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Effective field theory approach to the gravitational two-body dynamics
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Working within the post-Newtonian (PN) approximation to general relativity, we use the effective field
theory (EFT) framework to study the conservative dynamics of the two-body motion at fourth PN order, at
fifth order in the Newton constant. This is one of the missing pieces preventing the computation of the full
Lagrangian at fourth PN order using EFT methods. We exploit the analogy between diagrams in the EFT
gravitational theory and two-point functions in massless gauge theory, to address the calculation of four-

loop amplitudes by means of standard multiloop diagrammatic techniques. For those terms which can be

directly compared, our result confirms the findings of previous studies, performed using different methods.
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I. INTRODUCTION

The post-Newtonian (PN) approximation to the two-body
problem in general relativity has been the subject of intense
investigation in the last decades as it describes the dynamics
of gravitationally bound binary systems in the weak-
curvature, slow-velocity regime, reviewed in Refs. [1-3].

From the phenomenological point of view its results
have been of paramount importance in constructing the
waveforms which were eventually used as templates [4,5]
for the LIGO/Virgo data analysis pipeline leading to the
detection of gravitational waves [6], along with numerical
simulations to solve for the spacetime in the strong-
curvature regime [7] and earlier in the analysis of the
Hulse-Taylor pulsar arrival times [8,9].

Interferometric detectors of gravitational waves are
particularly sensitive to the time-varying phase of the
signal of coalescing binaries, which thus must be computed
with better than O(1) precision [10]. Such a phase can be
determined from short-circuiting the information of the
energy and luminosity function of binary inspirals with at
least 3PN-order accuracy.

Focusing on the conservative sector of the two-body
problem without spins (see Ref. [3] for results involving
spins), we recall that within the effective field theory (EFT)
formalism, initially proposed in Ref. [11] and reviewed in
Refs. [3,12-14], the 1PN, 2PN [15] and 3PN [16] dynamics
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have been computed, reproducing results obtained with
more traditional methods; moreover the 4PN Lagrangian,
quadratic in the Newton constant Gy, was first derived in
the EFT framework [17].

The complete 4PN dynamics has been obtained
recently by two groups within the Arnowitt-Deser-
Misner Hamiltonian formalism [18,19] and by iterating
the PN equation in the harmonic gauge in Refs. [20,21]; in
both approaches an arbitrary coefficient was fixed by using
results for the gravitational wave tail effect from self-force
computations [22-24]. It is worth mentioning that the two
results did not initially agree at orders Gy and G5, and, as it
was argued in Ref. [25], the discrepancy has been over-
come by a suitable regularization of the infrared and
ultraviolet divergences in the approach based on the
equations of motion, although the new regularization could
not yet fix the value of the second ambiguity parameter
in Ref. [21].

This work goes in the direction of providing a third-party
computation with an independent methodology by filling in
one of the missing pieces to obtain the full 4PN result
within EFT methods. Using the virial relation v> ~ G yM/r,
where r and v are respectively the relative distance and
velocity of the binary constituents and M is the total mass,
the terms contributing to the 4PN-order dynamics can be
parametrized as Gy "v*" with 0 < n < 5, with the leading
term being the Newtonian potential, scaling simply as Gy.
By following the path paved in Ref. [17], we present in this
work some results concerning the G3, order.

The Lagrangian contains in general terms with high
derivatives of the dynamical variables: it is however
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possible to keep the equations of motion of second order
without altering the dynamics by adding to the Lagrangian
terms quadratic at least in the equations of motions tuned to
cancel the high-derivative terms at the price of introducing
additional terms with higher Gy powers, according to the
standard procedure first proposed in Ref. [26] and dubbed
the double zero technique. The G3, sector of the Lagrangian
receives contributions from Gy, G% and G3, Lagrangian
terms which are at least quadratic in accelerations (com-
puted in Ref. [17] up to G%) via the double zero trick, as
well as from genuine G3, terms: in the present article, we
focus on the genuine va contribution, that is terms that do
not contain ab initio any power of velocity v or acceleration
v, and leave the very last contribution, coming from
O(G31?*) terms, to a forthcoming paper dedicated to the
whole G3 sector.

In this work, we evaluate the 50 diagrams contributing to
the classical effective Lagrangian in the gravitational theory
at order G3,. They are nontrivial integrals over 3-momenta
which can be computed by means of multiloop diagram-
matic techniques. We exploit the analogy between dia-
grams in the EFT gravitational theory and diagrams
corresponding to two-point functions in massless gauge
theory, to address the calculation of the O(G3,) diagrams as
two-point four-loop dimensionally regulated integrals in d
dimensions. In particular, we use integration-by-parts
identities (IBPs) [27-29] in two ways: according to the
topology of the graph, IBPs allow to carry out the multiloop
integration recursively loop by loop; alternatively, they can
be used to express the result of the amplitudes as linear
combinations of irreducible integrals, known as master
integrals (Mls). The latter are evaluated independently. The
contribution to the three-dimensional Lagrangian coming
from each graph is then determined by taking the d — 3
limit of the Fourier transform to position space.

The paper is organized as follows. In Sec. II we review
the EFT formalism applied to the two-body dynamics in the
PN approximation to general relativity and in Sec. III we
present the details of the 4PN computation at G3, order. We
summarize in Sec. IV and conclude in Sec. V. Appendix A
contains the expressions of the master integrals needed for
the computation, in Appendix B we give the contribution to
the Lagrangian coming from the individual diagrams and in
Appendix C details of the computation of selected ampli-
tudes are reported.

II. THE METHOD

The application of the EFT framework to post-Newtonian
calculations in binary dynamics has now been extensively
investigated. It was first formulated in this context in
Ref. [11] and subsequently applied to various aspects of
the binary problem (see Refs. [3,13] and references therein).

We summarize here the basic features of this approach,
along the lines and notations of Refs. [16,17], while
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referring the reader to the literature for a more complete
account. The starting point is the action

S = Spuik + Spp> (1)

with the worldline point-particle action representing the
binary components (we only consider here spinless point
masses and neglect tidal effects)

Spp = —Zmi/dri

i=12

as well as the usual Einstein-Hilbert action’ plus a gauge-
fixing term

Shulk = 2A? / ddHX\/—_g [R(g) —% urﬂ]’ (3)

which corresponds to the same harmonic gauge condition
adopted in Refs. [1,20], where I* = g»""Fﬁ(,. Here
A2 =322GyL%3, where Gy is the three-dimensional
Newton constant and L is an arbitrary length scale which
keeps the correct dimensions of A in dimensional regulari-
zation, and always cancels out in the expression of physical
observables. In this framework, a Kaluza-Klein (KK) para-
metrization of the metric [30,31] is usually adopted (a
somewhat similar parametrization was first applied within
the framework of a PN calculation in Ref. [32]):

-1 Ai/A
gy:eztﬁ//\( J >’ (4)
a Al/A e_cd¢/Ayij —14114]//\2
with, y;; = 6;; +6;;/A, ¢, = 2% and i, j running over

the d spatial dimensions. The field A; is not actually needed
in the present computation, so it will henceforth be set to
zero; we refer the reader to Ref. [16] for the general treatment
and formulas including A;.

In terms of the metric parametrization (4), with A; = 0,
each worldline coupling to the gravitational degrees of
freedom ¢, o;; reads

Spp = —m/dr
= —m/dte‘/’/"\/l —e“‘d‘/’//\(v2 +%vivf), (5)

and its Taylor expansion provides the various particle-
gravity vertices of the EFT.

'We adopt the “mostly plus” convention 77,,, =diag(—,+,+,+),
and the Riemann and Ricci tensors are defined as Rj,, =
aﬂr,lj(f + Fﬁprgc —p <0, R/w = R/(:au'
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FIG. 1. The diagrams contributing at order Gi,. As in the EFT approach the massive objects are nondynamical: the horizontal black
lines have to be seen as classical sources, and not as propagators. Green solid lines stand for ¢ field propagators, while blue dashed lines

stand for ¢ fields.

Also the pure gravity sector Spux = Sgg + Sgr can be
explicitly written in terms of the KK variables; we report
here only those terms which are needed for the present
calculation’:

-

O Y R e B

1 /0 .. .
i i Aok kol
_X<§5j_‘7j)<o'ik OjI” — Ok 0ji

+67i0'jk’k —Uik’jd'k)}. (6)

The two-body effective action can be found by integrat-
ing out the gravity fields from the above-derived actions

It is understood that spatial indices in this expression,

-

including those implicit in terms carrying a (V)?2, are contracted
by means of the spatial metric y;;, which implies the appearance
of extra o fields, e.g. (Vo)? =y*y“y'ic,, 0.4 and y/ = (y7'),;

(and in the second line 6"/ = 6,;, 0 = 50;;).

expliSet] = / DpDoyexpli(Soar + S,p)]. (7)

As usual in field theory, the functional integration can be
perturbatively expanded in terms of Feynman diagrams
involving the gravitational degrees of freedom as internal
lines only,3 regarded as dynamical fields emitted and
absorbed by the point particles which are taken as non-
dynamical sources.

In order to make manifest the v scaling necessary to
classify the results according to the PN hierarchy, it is
convenient to work with the space-Fourier transformed
fields

Wg(t)z/dde”(t,x)e‘ip'x with We={¢.c;;}. (8)

3As we focus on the conservative part of the dynamics, we are
not interested in diagrams where gravitational radiation is
released to infinity, even though tail effects [33] involving
emitted and absorbed radiation are relevant at G order also
in the conservative sector.
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The fields defined above are the fundamental variables in
terms of which we are going to construct the Feynman
graphs; the action governing their dynamics can be found
from Egs. (5) and (6).

The next step is to lay down all the diagrams which
contribute at this O(Gy,) in the static limit, following the
rule that each vertex involving n gravitational fields carries
a factor G/ >~" if it is a bulk one, and a factor G/
attached to an external particle.

The diagrams in Fig. 1 schematically represent the
exchange of gravitational potential modes through the field
¢ (blue dotted lines) and o;; (green solid line) which mediate
the gravitational interaction. Massive objects represented by
the thick horizontal black solid line are nondynamical
sources or sinks of gravitational modes. Their dynamics
is described by the worldline §S,, and hence no massive
particle propagator is present in between two different
insertions of gravitational modes on the same particle.

The amplitudes corresponding to each diagram can be
built from the Feynman rules in momentum space derived
from S, ,, Spyi. By looking in particular at the quadratic
parts, one can explicitly write the propagators:

PIW5 (1, )W) (1,)]
1

= 3 PG 25 (p + PP 1 1)3(0, — 1), (9)

2 if it is

where P#? = —5, P = — (56,460 jx +(2—¢4)8;0k1)
and
p(pzvtavtb) :2;:% (10)
) 2 atﬂatb p

has been truncated to its instantaneous nonrelativistic part.
The terms involving time derivatives (which acting on the
e'P*, generate extra factors of v) can be indeed neglected.
In fact, in the present work, we are interested in the pure
4PN G3, contribution, which, by power counting, can be
accessed in the limit of zero velocity and instantaneous
interactions. In other words, gravitational-mode momenta
have scalings of the types (v/r, 1/r), and therefore the
temporal component of their momenta can be neglected,
since we are computing the G2 sector.

From the previous dlscuss10n, one can derive the
Feynman rules, respectively for the ¢ propagator,

............ Lot (11)

P ZCdPZ
and for the o propagator,
rj K R iPorion . (12)
P 2p2

The Feynman rules for the interaction vertices can be
derived in a similar fashion and are reported below:
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FIG. 2. Four-loop two-point topologies corresponding to the
diagrams in Fig. 1.
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(13)

with z'ijlm = 5il§jm + 5irn5jl and Qijlm = z'ijlm _ 6ij5[m'

Finally, the contribution of each amplitude to the
two-body Lagrangian £ can be derived from its Fourier
transform,
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dip .
il ip-r
L, ilim f @)1 e (14)

where the box diagram stands for the generic diagram
a=1,...,50 of Fig. 1, and p is the momentum transfer of
the source.

III. AMPLITUDES AND FEYNMAN INTEGRALS

In general, within the EFT approach, since the sources
(black lines) are static and do not propagate, any gravity
amplitude of order G4 can be mapped into a (£ — 1)-loop
two-point function with massless internal lines and external
momentum p, where p> = s # 0,

- /J\
] N T/

(15)

Accordingly, the 50 diagrams in Fig. 1 can be mapped
onto the 29 topologies of Fig. 2, where the sets 7| =
{1,2,3,4,5,6}, T, = {7,8,10,11, 14,16, 17,20, 21, 25},
T3 =1{9,12,13,22}, T, = {15, 18,19, 23,24}, collect the
diagrams that share the same topology. For instance, the
diagrams 1 to 6 of Fig. 1 correspond to integrals which have
the same five denominators of the graph indicated by 7| in
Fig. 2, but different numerators, due to the different terms
associated to 1,2,3 or 4 ¢ emission or absorption from the
massive particle.

The representation of the gravity amplitudes as four-loop
two-point integrals yields the possibility of evaluating the
latter by means of by-now standard multiloop techniques
based on IBPs [27,28].

Accordingly, we collect the 50 amplitudes of Fig. 1 in

two sets, A; = {1:28,31,32,35:37,39,41,45:47} and
A =1{29,30,33,34,38,40,42,43,44,48,49,50}, and
address their computation separately.

The set .A; contains diagrams with a simpler internal

structure, and they have been computed by using the kite
rule [27,28]

Mo
M3 Mg Moo M3

FIG. 3. The master integrals which appear in the calculation of
the amplitudes in the set .4;;. The names of the diagrams follow
Refs. [36-38].
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(16)

where the dots stand for squared denominators, and by
using the standard identity holding for two-point one-loop
graphs,

dék 1

(2m)d k2a(p— k)2 {}

2\d/2-a-b B ° B B
() I'(d/2 - a)I'(d/2 - b)T(a+b-d/2)
o (4m)d/2 I'(a)T(L)T(d-a-b) ’

(17)

where a and b are generic denominators’ powers.
Alternatively we also performed an IBP reduction using
the program REDUZE [34,35], identifying five MIs, namely
Moy, My, Mo, M5, M, 4 of Fig. 3. Both strategies
gave the same results.

The amplitudes A4;;, instead, have a less trivial internal
structure. By means of IBPs, they have been systematically
reduced to linear combinations of seven MIs, all shown in
Fig. 3. In this case, the reduction to MIs has been performed
in two ways: by an in-house implementation of Laporta’s
algorithm which is based on FORM [39-41], as well as by
means of REDUZE.

The four-loop MIs in Fig. 3 can be considered as a
complete set of independent integrals, such that any ampli-
tude of the sets .A; and A;; can be written as a linear
combination of them. The results of the four-loop MlIs in
d = 4 + € Euclidean spacetime dimensions have been well
known for some time [36,37], while the values around
d =3+ ¢ of M;,, Mj4 became available more recently
[38]. In particular, M, M, |, M;,, M3, M4 can be
computed in a straightforward way by means of Eq. (17), and
admit closed analytic expressions, exact in d, which can be
expanded in a Laurent series in € around d = 3. The series
expansions of M,, and M3, were first obtained
numerically in Ref. [38] by using the difference equa-
tions method, exploiting the fact that dimensionally
regulated Feynman integrals obey dimensional recurrence
relations [29,42-45]. For instance, owing to IBPs, M;¢
is a solution of the following recursive formula:

N
AN/

an
CAANY,

(18)
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with
5(d=3)(d—-4)*(5-4d)
3(d —6)*(3d — 16)(3d — 14)s*
X (5d —26)(5d —24)(5d —22)(5d — 18), (19)

a, =

B 80(d — 3)3(2d — 7)(5d — 26)(5d — 24)
T 94— 6)2(d—4)2(3d — 16)2(3d — 14)2(3d — 10)s°
x (5d —22)(5d — 18)(5d — 16)(14 — 5d)
x (63872 — 40162d + 8403d2 — 585d°), (20)

40(d — 3)%(8 — 3d)(5d — 26)
3(d — 6)*(d —4)*(3d — 16)(3d — 14)s°
x (5d —24)(5d — 22)(5d — 18)
x (5d —16)(5d — 14)(7d — 32), (21)

as =

_ (d=3)*(3d—-101(3d —8)*
T 3= 6)2(d—4)?(3d - 16)(3d — 14)5°
x (2897664 — 2445164 + 772948
— 10847543 + 57024*), (22)

20(d — 3)(2d — 7)(2d — 5)(5d — 26)(5d — 24)
9(d - 6)*(d —5)(d — 4)3(3d — 16)*(3d — 14)2s’
x (5d —22)(5d - 18)(5d — 16)(5d — 14)(5d — 12)
x (1972736 — 1666418d + 527297d>
—74070d> + 3897d*), (23)

as =

which links M;¢ in d — 2 dimensions (on the lhs) to M;¢
in d dimensions, and to other MIs belonging to sub-
topologies, also defined in d dimensions (on the rhs). The
MIs belonging to subtopologies have to be considered as
the nonhomogeneous term of the dimensional recurrence
relation: they are known terms in a bottom-up approach
(where simpler integrals, with less denominators, are
computed first).*

The solving strategy of dimensional recurrence equa-
tions for Feynman integrals has been discussed in Ref. [45]
and implemented in the code SUMMERTIME [38], which

“The dimensional recurrence (18) implies that M ¢ (d=3+¢)=
o2 ,M;34(3.k)ek can be obtained from the knowledge
of the MIs on the rths, M, ;(d =5+¢) = > 2 _, M, ;(5.k)é.
It is interesting to notice that in Eq. (18) the coefficient a; is
proportional to (d — 5). Therefore, by expanding both sides of the
equation in a Laurent series, the Laurent coefficient M3 ¢(3, k)
gets a contribution from M;4(5,k — 1) and from the Laurent
coefficients of the other MIs at d =5. In particular, the
coefficient of the double pole M;4(3,—2) is completely
determined by the series expansions of the MIs of the sub-
topologies only, because when k = =2, M;4(d =5 + ¢) does
not give any contribution.

PHYSICAL REVIEW D 95, 104009 (2017)

provides numerical values for the coefficients of the
Laurent series in the ¢ — 0 limit, at very high accuracy
(hundreds of digits).

Let us observe that M, is finite in three dimensions,
and, within the amplitudes’ evaluation, it always appears
multiplied by positive powers of &, and therefore it drops
out of the final result.

In Appendix A, we provide the list of the results for the
MIs of Fig. 3.

A. Example

As an illustrative example, we apply our algorithm to
diagram 49 of Fig. 1. The corresponding amplitude reads

| (d-2) ’
=-2i(8rGy)° ((d— ) mlmg) [Nao] ,
(24)
with
_ f Nyg
ki oka ks ks KT D3 k:’% P ki k/’%?) k%s k34 k§4 7
(25)

and

]\]49E (kl 'k3k12‘k23_k1 'k12k3'k23_k1 'k23k3'k12)

2 (Pz ko3 pa-ksy+ pa-koz prksa—pa-pakys- k34)7
(26)

where we define szf% and p,=p—k, ky,=

k, — k,. By means of IBPs, we express the two-point
amplitude in terms of MIs,

(27)

with

104009-6
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(d = 3)2(d - 2)2s>

O T @-4pPGsd- 1) (12-5d) (28)
(d—2)%(432 - 512d +203d* - 27d%)s

o 8(d —4)*(5-2d)(5d - 12) : (29)

AR

“T w’ (31)

¢, — (d=2)(1096 — 15984 + 870" - 210" + 19d")

(d—4)*3—=d)(3d -38)
(32)

This result can be expanded around d = 3 + &, using the
expressions of the MIs given in Appendix A,

A49 = _i(gﬂ-GN)5(m1m2)32—4(4ﬂ.)—(4+2£)eZsyEs(l+2£)
1 /7% 2 29 13 2 n?
— - — ——nm"——log?2
X[ <16 3)+18 g™ " glog2+ 0],
(33)
where yp =0.57721... is the Euler-Mascheroni

constant. Finally, by means of the Fourier transform

formula
ipr,—2a _ F(d/2 - a) r\ (2a—d)
/pe o _(4”)0’/2F(a)<2> . (34)

one obtains the following Lagrangian term:

5.3 3
Gymim;

Liy = ilim / €P7 Ay = (32— 322) SXE (35
—2Jp

I

IV. RESULTS AND DISCUSSION

The complete 4PN, O(G3) Lagrangian was already
presented in Ref. [20],

6, _3Gmimy  Gmim3 [1690841 105
4PN T gT3 » 25200 ' 327
242 r r
2
G m3m3 587963 T 110y
r 5600 32 3 r’1
+ (my < my), (36)
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where 7/, r, are two UV scales which do not contribute to
physical observables. Such a Lagrangian gets contributions
from the 50 genuine O(G3) diagrams depicted in Fig. 1,
and from diagrams at lower orders in G, which are at least
quadratic in the accelerations:

G -G
‘C4PN = Zﬁ + Zﬁuw Yt (mp < my). (37)

The evaluation of Y 3%, £, represents the main result of
this work, and it amounts to

ZE _éG?\,m my ﬂGlsvm‘fm% ﬂGlsvm?m%
39 8 P

(38)

The individual contributions £, are presented in
Appendix B. We observe that, although there appear
contributions which are divergent in the d — 3 limit, the
sum of all contributions is finite, and hence L does not
show up in physical observables.

To obtain the whole expression for the 4PN O(G3,)
corrections, one would need to add contributions generated
from lower Gy terms when using the equations of motion,
in order to eliminate terms quadratic at least in the
accelerations. All such contributions have been computed

3 G5
also in the EFT framework [17], except for Ef},’N % We
can nevertheless perform partial checks between Eq. (38)
and Eq. (36).

A. The m3m, term

It can be proven that this term does not receive
any contribution from lower Gy terms,” and the corre-
sponding coefficient for the two-body Lagrangian of
Eq. (38) agrees with the Lagrangian term reported
in Eq. (36).

B. The 72 term.

The contributions coming from the lower Gy orders
come entirely from the still unpublished Ef&; . for
dimensional reasons terms at least quadratic in the accel-
erations can appear only in G%S"_l sectors at nth PN order,
and all the terms up to O(G%) do not contain z>. Although
the computational details will be given elsewhere, such

>Contributions to this term from lower Gy orders would come
from terms of the type G5 ""mj"m,a with 2 < n < 4. However,
diagrams giving rise to such terms would have exactly one
propagator attached to particle 2, and hence a% or higher powers
of a, can be taken out by integration by parts instead of by using
the double zero trick. It was checked explicitly in Ref. [17] that
G37"m3 " m,a’ terms do not appear in the Lagrangian for n=3, 4.

104009-7
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contributions have been computed in the EFT framework
and are found to be

105 ,Gymim3 11 , Gymim3
22N T 2 N

32 s 32 r (39)

This result, alone, already accounts for the Lagrangian 7*

term of Eq. (36), presented in Ref. [20] and previously
computed also in Ref. [19]. Although some of the L,’s
listed in Appendix B (namely, a = 33, 49, 50) contain
terms proportional to 72, these terms cancel in the sum of
all the diagrams (as shown in Ref. [46]), thus providing
agreement with the literature.

C. Other terms

The other terms are not directly comparable without full

Gy -G . . . .
knowledge of the £, 5, " contribution, and without taking

into account the different regularization schemes used here
and in Ref. [20].

V. CONCLUSION

Working within the PN approximation to general
relativity, we studied the conservative dynamics of the
two-body motion at 4PN order, at fifth order in the
Newton constant G, within the EFT framework. We
determined an essential contribution of the complete 4PN
Lagrangian at O(G3), coming from 50 Feynman dia-
grams. By exploiting the analogy between such diagrams
in the EFT gravitational theory and two-point four-loop
functions in massless gauge theory, we addressed their
calculation by means of multiloop diagrammatic tech-
niques, based on integration-by-parts identities and differ-
ence equations. We performed the calculation within the
dimensional regularization scheme, and the contribution
to the Lagrangian of each graph was given as a Laurent
series in d = 3 + ¢, where d is the number of dimen-
sions. Although some individual amplitudes are divergent
in the ¢ — 0 limit and others contain the irrational factor
72, the sum of the 50 terms is found to be finite at d = 3
and rational, in agreement with previous calculations
performed with other techniques.
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Note added.—In a first version of this manuscript, Ls,
appeared to have a different value, leading to a disagree-
ment with the literature. Subsequently, the authors of
Ref. [46] pointed us to a missing overall factor of “—3”
in L5, which we have been able to find and correct: the
value of Ls reported in this version is the amended one.
Let us also note, that the analytic result for the master
integral M3 ¢ obtained in Ref. [46] agrees with the semi-
analytic expression given in our current work.

APPENDIX A: MASTER INTEGRALS

In this appendix, we provide the expressions of the
master integrals. They are defined by

1 1
Py U EE VY N B
! k. Di1.4aD1y4 b k. D1.4DoD1y
YRR A RV
12= ~ 13= P UEEa—
k4 Di.aD1oD1y k4 Di1.4DgDg

1
M14:/ >
' k. Di1.4D7Dy3

1
M3 6= / ’
’ k2 D1.4DsDegD1ogD 4

4

1
M22 :/ )
’ k4 D1.4D19D15D16

where k; (i = 1, 2, 3, 4) are the loop momenta and p is the
external momentum of the diagrams depicted in Fig. 3. The
integral measure is the same as that used in Sec. III and is

givenby i = fi fi, Ji, with [ =[5k = 1,2,3,4).
The denominators read
D, 4= k%k%k%ki, Ds = (ky—k3)?,
Dg = (k, —k4)2,
Dg = (ky +ka + k3 —ky)?,
Dyg=(ky+ky—p)?,
Dy =(ky—ks—ks+p)?,
Dyy=(ki+hky—ks—ks—p)*>, Dis=
Dyg=(ky+ks—p)*.

1. Master integrals known in d dimensions

The following master integrals are known in closed
analytical form, exact in d:

r(5-2dr¢-1y
rd-5)

M, = (4r)2d52d=5 (A1)

104009-8



EFFECTIVE FIELD THEORY APPROACH TO THE ... PHYSICAL REVIEW D 95, 104009 (2017)

_ 1149 19
i3t L1348l 11, d3+sc(€)[___+___ )
- C(‘e)s{me 36 ¢ (216 288" 8* e 8 96

3943 143 , 113 o301 107 >+0 2], A8
_8<3W_E2 726>+0( )} (A2) 8( PR ()], (A8)

M, = (4r)72dg2d=6 (4 ;?ddzrz()zrzzalja)_ De (A3) My =(4m)"2s2476

[(6-2d)F(2-92T(E-1)°r(Zd-4)
I(4-d)I'(d-2)T(3d-6)

(A9)
—3te 1
2= el g+ 0. (a4 L
d=3+e
:+ — C(E)ﬂ'z |:1_6g - <16 + 810g2) + O<€1>:| s
r3-d)rE-1
M, , = (4r)24524-6 ( 1“(321 (3%)2 ) (AS) (A10)
3d -
with the Euler I' function I'(z)= [ le7'ds, the
. 1 7 Riemann zeta function ¢, = Zk:] v and s = p?. The
="c(e) [ (Z - Eﬂl) coefficient function c¢(e) is given by
11
8<27 gﬂ' - ?C;> + 0(82):| , (A6) c(e) = eres [ (4)*+2e, (All1)
M, 5 = (4r) 2526 2. Master integrals known in d =3 + ¢ dimensions

The master integrals M, , and M3 ¢ are known numeri-
[(6-2d)l(3 -d)l'(2 - 5)T'(5— 1)°T'(2d - 5) cally [38]. In three dimensions M,, is finite, i.e.
[(5-3d)[(d-2)T(3d -3)['(3d - 6) My, = O(e°), and does not contribute to our amplitudes,
(A7) since it always appears multiplied by a positive power of ¢.

The Laurent expansion in ¢ around d = 3 for Mj ¢ reads,

Mg?“g = Lj) [0.50000000000000000000000000000000000000000000000000000000000/ £2
: s

— 0.50000000000000000000000000000000000000000000000000000000000/ &

— 3.58876648328794339088189620833849370269526252469830039056611

+ 15.6234156117945512067218751269082577384023065736147735689317¢

+ O(&?)] (A12)

Loclefr 1 n? 13 77 N
oo 52 122 "2 4+ﬂ e<9 7'17(8 log2> €C3>+O(8). (A13)

The analytical coefficients in the e expansion have been obtained from the high-precision numerical result with the
PSLQ algorithm [47]. We observe that, according to the arguments in footnote 4, the value of the coefficient of the double
pole can be obtained analytically from the recurrence relation: its numerical reconstruction agrees with the analytic
determined value.

Moreover, in order to perform a consistency check of the other analytical coefficients of Eq. (A13), we determined M ¢
also in one and five dimensions with SUMMERTIME [38] numerically and used the PSLQ algorithm to obtain again the
analytical coefficients of the ¢ expansion, respectively reading,
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Mg’z”e = (4x)* Lg) [11.0000000000000000000000000000000000000000000000000000000000/ &
' s

-+ 750.157936507936507936507936507936507936507936507936507936508
—5333.19383013044510985261411265298578814107960018433010670281¢
—3509.80936167055655677303026105319710926833682220819489993426¢>

+ O(&%)] (Al4)
c(e) [11 945199 35338924 11
2 (4 |2 _ 2
T [e 1260 < 6615 12”)
160485605363 14515601 847
2 - 2 - 227 log2 + — 3 Al
¢ ( 27783000 15120 7 T 08S T §3> + 0l )]’ (A13)
2
MEDTE = —C(e)s 1.00000000000000000000000000000000000000000000000000000000000/ £*
36 (47)* 2520
— 7.49665930774956257270733971502880747383208927084097052723419/ ¢
+ 33.1813244635562837450781924787207309198665172698916969562612
+ O(e)] (A16)
1 cle)s*[1 1 [467 123478 1651
= — =~ ——6x? ——— %+ 54n%log2 — 333 . Al17
pSLQ (47)* 2520 [82 €< 7 ”> T TR C3+O(€)} (A17)
We verified that the analytical Ansdtze for Mg;1+e, GSmim2 T428 4
M‘;?*S, Mgzsﬂ fulfill the dimensional recurrence rela- Log = % i I—’P],
tion (18) analytically, order by order in &, and therefore we " - 7 >
have high confidence in their correctness. Gymim3 [ 409 1
Log — —NT172 | 77
29 = 3 +=P|.
r | 450 5
5 3,3
APPENDIX B: RESULTS FOR ALL THE Ly = GNLS]”% o Lp]’
AMPLITUDES oL 450 15
: . . . GS m3m3
In this appendix we collect the contributions to the L3 :%(16_ ),
Lagrangian in Eq. (37), coming from all the amplitudes r
of Fig. 1:

0=Ly=Lyp=L13=Ly=1Ly

G mim3
= £27 = £31 = ‘636 — ‘646 = £47’ £37 = —4”5 [17 +2'P]’
Gymim3 [147 8
5 3.3 [ — ONMIMy 180 S
%LNW?mZ = ,Cl = »C} = 455 = 3»614 :%:—35220 * r _25 + 157):|7
-
5 4.2
_3;621_@_@_3,625 £40:GNI’}15]I’112 _ﬁ i :|’
T4 4 4 0 2 r | 25 15
Gymim3 [49 1
1 Gymim3 3Ly 3Ly 3Ly Ly =212 _+_7>},
575:;62:3,64:7: 3 = 3 r _18 3
’ Gymim3 [ 97 1
L5 3Ly 3Ly Lyg 542__¥{_+_73],
I R r 225 15
53,3
L Gymimy _ Ly 3Lx_ 3Lss Ly Lss 543:_M{£+3p],
120 720 20 56 24 127 r 150 15
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G}j\,m?m% 37 2

Gymim? [578 8
Lo — 2N °pl.
48 7 75 757

GS 3.3
Ly =200 (30 _ 342),

r

G m3m3 124

550:4Nr51 2<47z2——3 > (B1)

where the pole part P = é — SIOgL—’0 (with L defined by
L = /4re’t L) cancels exactly in the sum of all the terms.
Diagrams which are symmetric under (1 <> 2) exchange,

ie. 3,5, 22,23, 24, 32, 33, 41, 42, 43, 49, 50 have been
multiplied by 1/2.

APPENDIX C: EVALUATION OF A;; AND A5,

We describe the evaluation of amplitudes 33 and 50
which, along with amplitude 49 already discussed in detail
in Sec. III, are the only ones containing 7> terms.

1. Amplitude 33

A3z =
3
d-2
=- i(87rGN)5(Ed_ 1; mlmz) ‘@» [Ns3]
(C1)
with
[N3s3]
E[ N33
k1,k2,k3,ka k% k’g kg ki kﬁ p%2 p§4 p%23 ,
(C2)
and
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N33 =ks3 'k4(k2 “Piaki - p3atki-kypiac pua

— ki piaky pa)

+ky ky(ky - proks - psa+ ki ks proc pas

— k3 praki - paa)

+ky - ky(ks - proky - p3s—ko - proks - pas

—ky k3 pia- p3a)

+ky - k3(ky - proky - psg+ ki proks - psg)

+ky - k3(ky - proks - paa—ka- proky - psa)
+ ki 'kz(k4 “Pr2ks - paa—ks - proky- P34), (CS)
where P13 =p—ki —k, — ks, Pab =P — ko — kp,

ki4 = k; — k4. By means of IBPs, we express the two-
point amplitude in terms of MIs,

(C4)
and
(d=2)(3d - 10)(d? — 12d + 24)5} -
T 4(d=3)(5d - 16)(5d — 14)(5d — 12) )
B (d—-2)
T Hd—4)2(2d-5)(3d - 10)(5d — 12)
x (19d* + 225d° — 27084 + 8140d — 7680)s,
(o)
_ (d-2)
T Hd—4)2(d-3)(5d - 16)(5d — 14)(5d — 12)
x (33d° — 44d* — 193643
110244 — 22512d + 16128)s, (C7)
 2(d=2)(d + Td* = 55d + T8)s
€= (d—42(d—3)(5d—12) (C8)
B (d-2)(2d - 5)
S T 2(d—4)%(d-3)2(3d — 10)(3d - 8)
x (3d* + 204d> — 18564> + 5296d — 4944).  (CY)

This result can be expanded around d = 3 + ¢, using the
expressions of the Mls given in Appendix A,
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A33 = _i(gﬂ-GN)5(m1m2)32—4(4ﬂ.)—(4+2£)eZsyES(H-Ze)

/2 1\ 49 522 72 37¢5

Sl (S T LTSS P, B
XL<48 3>+18 6 3 8773

+ 0(5)} . (C10)

Finally, by applying the Fourier transform formula (34) to
—iAs3, one gets the result for £33 reported in Appendix B.

2. Amplitude 50

Coming to amplitude 50, we have

A50 =
3
d-2

=-1(87G )S(Ed— 1; m1m2) ‘@» [Nso] ,
(1)

with

Nso

Nr) = ~ )
(C12)

and

Nso= (ks pizkiy-Pra—kia-pisks - pua
—k3 kiapiz-pua)
X (ky - ksgky-ky+ky-kagko kg —ky-kagky - ky)
+ (ki -k3a p13- Pra—ksa-pi3kin- Pua
— k12 piakss- Pia)
X (ky - kyky-ky—kykyky-ky—ky-kyky-k3)
+ (k3a - praky - Pra+ki-paksa- pra
—ky - kzy P13 Pia)
X (kg kipky ks —ky-kipks - ky)
+ (ky - ksg ks ko + ky - kskip - kag
—ky - kipks - ksq)
X (ky - praky-pis+ky priaks- pra)
+ (ky - kioky - kag — kg kipky - kay)
X (ki k3 piz-Pra—ki-pi3ks- pua)
—2ky - kyks-ksgky - prykia- Pia
= 2ky - pr3ks - kag(ky - kakiy - pra+ky-kinky - pra)
ki Praky-kia(ks kg ks - pra —2ky - praks - kss)
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+ ko kykiy - kag(ks - praki - pra+ ki pisks - pia)
+2ky - kg ko - pra(ky - kagks - Pra — k3 - kag ko - Pua)
+ 2k kg kg - ksa(ks - praky - Pra+ ko prsks - pua)
+2k3 - prakin - pra(ky - ksaky - ky — ky - kag ky - ko)
+ ki prak - ky(ks kinksa - pi3 —2ks - ksgkia - pi3)
+2ky ko ks ky(ksa - priaky - Pra+ ko praksa - pra)
+ ko ky(ksg - praks -kinky - pi3

+ P13 Praki - kiaks - ksg)

— ki Diaky-kinky - ksgks - pis3, (C13)

where k,, =k, — k, 1224 =k, tksy p3=p—ki—ks

and Py =p —ky + ky — k3 + k4. By means of IBPs, we
express the two-point amplitude in terms of MIs,

@[NSU]C1@ +02@ +(:3‘@@7+

(C14)
and
(d-2)
cp ==
' 4(d-3)(2d - 7)(5d — 16)(5d — 14)(5d — 12)
x (3d —10)(3d® — 41d% + 165d — 204)s°,
(C15)
(d-2)
CHh =
27 2(d—4)2(2d - 5)(3d — 10)(5d — 12)
x (51d* — 769d° + 40184 — 8868d + 7080)s,
(Cl6)
(d-2)
Cr =
> T 12(d —4)2(d - 3)(5d — 16)(5d — 14)(5d — 12)
x (164d° — 3543d* + 262984 — 900564>
+ 146592d — 92160)s, (C17)
d—2)(9d —23)(d* — 12d + 24
C4:_( )( 5 )( + )s7 (Clg)
2(d —4)*(d = 3)(5d — 12)
(d-2)
C5 = —
> 2(d—4)3(d-3)2(3d — 10)(3d - 8)
x (609d5 — 89464* + 521764°
— 1510964 + 217360d — 124320). (C19)

This result can be expanded around d = 3 + ¢, using the
expressions of the MIs given in Appendix A,
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A50 = _i(gﬂ-GN)5(m1m2)32—4(4ﬂ.)—(4+2£)eZsyEs(H-Zs)

(L(BL_7) 985 6le 32 . 37
e\36 12) 216 ' 144 4 °% 8

+ 0(8)} . (C20)
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Finally, by applying the Fourier transform formula (34)
to —iAsy, one gets the result for L5, reported in
Appendix B.
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