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We analyze the kinematics of cosmological spacetimes with nonzero torsion, in the framework of the
classical Einstein-Cartan gravity. After a brief introduction to the basic features of spaces with
nonvanishing torsion, we consider a family of observers moving along timelike worldlines and focus
on their kinematic behavior. In so doing, we isolate the irreducible variables monitoring the observers’
motion and derive their evolution formulas and associated constraint equations. Our aim is to identify the
effects of spacetime torsion, and the changes they introduce into the kinematics of the standard, torsion-
free, cosmological models. We employ a fully geometrical approach, imposing no restrictions on the
material content, or any a priori couplings between torsion and spin. Also, we do not apply the familiar
splitting of the equations, into a purely Riemannian component plus a torsion/spin part, at the start of our
study, but only introduce it at the very end. With the general formulas at hand, we use the Einstein-Cartan
field equations to incorporate explicitly the spin of the matter. The resulting formulas fully describe the
kinematics of dynamical spacetimes within the framework of the Einstein-Cartan gravity, while in the
special case of the so-called Weyssenhoff fluid, they recover results previously reported in the literature.
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I. INTRODUCTION

General relativity accounts for the macroscopic distri-
bution of matter. It is, therefore, reasonable to view
Einstein’s theory as the macroscopic limit of a, still illusive,
microphysical theory of gravity. The first steps towards
such a theory were probably taken by Élie Cartan, who
suggested that spacetime torsion could be used as the
macroscopic manifestation of the intrinsic angular momen-
tum of the matter [1]. Cartan’s theory, however, was
proposed before the discovery of the electron spin and
this was perhaps one of the reasons his ideas went
essentially unnoticed for some decades. It was probably
not until the work of Kibble and Sciama, who laid down the
foundations of U4 theory, that the role of spacetime torsion
in modern physics was appreciated [2]. Soon after that, a
geometrical approach to the new theory was introduced as
well [3]. For a recently published collection of classic
papers on the subject, with corresponding commentaries,
we refer the reader to [4].
The Einstein-Cartan gravity, or the Einstein-Cartan-

Kibble-Sciama (ECKS) theory as it is sometimes also
referred to, is a viable description of the gravitational field
that introduces an additional (rotational) degree of freedom
to the spacetime fabric. The latter is carried by the non-
Riemannian (the torsional) component of the affine con-
nection and it is macroscopically related to the intrinsic
angular momentum (spin) of the matter. By coupling the
energy density and the spin of the matter to the metric and

the torsion tensors, respectively, and by treating them as
independent variables, the Einstein-Cartan gravity provides
the simplest classical extension of general relativity. The
predictions of the theory are essentially indistinguishable
from those of general relativity even at nuclear densities,
with departures appearing only at extremely high densities,
like those anticipated in black-hole interiors and the very
earlyUniverse. In these environments, the coupling between
spin and torsion leads to a repulsive gravitational “force,”
which could (in principle, at least) prevent the formation of
singularities (e.g. in Friedmann-Robertson-Walker (FRW)
cosmologies, or in Bianchi-type models [5–7]).
Since its reemergence in the late 1950s, the Einstein-

Cartan gravity has gone though several phases of renewed
interest, motivated by the ongoing effort to extend, compare
and possibly link general relativity to the theories of the
microphysical interactions. The kinematics of the theory
have been investigated by several authors in an attempt to
establish the effects of torsion and spin, primarily (though
not exclusively) on the mean expansion of the Einstein-
Cartan universes [8–12]. Almost all of the approaches start
by splitting their equations into a purely Riemannian
(general relativistic) part plus a component conveying
the effects torsion and spin. Also, matter is usually
represented by the so-called Weyssenhoff fluid, namely
an ideal medium with a specific “equation of state” for the
spin density [13]. Here, we do not apply such a decom-
position until the very end of the study. Instead, our
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kinematic equations (both the propagation formulas and the
constraints) are derived in successive steps. First by
incorporating the effects of spacetime torsion and then
those of the matter spin. Moreover, we do not impose any
simplifying symmetries (e.g. homogeneity or isotropy) and
in so doing we provide a complete 1þ 3 covariant
kinematic description of spacetimes with nonzero torsion
and spin, along the lines of the classic (torsion-free) study
of [14].
We start by assuming Riemann-Cartan geometry and

without making any a priori assumptions on the nature of
the gravitational interaction, or on the relation between
torsion and spin. These are specified in a subsequent step
by means of the Einstein-Cartan and the Cartan field
equations, though still without specifying the nature of
the matter fields. All these mean that the resulting two sets
of formulas (which are new—to the best of our knowledge),
apply to a general Riemann-Cartan spacetime and then to
an Einstein-Cartan universe with arbitrary matter, respec-
tively. The latter is specified at the very end of our study,
where we also derive the Raychaudhuri equation of a
Weyssenhoff fluid, thus allowing for a comparison with the
existing literature. Our results confirm those of earlier
studies, namely that the spin of the Weyssenhoff medium
can inhibit (perhaps even reverse) its gravitational collapse,
or assist its volume expansion. We also demonstrate that the
aforementioned effects come into play through spin-
induced changes in the rotational behavior of the space-
time, rather than from the spin’s contribution to the local
gravitational field. Alternatively, that is for media with
nonvanishing spin vector, the macroscopic effect of the
particles’ intrinsic angular momentum to the associated
Raychaudhuri equation also depends on the “tilt angle”
between the spin vector and the 4-velocity of the fluid.
After a brief introduction of the concept of torsion, we

outline how the latter alters key features of Riemannian
spaces, such as the operation of covariant differentiation
and the interpretation of the geodesic lines. In the next two
sections, we discuss the basic geometric properties of
spaces with nonzero torsion, before proceeding to the
so-called Riemann-Cartan spacetimes. Our starting point
is the kinematics of timelike worldlines embedded in the
aforementioned spacetimes. This takes place in Sec. V,
where we also provide a direct comparison between the
related Riemannian and Riemann-Cartan (irreducible)
kinematics variables. These are defined by employing
the so-called 1þ 3 covariant formalism, which facilitates
a geometrical approach that combines mathematical com-
pactness and clarity with physical transparency.
Sections VI and VII derive the three evolution and the
three constraint equations monitoring the kinematic
behavior of metric spaces with nonvanishing torsion.
Our formulas are applied to matter fields with nonzero
spin, by employing the Einstein-Cartan and the Cartan field
equations, in Sec. VIII. There, we also consider a number

of the special cases and among them that of the
Weyssenhoff fluid and re-examine, following an alternative
route, how its spin can affect the mean kinematics of the
host spacetime.

II. SPACES WITH TORSION

Riemannian geometry demands the symmetry of the
affine connection, which means that space has zero torsion
by default. Nevertheless, one could treat (classical) torsion
as an independent variable/field, in addition to the metric,
and thus “replace” the Riemannian spaces with their more
general Riemann-Cartan counterparts.

A. The contortion tensor

Consider a general metric space with asymmetric affine
connection Γa

bc. Demanding the invariance of the metric
tensor under covariant differentiation, namely imposing
the metricity condition ∇cgab ¼ 0, leads to the following
expression for the connection

Γa
bc ¼ ~Γa

bc þ Ka
bc: ð1Þ

Here, ~Γa
bc are the Christoffel symbols of the associated

Riemannian space and Ka
bc the so-called contortion

tensor.1 The latter is defined by

Ka
bc ¼ Sabc þ Sbca þ Scba ¼ Sabc þ 2SðbcÞa; ð2Þ

withSabc¼Γa½bc� representingCartan’s torsion tensor (deter-
mined by 24 independent components).2 Geometrically
speaking, the effect of space torsion is to prevent infinitesimal
parallelograms from closing (e.g. see [17]). Physically,
torsion can provide a possible link between the spacetime
geometry and the intrinsic angular momentum (i.e. the spin)
of the matter.
Staring from definition (2) and employing some straight-

forward algebra, one can show that the contortion tensor
satisfies the symmetries

Kabc¼K½ab�c; KaðbcÞ ¼2SðbcÞa; Ka½bc� ¼Sabc ð3Þ

and

KðajbjcÞ ¼ −2SðacÞb; K½ajbjc� ¼ −Sbac: ð4Þ

1Throughout this manuscript, tildes will indicate Riemannian
variables related to the Christoffel symbols only. We also adopt a
spacetime metric with signature (−;þ;þ;þ) and set the speed of
light equal to unity.

2In the literature there are alternative definitions of the torsion
and the contortion tensors. Here we follow those of [15], though
there the metric signature is (þ;−;−;−). Alternatively, one may
define the torsion tensor as Sbca ¼ Γa½bc� and the contortion
tensor as Kab

c ¼ Sabc − Sbca þ Scab ¼ Sabc þ 2ScðabÞ [16].
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It follows that, in the special case of a fully antisymmetric
torsion tensor (i.e. when Sabc ¼ S½abc�), the contortion
tensor reduces to Kabc ¼ Sabc and becomes totally skew
as well (i.e. Kabc ¼ K½abc�—see Eq. (2) above). Definition
(2), together with relation (3b), ensures that ΓaðbcÞ ¼
~Γa

bc þ 2SðbcÞa ≠ ~Γa
bc. In other words, the symmetric part

of the general connection does not coincide with the
Christoffel symbols of the corresponding (torsion-free)
Riemannian space.
We finally note that expression (1) also guarantees the

invariance of the metric tensor with respect to covariant
differentiation in terms of the Levi-Civita connection (i.e.
the Christoffel symbols). In other words, in addition to
∇cgab ¼ 0, we have ~∇cgab ¼ 0 as well.

B. The torsion vector

The antisymmetry of the torsion tensor translates into
Saab ¼ −Saba and Sabb ¼ 0. As a result, there is only one
nontrivial contraction of Sabc, which defines the so-called
torsion vector

Sa ¼ Sbab ¼ −Sbba: ð5Þ

It follows that a totally antisymmetric torsion tensor is
traceless with zero torsion vector by default. Given that the
torsion tensor is trace-free when the torsion vector vanishes
and vice versa, the “modified” torsion tensor,

Sa
bc ¼ Sabc þ

2

3
δa½bSc�; ð6Þ

is traceless by construction. The contractions of the con-
tortion tensor follow directly from definitions (2) and (5)
and they are given by

Kab
b ¼ −2Sa; Kb

ab ¼ 2Sa and Kb
ba ¼ 0: ð7Þ

Clearly, a totally skew torsion tensor corresponds to a fully
antisymmetric and traceless contortion tensor and vice
versa.

C. Autoparallel and geodesic curves

In metric spaces with nonvanishing torsion, there are two
types of preferred curves, namely the autoparallel and the
geodesic curves. The former are the “straightest” lines and
the latter are the lines of “extremum” (i.e. minimum/
maximum) length [17]. Both reduce to the familiar geo-
desic curves of the associated Riemannian space when the
torsion is switched off.
Consider a curve with parametric equations xa ¼ xaðsÞ,

where s is an affine parameter and ua ¼ dxa=ds is the
corresponding tangent vector. By definition the “autopar-
allel” equation is obtained after imposing the condition of
parallel transport along the curve in question, namely by

assuming that ub∇bua ¼ 0. The latter immediately trans-
lates into the autoparallel equation

d2xa

ds2
þ Γa

bc
dxb

ds
dxc

ds
¼ 0: ð8Þ

Note that only the symmetric part of the connection
contributes to the right-hand side of the above, which is
however torsion dependent (see Sec. II A previously).
Geodesics are curves of extremal length. Since the

distance (i.e. the line element) between any two points
depends only on the metric and not on the torsion, the
geodesic equation reads

d2xa

ds2
þ ~Γa

bc
dxb

ds
dxc

ds
¼ 0; ð9Þ

exactly as in the associated Riemannian space [17].
Using definition (1), together with the symmetries of the

contortion tensor (see Eq. (3b) in Sec. II A), expression (8)
recasts into

d2xa

ds2
þ ~Γa

bc
dxb

ds
dxc

ds
þ 2Sbca

dxb

ds
dxc

ds
¼ 0: ð10Þ

In the absence of torsion, the above immediately reduces
to Eq. (9). Moreover, in line with (10), autoparallels
and geodesics can coincide even for nonzero torsion,
provided that SðabÞc ¼ 0. The latter ensures the total
antisymmetry of the torsion tensor (i.e. Sabc ¼ S½abc�), in
which case the torsion vector vanishes identically (i.e.
Sa ¼ 0—see Sec. II B above).

III. CURVATURE WITH TORSION

Introducing an affine connection different from the
Christoffel symbols, means that the geometry of the space
is not entirely described by the metric. Instead, the
Riemann-Cartan space has additional independent features
that are encoded in the torsion/contortion tensor.

A. The Riemann-Cartan tensor

The curvature tensor of a general (not necessarily metric)
space is obtained from the associated connection, in line
with the familiar relation (e.g. see [18]):

Ra
bcd ¼ ∂cΓa

bd − ∂dΓa
bc þ Γs

bdΓa
sc − Γs

bcΓa
sd: ð11Þ

In a metric space with nonvanishing torsion we have
Γa

bc ¼ ~Γa
bc þ Ka

bc (see Eq. (1) earlier), which substituted
into the right-hand side of the above provides the following
expression for the Riemann-Cartan curvature tensor

Ra
bcd ¼ ~Ra

bcd þQa
bcd þ ~Γs

bdKa
sc þ Ks

bd
~Γa

sc

− ~Γs
bcKa

sd − Ks
bc
~Γa

sd; ð12Þ
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where

~Ra
bcd ¼ ∂c

~Γa
bd − ∂d

~Γa
bc þ ~Γs

bd
~Γa

sc − ~Γs
bc
~Γa

sd; ð13Þ
is the associated (torsion-free) Riemann curvature tensor
and

Qa
bcd¼∂cKa

bd−∂dKa
bcþKs

bdKa
sc−Ks

bcKa
sd: ð14Þ

Given the close formalistic analogy between ~Ra
bcd and

Qa
bcd, the latter may be seen as the purely torsional

counterpart of the Riemann curvature tensor. According
to expressions (12)–(14), the curvature tensor of a general
space with nonvanishing torsion decomposes into an
exclusively Riemannian, a purely torsional and a mixed
component.
Nonzero torsion means that the Riemann-Cartan curva-

ture tensor no longer satisfies all the symmetries of its
Riemannian counterpart. More specifically, definition (12)
and the Ricci identities of a general space with torsion,
ensure that Rabcd ¼ R½ab�½dc� (see footnote 5 in Sec. VI
below). In general, however, Rabcd ≠ Rcdab and Ra½bcd� ≠ 0.

B. The Ricci-Cartan tensor

The symmetries of the Riemann-Cartan curvature tensor
guarantee that the associated Ricci tensor (Rab ¼ Rc

acb)
remains uniquely defined, despite the presence of torsion.
On the other hand, we have Rabcd ≠ Rcdab, which implies
that the Ricci curvature tensor is not necessarily symmetric
(i.e. R½ab� ≠ 0—see expression (15) next). Finally, by
default, the Ricci scalar (R ¼ gabRab) remains uniquely
defined as well.
The relations between the Ricci tensors and the Ricci

scalar of the general space and their torsion-free
Riemannian associates are obtained directly from (12).
In particular, after taking successive contractions of the
latter, arrive at

Rab ¼ ~Rab þQab þ ~Γc
abKd

cd þ Kc
ab
~Γd

cd

− ~Γc
adKd

cb − Kc
ad
~Γd

cb ð15Þ
and

R ¼ ~RþQþ gab ~Γc
abKd

cd þ gabKc
ab
~Γd

cd

− gab ~Γc
adKd

cb − gabKc
ad
~Γd

cb: ð16Þ
The former of the above shows that the symmetric part of
the Ricci-Cartan tensor does not necessarily coincide with
its Riemannian counterpart (i.e. RðabÞ ≠ ~Rab in general).
In an analogous manner, the successive traces of

Eq. (14), combined with the definition of the torsion vector
(see Eq. (5) in Sec. II B), lead to

Qab ¼ ∂cKc
ab − 2∂bSa þ 2Kc

abSc − Kc
adKd

cb ð17Þ

and

Q ¼ gab∂cKc
ab − 2gab∂bSa − 4SaSa − KabcKcab: ð18Þ

Expressions (15)–(18) reveal that the Ricci tensor and the
Ricci scalar of the general space split into a solely
Riemannian, an entirely torsional and a mixed part.

C. The Weyl-Cartan tensor

When dealing with Riemannian spaces, the curvature
(Riemann) tensor decomposes into its trace (described by
the Ricci field) and a traceless component that is commonly
referred to as the Weyl tensor. In analogy, the Riemann-
Cartan curvature tensor splits as [19]

Rabcd ¼ Cabcd þ Ra½cgd�b − Rb½cgd�a −
1

3
Rga½cgd�b: ð19Þ

The trace-free nature of Cabcd, which is straightforward to
verify, means that the latter may be seen as the Weyl-Cartan
curvature tensor in spacetimes with nonvanishing torsion.
Note that, by construction (see definition (19) above),Cabcd
also satisfies the symmetries of the Riemann-Cartan tensor
(i.e. Cabcd ¼ C½ab�½cd�).

D. The Bianchi identities

When the space has torsion, the generalized Bianchi
identities are also known as the Weitzenbock identities and
take the form (e.g. see [20])

∇½mRab
cd� ¼ 2Rab

n½mSncd� ð20Þ

and

Ra½bcd� ¼ −2∇½bSacd� þ 4Sam½bSmcd�: ð21Þ

Contracting the former of the above twice and using the
antisymmetry properties of the torsion and the curvature
tensors, we arrive at

∇bRba −
1

2
∇aR ¼ −2ScabRb

c − SdbcRbc
da: ð22Þ

When the torsion vanishes, this constraint reduces to
the familiar conservation law 2∇bRab −∇aR ¼ 0 of the
Riemannian spaces.

IV. SPACETIMES WITH TORSION

If Riemannian spacetimes are the natural hosts of
general relativity, their torsional Riemann-Cartan counter-
parts provide the geometrical framework for the formu-
lation of perhaps the simplest gravitational theory with
intrinsic spin. The latter is usually referred to as the
Einstein-Cartan, or sometimes as the Einstein-Cartan-
Sciama-Kibble, theory.
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A. 1 + 3 covariant decomposition

Let us consider a four-dimensional spacetime equipped
with a Lorentzian metric (gab ¼ gðabÞ, with gabgbc ¼ δa

c)
of signature ð−;þ;þ;þÞ and introduce a family of
observers living along worldlines tangent to the timelike
4-velocity field ua (normalized so that uaua ¼ −1). These
observers are associated with a symmetric spacelike
tensor hab ¼ gab þ uaub (with habub ¼ 0, habhbc ¼ hac
and haa ¼ 3). The latter projects orthogonal to the ua-field
and essentially defines the metric tensor of the observers’
instantaneous three-dimensional rest space. On using ua
and hab, one can introduce an irreducible 1þ 3 splitting of
the spacetime into time (along the ua-field) and 3-space
(orthogonal to ua). Then, every variable, every operator and
every equation can be decomposed into their timelike and
spacelike parts (see [21] for a review of the formalism).
The totally antisymmetric Levi-Civita tensor of the four-

dimensional spacetime (ηabcd ¼ η½abcd�, with ηabcdη
mnpq ¼

−4!δ½amδbnδcpδd�q) splits as

ηabcd ¼ 2u½aεb�cd − 2εab½cud�; ð23Þ

with εabc ¼ ηabcdud representing the alternating tensor of the
three-dimensional space. Then, it follows that εabc¼ ε½abc�,
that εabcuc ¼ 0 and that

εabcε
dmn ¼ 3!h½adhbmhc�n: ð24Þ

Accordingly, εabcε
dmc ¼ 2h½adhb�m, εabcε

dbc ¼ 2had and
εabcε

abc ¼ 6.

B. Temporal and spatial gradients

Once a family of observers has been introduced and the
spacetime has been split into time and three-dimensional
space, the temporal and spatial derivatives of a general
tensor field Tab���cd��� ¼ Tab���cd���ðxsÞ are defined by

_Tab���
cd��� ¼ um∇mTab���cd��� ð25Þ

and

DmTab���cd��� ¼hmqhafhbk �� �hpchrd �� �∇qTfk���pr���; ð26Þ

respectively. Note that after applying (26) to the projection
tensor, one can easily show that Dchab ¼ 0. In other
words, hab remains invariant under spatial covariant
differentiation.
Using the definition of covariant differentiation and the

relation between the general connection and the Christoffel
symbols (see Eq. (1) in Sec. II A) we can obtain the
relations between the temporal and the spatial derivatives in
the two spaces. For example, in the case of a covariant
second-rank tensor, the time derivatives are related by

_Tab ¼ T 0
ab − ucðKd

acTdb þ Kd
bcTadÞ; ð27Þ

with the primes denoting time differentiation in terms of the
Christoffel symbols of the associated torsion-free space.
Similarly, we find that the relation between the spatial
derivatives is

DcTab¼ ~DcTab−hcfhadhbmðKp
dfTpmþKp

mfTdpÞ; ð28Þ

keeping in mind that the “tildes” always refer to the
associated torsionless space. Note that, when applied to
the projection tensor, the former of the above two expres-
sions gives

_hab ¼ h0ab þ 4ucudScdðaubÞ; ð29Þ

where we have also used the symmetries of the contortion
tensor (see Eqs. (3) and (4) in Sec. II A). Relation (28), on
the other hand, leads to

Dchab ¼ ~Dchab; ð30Þ

which guarantees that ~Dchab ¼ 0 when Dchab ¼ 0 and
vice versa. Given that Dchab ¼ 0 by construction, we
deduce that the projector remains invariant under spatial
covariant differentiation both in the general space and in its
torsion-free (Riemannian) associate. Then, expression (24)
guarantees that the three-dimensional alternating tensor
is also covariantly constant (i.e. Ddεabc ¼ 0 ¼ ~Ddεabc).
Finally, we have _εabc ¼ 3u½aεbc�dAd, with Aa ¼ _ua (see
decomposition (31) next).

V. KINEMATICS WITH TORSION

The kinematics of a timelike congruence, as well as that
of the associated observers, are monitored through a set of
irreducible variables. These describe the individual aspects
of the motion and satisfy a set of propagation and constraint
equations that are fully geometrical in nature.

A. The irreducible kinematic variables

All the information regarding the kinematic of the
aforementioned family of observers is encoded in the
gradient of their 4-velocity vector. The latter decomposes
in to the irreducible components of the motion according to

∇bua¼Dbua−Aaub¼
1

3
Θhabþσabþωab−Aaub: ð31Þ

In the above, Θ ¼ ∇aua ¼ Daua is the volume scalar that
monitors the mean separation between the observers’
worldlines. In particular, Θ describes expansion when it
takes positive values and contraction in the opposite case.
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The volume scalar is typically used to introduce a repre-
sentative length scale (a) along the observers’ worldlines,
defined by _a=a ¼ Θ=3. In cosmological studies the latter is
known as the scale factor and it is directly related to the
Hubble parameter (i.e. _a=a ¼ H). The symmetric and
trace-free shear tensor σab ¼ Dhbuai, which is spacelike
by construction (i.e. σabub ¼ 0), reflects kinematic anisot-
ropies. When applied to a fluid element, in particular, the
shear describes changes in its shape under constant volume.
The antisymmetric vorticity tensor ωab ¼ D½bua� is also
spacelike (i.e. ωabub ¼ 0) and monitors the rotational
behavior of the observers’ worldlines. Moreover, the
associated vorticity vector ωa¼εabcω

bc=2 (with ωaua¼0,
since εabcuc ¼ 0) defines the direction of the rotational
axis. Finally, Aa ¼ ub∇bua is the 4-acceleration vector,
with Aaua ¼ 0 as well. Also, following Sec. II C, the
4-acceleration vanishes when the observers’ worldlines are
autoparallel curves.

B. Cartan vs Riemannian variables

Confining to the Riemannian (torsion-free) associate of
our general space, expression (31) takes the form

~∇bua ¼ ~Dbua − ~Aaub

¼ 1

3
~Θhab þ ~σab þ ~ωab − ~Aaub; ð32Þ

where the tilded variables are defined in a way exactly
analogous to that of their nontilded counterparts. Also, by
construction we have ~σabub ¼ 0 ¼ ~ωabub ¼ ~Aaua. Using
the symmetries of the contortion tensor (see Eqs. (3) and (4)
in Sec. II A), the relations between the two sets of variables
given in Eqs. (31) and (32) are3

Θ ¼ ~Θþ 2Saua; ð33Þ

σab ¼ ~σab − 2hðachbÞdScdmum −
2

3
Scuchab; ð34Þ

ωab ¼ ~ωab − h½achb�dSmcdum ð35Þ

and

Aa ¼ ~Aa þ 2SðbcÞaubuc: ð36Þ

According to these relations, a fully antisymmetric torsion
tensor means that Θ ¼ ~Θ, σab ¼ ~σab, Aa ¼ ~Aa (since
Sa ¼ 0 ¼ SðabÞc when Sabc ¼ S½abc�) and only ωab ≠ ~ωab.
More specifically, following Eq. (33), the two volume

scalars coincide when the torsion vector vanishes (i.e. when
Sabc is traceless—see Sec. II B earlier), or when Sa is
nonzero but spacelike (i.e. for Saua ¼ 0). In general,
however, Θ ≠ ~Θ and the same is also true for the shear,
the vorticity and the 4-acceleration (i.e. σab≠ ~σab, ωab≠ ~ωab

and Aa ≠ ~Aa). It is also worth pointing out that (34)–(36)
ensure that ~σabub ¼ 0 ¼ ~ωabub ¼ ~Aaua, thus guaranteeing
that ~σab, ~ωab and ~Aa are spacelike quantities as
well. Finally, we note that expression (36) is consistent
with relation (29), between the time derivatives of
the projector, while it provides the relation _εabc ¼
ε0abc þ 6u½aεbc�dSðsfÞdusuf between the temporal deriva-
tives of the spatial Levi-Civita tensor.4

VI. KINEMATIC EVOLUTION

With the exception of the 4-acceleration, the time
evolution of the kinematic variables defined in the previous
section is obtained after applying the Ricci identity to the
observers’ 4-velocity vector. In particular, the timelike
component of the resulting expression leads to the propa-
gation formulas of Θ, σab and ωab, while its spacelike part
provides the associated constraints.

A. The timelike Ricci identities

In spaces that allow for nonzero torsion, the Ricci
identity takes the form (e.g. see [18])5

2∇½c∇b�ua ¼ Rd
abcud − 2Sdbc∇dua; ð37Þ

which in the absence of torsion reduces to the more familiar
Riemannian expression 2 ~∇½a ~∇b�uc ¼ ~Rabcdud (given the
increased symmetries of the corresponding curvature ten-
sor). Contracting Eq. (37) along uc, using decomposition
(31) and employing some fairly straightforward algebra,
leads to the intermediate relation6

3Analogous relations, between the purely Riemannian and the
torsional kinematic variables, have been also obtained in [9],
though the conventions used there by the authors are generally
different from those adopted here.

4Throughout this work we assume a nontilted spacetime.
A Lorentz boost of the observers 4-velocity will also affect
the irreducible variables of the motion. When the relative
velocity between the two frames is not relativistic, the changes
(generally) resemble those seen in Eqs. (33)–(36) above (e.g. see
Appendix A2 in [21]).

5In a general (not necessarily metric) space with asymmetric
connection Γa

bc, applying the Ricci identity to an arbitrary
contravariant vector ua leads to the expression 2∇½c∇b�ua ¼
−Ra

dbcud − 2Sdbc∇dua. When a metric is introduced into the
space (with ∇cgab ¼ 0), the above relation combines with (37) to
give Rabcd ¼ −Rbacd.6When deriving expression (39), one also needs to use the
following auxiliary relation

∇bAa ¼ DbAa þ
1

3
ΘuaAb þ uaðσbc − ωbcÞAc

− ðAaubÞ· þ AaAb; ð38Þ
between the gradients of the 4-acceleration vector.
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ð∇buaÞ· ¼ −
1

9
Θ2hab − Rcadbucud −

2

3
Θðσab þ ωabÞ − σcaσb

c − ωcaωb
c þ 2σc½aωb�c þ DbAa þ

2

3
ΘuhaAbi þ 2uhaσbicAc

− 2u½aωb�cAc − ðAaubÞ· þ AaAb −
2

3
ΘSabcuc þ 2

�
1

3
Θua − Aa

�
ucudScdb þ 2ðσac þ ωa

cÞudScdb: ð39Þ

Substituting into the left-hand side of the above the decomposition of the 4-velocity gradient (into the irreducible kinematic
variables—see Eq. (31) in Sec. VA) and keeping in mind that _hab ¼ 2uhaAbi, gives

1

3
_Θhab þ _σab þ _ωab ¼ −

1

9
Θ2hab − Rcadbucud −

2

3
Θðσab þ ωabÞ − σcaσb

c − ωcaωb
c þ 2σc½aωb�c þ DbAa þ 2uhaσbicAc

− 2u½aωb�cAc þ AaAb −
2

3
ΘSabcuc þ 2

�
1

3
Θua − Aa

�
ucudScdb þ 2ðσac þ ωa

cÞudScdb: ð40Þ

Finally, projecting the latter orthogonal to the ua-field and using the symmetries of the curvature tensor (see Sec. III A
earlier), we arrive at

1

3
_Θhab þ hhachbid _σcd þ h½achb�d _ωcd ¼ −

1

9
Θ2hab − Racbducud −

2

3
Θðσab þ ωabÞ − σcaσb

c − ωcaωb
c þ 2σc½aωb�c

þ DbAa þ AaAb −
2

3
ΘhachbdScdmum − 2AaucudhbmScdm

þ 2ðσac þ ωa
cÞudhbmScdm; ð41Þ

given that hachbd _σcd ¼ hhachbid _σcd and hachbd _ωcd ¼
h½achb�d _ωcd. Note that the first eight terms on the right-
hand side have direct Riemannian analogues, whereas the
rest of them are explicitly due to the presence of torsion.
Also, the curvature tensor contains a entirely Riemannian,
an exclusively torsional and a mixed component (see
Eq. (12) in Sec. III A earlier).
Expression (41) governs the full kinematic evolution of

observers living in spacetimes with nonzero torsion, with no
prior assumptions regarding the nature of the torsion tensor
(or its coupling to the spin of the matter). As we will show
next, the trace, the projected symmetric trace-free and the
projected antisymmetric components of (41) provide the
evolution formulas of the volume scalar (Θ), of the shear
tensor (σab) and of the vorticity tensor (ωab), respectively.

B. The Raychaudhuri equation

Taking the trace of Eq. (41), while recalling that
Rab ¼ Rc

acb, that Sabc ¼ Sa½bc� and that Sbba ¼ −Sa, we
obtain the expression

_Θ ¼ −
1

3
Θ2 − RðabÞuaub − 2ðσ2 − ω2Þ þ DaAa þ AaAa

þ 2

3
ΘSaua − 2SðabÞcuaubAc − 2Shabicσabuc

þ 2S½ab�cωabuc; ð42Þ

which is the analogue of the Raychaudhuri equation in
spaces with nonzero torsion. Note that σ2 ¼ σabσ

ab=2 and

ω2 ¼ ωabω
ab=2 ¼ ωaω

a by definition. Also, only the
symmetric part of the Ricci tensor (which is nevertheless
torsion-dependent—see Eq. (15) earlier) contributes to
Raychaudhuri’s formula. Finally, we should point out that
the terms in the first line on the right-hand side of the above
have Riemannian analogues (e.g. see Sec. 1.3.1 in [21]),
while those in the second line are explicitly due to torsion.
The Raychaudhuri equation is the key formula of

gravitational contraction/expansion and it has played a
fundamental role in the formulation of the various singu-
larity theorems (e.g. see [22]). Following (42), positive
terms on its right-hand side inhibit the contraction, or assist
the expansion. Negative terms, on the other hand, act in the
opposite way. With the exception of [11], the torsional
analogue of Raychaudhuri’s formula has been derived after
imposing certain symmetry conditions, namely spatial
homogeneity and isotropy (FRW models), spatial homo-
geneity (Bianchi-type models) [5,6], or for the case of the
Weyssehoff fluid [7,12]. Also, typically, the field equations
are split into a purely Riemannian and a torsion/spin part.
Here, as yet, we have not made any assumptions of this
kind. Expression (42) applies to a general Riemann-Cartan
spacetime, with no a priori restrictions imposed on the
nature of the gravitational interaction or on the relation
between torsion and spin.7 Once these are specified, it will
be possible to decode the effects of torsion in more detail
(see Sec. VIII B and Sec. VIII C below).

7An alternative form of Raychaudhuri’s formula with a general
torsion field was recently given in [23].
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Raychaudhuri’s formula can simplify considerably under
certain symmetry conditions. For instance, in the special
case of a totally antisymmetric torsion tensor, Eq. (42) reads

_Θ ¼ −
1

3
Θ2 − RðabÞuaub − 2ðσ2 − ω2Þ þ DaAa

þ AaAa þ 2Sabcωabuc; ð43Þ
given that Sa ¼ 0 ¼ SðabÞc ¼ Shabic when Sabc ¼ S½abc�.
Also, assuming that the worldlines tangent to the ua-field
are autoparallel curves, the 4-acceleration vanishes identi-
cally (i.e. Aa ¼ 0). In addition, when the aforementioned
autoparallel congruence is also shear-free and irrotational,
we may set σab ¼ 0 ¼ ωab as well. Then, for standard
torsion (with Sabc ¼ Sa½bc� and Sa ≠ 0), expression (42)
reduces to

_Θ ¼ −
1

3
Θ2 − RðabÞuaub þ

2

3
ΘSaua; ð44Þ

with only the last term having explicit torsional nature.
Therefore, when the inner product Saua takes positive
values, it tends to speed up the contraction/expansion of a
self-gravitating medium. In the opposite case the effect is
reversed, while for purely spacelike torsion vectors this term
vanishes identically. By construction, the above expression
also monitors the expansion/contraction rate of spatially
homogeneous and isotropic spacetimes, which may be seen
as the torsional analogues of the familiar FRWuniverses. In
that case the torsion vector has to be purely timelike, since
otherwise its presence would have destroyed the isotropy of
the model’s spatial hypersurfaces. According to (44), when
2ΘSaua−3RðabÞuaub > 0, worldline focusing and the initial
singularity can be averted.
We finally note that when Sa vanishes, namely when

Sabc is trace-free—see Sec. II B earlier, there are no explicit
torsion terms on the right-hand side of the above. Then, the
effects of spacetime torsion come solely from the non-
Riemannian components of the Ricci-Cartan tensor (see
Eqs. (15), (17) in Sec. III B) and those of the volume scalar
(see Eq. (33) in Sec. V B). This is also true when dealing
with a spacelike torsion vector (i.e. for Saua ¼ 0).

C. Shear and vorticity evolution

The symmetric trace-free and the antisymmetric parts of
the general expression (41), provide the respective evolu-
tion formulas of the shear and the vorticity tensors in
spacetimes with nonzero torsion. In particular, we obtain

hhachbid _σcd ¼−
2

3
Θσab − σchaσbic−ωchaωbicþDhbAai

þAhaAbi −Rhacbi
ducud−

2

3
ΘhhachbidScdmum

− 2AhaucudhbimScdm
þ 2ðσhacþωhacÞudhbimScdm; ð45Þ

for the shear and

h½achb�d _ωcd ¼−
2

3
Θωabþ 2σc½aωb�cþD½bAa� −R½acb�

ducud

−
2

3
Θh½achb�dScdmum − 2A½aucudhb�mScdm

þ 2ðσ½acþω½acÞudhb�mScdm; ð46Þ

for the vorticity. The former of these expressions monitors
distortions in the shape of the ua-congruence, which
occur under constant volume, while the latter governs
the rotational behavior of these worldlines. As with the
Raychaudhuri equation before, when dealing with autopar-
allel curves, all the 4-acceleration terms on right-hand sides
of (45) and (46) vanish identically. Also note that, in both of
the above, the curvature tensor is given by Eq. (12).
We may analyze the curvature terms on the right-hand

side of Eqs. (45) and (46) further, by employing the
decomposition of the Riemann-Cartan curvature tensor
into its Weyl and Ricci parts (see expression (19) in
Sec. III C earlier). In particular, keeping in mind the
traceless nature of the Weyl tensor, we arrive at

hhachbid _σcd ¼ −
2

3
Θσab − σchaσbic − ωchaωbic þ DhbAai

þ AhaAbi þ
1

2
hhachbidRcd − Chacbi

ducud

−
2

3
ΘhhachbidScdmum − 2AhaucudhbimScdm

þ 2ðσhac þ ωhacÞudhbimScdm; ð47Þ

and

h½achb�d _ωcd ¼ −
2

3
Θωab þ 2σc½aωb�c þ D½bAa�

þ 1

2
h½achb�dRcd − C½acb�

ducud

−
2

3
Θh½achb�dScdmum − 2A½aucudhb�mScdm

þ 2ðσ½ac þ ω½acÞudhb�mScdm; ð48Þ

respectively. An immediate conclusion following from
expressions (45)–(48) is that spacetime torsion can source
both shear and rotational anisotropies, which is not sur-
prising. We also note that the symmetric and trace-free
tensor Ehabi ¼ Chacbi

ducud seen in Eq. (47) may be
interpreted as the electric component of the Weyl tensor
in spacetimes with nonvanishing torsion. Then, the sym-
metry properties Cabcd ¼ C½ab�½cd� ensure that Ehabiua ¼ 0.
On the other hand, the fact that Cabcd ≠ Ccdab implies that
E½ab� ¼ C½acb�

ducud ≠ 0, in contrast to its Riemannian

analogue. We also point out that the third and fourth-line
terms on the right-hand side of Eq. (47) are explicitly due to
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the presence of spacetime torsion, while the rest have
Riemannian analogues. The difference with (48) is that
there the Ricci and the Weyl terms are also purely torsional
with no Riemannian analogues (e.g. compare to Eqs (1.3.4)
and (1.3.5) in Sec. 1.3.1 of [21]).

VII. KINEMATIC CONSTRAINTS

The three evolution formulas of the previous section are
supplemented by an equal number of constraints. These
hold on the observer’s three-dimensional rest space, and
they are obtained after applying the Ricci identity to the
4-velocity vector and taking the spacelike part of the
resulting expression.

A. The spacelike Ricci identities

Contracting Eq. (37) with the three-dimensional Levi-
Civita tensor gives

εcda∇c∇dub ¼ −
1

2
εcdaRmb

cdum þ εcdaSmcd∇mub: ð49Þ

Substituting decomposition (31) into the above, projecting
the resulting expression orthogonally to the ua-field and
keeping in mind that ωab ¼ εabcω

c, leads to the intermedi-
ate relation

1

3
εabcDcΘ − εcdaDcσb

d þ ðDcωcÞhab − Dbωa

¼ 2ωaAb −
1

2
εcdaRbm

cdum −
1

3
ΘεcdahbmSmcd

− εcdaσbmSmcd þ εcdaεbmnω
½mSn�cd

þ εcdaAbumSmcd; ð50Þ

where only the left-hand-side terms and the first two on the
right-hand side have Riemannian analogues. The above
provides the general constraint equation obeyed by the
spatial gradients of the kinematic variables on the observ-
ers’ instantaneous three-dimensional rest space. Taking the
trace, the antisymmetric, as well as the symmetric and
trace-free component of (50) leads to a scalar, a vector and a
(traceless) tensor constraint, respectively.

B. The scalar constraint

Isolating the trace of expression (50), taking into
account the properties of the three-dimensional Levi-
Civita tensor (recall that εabc ¼ ε½abc� and εabcuc ¼ 0—
Sec. IVA before), using the definition of the torsion vector
(see Eq. (5) in Sec. II B) and decomposition (19), leads to
the scalar constraint

Daω
a ¼ Aaω

a þ 1

4
εabcudCd½abc� −

1

6
ΘεabcS½abc�

−
1

2
εabcσ

d½aSdbc� þ Saωa − SðabÞcuaubωc

þ 1

2
εabcudA½aSdbc�; ð51Þ

which determines the 3-divergence of the vorticity vector in
the presence of torsion. Note that, in addition to the torsion
terms, the Weyl-curvature term also vanish in Riemannian
spaces (since Ca½bcd� ¼ 0 there).

C. The vector constraint

Taking the antisymmetric component of Eq. (50), using
relation (24) and decomposition (19), while keeping in
mind that Dchab ¼ 0, the traceless nature of the Weyl
tensor and setting curlva ¼ εabcDbvc (for any spacelike
vector va), provides the vector constraint

2

3
DaΘ ¼ Dbσab − curlωa − 2εabcAbωc − habRcbuc

þ 2

3
Θha½chbd�Sbcd þ 2ha½cσbd�Sbcd

− 2ha½cεbd�mSbcdωm − 2ha½cAd�ubSbcd; ð52Þ

obeyed by the spatial gradient of the volume scalar in
spacetimes with nonzero torsion. Here, only the torsion
terms have non-Riemannian analogues (e.g. see Sec. 1.3.1
in [21]).

D. The tensor constraint

Finally, after taking the symmetric and trace-free part of
expression (50) and setting curlvab ¼ εcdhaDcvdbi for any
spacelike tensor vab, we arrive at the (traceless) tensor
constraint

curlσab ¼ −Dhbωai − 2Ahaωbi þ
1

2
εcdhaCbim½cd�um

þ 1

3
ΘεcdhahbimSmcd þ εcdhaσbimSmcd

− εcdhaεbimnω
½nSm�cd − εcdhaAbiumSmcd: ð53Þ

which determines the curl of the shear in spacetimes with
nonvanishing torsion. Note that the symmetric and trace-
free tensor Hhabi ¼ εcdhaCbimcdum=2 may be seen as the
magnetic component of the Weyl tensor in spacetimes
with nonzero torsion and reduces to its standard
Riemannian counterpart in a torsion-free environment. In
addition, by construction we have Hhabiub ¼ 0. Finally, as
in Eq. (52) previously, only the torsion terms on the right-
hand side of the above have no Riemannian analogues (e.g.
see Sec. 1.3.1 in [21]).
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Before closing this section, we should emphasize that, so
far, our study and our results have been purely geometrical
in nature. We have analyzed the kinematics of timelike
worldlines in spacetimes with nonzero torsion, and derived
the associated evolution and constraint equations, without
making any prior assumptions neither about the material
content of our spacetime, nor about the nature of the
interaction between the matter and the geometry of the host
space. Once the field equations and the material content of
the spacetime have been specified, our formulas can be
used to describe the kinematics of the associated Einstein-
Cartan universe. Also note that, after employing relation (1)
and the equations given in Sec. III B, Sec. IV B and Sec. V
B, one can in principle separate the purely Riemannian
from the explicitly torsional part of our kinematic formulas.
Finally, in the absence of torsion, the full symmetries of the
Riemann and the Weyl tensor are restored. Then, expres-
sions (42)–(48) and (51)–(53) reduce to their standard
Riemannian counterparts (see Sec. 1.3.1 in [21] for a direct
comparison).

VIII. EINSTEIN-CARTAN UNIVERSES

The Einstein-Cartan gravity, or the Einstein-Cartan-
Kibble-Sciama theory, as it is also referred to, is probably
the simplest extension of general relativity that also
accounts for the spin of the matter. As noted in the
introduction, it is a viable theory that is expected to depart
significantly from Einstein’s gravity for matter densities
well above the nuclear threshold.

A. The Einstein-Cartan field equations

In the Einstein-Cartan theory we deal with a set of two
field equations: one relating the curvature of the spacetime
to the energy density of the material component and
another coupling the spacetime torsion to the matter spin.
The former maintains the form of its general relativistic
counterpart, but without the a priori symmetry of the Ricci
and the energy-momentum tensors. In particular, for zero
cosmological constant, the Einstein-Cartan field equations
read [15]

Rab −
1

2
Rgab ¼ κTab; ð54Þ

where Rab and R are given by (15) and (16), respectively,
while κ ¼ 8πG and Tab is the canonical energy-momentum
tensor of the matter. Going back to expression (54) we find
that R ¼ −κT. Then, the Einstein-Cartan field equations
recast as

Rab ¼ κTab −
1

2
κTgab: ð55Þ

The canonical spin tensor (sabc) and the associated spin
vector (sa) of the matter relate with their corresponding

torsion tensor and vector though the Cartan field equations,
namely [15]

Sabc−SbgcaþScgab ¼−
1

2
κsbca and Sa¼−

1

4
κsa: ð56Þ

Recall that Sa ¼ Sbab ¼ −Sbba (see Sec. II B earlier). Also,
sabc ¼ s½ab�c by construction and sa ¼ sbab ¼ −sabb

defines the canonical spin vector. On using the latter of
the above expressions, the Cartan field equations [i.e.
expression (56a)] assume the alternative form8:

Sabc ¼ −
1

4
κð2sbca þ gcasb − gabscÞ: ð61Þ

Note that, in line with Eq. (56a), a vanishing torsion vector
implies that Sabc ¼ −κsbca=2, which guarantees that the
spin vector also vanishes. Moreover, when dealing with a
totally antisymmetric torsion tensor (with Sa ¼ 0 as a
result), we have Sabc ¼ −κsabc=2 to ensure the total
antisymmetry of the spin tensor as well.

B. Einstein-Cartan kinematics

Starting from the Einstein-Cartan field equations it is
straightforward to arrive at the following algebraic relations
between the Ricci and the stress-energy tensors

RðabÞuaub ¼ κTðabÞuaub þ
1

2
κT; ð62Þ

habRbcuc ¼ κhabTbcuc; ð63Þ
hhachbidRcd ¼ κhhachbidTcd ð64Þ

and

h½achb�dRcd ¼ κh½achb�dTcd: ð65Þ
Similarly, the Cartan field equations lead to auxiliary
relations between torsion and spin. For example, employ-
ing (61), the scalars Saua, SðabÞcuaubAc, SðabÞcσabuc and
S½ab�cωabuc found on the right-hand side of Raychaudhuri’s
formula (see Eq. (42) in Sec. VI B) can be replaced by

8In [15], as well in several other papers working on Einstein-
Cartan gravity, the metric-signature convention is (þ;−;−;−).
The transformation rules between the two signatures for the key
tensors and operators are

gab → −gab; ua → −ua; ð57Þ
hab → −hab; ηabcd → ηabcd; ð58Þ
∂a → ∂a; ∇a → ∇a; Sabc → Sabc; ð59Þ

Rabcd → −Rabcd; Tab → Tab; sabc → sabc: ð60Þ
Note that the transformations of the metric tensors [see (57a) and
(58a)] ensure that raising an lowering indices changes the sign of
the quantities involved (e.g. Rab → Rab, R → −R, Sabc → −Sabc,
etc.—see also [12]).
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Saua ¼ −
1

4
κsaua; ð66Þ

SðabÞcuaubAc ¼ 1

4
κð2saðbcÞAaubuc − saAaÞ; ð67Þ

Shabicσabuc ¼
1

2
κsahbciuaσbc ð68Þ

and

S½ab�cωabuc ¼ −
1

2
κsa½bc�uaωbc: ð69Þ

This way one can replace the torsion terms in all the
kinematic formulas given in Sec. VI and Sec. VII with spin-
related variables. Overall, using the Einstein-Cartan and the
Cartan field equations, all the geometrical (i.e. the curvature
and the torsion) quantities are replaced with matter
variables.
Substituting (62), together with the auxiliary relations

(66)–(69), into the right-hand side of (42) leads to the
Raychaudhuri equation of an Einstein-Cartan universe,
namely

_Θ ¼ −
1

3
Θ2 − κTðabÞuaub −

1

2
κT − 2ðσ2 − ω2Þ þ DaAa

þ AaAa −
1

6
κΘsaua þ

1

2
κsaAa − κsaðbcÞAaubuc

− κsahbciuaσbc − κsa½bc�uaωbc: ð70Þ
The above monitors the volume expansion/contraction of
matter with nonzero spin within the framework of the
Einstein-Cartan theory, with no restrictions on the nature of
the matter fields involved. In fact, simplified versions of
expression (70) have been used to investigate the preven-
tion of singularities in isotropic and anisotropic spacetimes
with torsion (e.g. see [5–7]).
In the case of spatial anisotropy, one should also involve

the shear propagation formula. By means of (64) and the
Cartan field equations, we have

hhachbid _σcd ¼ −
2

3
Θσab − σchaσbic −ωchaωbic þDhbAai

þ AhaAbi þ
1

2
κhhachbidTcd −Chacbi

ducud

−
1

3
κΘhhachbidumsmcd − κAhahbicscðdmÞudum

þ 1

2
κAhahbicsc −

1

2
κscucσab

− κðσhac þωhacÞudhbimsmcd: ð71Þ

This expression, which shows that the matter spin acts as a
source of shear anisotropy, may also be used to probe its
implications for the nature of a potential singularity. For
example, one could pose the question of whether non-
vanishing spin favors pancakelike or cigarlike singularities.

Matter with nonvanishing spin can also trigger vorticity
and affect the rotational behavior of the host spacetime.
Indeed, expression (65) and the Cartan field equations
transform the vorticity evolution formula (see Eq. (48) in
Sec. VI C) into

h½achb�d _ωcd ¼ −
2

3
Θωab þ 2σc½aωb�c þ D½bAa�

þ 1

2
κh½achb�dTcd − C½acb�

ducud

þ 1

3
κΘh½achb�dumsmcd − κA½ahb�msmðcdÞucud

þ 1

2
κA½ahb�csc −

1

2
κscucωab

− κðσ½ac þ ω½acÞudhb�msmcd: ð72Þ
Note the explicit spin terms on the right-hand side of the
above, revealing how the latter can act as a source of
spacetime rotation.
Expressions (70)–(72) reveal the involved way the spin

of the matter affects the kinematics of the host spacetime.
This complication makes it difficult to extract quantitative
results from the aforementioned relations, without first
specifying the nature of the spin tensor. Nevertheless,
qualitative conclusions are possible. For example, the role
of the spin vector in all three of the above equations
depends on the inner product saua, which itself is decided
by the relative orientation of the two vectors. Following
(70)–(72), the spin-vector effect acts in tune with that of the
expansion when saua > 0 and against it in the opposite
case. When the ua-field is contracting, on the other hand,
the situation is reversed. Finally, for purely spacelike spin
vectors the impact of the above term is null.
The full kinematic description of an Einstein-Cartan

universe, in the presence of torsion and spin, also requires
the associated constraints. These are obtained from
Eqs. (51)–(53) in an analogous way and lead to the
following expressions for the scalar constraint,

Daω
a ¼ Aaω

a þ 1

4
εabcudCd½abc� þ 1

12
κΘεabcs½abc�

þ 1

4
κεabcσd

½asbc�d −
1

2
κsaðbcÞωaubuc

−
1

4
κεabcudA½asbc�d; ð73Þ

the vector constraint

2

3
DaΘ ¼ Dbσab − curlωa − 2εabcAbωc − κhabTcbuc

−
1

3
κΘha½chbd�scdb −

1

3
κΘhabsb − κha½cσbd�scdb

þ 1

2
κσabsb þ κha½cεbd�mscd½bωm� −

1

2
κεabcs½bωc�

þ κha½cAd�scdbub ð74Þ
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and the tensor constraint

curlσab ¼ −Dhbωai − 2Ahaωbi þ
1

2
εcdhaCbim½cd�um

−
1

6
κΘεcdhahbimscdm −

1

2
κεcdhaσbimscdm

þ 1

2
κεcdhaσbicsd −

1

2
κεcdhaεbimnscd½mωn�

−
1

2
κωhasbi þ

1

2
κεcdhaAbiumscdm: ð75Þ

It goes without saying that, in the absence of torsion and
spin, Eqs. (70)–(75) reduce to their standard general-
relativistic counterparts [21].

C. Raychaudhuri’s equation
in Einstein-Cartan universes

Themean kinematics of an Einstein-Cartan universe, with
spacetime torsion and matter spin that obey the associated
field equations (see Sec. VIII A earlier), are monitored by
Raychaudhuri’s formula (see Eq. (70) above). As stated in
Sec. VI B, positive terms on the right-hand side of (70) tend
to accelerate/declerated the expansion/contraction of the
medium, while negative ones act in the opposite way. We
should also note that, in the presence of torsion and spin, the
scalarTðabÞuaub seen on the right-hand side of Eq. (70) is not
necessarily positive, namely theweak energy condition does
not always apply in Einstein-Cartan universes, even when
dealing with otherwise conventional matter.
Raychaudhuri’s formula can simplify considerably under

certain conditions. For instance, when the fluid flow-lines
are autoparallel curves, the 4-acceleration vanishes identi-
cally. If, in addition, the particle worldlines are irrotational
and shear-free, expression (70) reduces to

_Θ ¼ −
1

3
Θ2 − κTðabÞuaub −

1

2
κT −

1

6
κΘsaua: ð76Þ

The last term on the right-hand side of the above vanishes
when the spin vector is spacelike. When sa has a timelike
component, on the other hand, the effect depends on
whether the fluid is contracting or expanding (i.e. on the
sign of Θ) and on the “tilt angle” between the spin vector
and the 4-velocity of the matter fields.
Alternatively, in the special case of totally antisymmetric

torsion, we have sabc ¼ s½abc� and sa ¼ 0 (see expression
(61) in Sec. VIII A), in which case, the associated
Raychaudhuri equation reads

_Θ ¼ −
1

3
Θ2 − κTðabÞuaub −

1

2
κT − 2ðσ2 − ω2Þ þ DaAa

þ AaAa − κsabcu½aωbc�: ð77Þ

Specifying the nature of the matter further, namely intro-
ducing an expression for the canonical spin tensor (sabc)

should generally allow one to evaluate the spin terms on the
right-hand side of (76), (77) and thus estimate their effect
on the mean kinematics of the fluid in question.
Perhaps the simplest case is the so-called Weyssenhoff

fluid [13]. This is a macroscopically continuous medium,
which is microscopically characterized by the spin of the
matter. The latter is monitored by the antisymmetric spin-
density tensor (sab ¼ s½ab�), which is related to the canoni-
cal spin tensor by means of [24]

sabc ¼ sabuc; ð78Þ

while it satisfies the so-called “Frenkel condition,” namely,

sabub ¼ 0: ð79Þ

In other words, the spin-density tensor is spacelike in the
rest frame of the matter.9 The above conditions combine to
ensure that the canonical spin tensor of Weyssenhoff-type
media is trace-free by construction, which in turn guaran-
tees that the canonical spin vector vanishes identically (i.e.
sa ¼ sbab ¼ −sabb ¼ 0).10 It should be noted, however,
that, although the Weyssenhoff fluid provides a useful
paradigm for studying the classical spin effects, it is of
limited use from the field theoretical perspective (see [26]
for a discussion).
The canonical energy-momentum tensor of the

Weyssenhoff fluid is that of an ideal medium, of energy
density ρ and isotropic pressure p, with an additional
contribution from the presence of spin. In particular,
following [27], we have

Tab ¼ ρuaub þ phab − Acscaub; ð80Þ

implying that TðabÞuaub ¼ ρ and T ¼ 3p − ρ (as a result of
the Frenkel condition—see Eq. (79) above). Therefore, on
using the auxiliary relation (62), we have RðabÞuaub ¼
ρþ 3p. This means that the spin of the Weyssenhoff fluid
does not directly contribute to the local gravitational field.
Applying (78)–(80) and the associated corollaries to

Eq. (77) leads to the Raychaudhuri formula of an Einstein-
Cartan spacetime filled with a Weyssenhoff-type medium,
namely to

_Θ ¼ −
1

3
Θ2 −

1

2
κðρþ 3pÞ − 2ðσ2 − ω2Þ

þ DaAa þ AaAa: ð81Þ

9The presence of three-dimensional antisymmetric second-
rank tensor, which is essentially spacelike vector, defines a
preferred spatial direction. This makes the Weyssenhoff fluid
incompatible with the cosmological principle [25].

10When dealing with Weyssenhoff-type media, the torsion and
the spin-density tensors are related by Sabc ¼ −κuasbc=2, while
the associated torsion vector vanishes [combine Eqs. (56), (61)
and (78), (79)].
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Formalistically, the latter is identical to its classical general-
relativistic counterpart (e.g. see Sec. 1.3.1 in [21]).
Nevertheless, there are differences due to the presence of
torsion and spin, which are revealed by appealing to the
kinematic relations between a Riemann-Cartan and a purely
Riemannian spacetime (see expressions (33)–(36) in
Sec. V B earlier). When dealing with a Weyssenhoff fluid,
the aforementioned relations reduce to

Θ ¼ ~Θ; σab ¼ ~σab; ð82Þ

ωab ¼ ~ωab −
1

2
κsab and Aa ¼ ~Aa; ð83Þ

respectively. Consequently, the kinematic variables of
Weyssenhoff-type media are identical to their general
relativistic analogues, with the exceptopn of the vorticity
(see also [9]). Moreover, starting from the definition of
covariant differentiation, one can easily verify that _Θ ¼ ~Θ0

and DaAa ¼ ~Da
~Aa (recall that primes and tildes indicate

purely Riemannian environments). All these mean that the
introduction of Weyssenhoff-type media modifies the stan-
dard Raychaudhuri equation solely through spin-induced
effects to the rotational behavior of the host spacetime.
The spin effects emerge after substituting the above

given relations into the right-hand side of (81), which leads
to the following version of the Raychaudhuri equation of a
Weyssenhoff fluid,

~Θ0 ¼ −
1

3
~Θ2 −

1

2
κðρþ 3pÞ − 2ð ~σ2 − ~ω2Þ þ ~Da

~Aa þ ~Aa
~Aa

þ 1

2
κ2s2 − κsab ~ωab; ð84Þ

with s2 ¼ sabsab=2 defining the magnitude of the spin-
density tensor. The above expression reproduces the
relation obtained in the (also 1þ 3 covariant) study of
Weyssenhoff-type media given in [12], when the
differences in the metric signature and in the definitions
of the vorticity and the spin-density tensors are accounted
for. Our result also agrees with the familiar interpretation of
an Einstein-Cartan spacetime filled with a Weyssenhoff
fluid, as a Riemannian space containing a specific
perfect fluid with nonzero spin.11 Note that in is common

practice to assume that the microscopic spin orientation of
the particles is random, in which case the macroscopic spin
averages out to zero and one should only account for the
quadratic spin contribution (i.e. hsabi ¼ 0, but hs2i ≠ 0).
Then, the last term of (84) vanishes and the resulting
expression agrees with the one obtained in [10].
The quadratic spin-density term on the right-hand side

of (84) inhibits the collapse or tends to accelerate the
expansion of the Weyssenhoff fluid. Thus, spin and
vorticity act in tune, which is intuitively plausible. There
is an additional effect as well, through the coupling of these
two sources, which can go either way. The effect of the spin
is highlighted further if we momentarily adopt the familiar
general-relativistic scenario of purely gravitational “forces”
acting on an irrotational and shear-free perfect fluid with
spin. Then, Eq. (84) reduces to

~Θ0 ¼ −
1

3
~Θ2 −

1

2
κðρþ 3pÞ þ 1

2
κ2s2 þ Λ; ð86Þ

where we have momentarily reinstated the cosmological
constant (Λ). Thus, qualitatively speaking, the spin term on
the right-hand side of the above plays the role of an effective
(positive) cosmological constant (when s ¼ constant), or
that of a quintessence field (when s ¼ sðtÞ). We should
note, however, that the spin contribution alone is rather
unlikely to affect the late-time evolution of an ever
expanding universe. Therefore, spin does not seem a likely
substitute for dark energy, or capable of leading to an
asymptotically de Sitter final phase (e.g. as that described in
[28]). On the other hand, since the spin effects become
stronger with increasing density, they could have dominated
the early stages of the expansion, or the final stages of a
recollapsing universe. More specifically, the inclusion of
the spin could in principle allow for a geometrical descrip-
tion of inflation, without the need of scalar fields [15]. Also,
when dealing with the purely-gravitational collapse of
matter with nonzero spin, expressions (84), (86)—the latter
with Λ ¼ 0—implies that the particle worldlines will not
focus if κs2 > ρþ 3p, in which case the associated singu-
larity (future or past) can be averted.

IX. DISCUSSION

To this day, the Einstein-Cartan gravity remains a viable
theory and it is still experimentally indistinguishable from
general relativity. In fact, Sciama expressed little doubt that,
had the electron spin been discovered before 1915, Einstein
would have included torsion in his theory. By abandoning
the symmetry of the affine connection, Cartan demon-
strated that its antisymmetric part, known as torsion,
becomes an independent variable of the spacetime, together
with the metric tensor. Macroscopically, the source of
torsion is the intrinsic angular momentum (the spin) of
the matter, in analogy with its energy density which gives
rise to spacetime curvature.

11Following [24], a perfect fluid with nonzero spin that
satisfies conditions (78) and (79) in a Riemann-Cartan spacetime,
is equivalent to a general-relativistic medium with an effective
stress-energy tensor of the form

Tab ¼
�
ρ −

1

4
κs2

�
uaub þ

�
p −

1

4
κs2

�
hab

−
1

2
hcd ~∇dðscaub þ scbuaÞ: ð85Þ

Substituting the above into the classical Raychaudhuri equation
leads to expression (84).
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Once it reemerged, primarily through the work of Kibble
and Sciama in the late 1950s, the Einstein-Cartan theory
has always maintained a level of attention, since it is
probably the simplest and most straightforward classical
extension of general relativity. Many studies, especially
the earlier ones, looked into the implications of torsion
and spin for singularity formation and in particular their
avoidance. With very few exceptions, the available
studies are centered around the Weyssenhoff fluid, namely
an ideal medium with nonzero spin that satisfies the so-
called Frenkel condition. The latter, however, makes the
Weyssenhoff-type media incompatible with the Copernican
Principle and therefore puts them at odds with the Einstein-
Cartan analogues of the Friedmann universes. In addition,
although it offers a valuable classical paradigm, the
Weyssenhoff fluid is of limited use from the field theo-
retical perspective. Most of the studies also start by splitting
their equations into a purely general-relativistic component
supplemented by a torsion/spin part. Here, instead, we
have not imposed any a priori restrictions on the nature of
the matter fields, or on the relation between torsion and
spin, until the very end of the analysis. As a result, our
original kinematic formulas apply to a general imperfect
fluid with nonzero spin, residing in spacetimes with
arbitrary torsion.
The evolution and constraint equations have been

derived in successive stages, first by incorporating the
effect of spacetime torsion and then by including the spin
itself. This was achieved by connecting torsion and spin
through the standard Einstein-Cartan and the Cartan field
equations. Nevertheless, given the generality of our study,
alternative (i.e. nonstandard) relations between the afore-
mentioned two entities may also be used. In the familiar
case of a Weyssenhoff-type medium, we recovered the
results of earlier studies, this time via an alternative (longer

though more general) route. Moreover, the effect of the spin
vector was found to depend (both qualitatively and quan-
titatively) on its orientation relative to the 4-velocity of the
matter. The shear and the vorticity evolution equations also
show how spin acts as a source of kinematic anisotropy and
can be used to investigate its role, as well as that of torsion,
in anisotropic spacetimes. Assuming, for example, that the
particle spin is aligned along a given axis of symmetry (e.g.
along a shear eigenvector), one could look into its potential
implications for the evolution of the host spacetime. The
macroscopic effect of the intrinsic angular momentum of
the matter on the fluid vorticity, as well as their combined
action, can also be probed further. In addition, our work sets
the basis for the study of perturbations in Einstein-Cartan
cosmologies, but to proceed one needs to supplement the
associated conservations laws, accompanied by expres-
sions monitoring the Weyl field and the 3-curvature in the
presence of torsion and spin. This, however, goes beyond
the scope of the present article. Here, our main aim was to
provide the theoretical background for studying the
kinematics of Riemann-Cartan and of Einstein-Cartan
spacetimes in as general a way as possible. We did so
by employing the 1þ 3 covariant formalism, thus extend-
ing the classic general relativistic studies to spacetimes with
nonzero torsion and spin.
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