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Working within the post-Newtonian (PN) approximation to general relativity, we use the effective field
theory (EFT) framework to study the conservative dynamics of the two-body motion at fourth PN order, at
fifth order in the Newton constant. This is one of the missing pieces preventing the computation of the full
Lagrangian at fourth PN order using EFT methods. We exploit the analogy between diagrams in the EFT
gravitational theory and two-point functions in massless gauge theory, to address the calculation of four-
loop amplitudes by means of standard multiloop diagrammatic techniques. For those terms which can be
directly compared, our result confirms the findings of previous studies, performed using different methods.
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I. INTRODUCTION

The post-Newtonian (PN) approximation to the two-body
problem in general relativity has been the subject of intense
investigation in the last decades as it describes the dynamics
of gravitationally bound binary systems in the weak-
curvature, slow-velocity regime, reviewed in Refs. [1–3].
From the phenomenological point of view its results

have been of paramount importance in constructing the
waveforms which were eventually used as templates [4,5]
for the LIGO/Virgo data analysis pipeline leading to the
detection of gravitational waves [6], along with numerical
simulations to solve for the spacetime in the strong-
curvature regime [7] and earlier in the analysis of the
Hulse-Taylor pulsar arrival times [8,9].
Interferometric detectors of gravitational waves are

particularly sensitive to the time-varying phase of the
signal of coalescing binaries, which thus must be computed
with better than Oð1Þ precision [10]. Such a phase can be
determined from short-circuiting the information of the
energy and luminosity function of binary inspirals with at
least 3PN-order accuracy.
Focusing on the conservative sector of the two-body

problem without spins (see Ref. [3] for results involving
spins), we recall that within the effective field theory (EFT)
formalism, initially proposed in Ref. [11] and reviewed in
Refs. [3,12–14], the 1PN, 2PN [15] and 3PN [16] dynamics

have been computed, reproducing results obtained with
more traditional methods; moreover the 4PN Lagrangian,
quadratic in the Newton constant GN , was first derived in
the EFT framework [17].
The complete 4PN dynamics has been obtained

recently by two groups within the Arnowitt-Deser-
Misner Hamiltonian formalism [18,19] and by iterating
the PN equation in the harmonic gauge in Refs. [20,21]; in
both approaches an arbitrary coefficient was fixed by using
results for the gravitational wave tail effect from self-force
computations [22–24]. It is worth mentioning that the two
results did not initially agree at orders G4

N and G5
N and, as it

was argued in Ref. [25], the discrepancy has been over-
come by a suitable regularization of the infrared and
ultraviolet divergences in the approach based on the
equations of motion, although the new regularization could
not yet fix the value of the second ambiguity parameter
in Ref. [21].
This work goes in the direction of providing a third-party

computation with an independent methodology by filling in
one of the missing pieces to obtain the full 4PN result
within EFT methods. Using the virial relation v2∼GNM=r,
where r and v are respectively the relative distance and
velocity of the binary constituents and M is the total mass,
the terms contributing to the 4PN-order dynamics can be
parametrized as G5−n

N v2n with 0 ≤ n ≤ 5, with the leading
term being the Newtonian potential, scaling simply as GN .
By following the path paved in Ref. [17], we present in this
work some results concerning the G5

N order.
The Lagrangian contains in general terms with high

derivatives of the dynamical variables: it is however
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possible to keep the equations of motion of second order
without altering the dynamics by adding to the Lagrangian
terms quadratic at least in the equations of motions tuned to
cancel the high-derivative terms at the price of introducing
additional terms with higher GN powers, according to the
standard procedure first proposed in Ref. [26] and dubbed
the double zero technique. TheG5

N sector of the Lagrangian
receives contributions from GN , G2

N and G3
N Lagrangian

terms which are at least quadratic in accelerations (com-
puted in Ref. [17] up to G2

N) via the double zero trick, as
well as from genuine G5

N terms: in the present article, we
focus on the genuine G5

N contribution, that is terms that do
not contain ab initio any power of velocity v or acceleration
_v, and leave the very last contribution, coming from
OðG3

N _v
2Þ terms, to a forthcoming paper dedicated to the

whole G3
N sector.

In this work, we evaluate the 50 diagrams contributing to
the classical effective Lagrangian in the gravitational theory
at order G5

N. They are nontrivial integrals over 3-momenta
which can be computed by means of multiloop diagram-
matic techniques. We exploit the analogy between dia-
grams in the EFT gravitational theory and diagrams
corresponding to two-point functions in massless gauge
theory, to address the calculation of theOðG5

NÞ diagrams as
two-point four-loop dimensionally regulated integrals in d
dimensions. In particular, we use integration-by-parts
identities (IBPs) [27–29] in two ways: according to the
topology of the graph, IBPs allow to carry out the multiloop
integration recursively loop by loop; alternatively, they can
be used to express the result of the amplitudes as linear
combinations of irreducible integrals, known as master
integrals (MIs). The latter are evaluated independently. The
contribution to the three-dimensional Lagrangian coming
from each graph is then determined by taking the d → 3
limit of the Fourier transform to position space.
The paper is organized as follows. In Sec. II we review

the EFT formalism applied to the two-body dynamics in the
PN approximation to general relativity and in Sec. III we
present the details of the 4PN computation at G5

N order. We
summarize in Sec. IV and conclude in Sec. V. Appendix A
contains the expressions of the master integrals needed for
the computation, in Appendix B we give the contribution to
the Lagrangian coming from the individual diagrams and in
Appendix C details of the computation of selected ampli-
tudes are reported.

II. THE METHOD

The application of the EFT framework to post-Newtonian
calculations in binary dynamics has now been extensively
investigated. It was first formulated in this context in
Ref. [11] and subsequently applied to various aspects of
the binary problem (see Refs. [3,13] and references therein).
We summarize here the basic features of this approach,

along the lines and notations of Refs. [16,17], while

referring the reader to the literature for a more complete
account. The starting point is the action

S ¼ Sbulk þ Spp; ð1Þ

with the worldline point-particle action representing the
binary components (we only consider here spinless point
masses and neglect tidal effects)

Spp ¼ −
X
i¼1;2

mi

Z
dτi

¼ −
X
i¼1;2

mi

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðxiÞdxμi dxνi

q
; ð2Þ

as well as the usual Einstein-Hilbert action1 plus a gauge-
fixing term

Sbulk ¼ 2Λ2

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
RðgÞ − 1

2
ΓμΓμ

�
; ð3Þ

which corresponds to the same harmonic gauge condition
adopted in Refs. [1,20], where Γμ ≡ gρσΓμ

ρσ. Here
Λ−2 ≡ 32πGNLd−3, where GN is the three-dimensional
Newton constant and L is an arbitrary length scale which
keeps the correct dimensions of Λ in dimensional regulari-
zation, and always cancels out in the expression of physical
observables. In this framework, a Kaluza-Klein (KK) para-
metrization of the metric [30,31] is usually adopted (a
somewhat similar parametrization was first applied within
the framework of a PN calculation in Ref. [32]):

gμν ¼ e2ϕ=Λ
� −1 Aj=Λ

Ai=Λ e−cdϕ=Λγij − AiAj=Λ2

�
; ð4Þ

with, γij ≡ δij þ σij=Λ, cd ≡ 2
ðd−1Þ
ðd−2Þ and i, j running over

the d spatial dimensions. The field Ai is not actually needed
in the present computation, so it will henceforth be set to
zero; we refer the reader to Ref. [16] for the general treatment
and formulas including Ai.
In terms of the metric parametrization (4), with Ai ¼ 0,

each worldline coupling to the gravitational degrees of
freedom ϕ, σij reads

Spp ¼ −m
Z

dτ

¼ −m
Z

dteϕ=Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−cdϕ=Λ

�
v2 þ σij

Λ
vivj

�r
; ð5Þ

and its Taylor expansion provides the various particle-
gravity vertices of the EFT.

1We adopt the “mostly plus” convention ημν≡diagð−;þ;þ;þÞ,
and the Riemann and Ricci tensors are defined as Rμ

νρσ ¼∂ρΓ
μ
νσ þ Γμ

αρΓα
νσ − ρ ↔ σ, Rμν ≡ Rα

μαν.
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Also the pure gravity sector Sbulk ¼ SEH þ SGF can be
explicitly written in terms of the KK variables; we report
here only those terms which are needed for the present
calculation2:

Sbulk ⊃
Z

ddþ1x
ffiffiffi
γ

p 	
1

4
½ð ~∇σÞ2 − 2ð ~∇σijÞ2� − cdð ~∇ϕÞ2

−
1

Λ

�σ
2
δij − σij

�
ðσik;lσjl;k − σik

;kσjl
;l

þ σ;iσjk
;k − σik;jσ

;kÞ


: ð6Þ

The two-body effective action can be found by integrat-
ing out the gravity fields from the above-derived actions

exp½iSeff � ¼
Z

DϕDσij exp½iðSbulk þ SppÞ�: ð7Þ

As usual in field theory, the functional integration can be
perturbatively expanded in terms of Feynman diagrams
involving the gravitational degrees of freedom as internal
lines only,3 regarded as dynamical fields emitted and
absorbed by the point particles which are taken as non-
dynamical sources.
In order to make manifest the v scaling necessary to

classify the results according to the PN hierarchy, it is
convenient to work with the space-Fourier transformed
fields

Wa
pðtÞ≡

Z
ddxWaðt;xÞe−ip·x with Wa ¼ fϕ;σijg: ð8Þ

47 48 49
50

41 42
43

44 45 46

35 36 37 38 39
40

29 30 31 32

2221

1 2 43 5 6 7 8 9 10

1211 15 16 17 18 19 2013 14

2423 25 26

33

27

34

28

FIG. 1. The diagrams contributing at order G5
N. As in the EFT approach the massive objects are nondynamical: the horizontal black

lines have to be seen as classical sources, and not as propagators. Green solid lines stand for σ field propagators, while blue dashed lines
stand for ϕ fields.

2It is understood that spatial indices in this expression,
including those implicit in terms carrying a ð ~∇Þ2, are contracted
by means of the spatial metric γij, which implies the appearance

of extra σ fields, e.g. ð ~∇σÞ2≡ γabγcdγijσab;iσcd;j and γij ¼ ðγ−1Þij
(and in the second line σij ¼ σij, σ ¼ δijσijÞ.

3As we focus on the conservative part of the dynamics, we are
not interested in diagrams where gravitational radiation is
released to infinity, even though tail effects [33] involving
emitted and absorbed radiation are relevant at G2

N order also
in the conservative sector.
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The fields defined above are the fundamental variables in
terms of which we are going to construct the Feynman
graphs; the action governing their dynamics can be found
from Eqs. (5) and (6).
The next step is to lay down all the diagrams which

contribute at this OðG5
NÞ in the static limit, following the

rule that each vertex involving n gravitational fields carries
a factor Gn=2−1

N if it is a bulk one, and a factor Gn=2
N if it is

attached to an external particle.
The diagrams in Fig. 1 schematically represent the

exchange of gravitational potential modes through the field
ϕ (blue dotted lines) and σij (green solid line) which mediate
the gravitational interaction. Massive objects represented by
the thick horizontal black solid line are nondynamical
sources or sinks of gravitational modes. Their dynamics
is described by the worldline Spp and hence no massive
particle propagator is present in between two different
insertions of gravitational modes on the same particle.
The amplitudes corresponding to each diagram can be

built from the Feynman rules in momentum space derived
from Spp, Sbulk. By looking in particular at the quadratic
parts, one can explicitly write the propagators:

P½Wa
pðtaÞWb

p0 ðtbÞ�

¼ 1

2
Paaδabð2πÞdδdðpþ p0ÞPðp2; ta; tbÞδðta − tbÞ; ð9Þ

where Pϕϕ¼− 1
cd
, Pσijσkl¼−ðδikδjlþδilδjkþð2−cdÞδijδklÞ

and

Pðp2; ta; tbÞ ¼
i

p2 − ∂ta∂tb

≃ i
p2

ð10Þ

has been truncated to its instantaneous nonrelativistic part.
The terms involving time derivatives (which acting on the
eip·x, generate extra factors of v) can be indeed neglected.
In fact, in the present work, we are interested in the pure
4PN G5

N contribution, which, by power counting, can be
accessed in the limit of zero velocity and instantaneous
interactions. In other words, gravitational-mode momenta
have scalings of the types (v=r, 1=r), and therefore the
temporal component of their momenta can be neglected,
since we are computing the G5

Nv
0 sector.

From the previous discussion, one can derive the
Feynman rules, respectively for the ϕ propagator,

ð11Þ

and for the σ propagator,

ð12Þ

The Feynman rules for the interaction vertices can be
derived in a similar fashion and are reported below:

ð13Þ

with I ijlm ≡ δilδjm þ δimδjl and Qijlm ≡ I ijlm − δijδlm.
Finally, the contribution of each amplitude to the

two-body Lagrangian L can be derived from its Fourier
transform,

FIG. 2. Four-loop two-point topologies corresponding to the
diagrams in Fig. 1.
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ð14Þ

where the box diagram stands for the generic diagram
a ¼ 1;…; 50 of Fig. 1, and p is the momentum transfer of
the source.

III. AMPLITUDES AND FEYNMAN INTEGRALS

In general, within the EFT approach, since the sources
(black lines) are static and do not propagate, any gravity
amplitude of order Gl

N can be mapped into a (l − 1)-loop
two-point function with massless internal lines and external
momentum p, where p2 ≡ s ≠ 0,

ð15Þ

Accordingly, the 50 diagrams in Fig. 1 can be mapped
onto the 29 topologies of Fig. 2, where the sets T1 ¼
f1; 2; 3; 4; 5; 6g, T2 ¼ f7; 8; 10; 11; 14; 16; 17; 20; 21; 25g,
T3 ¼ f9; 12; 13; 22g, T4 ¼ f15; 18; 19; 23; 24g, collect the
diagrams that share the same topology. For instance, the
diagrams 1 to 6 of Fig. 1 correspond to integrals which have
the same five denominators of the graph indicated by T1 in
Fig. 2, but different numerators, due to the different terms
associated to 1,2,3 or 4 ϕ emission or absorption from the
massive particle.
The representation of the gravity amplitudes as four-loop

two-point integrals yields the possibility of evaluating the
latter by means of by-now standard multiloop techniques
based on IBPs [27,28].
Accordingly, we collect the 50 amplitudes of Fig. 1 in

two sets, AI ¼ f1∶28; 31; 32; 35∶37; 39; 41; 45∶47g and
AII ¼ f29; 30; 33; 34; 38; 40; 42; 43; 44; 48; 49; 50g, and
address their computation separately.
The set AI contains diagrams with a simpler internal

structure, and they have been computed by using the kite
rule [27,28]

ð16Þ

where the dots stand for squared denominators, and by
using the standard identity holding for two-point one-loop
graphs,

ð17Þ

where a and b are generic denominators’ powers.
Alternatively we also performed an IBP reduction using
the program REDUZE [34,35], identifying five MIs, namely
M0;1, M1;1, M1;2, M1;3, M1;4 of Fig. 3. Both strategies
gave the same results.
The amplitudes AII , instead, have a less trivial internal

structure. By means of IBPs, they have been systematically
reduced to linear combinations of seven MIs, all shown in
Fig. 3. In this case, the reduction to MIs has been performed
in two ways: by an in-house implementation of Laporta’s
algorithm which is based on FORM [39–41], as well as by
means of REDUZE.
The four-loop MIs in Fig. 3 can be considered as a

complete set of independent integrals, such that any ampli-
tude of the sets AI and AII can be written as a linear
combination of them. The results of the four-loop MIs in
d ¼ 4þ ε Euclidean spacetime dimensions have been well
known for some time [36,37], while the values around
d ¼ 3þ ε of M2;2, M3;6 became available more recently
[38]. In particular, M0;1, M1;1, M1;2, M1;3, M1;4 can be
computed in a straightforwardwaybymeans ofEq. (17), and
admit closed analytic expressions, exact in d, which can be
expanded in a Laurent series in ε around d ¼ 3. The series
expansions of M2;2 and M3;6 were first obtained
numerically in Ref. [38] by using the difference equa-
tions method, exploiting the fact that dimensionally
regulated Feynman integrals obey dimensional recurrence
relations [29,42–45]. For instance, owing to IBPs, M3;6

is a solution of the following recursive formula:

ð18Þ
FIG. 3. The master integrals which appear in the calculation of
the amplitudes in the set AII . The names of the diagrams follow
Refs. [36–38].
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with

a1 ¼
5ðd − 3Þðd − 4Þ2ð5 − dÞ

3ðd − 6Þ2ð3d − 16Þð3d − 14Þs4
× ð5d − 26Þð5d − 24Þð5d − 22Þð5d − 18Þ; ð19Þ

a2 ¼
80ðd − 3Þ3ð2d − 7Þð5d − 26Þð5d − 24Þ

9ðd − 6Þ2ðd − 4Þ2ð3d − 16Þ2ð3d − 14Þ2ð3d − 10Þs6
× ð5d − 22Þð5d − 18Þð5d − 16Þð14 − 5dÞ
× ð63872 − 40162dþ 8403d2 − 585d3Þ; ð20Þ

a3 ¼
40ðd − 3Þ2ð8 − 3dÞð5d − 26Þ

3ðd − 6Þ2ðd − 4Þ2ð3d − 16Þð3d − 14Þs6
× ð5d − 24Þð5d − 22Þð5d − 18Þ
× ð5d − 16Þð5d − 14Þð7d − 32Þ; ð21Þ

a4 ¼
ðd − 3Þ2ð3d − 10Þ2ð3d − 8Þ2

3ðd − 6Þ2ðd − 4Þ2ð3d − 16Þð3d − 14Þs6
× ð2897664 − 2445164dþ 772948d2

− 108475d3 þ 5702d4Þ; ð22Þ

a5 ¼
20ðd − 3Þð2d − 7Þð2d − 5Þð5d − 26Þð5d − 24Þ
9ðd − 6Þ2ðd − 5Þðd − 4Þ3ð3d − 16Þ2ð3d − 14Þ2s7
× ð5d − 22Þð5d − 18Þð5d − 16Þð5d − 14Þð5d − 12Þ
× ð1972736 − 1666418dþ 527297d2

− 74070d3 þ 3897d4Þ; ð23Þ

which links M3;6 in d − 2 dimensions (on the lhs) to M3;6

in d dimensions, and to other MIs belonging to sub-
topologies, also defined in d dimensions (on the rhs). The
MIs belonging to subtopologies have to be considered as
the nonhomogeneous term of the dimensional recurrence
relation: they are known terms in a bottom-up approach
(where simpler integrals, with less denominators, are
computed first).4

The solving strategy of dimensional recurrence equa-
tions for Feynman integrals has been discussed in Ref. [45]
and implemented in the code SUMMERTIME [38], which

provides numerical values for the coefficients of the
Laurent series in the ε → 0 limit, at very high accuracy
(hundreds of digits).
Let us observe that M2;2 is finite in three dimensions,

and, within the amplitudes’ evaluation, it always appears
multiplied by positive powers of ε, and therefore it drops
out of the final result.
In Appendix A, we provide the list of the results for the

MIs of Fig. 3.

A. Example

As an illustrative example, we apply our algorithm to
diagram 49 of Fig. 1. The corresponding amplitude reads

ð24Þ

with

ð25Þ

and

N49≡ ðk1 · k3 k12 · k23− k1 · k12 k3 · k23− k1 · k23 k3 · k12Þ
× ðp2 · k23p4 · k34þp4 · k23p2 · k34−p2 ·p4 k23 · k34Þ;

ð26Þ

where we define
R
k ≡

R
ddk
ð2πÞd and pa ≡ p − ka, kab ≡

ka − kb. By means of IBPs, we express the two-point
amplitude in terms of MIs,

ð27Þ

with

4The dimensional recurrence (18) implies thatM3;6ðd¼3þεÞ≡P∞
k¼−2M3;6ð3;kÞεk can be obtained from the knowledge

of the MIs on the rhs, Mi;jðd ¼ 5þ εÞ≡P∞
k¼−2 Mi;jð5; kÞεk.

It is interesting to notice that in Eq. (18) the coefficient a1 is
proportional to (d − 5). Therefore, by expanding both sides of the
equation in a Laurent series, the Laurent coefficient M3;6ð3; kÞ
gets a contribution from M3;6ð5; k − 1Þ and from the Laurent
coefficients of the other MIs at d ¼ 5. In particular, the
coefficient of the double pole M3;6ð3;−2Þ is completely
determined by the series expansions of the MIs of the sub-
topologies only, because when k ¼ −2, M3;6ðd ¼ 5þ εÞ does
not give any contribution.
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c1 ¼
ðd − 3Þ2ðd − 2Þ2s2

ðd − 4Þ2ð5d − 14Þð12 − 5dÞ ; ð28Þ

c2 ¼
ðd − 2Þ2ð432 − 512dþ 203d2 − 27d3Þs

8ðd − 4Þ3ð5 − 2dÞð5d − 12Þ ; ð29Þ

c3 ¼
ðd − 2Þ2ð76 − 58dþ 11d2Þs
4ðd − 4Þ2ð14 − 5dÞð5d − 12Þ ; ð30Þ

c4 ¼
ðd − 2Þ2s
2ðd − 4Þ2 ; ð31Þ

c5 ¼
ðd − 2Þ2ð1096 − 1598dþ 870d2 − 210d3 þ 19d4Þ

ðd − 4Þ4ð3 − dÞð3d − 8Þ :

ð32Þ

This result can be expanded around d ¼ 3þ ε, using the
expressions of the MIs given in Appendix A,

A49 ¼ −ið8πGNÞ5ðm1m2Þ32−4ð4πÞ−ð4þ2εÞe2εγEsð1þ2εÞ

×

�
1

ε

�
π2

16
−
2

3

�
þ 29

18
−

13

144
π2 −

π2

8
log 2þOðεÞ

�
;

ð33Þ

where γE ¼ 0.57721… is the Euler-Mascheroni
constant. Finally, by means of the Fourier transform
formula

Z
p
eip·rp−2a ¼ Γðd=2 − aÞ

ð4πÞd=2ΓðaÞ
�
r
2

�ð2a−dÞ
; ð34Þ

one obtains the following Lagrangian term:

L49 ¼ −ilim
d→3

Z
p
eip·rA49 ¼ ð32 − 3π2ÞG

5
Nm

3
1m

3
2

r5
: ð35Þ

IV. RESULTS AND DISCUSSION

The complete 4PN, OðG5
NÞ Lagrangian was already

presented in Ref. [20],

L
G5

N
4PN ¼ 3

8

G5
Nm

5
1m2

r5
þ G5

Nm
4
1m

2
2

r5

�
1690841

25200
þ 105

32
π2

−
242

3
log

r
r01

− 16 log
r
r02

�

þ G5
Nm

3
1m

3
2

r5

�
587963

5600
−
71

32
π2 −

110

3
log

r
r01

�

þ ðm1 ↔ m2Þ; ð36Þ

where r01, r
0
2 are two UV scales which do not contribute to

physical observables. Such a Lagrangian gets contributions
from the 50 genuine OðG5

NÞ diagrams depicted in Fig. 1,
and from diagrams at lower orders in GN which are at least
quadratic in the accelerations:

L
G5

N
4PN ¼

X50
a¼1

La þ
X3
j¼1

L
Gj

N→G5
N

4PN þ ðm1 ↔ m2Þ: ð37Þ

The evaluation of
P

50
a¼1 La represents the main result of

this work, and it amounts to

X50
a¼1

La ¼
3

8

G5
Nm

5
1m2

r5
þ 31

3

G5
Nm

4
1m

2
2

r5
þ 141

8

G5
Nm

3
1m

3
2

r5
:

ð38Þ

The individual contributions La are presented in
Appendix B. We observe that, although there appear
contributions which are divergent in the d → 3 limit, the
sum of all contributions is finite, and hence L does not
show up in physical observables.
To obtain the whole expression for the 4PN OðG5

NÞ
corrections, one would need to add contributions generated
from lower GN terms when using the equations of motion,
in order to eliminate terms quadratic at least in the
accelerations. All such contributions have been computed

also in the EFT framework [17], except for L
G3

N→G5
N

4PN . We
can nevertheless perform partial checks between Eq. (38)
and Eq. (36).

A. The m5
1m2 term

It can be proven that this term does not receive
any contribution from lower GN terms,5 and the corre-
sponding coefficient for the two-body Lagrangian of
Eq. (38) agrees with the Lagrangian term reported
in Eq. (36).

B. The π2 term.

The contributions coming from the lower GN orders

come entirely from the still unpublished L
G3

N→G5
N

4PN : for
dimensional reasons terms at least quadratic in the accel-
erations can appear only in Gm≤n−1

N sectors at nth PN order,
and all the terms up to OðG2

NÞ do not contain π2. Although
the computational details will be given elsewhere, such

5Contributions to this term from lower GN orders would come
from terms of the type G5−n

N m5−n
1 m2an2 with 2 ≤ n ≤ 4. However,

diagrams giving rise to such terms would have exactly one
propagator attached to particle 2, and hence a22 or higher powers
of a2 can be taken out by integration by parts instead of by using
the double zero trick. It was checked explicitly in Ref. [17] that
G5−n

N m5−n
1 m2an2 terms do not appear in the Lagrangian for n¼3, 4.
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contributions have been computed in the EFT framework
and are found to be

105

32
π2

G5
Nm

4
1m

2
2

r5
−
71

32
π2

G5
Nm

3
1m

3
2

r5
: ð39Þ

This result, alone, already accounts for the Lagrangian π2

term of Eq. (36), presented in Ref. [20] and previously
computed also in Ref. [19]. Although some of the La’s
listed in Appendix B (namely, a ¼ 33, 49, 50) contain
terms proportional to π2, these terms cancel in the sum of
all the diagrams (as shown in Ref. [46]), thus providing
agreement with the literature.

C. Other terms

The other terms are not directly comparable without full

knowledge of the L
G3

N→G5
N

4PN contribution, and without taking
into account the different regularization schemes used here
and in Ref. [20].

V. CONCLUSION

Working within the PN approximation to general
relativity, we studied the conservative dynamics of the
two-body motion at 4PN order, at fifth order in the
Newton constant GN , within the EFT framework. We
determined an essential contribution of the complete 4PN
Lagrangian at OðG5

NÞ, coming from 50 Feynman dia-
grams. By exploiting the analogy between such diagrams
in the EFT gravitational theory and two-point four-loop
functions in massless gauge theory, we addressed their
calculation by means of multiloop diagrammatic tech-
niques, based on integration-by-parts identities and differ-
ence equations. We performed the calculation within the
dimensional regularization scheme, and the contribution
to the Lagrangian of each graph was given as a Laurent
series in d ¼ 3þ ε, where d is the number of dimen-
sions. Although some individual amplitudes are divergent
in the ε → 0 limit and others contain the irrational factor
π2, the sum of the 50 terms is found to be finite at d ¼ 3
and rational, in agreement with previous calculations
performed with other techniques.
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Note added.—In a first version of this manuscript, L50

appeared to have a different value, leading to a disagree-
ment with the literature. Subsequently, the authors of
Ref. [46] pointed us to a missing overall factor of “−3”
in L50, which we have been able to find and correct: the
value of L50 reported in this version is the amended one.
Let us also note, that the analytic result for the master
integral M3;6 obtained in Ref. [46] agrees with the semi-
analytic expression given in our current work.

APPENDIX A: MASTER INTEGRALS

In this appendix, we provide the expressions of the
master integrals. They are defined by

M0;1 ¼
Z
k1.::4

1

D1.::4D14

; M1;1 ¼
Z
k1.::4

1

D1.::4D9D12

;

M1;2 ¼
Z
k1.::4

1

D1.::4D10D11

; M1;3 ¼
Z
k1.::4

1

D1.::4D8D10

;

M1;4 ¼
Z
k1.::4

1

D1.::4D7D13

; M2;2 ¼
Z
k1.::4

1

D1.::4D10D15D16

;

M3;6 ¼
Z
k1.::4

1

D1.::4D5D6D10D14

;

where ki (i ¼ 1, 2, 3, 4) are the loop momenta and p is the
external momentum of the diagrams depicted in Fig. 3. The
integral measure is the same as that used in Sec. III and is

given by
R
k1.::4

¼R
k1

R
k2

R
k3

R
k4
with

R
ki
≡R ddki

ð2πÞd (i ¼ 1, 2, 3, 4).

The denominators read

D1.::4¼ k21k
2
2k

2
3k

2
4; D5¼ðk2−k3Þ2;

D6¼ðk1−k4Þ2; D7¼ðk2þk3−k4Þ2;
D8¼ðk1þk2þk3−k4Þ2; D9¼ðk1−pÞ2;
D10¼ðk1þk2−pÞ2; D11¼ðk3þk4þpÞ2;
D12¼ðk2−k3−k4þpÞ2; D13¼ðk1−k2−k3þpÞ2;
D14¼ðk1þk2−k3−k4−pÞ2; D15¼ðk1þk4−pÞ2;
D16¼ðk2þk3−pÞ2:

1. Master integrals known in d dimensions

The following master integrals are known in closed
analytical form, exact in d:

M0;1 ¼ ð4πÞ−2ds2d−5 Γð5 − 2dÞΓðd
2
− 1Þ5

Γð5
2
d − 5Þ ðA1Þ

FOFFA, MASTROLIA, STURANI, and STURM PHYSICAL REVIEW D 95, 104009 (2017)

104009-8



¼d¼3þεcðεÞs
�
1

24ε
−
13

36
þ ε

�
481

216
−

11

288
π2
�

− ε2
�
3943

324
−
143

432
π2 −

113

72
ζ3

�
þOðε3Þ

�
; ðA2Þ

M1;1 ¼ ð4πÞ−2ds2d−6 Γð4 −
3
2
dÞΓð2 − d

2
ÞΓðd

2
− 1Þ6

Γðd − 2ÞΓð2d − 4Þ ðA3Þ

¼d¼3þε − cðεÞπ2
�
1

8
þOðε1Þ

�
; ðA4Þ

M1;2 ¼ ð4πÞ−2ds2d−6 Γð3 − dÞ2Γðd
2
− 1Þ6

Γð3
2
d − 3Þ2 ðA5Þ

¼d¼3þεcðεÞ
�
1

4ε2
−

3

2ε
þ
�
27

4
−

7

48
π2
�

− ε

�
27 −

7

8
π2 −

11

3
ζ3

�
þOðε2Þ

�
; ðA6Þ

M1;3 ¼ ð4πÞ−2ds2d−6

×
Γð6 − 2dÞΓð3 − dÞΓð2 − d

2
ÞΓðd

2
− 1Þ6Γð2d − 5Þ

Γð5 − 3
2
dÞΓðd − 2ÞΓð3

2
d − 3ÞΓð5

2
d − 6Þ

ðA7Þ

¼d¼3þε
cðεÞ

�
1

8ε2
−
1

ε
þ 49

8
−
19

96
π2

− ε

�
34 −

19

12
π2 −

107

24
ζ3

�
þOðε2Þ

�
; ðA8Þ

M1;4¼ð4πÞ−2ds2d−6 Γð6− 2dÞΓð2− d
2
Þ2Γðd

2
− 1Þ6Γð3

2
d− 4Þ

Γð4− dÞΓðd− 2Þ2Γð5
2
d− 6Þ

ðA9Þ

¼d¼3þε − cðεÞπ2
�
1

16ε
−
�
5

16
þ 1

8
log 2

�
þOðε1Þ

�
;

ðA10Þ

with the Euler Γ function ΓðzÞ ¼ R∞
0 tz−1e−tdt, the

Riemann zeta function ζn ¼
P∞

k¼1
1
kn, and s ¼ p2. The

coefficient function cðεÞ is given by

cðεÞ ¼ e2εγEs2ε=ð4πÞ4þ2ε: ðA11Þ

2. Master integrals known in d = 3 + ε dimensions

The master integrals M2;2 and M3;6 are known numeri-
cally [38]. In three dimensions M2;2 is finite, i.e.
M2;2 ¼ Oðε0Þ, and does not contribute to our amplitudes,
since it always appears multiplied by a positive power of ε.
The Laurent expansion in ε around d ¼ 3 for M3;6 reads,

Md¼3þε
3;6 ¼ cðεÞ

s2
½0.50000000000000000000000000000000000000000000000000000000000=ε2

− 0.50000000000000000000000000000000000000000000000000000000000=ε

− 3.58876648328794339088189620833849370269526252469830039056611

þ 15.6234156117945512067218751269082577384023065736147735689317ε

þOðε2Þ� ðA12Þ

¼̂
PSLQ

cðεÞ
s2

�
1

2ε2
−

1

2ε
− 4þ π2

24
− ε

�
9 − π2

�
13

8
− log 2

�
−
77

6
ζ3

�
þOðε2Þ

�
: ðA13Þ

The analytical coefficients in the ε expansion have been obtained from the high-precision numerical result with the
PSLQ algorithm [47]. We observe that, according to the arguments in footnote 4, the value of the coefficient of the double
pole can be obtained analytically from the recurrence relation: its numerical reconstruction agrees with the analytic
determined value.
Moreover, in order to perform a consistency check of the other analytical coefficients of Eq. (A13), we determinedM3;6

also in one and five dimensions with SUMMERTIME [38] numerically and used the PSLQ algorithm to obtain again the
analytical coefficients of the ε expansion, respectively reading,
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Md¼1þε
3;6 ¼ ð4πÞ4 cðεÞ

s6
½11.0000000000000000000000000000000000000000000000000000000000=ε
þ 750.157936507936507936507936507936507936507936507936507936508

− 5333.19383013044510985261411265298578814107960018433010670281ε

− 3509.80936167055655677303026105319710926833682220819489993426ε2

þOðε3Þ� ðA14Þ

¼̂
PSLQ

ð4πÞ4 cðεÞ
s6

�
11

ε
þ 945199

1260
− ε

�
35338924

6615
−
11

12
π2
�

þ ε2
�
160485605363

27783000
−
14515601

15120
π2 − 22π2 log 2þ 847

3
ζ3

�
þOðε3Þ

�
; ðA15Þ

Md¼5þε
3;6 ¼ 1

ð4πÞ4
cðεÞs2
2520

½1.00000000000000000000000000000000000000000000000000000000000=ε2

− 7.49665930774956257270733971502880747383208927084097052723419=ε

þ 33.1813244635562837450781924787207309198665172698916969562612

þOðεÞ� ðA16Þ

¼̂
PSLQ

1

ð4πÞ4
cðεÞs2
2520

�
1

ε2
−
1

ε

�
467

7
− 6π2

�
þ 123478

147
−
1651

21
π2 þ 54π2 log 2 − 333ζ3 þOðεÞ

�
: ðA17Þ

We verified that the analytical Ansätze for Md¼1þε
3;6 ,

Md¼3þε
3;6 , Md¼5þε

3;6 fulfill the dimensional recurrence rela-
tion (18) analytically, order by order in ε, and therefore we
have high confidence in their correctness.

APPENDIX B: RESULTS FOR ALL THE
AMPLITUDES

In this appendix we collect the contributions to the
Lagrangian in Eq. (37), coming from all the amplitudes
of Fig. 1:

0 ¼ L9 ¼ L12 ¼ L13 ¼ L22 ¼ L26

¼ L27 ¼ L31 ¼ L36 ¼ L46 ¼ L47;

1

2

G5
Nm

3
1m

3
2

r5
¼ L1 ¼ L3 ¼ 4L5 ¼ 3L14 ¼

L19

8
¼ 3L20

2

¼ 3L21

4
¼ L23

4
¼ L24

4
¼ 3L25

2
;

1

2

G5
Nm

4
1m

2
2

r5
¼ L2 ¼ 3L4 ¼

3L8

2
¼ 3L10

2
¼ 3L11

2

¼ L15

4
¼ 3L16

4
¼ 3L17

4
¼ L18

4
;

1

120

G5
Nm

5
1m2

r5
¼ L6 ¼

L7

20
¼ 3L30

20
¼ −

3L35

56
¼ L39

24
¼ L45

12
;

L28 ¼
G5

Nm
4
1m

2
2

r5

�
428

75
þ 4

15
P
�
;

L29 ¼
G5

Nm
3
1m

3
2

r5

�
−
409

450
þ 1

5
P
�
;

L32 ¼
G5

Nm
3
1m

3
2

r5

�
−

91

450
þ 1

15
P
�
;

L33 ¼
G5

Nm
3
1m

3
2

r5
ð16 − π2Þ;

L34 ¼
G5

Nm
4
1m

2
2

r5

�
13

5
−
2

3
P
�
;

L37 ¼ −
G5

Nm
4
1m

2
2

r5
½17þ 2P�;

L38 ¼
G5

Nm
4
1m

2
2

r5

�
147

25
þ 8

15
P
�
;

L40 ¼
G5

Nm
4
1m

2
2

r5

�
−
39

25
þ 4

15
P
�
;

L41 ¼
G5

Nm
3
1m

3
2

r5

�
49

18
þ 1

3
P
�
;

L42 ¼ −
G5

Nm
3
1m

3
2

r5

�
97

225
þ 1

15
P
�
;

L43 ¼ −
G5

Nm
3
1m

3
2

r5

�
53

150
þ 2

15
P
�
;
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L44 ¼ −
G5

Nm
3
1m

3
2

r5

�
37

75
þ 2

5
P
�
;

L48 ¼
G5

Nm
4
1m

2
2

r5

�
578

75
þ 8

5
P
�
;

L49 ¼
G5

Nm
3
1m

3
2

r5
ð32 − 3π2Þ;

L50 ¼
G5

Nm
3
1m

3
2

r5

�
4π2 −

124

3

�
; ðB1Þ

where the pole part P ≡ 1
ε − 5 log r

L0
(with L0 defined by

L ¼ ffiffiffiffiffiffiffiffiffiffiffi
4πeγE

p
L0) cancels exactly in the sum of all the terms.

Diagrams which are symmetric under (1 ↔ 2) exchange,

i.e. 3, 5, 22, 23, 24, 32, 33, 41, 42, 43, 49, 50 have been

multiplied by 1=2.

APPENDIX C: EVALUATION OF A33 AND A50

We describe the evaluation of amplitudes 33 and 50
which, along with amplitude 49 already discussed in detail
in Sec. III, are the only ones containing π2 terms.

1. Amplitude 33

ðC1Þ

with

ðC2Þ

and

N33 ≡ k3 · k4ðk2 · p12 k1 · p34 þ k1 · k2 p12 · p34

− k1 · p12 k2 · p34Þ
þ k2 · k4ðk1 · p12 k3 · p34 þ k1 · k3 p12 · p34

− k3 · p12 k1 · p34Þ
þ k1 · k4ðk3 · p12 k2 · p34 − k2 · p12 k3 · p34

− k2 · k3 p12 · p34Þ
þ k2 · k3ðk4 · p12 k1 · p34 þ k1 · p12 k4 · p34Þ
þ k1 · k3ðk2 · p12 k4 · p34 − k4 · p12 k2 · p34Þ
þ k1 · k2ðk4 · p12 k3 · p34 − k3 · p12 k4 · p34Þ; ðC3Þ

where p123 ≡ p − k1 − k2 − k3, pab ≡ p − ka − kb,
k14 ≡ k1 − k4. By means of IBPs, we express the two-
point amplitude in terms of MIs,

ðC4Þ

and

c1 ¼
ðd − 2Þð3d − 10Þðd2 − 12dþ 24Þs3
4ðd − 3Þð5d − 16Þð5d − 14Þð5d − 12Þ ; ðC5Þ

c2 ¼
ðd − 2Þ

4ðd − 4Þ2ð2d − 5Þð3d − 10Þð5d − 12Þ
× ð19d4 þ 225d3 − 2708d2 þ 8140d − 7680Þs;

ðC6Þ

c3 ¼
ðd − 2Þ

4ðd − 4Þ2ðd − 3Þð5d − 16Þð5d − 14Þð5d − 12Þ
× ð33d5 − 44d4 − 1936d3

þ 11024d2 − 22512dþ 16128Þs; ðC7Þ

c4 ¼ −
2ðd − 2Þðd3 þ 7d2 − 55dþ 78Þs

ðd − 4Þ2ðd − 3Þð5d − 12Þ ; ðC8Þ

c5 ¼
ðd − 2Þð2d − 5Þ

2ðd − 4Þ2ðd − 3Þ2ð3d − 10Þð3d − 8Þ
× ð3d4 þ 204d3 − 1856d2 þ 5296d − 4944Þ: ðC9Þ

This result can be expanded around d ¼ 3þ ε, using the
expressions of the MIs given in Appendix A,
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A33 ¼ −ið8πGNÞ5ðm1m2Þ32−4ð4πÞ−ð4þ2εÞe2εγEsð1þ2εÞ

×

�
1

ε

�
π2

48
−
1

3

�
þ 49

18
−
5π2

16
þ 7π2

8
log 2 −

37ζ3
8

þOðεÞ
�
: ðC10Þ

Finally, by applying the Fourier transform formula (34) to
−iA33, one gets the result for L33 reported in Appendix B.

2. Amplitude 50

Coming to amplitude 50, we have

ðC11Þ

with

ðC12Þ

and

N50 ≡ ðk3 · p13 k12 · p̂14 − k12 · p13 k3 · p̂14

− k3 · k12 p13 · p̂14Þ
× ðk2 · k34 k1 · k4 þ k1 · k34 k2 · k4 − k4 · k34 k1 · k2Þ
þ ðk12 · k34 p13 · p̂14 − k34 · p13 k12 · p̂14

− k12 · p13 k34 · p̂14Þ
× ðk1 · k2 k3 · k4 − k1 · k3 k2 · k4 − k1 · k4 k2 · k3Þ
þ ðk34 · p13 k1 · p̂14 þ k1 · p13 k34 · p̂14

− k1 · k34 p13 · p̂14Þ
× ðk4 · k12 k2 · k3 − k2 · k12 k3 · k4Þ
þ ðk1 · k34 k3 · k12 þ k1 · k3 k12 · k34

− k1 · k12 k3 · k34Þ
× ðk2 · p̂14 k4 · p13 þ k2 · p13 k4 · p̂14Þ
þ ðk2 · k12 k4 · k34 − k4 · k12 k2 · k34Þ
× ðk1 · k3 p13 · p̂14 − k1 · p13 k3 · p̂14Þ
− 2k1 · k4 k3 · k34 k2 · p13 k12 · p̂14

− 2k1 · p13 k3 · k34ðk2 · k4 k12 · p̂14 þ k4 · k12 k2 · p̂14Þ
þ k1 · p̂14 k4 · k12ðk2 · k34 k3 · p13 − 2k2 · p13 k3 · k34Þ

þ k2 · k4 k12 · k34ðk3 · p13 k1 · p̂14 þ k1 · p13 k3 · p̂14Þ
þ 2k1 · k4 k12 · p13ðk2 · k34 k3 · p̂14 − k3 · k34 k2 · p̂14Þ
þ 2k1 · k12 k4 · k34ðk3 · p13 k2 · p̂14 þ k2 · p13 k3 · p̂14Þ
þ 2k3 · p̂14 k12 · p13ðk1 · k34 k2 · k4 − k4 · k34 k1 · k2Þ
þ k1 · p̂14 k2 · k4ðk3 · k12 k34 · p13 − 2k3 · k34 k12 · p13Þ
þ 2k1 · k12 k3 · k4ðk34 · p13 k2 · p̂14 þ k2 · p13 k34 · p̂14Þ
þ k2 · k4ðk34 · p̂14 k3 · k12 k1 · p13

þ p13 · p̂14 k1 · k12 k3 · k34Þ
− k1 · p̂14 k2 · k12 k4 · k34 k3 · p13; ðC13Þ

where kab ≡ ka − kb, k̂24 ≡ k2 þ k4, p13 ≡ p − k1 − k3
and p̂14 ≡ p − k1 þ k2 − k3 þ k4. By means of IBPs, we
express the two-point amplitude in terms of MIs,

ðC14Þ

and

c1 ¼ −
ðd − 2Þ

4ðd − 3Þð2d − 7Þð5d − 16Þð5d − 14Þð5d − 12Þ
× ð3d − 10Þð3d3 − 41d2 þ 165d − 204Þs3;

ðC15Þ

c2 ¼
ðd − 2Þ

2ðd − 4Þ2ð2d − 5Þð3d − 10Þð5d − 12Þ
× ð51d4 − 769d3 þ 4018d2 − 8868dþ 7080Þs;

ðC16Þ

c3 ¼
ðd − 2Þ

12ðd − 4Þ2ðd − 3Þð5d − 16Þð5d − 14Þð5d − 12Þ
× ð164d5 − 3543d4 þ 26298d3 − 90056d2

þ 146592d − 92160Þs; ðC17Þ

c4 ¼ −
ðd − 2Þð9d − 23Þðd2 − 12dþ 24Þs

2ðd − 4Þ2ðd − 3Þð5d − 12Þ ; ðC18Þ

c5 ¼ −
ðd − 2Þ

2ðd − 4Þ3ðd − 3Þ2ð3d − 10Þð3d − 8Þ
× ð609d5 − 8946d4 þ 52176d3

− 151096d2 þ 217360d − 124320Þ: ðC19Þ

This result can be expanded around d ¼ 3þ ε, using the
expressions of the MIs given in Appendix A,
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A50 ¼ −ið8πGNÞ5ðm1m2Þ32−4ð4πÞ−ð4þ2εÞe2εγEsð1þ2εÞ

×

�
1

ε

�
31

36
−
π2

12

�
−
985

216
þ 61π2

144
−
3π2

4
log 2þ 37ζ3

8

þOðεÞ
�
: ðC20Þ

Finally, by applying the Fourier transform formula (34)
to −iA50, one gets the result for L50 reported in
Appendix B.
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