-
tion” of photon motion in a medium yielding reflection (R)
and transmission (T) coefficients across a surface in the
medium. Taking into account the generic feature in curved
space-time, namely, that observations depend on the
location of the observer, this approach yields observer-
dependent perception of stability of the wormhole in terms
of these coefficients. While one observer perceives insta-
bility, another observer might perceive stability (see, for
details, [39]).

VI. CONCLUSIONS

Most of the numerous works on QNM frequencies
beginning with the seminal work by Vishveshwara [40]
in 1970 until its most recent application to wormholes [3,9]
involve spherically symmetric static sources as toy models.
However, it is to be remarked that spin is an important
factor, and many astrophysical observations of black holes
are inconsistent with the Schwarzschild metric.6 A glimpse
of such inconsistency is provided by the observed radio
variability in the emission spectrum from SgrA� believed to
be induced by a small spin of an assumed Kerr black hole
[13]. Nonetheless, studies using static sources provide very
useful information on the mode spectrum including the
more interesting case of low-lying frequencies (n ¼ 0,
l ¼ 2 is the dominant gravitational wave mode giving
the famous MωSch

QNM ¼ 0.3737 − 0.0890i).
Cardoso et al. [3] consider a static surgical wormhole

(born out of cut-paste surgery joining two copies of
Schwarzschild black holes) as a heuristic model that could
be extended by including other effects such as spin but,
they argue, none of these effects is expected to change the

5The stress tensor threading the massive Ellis-Bronnikov
wormhole has the same decomposable components ρ ¼
− m2ð1þγ2Þ

ðl2þm2Þ2 exp ½−γfπ − 2tan−1ðlmÞg�, pr ¼ ρ, pθ ¼ pφ ¼ −ρ. Both
the weak energy condition (WEC), ρ ≥ 0, and the null energy
condition (NEC), ρþ pr ≥ 0, are violated. For γ ¼ 0,
one has the stress of the zero mass case decomposed by Novikov
and Shatskiy [30].

6We thank an anonymous referee for directing our attention to
this point and to the question of how it could be constrained by
observations.
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qualitative picture. The present work has to be regarded as
an improvement on the same idea, where the artificial
surgical wormhole has been replaced by the regular stable
Ellis-Bronnikov wormhole. The latter, being a solution of
general relativity with a well defined source, stands a better
chance for its occurrence in nature as a competing
astrophysical object. This notwithstanding, the results of
the present paper should be taken as indicative rather than
concrete due to lack of spin. An exact treatment incorpo-
rating spin would require a separate follow-up investigation
to see if the frequencies emanated from a spinning black
hole can be connected with its strong field lensing
observables in a manner discovered by Stefanov et al.
[17] for the static case. It is premature to say if this
connection exists at all, but at least the strong field
observables for SgrA� with its estimated small spin
(a≃ 0.088M) in the Kerr metric do not differ appreciably
from their static values (a ¼ 0), as the plots of the lens
“identity card” (ā, b̄, um) in [25] show.
The merit of the chosen Ellis-Bronnikov wormhole is

that it is observationally indistinguishable from the
Schwarzschild black hole in the weak field regime since
the PPN parameters are the same (α1 ¼ β1 ¼ γ1 ¼ 1). This
result raises the possibility if this wormhole can act as a
black hole mimicker beyond PPN approximation. We argue
that it can, but only within the experimental accuracy as
available today. A better accuracy in the future will
certainly distinguish between the two objects. Black hole
mimickers are not unknown in the literature. For instance,
gravastar models mimicking black holes have been inves-
tigated by Chirenti and Rezzolla [41,42]. Once again,
unlike artificial gravastars, the Ellis-Bronnikov wormhole
is more natural and much simpler. Moreover, it has been
shown that the wormhole reduces exactly to the
Schwarzschild black hole under the special choice
γ ¼ −i. One would then think that the Ellis-Bronnikov
wormhole for different values of real γ would lead to
observable signatures very different from those of the
Schwarzschild black hole obtained at imaginary γ.
Remarkably, this need not be the case. It was shown that
the main observable um rapidly saturates to 2Me at γ → ∞,
which is indeed not much different from the Schwarzschild
value 3

ffiffiffi
3

p
M. In this sense, the Ellis-Bronnikov wormhole

can be regarded as assuming an eternal identity by itself,
just like the classical Schwarzschild black hole.
We applied our calculations to the object residing at the

center of our galaxy that is speculated to be a black hole
(SgrA�) of massM ¼ 4.22 × 106 M⊙ situated at a distance
DOL ¼ 8.33 kpc [23]. If instead we regard the object as the
Ellis-Bronnikov wormhole, then it turns out that both the
objects remarkably share the same value of Bozza strong
field lensing parameter, ā ¼ 1. It was further shown that the
ratio between the black and wormhole of the same mass
with regard to ring-down gravitational wave mode in the

eikonal limit is set by
ωSch
QNM

ωEB
QNM

¼ 2e
3
ffiffi
3

p ¼ 1.04627 independently

ofM, γ, l, and n. This ratio cannot be reduced further as the
object either rings as a black hole at all times or rings
differently also at all times, depending on the chosen values
of its parameters [9]. It was also calculated that θEB∞ ¼
27.253 microarcsec and θSch∞ ¼ 26.048 microarcsec, which
differ by just 1.205 microarcsec. Other specified observ-
ables [11] were also calculated, such as the separation of
relativistic images sEB ¼ θEB∞ exp ½1ā ðb̄ − 2πÞ� ¼ 0.0315,
sSch ¼ 0.0321, and the ratio of fluxes r ¼ exp½2πā � converted
to magnitudes yields rEBm ¼ rSchm ¼ 2.5 × log10ðrÞ ¼ 6.821,
which intriguingly is yet another exact equality due to
ā ¼ 1. All the obtained results are summarized in Table I
for easy comparison. It is evident that the observables for
the black and wormhole are quite close, and some are
exactly the same, giving strength to the idea that the Ellis-
Bronnikov wormhole can act as a black hole mimicker
within experimental accuracy.
This raises a very relevant question about the main

observable and the current experimental accuracy, and how
it can constrain γ. The central observable is the angular
radius θ∞ of the shadow of the object, which is primarily
determined by its mass-to-distance ratio with a weak
dependence on spin within the Kerr metric of the theory
of general relativity. If the theory is violated, the shadow
size may also depend strongly on parametric deviations
from the Kerr metric. The result and uncertainty in θ∞ from
a simulated one-day observing run of the seven station EHT
demonstrate that such an observation can measure θ∞ of
SgrA� with an uncertainty of 1.5 microarcsec (6%) [23].
(The possibility of directly imaging the shadow of the lens
in the not-too-distant future is quite promising [12,43].) We
calculated in Eq. (32) that the level of accuracy needed to
distinguish between the Schwarzschild black hole and the
Ellis-Bronnikov wormhole of the same mass and distance is
1.205 microarcsec. The plot of the difference function ΔðγÞ
of Eq. (33) then shows that the constraint is γ ≥ 80 (Fig. 1).
A final remark: Despite intriguingly similar, even the

same, observable values, it is our conviction that the Ellis-
Bronnikov wormhole for real values of γ would survive as a
topological object of its own class, remaining fundamen-
tally distinct from a Schwarzschild black hole. This would
be expected because a real γ > 0 cannot jump to γ ¼ −i,
augering a spontaneous topology change against experi-
ence [4,36]. By an intuitive extension, it is tempting to
elevate this conviction into a principle: Collapse of any
object will lead to a final state definable only within the
parameter range of the initial object and not to a state
defined by parameters outside that range.
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APPENDIX: CALCULATION OF b̄ FOR ELLIS-
BRONNIKOV WORMHOLE

In the expression for αðθÞ, θ is an independent angular
variable designating different rays, and since ā ¼ 1, the only
quantities that can be expressed in terms of generic mass M
are the minimum impact parameters um and b̄. The um has
already been expressed as such in Eq. (30). To obtain the
functional expression for b̄ in terms of M, it is necessary to
briefly state its origin as developed by Bozza [11]. Thus the
Ellis-Bronnikov metric is taken as [see Eq. (4)]

dτ2 ¼ AðlÞdt2 − BðlÞdr2 − CðlÞðdθ2 þ sin2θdφ2Þ:

A photon incoming from infinity with arbitrary impact
parameter u will be deviated while approaching the black
hole. The light ray will reach the closest approach distance
l0 and then emerge in another direction. The two distances
are generically related by

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Cðl0Þ
Aðl0Þ

s
:

The minimum impact parameter is

um ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CðlmÞ
AðlmÞ

s
:

We shall be using the Ellis-Bronnikov metric functions (4)
that yield

lm ¼ lps ¼ 2M ¼ 2m0γ:

The deflection angle

αðθÞ ¼ −ā ln
�
θDOL

um
− 1

�
þ b̄

can be expressed in a mass-dependent form. We just cite
here the expression [Eq. (37) from [11]]

b̄ ¼ −π þ bR þ ā log

�
2βm
ym

�
; ym ¼ AðlmÞ;

bR ¼ IRðlmÞ ¼
Z

1

0

gðz;lmÞdz;

and βm is an expression involving derivatives of metric
functions [see Eq. (24) of [11]]. Omitting the detailed
generic expressions for βm and gðz;lmÞ, we only report
here the final expressions for bR and 2βm

ym
for the Ellis-

Bronnikov wormhole in terms ofM. The integrand gðz;lmÞ
has a formidable expression that has been calculated
and numerically integrated by using Mathematica 9.1.
To explicitly show the mass dependence of b̄, define

K1 ¼
expð−πγÞ

M
½expðπγÞ − exp f2γtan−1ð2MÞg�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4M2Þ=K2

q
;

K2 ¼ exp½−πγ þ 2γtan−1ð2MÞ�;

K3 ¼ exp

�
2γ

�
tan−1ð2MÞ þ tan−1 cot

�
logK2

2γ

���
;

K4 ¼ ln ½expð−πγÞfð1 − zÞ exp½2γtan−1ð2MÞ� þ z expðπγÞg�;
K5 ¼

z
γ2

½expð−πγÞ − exp f−2γgtan−1ð2MÞ�;

K6 ¼ z½4M2 − 1 − 12Mγ þ 4γ2� expðπγÞ
þ ½8γðγ −MÞ þ zð1 − 4M2 þ 12Mγ − 4γ2Þ� exp f2γtan−1ð2MÞg;

K7 ¼ exp
�
2γtan−1 cot

�
logK4

2γ

��
;

K8 ¼ ð1 − zÞ exp ½2γtan−1ð2MÞ� þ z expðπγÞ;

K9 ¼ exp

�
−πγ − 2γtan−1ð2MÞ − 2γtan−1 cot

�
logK4

2γ

��
;

K10 ¼ ð1þ 4M2Þ½ðz − 1Þ exp f2γtan−1ð2MÞg − z expðπγÞ� × sin
�
K4

2γ

�
:

Then

gðz;lmÞ≡ gðz;M; γÞ ¼ K1 ×

�
−2

ffiffiffiffiffiffi
K3

pffiffiffiffiffiffiffiffiffiffiffiffi
K5K6

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
K7K8

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ K9K10

p
�
: ðA1Þ
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We have verified that the numerical integration

bR ¼
Z

1

0

gðz;M; γÞdz ðA2Þ

does yield the Schwarzschild value (for γ ¼ −i), bR ¼ 0.9496. Furthermore, it can be verified that

log

�
2βm
ym

�
¼ log

�
exp ½−4γtan−1ð2γÞ�½expðπγÞ − exp f2γtan−1ð2γÞg�2½1þ 4γ2�

2γ2

�
: ðA3Þ

This yields the exact Schwarzschild value (for γ ¼ −i), logð2βmym
Þ ¼ log 6 ¼ 1.7917. Collecting the results, one has

b̄Sch ¼ −π þ bR þ ā logð2βmym
Þ ¼ −0.4002, just as in [11]. For the Ellis-Bronnikov wormhole, it was noted that the

observable values rapidly saturate at γ ≳ 80, so at large real γ, it can be verified that, for the same mass as that of the black
hole,

bR ¼ 0.8999;

log

�
2βm
ym

�
¼ logð5.905Þ ¼ 1.7758;

b̄EB ¼ −π þ bR þ ā log

�
2βm
ym

�
¼ −0.4658: ðA4Þ

This value b̄EB was used in the text to calculate the separation of images sEB ¼ 0.0315. Note that bR is a result of a
definite integral (A2) giving definite numerical values for black and wormhole cases, so b̄ is independent of coordinate
choices in each case.
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