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The field equations for Einstein-Maxwell-dilaton gravity in D dimensions are reduced to an effective one-
dimensional system under the influence of exponential potentials. Various cases where exact solutions can be
found are explored.With this procedure,we present interesting solutions such as a one-parametergeneralization
of the dilaton-Melvin spacetime and a three-parameter solution that interpolates between the Reissner-
Nordström and Bertotti-Robinson solutions. This procedure also allows simple, alternative derivations of
known solutions such as the Lifshitz spacetime and the planar anti–de Sitter naked singularity. In the latter case,
the metric is cast in a simpler form which reveals the presence of an additional curvature singularity.
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I. INTRODUCTION

The discovery of black rings, along with recent develop-
ments in string theory and various applications of the
AdS=CFT correspondence has generated great interest in
higher-dimensional spacetimes. Much of these situations of
interest arise as solutions to Einstein-Maxwell-dilaton
gravity with various scalar potentials. Indeed, the inclusion
of Maxwell and dilaton fields complicates the equations of
motion, where in higher dimensions they already lack the
various solution-generating techniques available in the
four-dimensional case.
In four dimensions, despite the high nonlinearity of the

Einstein equations, there are a rich variety of methods deve-
loped to find static and stationary solutions. These solution-
generating techniques are built upon the assumption of
certain symmetries or the presence of Killing vectors in the
metric.
In spacetimes with two commuting Killing vectors, the

metric can be cast into the Weyl-Lewis-Papapetrou form.
Ernst made use of this form to reformulate the Einstein
equations in terms of complex potentials [1]. This was
subsequently generalized to include electromagnetic fields in
Ref. [2]. In this form, one can perform symmetry trans-
formations to generate new solutions from known ones. For
instance, one can embed a black hole in a background
magnetic or electric field by performing a Harrison trans-
formation [3]. The simplest example of this is perhaps the
magnetized Schwarzschild black hole found by Ernst [4].
Geroch [5] has developed a more general analysis where

the spacetime is required to carry only oneKilling vector. This
was recently extended to include a nonzero cosmological
constant by Leigh et al. [6], where they traced the symmetries
broken by the presence of the cosmological constant and
recast the equations of motion as a one-dimensional system
which was solved using the Hamilton-Jacobi method.

A further generalization of this method to include electro-
magnetic fields was done by Klemm et al. [7].
In higher-dimensional vacuum gravity, D-dimensional

static spacetimes with (D − 2) Killing vectors were charac-
terised in terms of rod structures by Emparan and Reall [8].
This was generalized to stationary spacetimes by Harmark
[9,10], and spacetimes with Uð1Þ ×Uð1Þ isometry by Chen
and Teo [11]. While the rod structure formalism is not
possible in the presence of a cosmological constant, Armas
et al. [12] nevertheless developed the domain structure
description (which generalizes the rod into higher dimen-
sions). In higher-dimensional Einstein-Maxwell gravity
various magnetized black holes have been found [13].
Most of theworksmentioned aboveweremainly interested

in pure vacuum Einstein gravity, with some extensions to
include a cosmological constant and Maxwell fields. In this
paper, we will be interested in the case where the Maxwell
field has an additional coupling to a scalar dilaton field. In the
case of zero cosmological constant, some symmetry proper-
ties of the Einstein-Maxwell-dilaton equations have been
studied. For instance, the Harrison transformation is also
possible here and various interesting solutions have been
generated in thismanner [14–17]. The equationsofmotion for
rotating black holes with equal angular momenta in odd
dimensions have been studied within Einstein-Maxwell-
dilaton gravity in Refs. [18,19]. When the black hole has
equal angular momentum, the symmetry of the solution
is enhanced and the spacetime can be represented by a
cohomogeneity-one metric [20] and the equations of motion
can be reduced to an effective one-dimensional system.
In this paper, we take an approach inspired by Refs. [6,7],

and assume that our metric is cohomogeneity-one to cast the
Einstein-Maxwell-dilaton equations for static spacetimes
into an effective one-dimensional system. In Refs. [6,7], the
metric was assumed to have one Killing vector that is
hypersurface orthogonal to a product space of the form
R1 × Σ2. The reduction to a one-dimensional system is
achieved by taking Σ2 to be a 2-sphere S2 and letting all
field variables depend only on the coordinate on R1. The*phylyk@nus.edu.sg
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coordinate system was carefully scaled such that the
cosmological constant Λ stands alone in the effective
Lagrangianwithout any field-dependent factors. This allows
Λ to be interpreted as a constant of motion, but at the cost of
the “kinetic” terms having exponential prefactors.
In the present paper, we allow our metric to have any

D ≥ 4 dimensions, and ΣðD−2Þ (generalizing Σ2 to higher
dimensions) to be an Einstein space that can have zero,
positive, or negative normalized curvature which we denote
by k ¼ 0, �1. We choose a different coordinate system
where the exponential factors are removed from the kinetic
terms instead. In this case, Λ now acquires the exponential
factor, though this appears on equal footing with a term
involving k and the Maxwell field which we will para-
metrize by q.
Therefore, the effective Lagrangian describes a dynami-

cal system under the influence of various exponential
potentials parametrized by Λ, k, and q. When one or more
of these potentials are zero, the system becomes exactly
solvable. While a full classification of ðΛ; k; qÞ and their
solutions is beyond the scope of this paper, we will report
the particular choices of potentials that yield new solutions,
or known solutions in newer and simpler forms.
The rest of this paper is organised as follows. In

Sec. II, we derive the Einstein-Maxwell-dilaton equations
under our choice of the metric ansatz. Subsequently we
demonstrate in Sec. III how to derive the Schwarzschild
and Fisher/Janis-Newman-Winicour (JNW) solutions
using the ansatz and equations of motion. In Sec. IV
we obtain solutions for Einstein-Maxwell-dilaton theory
in the case of zero cosmological constant. Solutions for a
nonzero cosmological constant are presented in Sec. V.
Finally, a discussion and closing remarks are given
in Sec. VI. The Appendix shows how our particular
metric ansatz is chosen and the effective Lagrangian is
derived.

II. ACTION AND EQUATIONS OF MOTION

The Einstein-Maxwell-dilaton theory we are considering
is described by the action

I ¼ 1

16π

Z
dDx

ffiffiffiffiffiffi
−g

p ðR − 2Λ − e−2αφF2 − ð∇φÞ2Þ; ð1Þ

where F ¼ dA is the Maxwell 2-form arising form a gauge
potential A, and φ is the scalar dilaton coupled to the
Maxwell via the coupling parameter α.
Varying the action with respect to the metric, gauge

potential, and dilaton gives the Einstein-Maxwell-dilaton
equations

Rμν ¼
2Λ

D − 2
gμν þ 2e−2αφFμλFν

λ −
1

D − 2
e−2αφF2gμν

þ∇μφ∇νφ; ð2aÞ

∇λðe−2αφFλνÞ ¼ 0; ð2bÞ

∇2φþ αe−2αφF2 ¼ 0: ð2cÞ

In component form, the Maxwell 2-form is given by
Fμν ¼ ∂μAν − ∂νAμ and we denote F2 ¼ FμνFμν. We take
our metric to have at least one Killing vector ∂σ which we
allow to be either timelike or spacelike. We further take the
hypersurface orthogonal to this Killing vector to be a
warped product R1 × ΣD−2, where ΣD−2 is a (D − 2)-
dimensional Einstein space(time) of constant curvature.
As mentioned in Sec. I, this is simply the static case of the
ansatz considered in Refs. [6,7], generalized to include
dilaton fields and higher dimensions.
With these considerations, our metric may be written as

ds2 ¼ ϵe2Udσ2 þ e
2Ω−2U
D−3 ðe2Ωdλ2 þ ĥijdxidxjÞ; ð3Þ

where λ is the coordinate that parametrizesR1 and ĥij is the
metric on ΣD−2. To ensure that our full metric carries
Lorentzian signature, if ∂σ is timelike, we take ϵ ¼ −1 and
ĥij to be Euclidean, and if ∂σ is spacelike, we take ϵ ¼ þ1

and ĥij is understood to be Lorentzian. For the solutions
presented below, we adopt the following notation for the
coordinate σ:

ϵdσ2 ¼
�
−dt2; for time-like ∂σ;

dϕ2; for space-like ∂σ:
ð4Þ

Turning to the matter fields, we write the gauge potential
and dilaton field in the form

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

2ðD − 3Þ

s
χdσ;

φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 3

r
ψ ; α ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

D − 2

r
a: ð5Þ

Therefore, our Einstein-Maxwell-dilaton system is deter-
mined by the functionsU,Ω, χ, and ψ . In the following, we
will assume that these functions depend only on λ.
The Einstein-Maxwell-dilaton equations under this

ansatz have particularly simple forms, which are

_χ ¼ ϵqe2aψþ2U; ð6aÞ

ψ̈ ¼ −ϵq2ae2aψþ2U; ð6bÞ

Ü ¼ −ϵq2e2aψþ2U −
2Λ

D − 2
e
2ðD−2ÞΩ−2U

D−3 ; ð6cÞ

Ω̈ ¼ kðD − 3Þ2e2Ω − 2Λe
2ðD−2ÞΩ−2U

D−3 ; ð6dÞ

with an additional equation that follows from the trace of
the Einstein equation,
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_U2 − _Ω2 þ ϵe−2aψ−2U _χ2 þ _ψ2 þ kðD − 3Þ2e2Ω

−
2ðD − 3Þ
D − 2

Λe
2ðD−2ÞΩ−2U

D−3 ¼ 0: ð7Þ

The equations in Eq. (6) can be regarded as the Euler–
Lagrange equations that follow from a Lagrangian

L ¼ 1

2

�
_U2 − _Ω2 þ ϵe−2aψ−2U _χ2 þ _ψ2 − kðD − 3Þ2e2Ω

þ 2ðD − 3Þ
D − 2

Λe
2ðD−2ÞΩ−2U

D−3

�
; ð8Þ

and Eq. (7) can be regarded as a Hamiltonian constraint for
this system. In the Appendix, we show the line of reasoning
that led us to the choice of the ansatz (3) which results in the
compact equations as they appear in Eq. (6).
Henceforth, our primary focus will be solving the

system described by Eq. (8) under the constraint (7).
The metric, along with the Maxwell and dilaton fields
are then reconstructed according to Eqs. (3) and (5).
In summary, with the cohomogeneity-one ansatz (3), the

problem has been reduced to a one-dimensional Lagrangian
with exponential potentials. We will show below that
despite the simplicity of the equations of motion, this
ansatz is sufficiently nontrivial where it is possible to
construct various black-hole and electro-vacuum solutions.
Before proceeding to find solutions in the following

sections, a few general comments are in order. We first note
that χ is a cyclic variable of the Lagrangian such that _χ can
be expressed in terms of U, ψ , and a constant of motion, q.
Therefore the presence of χ behaves like an effective
“interaction potential” between U and Ω. Similarly, Λ
can be regarded as parametrizing the strength of the
“interaction” between U and Ω, while k parametrizes a
single exponential potential for Ω. If the couplings can be
removed either by setting the potentials to zero and/or by
finding an appropriate change of variables, the equations of
motion reduce to (copies of) Liouville’s differential equa-
tion1, which is exactly solvable. In the subsequent sections
below we will explore various cases where this is possible.
In the case where any of the two variables are cyclic,

simple symmetry transformations that preserve the
Lagrangian allow us to generate new solutions from known
ones. For example, in the absence of the cosmological
constant and electromagnetic fields, the Lagrangian and
constraint take the forms

L ¼ 1

2
½ _U2 − _Ω2 þ _ψ2 − kðD − 3Þ2e2Ω�;

0 ¼ _U2 − _Ω2 þ _ψ2 þ kðD − 3Þ2e2Ω: ð9Þ

We see that this system is invariant under the trans-
formation

U0 ¼ U cos θ − ψ sin θ;

ψ 0 ¼ U sin θ þ ψ cos θ;

Ω0 ¼ Ω ð10Þ

for some real parameter θ. Therefore, with a known solution
corresponding to ðU;ψ ;ΩÞ, one can generate a new
solution ðU0;ψ 0;ΩÞ with the transformation (10).

III. EXAMPLE: THE SCHWARZSCHILD
AND FISHER/JNW SOLUTIONS

To demonstrate how solving Eqs. (8) and (7) gives a
solution to the field equations, we shall consider a simple
case without a cosmological constant or a Maxwell field.
This essentially leaves us with pure Einstein gravity
sourced by a massless scalar field. In this case, let us take
k ¼ 1 where ΣD−2 is now a sphere SD−2. We also take the
Killing vector ∂σ to be timelike so that ϵdσ2 ¼ −dt2. The
Lagrangian and constraint are

L ¼ 1

2
½ _U2 − _Ω2 þ _ψ2 − ðD − 3Þ2e2Ω�; ð11Þ

0 ¼ _U2 − _Ω2 þ _ψ2 þ ðD − 3Þ2e2Ω: ð12Þ

The Euler-Lagrange equations are then

Ω̈ ¼ ðD − 3Þ2e2Ω; _U ¼ constant≡ −b1;

_ψ ¼ constant≡ p; ð13Þ

which are solved by

U ¼ −b1λþ U0;

Ω ¼ −b2ðλþ λ0Þ − ln

�ðD − 3Þ2
4b22c

− ce−2b2ðλþλ0Þ
�
;

ψ ¼ pλþ ψ0: ð14Þ

We can simplify the expressions by shifting the zeros of λ,

ψ , and U such that e2bλ0
c2 ¼ 4b2

2

ðD−3Þ2 and U0 ¼ ψ0 ¼ 0.

We first seek the vacuum Schwarzschild solution by
setting p ¼ 0, thereby switching off the scalar field. In this
case, the constraint equation requires that b1 ¼ b2 ≡ b. The
solution is then

U ¼ −b1λ; Ω ¼ − ln

�ðD − 3Þ sinh b2λ
b2

�
;

ψ ¼ 0: ð15Þ

The metric is reconstructed as

1A similar type of reduction to Liouville’s equation has been
used to find black holes in gravity with multiple Maxwell-dilaton
fields [21].
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ds2 ¼ −e−2bλdt2 þ
�

bebλ

ðD − 3Þ sinh bλ
� 2

D−3 b2dλ2

ðD − 3Þsinh2bλ

þ
�

bebλ

ðD − 3Þ sinh bλ
� 2

D−3
dΩ2

ðD−2Þ; ð16Þ

where we have denoted the metric on ΣD−2 ¼ SD−2 as
ĥijdxidxj ¼ dΩ2

ðD−2Þ. To see that this is actually the

D-dimensional Schwarzschild-Tangherlini metric, we per-
form the following transformation and redefinition of b:

e−2bλ ¼ 1 −
μ

rD−3 ; b ¼ 1

2
ðD − 3Þμ: ð17Þ

Then we find that the metric is now

ds2 ¼ −
�
1 −

μ

rD−3

�
dt2 þ

�
1 −

μ

rD−3

�
−1
dr2 þ r2dΩ2

ðD−2Þ;

ð18Þ

which is indeed the D-dimensional Schwarzschild-
Tangherlini metric with mass parameter μ.
Next, we note that the Lagrangian (11) and constraint

(12) are invariant under the Oð2Þ transformation (10).
Therefore, if we take U, Ω, and ψ given in Eq. (15) as
the seed, a new solution can be generated with Eq. (10) to
obtain

U0 ¼ −νbλ; ψ 0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
bλ;

Ω0 ¼ Ω ¼ − ln

�ðD − 3Þ sinh b2λ
b2

�
; ð19Þ

where we have defined ν≡ cos θ. Reconstructing the
metric and the scalar field, and further applying the trans-
formation defined in Eq. (17), we have

ds2 ¼ −fνdt2 þ f
1−ν
D−3

�
dr2

f
þ r2dΩ2

ðD−2Þ

�
;

φ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þð1 − ν2Þ

D − 3

r
ln f; f ¼ 1 −

μ

rD−3 ; ð20Þ

which is the Fisher/JNW2 solution in arbitrary dimensions
[24]. The generation of this spacetime via sym-
metry transformation from a Schwarzschild seed using
Eq. (10) was previously performed by Abdolrahimi and
Shoom [25].

IV. SOLUTIONS WITH ZERO
COSMOLOGICAL CONSTANT

A. Decoupling the equations of motion

In this section, we shall consider Einstein-Maxwell-
dilaton gravity without a cosmological constant. With
Λ ¼ 0 in the Lagrangian (8), Ω is decoupled from the
other fields and may be solved exactly. However, if a is
nonzero, the presence of χ couplesU to ψ . Nevertheless we
can decouple the equations of motion by introducing the
transformation

U ¼ ξ − aη
1þ a2

; ψ ¼ ηþ aξ
1þ a2

; χ ¼ ζffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p ; ð21Þ

and the system is now

L ¼ 1

2

�
_ξ2 þ _η2 þ ϵe−2ξ _ζ2

1þ a2
− _Ω2 − kðD − 3Þ2e2Ω

�
; ð22Þ

0 ¼
_ξ2 þ _η2 þ ϵe−2ξ _ζ2

1þ a2
− _Ω2 þ kðD − 3Þ2e2Ω; ð23Þ

with the Euler-Lagrange equations

_ζ ¼ ϵqe2ξ; ð24aÞ
_η ¼ p; ð24bÞ
̈ξ ¼ −ϵq2e2ξ; ð24cÞ

Ω̈ ¼ kðD − 3Þ2e2Ω; ð24dÞ

where q and p are constants that follow from the first
integral of ζ and η.

B. Reissner-Nordström/Bertotti-Robinson
interpolating solution

Taking the case ϵ ¼ −1 and k ¼ 1, the solution to
Eq. (24) is

ξ ¼ −b1λ − ln

�
q2

4cb21
− ce−2b1λ

�
; ð25aÞ

Ω ¼ − ln

�ðD − 3Þ sinh b2λ
b2

�
; ð25bÞ

ζ ¼ q

2b1cð q2

4b2
1
c − ce−2b1λÞ

; ð25cÞ

η ¼ pλ; ð25dÞ

where we have used a similar argument that took us from
Eq. (14) to Eq. (15) to cast Ω into the form above.
Substituting Eq. (25) into the constraint (23) leads us to

2In the literature, this solution is widely attributed to Janis,
Newman, and Winicour [22], though it turns out that it is a
rediscovery of a solution obtained by Fisher [23].
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b21 þ p2 ¼ ð1þ a2Þb22; ð26Þ

thereby constraining one of the integration constants.
Reconstructing the solution, we have

ds2 ¼ −
e−

2ðb1þapÞλ
1þa2 dt2

ð q2

4b2
1
c − ce−2b1λÞ 2

1þa2
þ
�

q2

4b21c
− ce−2b1λ

� 2

ðD−3Þð1þa2Þ

×

�
b2e

ðb1þapÞλ
1þa2

ðD − 3Þ sinh b2λ
� 2

D−3

×

�
b22dλ

2

ðD − 3Þ2sinh2b2λ
þ dΩ2

ðD−3Þ

�
;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D − 2

2ðD − 3Þð1þ a2Þ

s
q2

2b1cð q2

4b2
1
c − ce−2b1λÞ

dt;

φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 3

r
1

1þ a2

×
�
ðp − b1aÞλ − a ln

�
q2

4b21c
− ce−2b1λ

��
;

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

D − 2

r
a; b21 þ p2 ¼ ð1þ a2Þb22: ð27Þ

We will show that this solution contains limits to the
Reissner-Nordström and Bertotti-Robinson solutions. The
metric will appear much simpler if we consider the case
p ¼ ab1, for which the constraint leads to b1 ¼ b2 ≡ b,
and this allows us to further apply the transformation (17),
which swaps λ and b to the more familiar, Schwarzschild-
like conventions r and μ. The resulting solution is

ds2 ¼ −
f

H
2

1þa2
dt2 þH

2

ðD−3Þð1þa2Þ

�
dr2

f
þ r2dΩ2

ðD−2Þ

�
;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D − 2

2ðD − 3Þð1þ a2Þ

s
q

ðD − 3ÞμcH dt;

φ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 3

r
a

1þ a2
lnH; f ¼ 1 −

μ

rD−3 ;

H ¼ q2

cμ2ðD − 3Þ2 − cþ cμ
rD−3 ; α ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

D − 2

r
a: ð28Þ

Fixing p now leaves us with three independent parameters:
μ, q, and c.
We are now in a position to obtain the Reissner-

Nordström and Bertotti-Robinson limits from the above
solution. First, if c takes the value

c ¼ −
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ðD − 3Þ2 þ 4q2

p
2μðD − 3Þ ; ð29Þ

the function H as defined in Eq. (28) takes the form

H ¼ 1þ cμ
rD−3 ; ð30Þ

and the solution is simply the dilatonic Reissner-Nordström
black hole written in p-brane coordinates.
On the other hand, if c takes the value

c ¼ q
μðD − 3Þ≡

e
μ
; ð31Þ

and further transforming

t →
e

2

1þa2

D − 3
t; r → ρ−

1
D−3; ð32Þ

the solution becomes

ds2 ¼ −
�
e
ρ

� 2

1þa2 ð1 − μρÞdt2
ðD − 3Þ2 þ e

2

ðD−3Þð1þa2Þρ
− 2a2

ðD−3Þð1þa2Þ

×

�
dρ2

ðD − 3Þ2ρ2ð1 − μρÞ þ dΩ2
ðD−2Þ

�
;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

2ðD − 3Þ

s
e

1−a2

1þa2

ðD − 3Þρ dt;

φ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 3

r
a

1þ a2
ln eρ: ð33Þ

We can recover the Bertotti-Robinson metric in D ¼ 4
Einstein-Maxwell gravity by setting a ¼ 0,

ds2 ¼ e2

ρ2

�
−ð1 − μρÞdt2 þ dρ2

1 − μρ
þ ρ2dΩ2

ðD−2Þ

�
;

A ¼ e
ρ
dt; ð34Þ

where the Poincaré slices in the AdS2 are written in
Rindler-like coordinates. Similar interpolating solutions
in D ¼ 4 Einstein-Maxwell gravity have been found by
Halilsoy [26], and in D ¼ 4 Einstein-Maxwell-dilaton
gravity with a Liouville potential by Mazharimousavi
et al. [27].

C. Generalized dilaton-Melvin spacetime

We now consider the case where the Killing vector is
spacelike and k ¼ 0, so that ĥij is a (D − 2)-dimensional
Minkowski spacetime and we set ϵdσ2 ¼ dϕ2. A particular
solution to Eq. (24) in this case is

ξ ¼ −λ − ln

�
q2

4
þ e−2λ

�
; ζ ¼

1
2
qe2λ

1þ q2

4
e2λ

;

γ ¼ λ; η ¼ 0: ð35Þ

Before reconstructing the metric, we observe that for k ¼ 0,
the Lagrangian (22) and constraint (23) are invariant under
the transformation
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η0 ¼ η cosh θ − γ sinh θ;

γ0 ¼ −η sinh θ þ γ cosh θ; ð36Þ

where ξ and ζ remain unchanged. Taking Eq. (35) as a seed,
we now have3

ξ ¼ −λ − ln

�
q2

4
þ e−2λ

�
; ζ ¼ qe2λ

2ð1þ q2

4
e2λÞ

;

γ0 ¼ νλ; η0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
λ; ð37Þ

where we have introduced the parametrization ν ¼ cosh θ.
Reconstructing the solution, with the transformation

ρ ¼ eλ, we have a one-parameter generalization of the
dilaton-Melvin spacetime:

ds2 ¼ ρ
2ð1þa

ffiffiffiffiffiffi
ν2−1

p
Þ

1þa2 H− 2

1þa2dϕ2

þ ρ
2ðν

ffiffiffiffiffiffi
1þa2

p
−1−a

ffiffiffiffiffiffi
ν2−1

p
Þ

ð1þa2ÞðD−3Þ H
2

ð1þa2ÞðD−3Þ

×

�
ρ

2ν−2
ffiffiffiffiffiffi
1þa2

pffiffiffiffiffiffi
1þa2

p
dρ2 − dt2 þ dx⃗2ðD−3Þ

�
;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D − 2

2ðD − 3Þð1þ a2Þ

s
qρ2

2H
dϕ;

e−2αφ ¼ ρ
2a

ffiffiffiffiffiffi
ν2−1

p
−2a2

1þa2 H
2a2

1þa2 ;

H ¼ 1þ 1

4
q2ρ2; α ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

D − 2

r
a; ð38Þ

where we have denoted ĥijdxidxj ¼ −dt2 þ dx⃗2ðD−3Þ. For

the special case of ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
, the solution reduces to

ds2 ¼ ρ2H− 1

1þa2dϕ2 þH
2

ðD−3Þð1þa2Þðdρ2 − dt2 þ dx⃗2ðD−3ÞÞ;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D − 2

2ðD − 3Þð1þ a2Þ

s
qρ2

2H
dϕ; e−2aψ ¼ H

2a2

1þa2 ;

ð39Þ

where H and a are the same as above. This is the familiar
dilaton-Melvin solution considered in Refs. [16,28].

V. SOLUTIONS WITH A NONZERO
COSMOLOGICAL CONSTANT

A. Planar AdS naked singularity

In this section, we turn to the case with a nonzero
cosmological constant and zero Maxwell fields. Therefore

the solutions in this case correspond to (anti–)de Sitter–
scalar theory. Here we shall consider the case k ¼ 0, and a
timelike ∂σ . Therefore we use the notation ĥijdxidxj ¼
dx⃗2ðD−2Þ and ϵdσ2 ¼ −dt2. The Lagrangian and constraint

equations are

L ¼ 1

2

�
_U2 − _Ω2 þ _ψ2 þ 2ðD − 3Þ

D − 2
Λe

2ðD−2ÞΩ−2U
D−3

�
; ð40Þ

0 ¼ _U2 − _Ω2 þ _ψ2 −
2ðD − 3Þ
D − 2

Λe
2ðD−2ÞΩ−2U

D−3 : ð41Þ

We see that the presence of the cosmological constant
couples Ω to U. Nevertheless, if we introduce the trans-
formation

U ¼ β − ðD − 2Þα
D − 1

; Ω ¼ ðD − 2Þβ − α

D − 1
;

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

D − 1

r
γ; ð42Þ

the Lagrangian and constraint become

L ¼ D − 3

2ðD − 1Þ ð _α
2 − _β2 þ _γ2 þ Ke2βÞ; ð43Þ

0 ¼ _α2 − _β2 þ _γ2 − Ke2β; ð44Þ

where K ¼ 2ðD − 1ÞΛ=ðD − 2Þ.
This system now appears in the same form as Eqs. (11)

and (12) with a slightly different potential strength K. It
also has a similar invariance under the Oð2Þ transformation
(10). We can therefore carry over the results for the Fisher/
JNW solution in Sec. III to our present case, giving us

α ¼ νcλ; β ¼ − ln

� ffiffiffiffi
K

p
sinh cλ
c

�
;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
cλ; jνj ≤ 1: ð45Þ

Introducing a similar transformation to the r coordinates
defined in Eq. (17), and further setting 2Λ ¼ −ðD − 1Þ×
ðD − 2Þl−2, the full solution is reconstructed upon an
appropriate rescaling of t and μ to give

ds2 ¼ −
r2

l2
f

νðD−2Þþ1

D−1 dt2 þ l2

r2
dr2

f
þ r2

l2
f

1−ν
D−1dx⃗2ðD−2Þ;

φ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þð1 − ν2Þ

D − 1

r
ln f; f ¼ 1 −

μ

rD−1 : ð46Þ

This is the metric found recently by Saenz and Martinez
[29]. To see this, we introduce the transformation

rD−1 ¼ xþ b; b ¼ μ

2
: ð47Þ

3Of course, one could have also obtained this solution by
choosing a nonzero solution for η in Eq. (35) and choosing the
appropriate constants.
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The solution then becomes

ds2 ¼ −l−2ðxþ bÞ1−νðD−2Þ
D−1 ðx − bÞ1þνðD−2Þ

D−1 dt2

þ l2dx2

ðD − 1Þ2ðx2 − b2Þ
þ l2ðxþ bÞ1þν

D−1ðx − bÞ 1−ν
D−1dx⃗2ðD−2Þ;

φ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þð1 − ν2Þ

D − 1

r
ln
x − b
xþ b

; ð48Þ

which is precisely the form given in Eqs. (13) and (14) in
Ref. [29]. In their paper, Saenz and Martinez [29] pointed
out the curvature singularity at x ¼ b, which by Eq. (47),
corresponds to r ¼ μ in the form given in Eq. (46).
Additionally, from Eq. (46), we see that there is yet another
curvature singularity located at r ¼ 0.4

From the form in r coordinates given in Eq. (46), we
easily obtain the asymptotic anti–de Sitter (AdS) limit for
large r. Within the same coordinates we can set ν ¼ 1 to get
the planar AdS black hole, where the r ¼ μ surface is
simply a black hole horizon concealing the yet remaining
curvature singularity at r ¼ 0. In light of this, we can
interpret this solution as the planar AdS analogue to the
Fisher/JNW solution, where a Schwarzschild black hole
dressed with a scalar field turns its horizon into a curvature
singularity. Similarly, we see that dressing a planar AdS
black hole with a scalar field turns its r ¼ μ horizon into a
curvature singularity.

B. Lifshitz spacetime

In this section, we shall use the Lagrangian (8) and
constraint (7) to provide a simple derivation of the Lifshitz
spacetime [30–33]. This spacetime is of interest in the
context of gauge/gravity duality where its holographic dual
is a nonrelativistic field theory [34]. While this spacetime is
already well known, it is hoped that the simplicity of
Eq. (49) below provides a useful tool for further studies of
condensed matter systems and their gravity duals, particu-
larly those that require Lifshitz asymptotics.
As in the previous section, we consider the case k ¼ 0

and ϵdσ2 ¼ −dt2. The equations of motion in this case are

_χ ¼ −qe2aψþ2U; ð49aÞ

Ü ¼ q2e2aψþ2U −
2Λ

D − 2
e
2ðD−2ÞΩ−2U

D−3 ; ð49bÞ

Ω̈ ¼ −2Λe
2ðD−2ÞΩ−2U

D−3 ; ð49cÞ

ψ̈ ¼ q2ae2aψþ2U; ð49dÞ

along with the constraint

_U2 − _Ω2 þ q2e2aψþ2U þ _ψ2 −
2ðD − 3Þ
D − 2

Λe
2ðD−2ÞΩ−2U

D−3 ¼ 0:

ð50Þ
While the equations of motion are coupled, we can find a
nontrivial solution by assuming that Ω and ψ are propor-
tional to U. In anticipation of the Lifshitz solution, we
choose a parametrization of the proportionality constants
such that

Ω ¼ D − 3þ ν

ν
U; ψ ¼ D − 2

aν
U; ð51Þ

for ν ≥ 1. The equations of motion now become

Ü ¼ νa2q2

D − 2
e
2ðD−2þνÞU

ν ¼ −
2Λν

D − 3þ ν
e
2ðD−2þνÞU

ν

¼
�
q2 −

2Λ
D − 2

�
e
2ðD−2þνÞU

ν : ð52Þ

Consistency then requires q and a to satisfy

q2 ¼ −
2Λðν − 1ÞðD − 3Þ
ðD − 2ÞðD − 3þ νÞ ; a2 ¼ ðD − 2Þ2

ðD − 3Þðν − 1Þ :

ð53Þ

Anticipating the Lifshitz solution again, we further para-
metrize the cosmological constant by −2Λ¼ðD−2þνÞ×
ðD−3þνÞl−2. A solution for U that satisfies the con-
straint is

U ¼ −
ν

D − 2þ ν
ln
ðD − 2þ νÞλ

l
: ð54Þ

Introducing the coordinate transformation

ðD − 2þ νÞλ
l

¼
�
z
l

�
D−2þν

; ð55Þ

the solution can be reconstructed to give

ds2 ¼ −
�
l
z

�
2ν

dt2 þ l2

z
ðdz2 þ dx⃗2ðD−2ÞÞ;

2Λ ¼ −
ðD − 2þ νÞðD − 3þ νÞ

l2
;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

2ðD − 3Þ

s
ql

D − 2þ ν

�
z
l

�
D−2þν

dt;

q2 ¼ ðD − 2þ νÞðD − 3Þðν − 1Þ
ðD − 2Þl2

; ð56Þ

φ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 3

r
ðD − 2Þ

α
ln

z
l
; α2 ¼ D − 2

ν − 1
: ð57Þ4This was possibly ignored in Ref. [29] because it was located

beyond their coordinate range of interest.
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VI. DISCUSSION AND CONCLUSION

By choosing a metric ansatz to have one Killing vector
that is orthogonal to a product space of the formR1 × ΣD−2,
the Einstein-Maxwell-dilaton equations are reduced to a
particularly simple set of second-order ordinary differential
equations. This system is equivalent to an effective
Lagrangian with exponential potentials. These potentials
are related to the cosmological constantΛ, Maxwell field of
strength q, and k, the curvature of ΣD−2.
When some of the potentials are set to zero, the equations

of motion are decoupled, or can be decoupled under
appropriate linear combinations of the fields. We have
explored some of these cases and their associated solutions.
Among the most notable solutions are perhaps the inter-
polating solution between the Reissner-Nordström black
hole and the Bertotti-Robinson spacetime, and the planar
AdS naked singularity. We have also presented a one-
parameter generalization of the dilaton-Melvin solution and
a rederivation of the Lifshitz spacetime which is important
for holographic condensed matter physics.
The reader may have already noticed that in all the cases

considered above, the solvable equations are Liouville
equations of the form

F̈ ¼ Ke2F; ð58Þ

for some constant K and F being either U, Ω, or linear
combinations thereof with ψ . This naturally follows from
the effective potentials in Eq. (8) which are exponential, or
Liouville potentials. In relation to this, we can foresee an
immediate extension of the methods above to include
specific types dilaton potentials.
In particular, if we include Liouville-type potentials of

the form V0e−2κφ in the action (2), it should still be possible
to cast the resulting equations as an effective Lagrangian
system with exponential potentials under the same metric
and field ansatz. Other linear combinations or choices of
the parameter κ can then be chosen to find solvable
systems. Indeed, there is already a rich variety of solutions
to gravity with scalar fields under Liouville-type potentials
[35–37]. In the context of our Lagrangian (8), we can see
that Liouville-type potentials introduce an additional
parameter that can be explored to find more exact solutions.

APPENDIX: REDUCTION TO A
ONE-DIMENSIONAL LAGRANGIAN

In this appendix, we show how the ansatz (3) was
systematically chosen. The starting point is to maintain that
the metric has at least one Killing vector ∂σ, and therefore
the metric and matter fields can be written in the form

ds2 ¼ ϵe2Udσ2 þ e−
2U
D−3ḡabdyadyb; ðA1Þ

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

2ðD − 3Þ

s
χdσ; ðA2Þ

φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 3

r
ψ ; α ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

D − 2

r
a; ðA3Þ

where U, χ, and ψ depend only on ya. The Einstein-
Maxwell-dilaton equations become

R̄ab ¼
2Λ

D − 3
e−

2U
D−3ḡab þ

D − 2

D − 3

× ½∇̄aU∇̄bU þ ϵe−2aψ−2U∇̄aχ∇̄bχ þ ∇̄aψ∇̄bψ �;
ðA4aÞ

∇̄2U þ ϵe−2aψ−2Uð∇̄χÞ2 ¼ −
2Λ

D − 2
e−

2U
D−3; ðA4bÞ

∇̄ · ðe−2aψ−2U∇̄χÞ ¼ 0; ðA4cÞ

∇̄2ψ þ ϵae−2aψ−2Uð∇̄χÞ2 ¼ 0; ðA4dÞ

where ∇̄a is the covariant derivative on ḡab, with the
notation ∇̄·ðf∇̄hÞ¼ ḡab∇aðf∇bhÞ, ð∇̄fÞ2 ¼ ḡab∇̄af∇̄bf,
and ∇̄2f ¼ ḡab∇̄a∇̄bf for any functions f ¼ fðyaÞ and
h ¼ hðyaÞ. This system of equations follows from the
effective action

Ī ¼ 1

16π

Z
dD−1x

ffiffiffiffiffi
jḡj

p �
R̄ − 2Λe− 2U

D−3 −
D − 2

D − 3

×

�
ð∇̄UÞ2 þ ϵe−2aψ−2Uð∇̄χÞ2 þ ð∇̄ψÞ2

��
: ðA5Þ

We then specialize to the case where ḡab is conformal to
R1 × ΣD−2, with the metric

ḡabdxadxb ¼ e
2Ω
D−3ðdz2 þ ĥijdxidxjÞ; ðA6Þ

where ĥijdyidyj is an Einstein space of constant unit
curvature k ¼ �1; 0. We assume that all metric and field
functions depend only on z. The ðzzÞ component of
Eq. (A4a) is

−
2ðD − 2Þ
D − 3

d2Ω
dz2

¼ 4Λ
D − 3

e
2Ω−2U
D−3 þ 2ðD − 2Þ

D − 3

��
dU
dz

�
2

þ ϵe−2aψ−2U
�
dχ
dz

�
2

þ
�
dψ
dz

�
2
�
; ðA7Þ

Taking the trace of Eq. (A4a) and using Eq. (A7), we obtain
an equation of first integrals
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D − 2

D − 3

��
dU
dz

�
2

−
�
dΩ
dz

�
2

þ ϵe−2aψ−2U
�
dχ
dz

�
2

þ
�
dψ
dz

�
2
�

¼ 2Λe2Ω−2UD−3 − kðD − 2ÞðD − 3Þ: ðA8Þ

Turning to the action and integrating out the yi directions, it
becomes

Ī ¼ −
ðD − 2ÞvolðΣD−2Þ

16πðD − 3Þ
Z

dzeΩ

×

��
dU
dz

�
2

−
�
dΩ
dz

�
2

þ ϵe−2aψ−2U
�
dχ
dz

�
2

þ
�
dψ
dz

�
2

− kðD − 3Þ2 þ 2ðD − 3Þ
D − 2

Λe2Ω−2UD−3

�
: ðA9Þ

This action can be further simplified if we remove the factor
of eΩ from the effective Lagrangian. To this end we
introduce a new coordinate via

dλ ¼ e−Ωdz; ðA10Þ
and the action becomes

Ī¼−
ðD−2ÞvolðΣD−2Þ

16πðD−3Þ
Z

dλ

�
_U2− _Ω2þϵe−2aψ−2U _χ2

þ _ψ2−kðD−3Þ2e2Ωþ2ðD−3Þ
D−2

Λe
2ðD−2ÞΩ−2U

D−3

�
; ðA11Þ

where overdots denote derivatives with respect to λ.
Solving the system now amounts to solving a dynamical
system described by the Lagrangian

L ¼ 1

2

�
_U2 − _Ω2 þ ϵe−2aψ−2U _χ2 þ _ψ2

− kðD − 3Þ2e2Ω þ 2ðD − 3Þ
D − 2

Λe
2ðD−2ÞΩ−2U

D−3

�
: ðA12Þ

Indeed, applying the Euler-Lagrange equations to U, Ω, χ,
and ψ gives Eq. (6). In terms of the coordinate λ, the
constraint (A8) is

_U2 − _Ω2 þ ϵe−2aψ−2U _χ2 þ _ψ2 þ kðD − 3Þ2e2Ω

−
2ðD − 3Þ
D − 2

Λe
2ðD−2ÞΩ−2U

D−3 ¼ 0: ðA13Þ

Furthermore, the metric (A1) with ḡab given by Eq. (A6) in
the present coordinates is

ds2 ¼ ϵe2Udσ2 þ e
2Ω−2U
D−3 ðe2Ωdλ2 þ ĥijdxidxjÞ: ðA14Þ
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