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The coalescence of compact objects is one of the most promising sources, as well as the source of the
first detections, of gravitational waves for ground-based interferometric detectors, such as advanced LIGO
and Virgo. Generically, compact objects in binaries are expected to be spinning with spin angular momenta
misaligned with the orbital angular momentum, causing the orbital plane to precess. This precession adds
rich structure to the gravitational waves, introducing such complexity that an analytic closed-form
description has been unavailable until now. We here construct the first closed-form frequency-domain
gravitational waveforms that are valid for generic spin-precessing quasicircular compact binary inspirals.
We first construct time-domain gravitational waves by solving the post-Newtonian precession equations of
motion with radiation reaction through multiple scale analysis. We then Fourier transform these time-
domain waveforms with the method of shifted uniform asymptotics to obtain closed-form expressions for
frequency-domain waveforms. We study the accuracy of these analytic, frequency-domain waveforms
relative to waveforms obtained by numerically evolving the post-Newtonian equations of motion and find
that they are suitable for unbiased parameter estimation for 99.2%(94.6%) of the binary configurations we
studied at a signal-to-noise ratio of 10(25). These new frequency-domain waveforms could be used for
detection and parameter estimation studies due to their accuracy and low computational cost.

DOI: 10.1103/PhysRevD.95.104004

I. INTRODUCTION

Spin is ubiquitous in Nature; under the influence of a
generic perturbation any astrophysical system will rotate
even if the initial state was perfectly spherically symmetric.
When massive stars give birth to neutron stars (NSs) or
black holes (BHs) through supernova explosions, the
newly-born remnant typically spins rapidly even if the
progenitor was spinning slowly. This is possibly due to
asymmetries in the supernova explosion inducing a “kick”
on the remnant causing it to rotate [1]. At a fundamental
level, the physics at play here is the same as that which
causes a soccer ball to spin after kicked.
The spin angular momenta of the components of a

compact binary system will not necessarily be aligned
with the orbital angular momentum. For example, consider
an isolated binary system of two stars with spins aligned
with the orbital angular momentum. The most massive star
will first fill its Roche lobe and transfer mass to the
companion before going supernova. The compact remnant
(BH or NS) receives a kick spinning it up [1] and tilting the
orbital plane, since the kick’s direction is typically corre-
lated with the spin of the exploding star [2,3]; the various
angular momenta become misaligned [4,5]. Eventually, the

second star also fills its Roche lobe and the binary enters a
common envelope phase. In this phase, the angular
momenta could partially align through tidal effects. But,
again, the phase ends with the star going supernova and
endowing the binary with a kick that spins the remnant up
and typically tilts the orbital plane, misaligning the angular
momenta yet again [4,5].
Few mechanism exist that could prevent misalignment or

realign the spins of compact binary components with the
orbital angular momentum. One possibility is if the super-
nova kicks are in the orbital plane, i.e. perpendicular to the
spin angular momentum, such that the orbital plane is not
tilted [4]. This possibility is remote, with models and data
suggesting that the kick is actually aligned with the spin
angular momentum [2,3,6]. A mechanism for realignment
is through torques exerted by a circumbinary accretion disk
on BH binaries [7]. Such disks, however, are only expected
in galaxy mergers of supermassive BHs, whose gravita-
tional waves (GWs) would be outside of the sensitivity
band of the ground-based detectors advanced LIGO
(aLIGO) and advanced Virgo (AdV). Besides the formation
mechanism described above, dynamical formation chan-
nels are expected to result in binaries with arbitrarily
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distributed spin directions [8]. Finally, we note that the
binary might undergo spin-orbit resonances during its
evolution [9]. These resonances, however, do not align
the spins with the orbital angular moment, but rather
maintain certain special (“resonant”) precessing configu-
rations [5,9–12].
Compact binaries emitting GWs in the sensitivity band

of aLIGO and AdV will thus have spins with arbitrary
magnitudes and directions, though the spin of NSs will
typically be smaller than that of BHs. Such GWs are very
different from those emitted by nonspinning binaries or
binaries with spins aligned with the orbital angular
momentum for one main reason: precession. When spins
are misaligned with the orbital angular momentum, all
angular momenta precess about the total angular momen-
tum, causing the orbital plane to precess too. This induces
amplitude and phase modulations in the GWs, for example
through the changing inclination angle of the system
relative to the line of sight. Accurately modeling these
modulations can be important for detection and parameter
estimation of GW sources [13,14].
GWs with such rich and complex structure are double-

edged swords: on the one hand, this structure can encode
new information about the source and break degeneracies
in parameter estimation; on the other hand, this intrinsic
complexity comes at the cost of an increased difficulty to
model these waves. First, the temporal evolution of the
orbital phase depends on the angular momenta, which
themselves satisfy certain precession equations, increasing
the overall complexity of the differential system. Second,
precession introduces mathematical catastrophes when
computing the Fourier transform of the GWs: degenerate
critical points in the orbital phase, where the first and
second time derivatives vanish, violating the assumptions
of the standard stationary phase approximation.1 (SPA)
and rendering it nonapplicable [17].
Accurate modeling of GWs is important for detection

and crucial for parameter estimation with ground-based
detectors, since the expected signals might be deeply buried
in the detector noise. The optimal strategy for extracting
known signals from noise is by fitting waveform models to
the interferometric data and minimizing the residual. The
efficiency of this method relies on the accuracy of the
waveform model, with parameter estimation placing more
stringent requirements on the accuracy of the models used.
Inaccuracies in the models can lead to missed signals or
systematic errors in the extracted parameters.
This has motivated the construction of waveform models

for coalescing compact binaries. During the inspiral, the
binary can be modeled with the post-Newtonian (PN)
formalism, an expansion in small characteristic velocities

and weak gravitational fields [18]. When the binary
components are not spinning or when their spin is
aligned/anti-aligned with the orbital angular momentum,
the equations of motion have been derived and solved up
to 3.5PN order2 including radiation reaction due to GW
energy loss. When the spins are misaligned with the orbital
angular momentum, the orbital equations of motion and the
precession equations have been derived to 2.5PN order. In
this case, a closed form solution has not been obtained due
to the complexity of the differential system.
To this day, four main representations of GWs from spin-

precessing compact binaries exist. The first representation
is based on the fact that the precession equations admit a
closed-form analytic solution when only one object is
spinning [19–23]. The ensuing motion is simple precession
and the resulting waveform is ideal for BHNS systems [24].
The second representation is based on the effective-one-
body formulation of the general relativistic two-body
problem [25–27]. The resulting waveform is ever improv-
ing through fits of its nonprecessing part to numerical
relativity simulations [28–30] and describes the full coa-
lescence, albeit at the expense of prohibitive computational
cost. The third representation utilizes a coordinate frame in
which precessional effects are minimized [31,32] to com-
pute a simpler waveform [30] and map it back to the source
frame [33,34]. This approach applies to the full binary
coalescence and the waveform was found to be sufficiently
good for detection, but could introduce biases in parameter
estimation [23].3

The final representation of GWs from inspiraling spin-
precessing systems was through a multiple scale analysis
(MSA) [16], a well-known mathematical technique to solve
differential systems that have distinct characteristic scales
by expanding in the ratio of these scales. For the problem at
hand, the orbital time scale is much shorter than the
precession time scale, which in turn is much shorter than
the radiation reaction time scale. This technique has already
been applied successfully to nearly aligned [38] and slowly
spinning [39] systems. The latter are accurate representa-
tions of NSNS inspirals, both for detection and parameter
estimation [13,14,40]. In this paper we utilize two recent
breakthroughs to construct waveforms for spin-precessing
systems with arbitrary spin magnitudes and orientations
with MSA.
The first breakthrough in the modeling of generic

spin-precessing binaries was by Kesden et al. [10–12].
Neglecting radiation reaction, the authors found an exact
solution to the precession equations that govern the
evolution of the orbital and the spin angular momenta of

1The SPA is the leading-order term in the asymptotic ex-
pansion of a Fourier integral through the method of steepest
descent [15,16].

2A term is of APN order is proportional to ðu=cÞ2A relative to
its controlling factor, where u is some characteristic velocity and
c the speed of light.

3It is worth emphasizing, thought, that the first GW detection
[35,36] did not suffer from such systematics due to its orientation
and minimal precession [35,37].
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the binary. By identifying certain constants of the preces-
sional motion, they were able to express all angular
momenta as functions of the total spin magnitude, which
satisfies an ordinary differential equation. We here solve
this differential equation analytically and obtain an exact
solution to the precession equations in the absence of
radiation reaction. We then use MSA to introduce radiation
reaction perturbatively as an expansion in the ratio of the
precession to the radiation reaction time scale. With this at
hand, we obtain time-domain waveforms in terms of the
parameters of the system only.
The second breakthrough in themodeling of generic spin-

precessing binaries was by Klein et al. [17], and tackles the
failure of the SPA. The authors introduced the shifted
uniform asymptotics (SUA) method where the waveform
is decomposed into Bessel functions, the Fourier integral is
evaluated term by term in the SPA, and then resumed using
the exponential shift theorem. The result is a closed-form
analytic expression for the gravitational wave in the fre-
quency domain as a series of time-domain waveforms
evaluated at shifted stationary times. Unlike previous
approaches, both the time- and frequency-domain wave-
forms that we obtain are valid for arbitrary mass ratios,
arbitrary spin magnitudes and arbitrary spin orientations.
This waveform was first presented in Ref. [41], while this
paper provides the details of its derivation.
Closed-form expressions for the waveforms have several

advantages. From a theoretical standpoint, analytic solu-
tions shed light on the physical processes at play, the
structure of the resultant signal, and the transition through
different resonant states. From a practical standpoint,
analytic solutions are in general faster to evaluate, avoiding
costly numerical integrations and discrete Fourier trans-
forms. Estimating the computational gain from closed-
form, analytic expressions relative to numerical ones is
not straightforward since it depends heavily on the imple-
mentation. However, we estimate that in the restricted
waveform case (when only one harmonic is used) the
closed-form, analytic frequency-domain waveforms com-
puted here can be an order of magnitude faster than the
implementation of [17], and are at worst comparable.
The remainder of the paper provides the details of the

waveform construction described above. Throughout, we
use geometric units where G ¼ c ¼ 1 and use the follow-
ing conventions:

(i) Vectors are written in boldface, with components
A ¼ ½Ax; Ay; Az� and magnitude A. Unit vectors are
denoted with a hat, e.g. Â.

(ii) The masses of the two binary components are mA,
with A ∈ f1; 2g, the total mass M ≡m1 þm2 is set
equal to 1, the mass ratio is q≡m2=m1 < 1, the
symmetric mass ratio is η≡m1m2 and the mass
difference is δm ¼ m1 −m2.

(iii) The Newtonian orbital angular momentum of the
system is L, the spin angular momentum of each

body is SA, and the total angular momentum is
J ¼ Lþ S1 þ S2. The dimensionless spin parameter
of each object is χA ≡ SA=m2

A with A ∈ f1; 2g.
(iv) The orbital angular frequency in a frame fixed to the

orbital plane is ω, while the PN expansion parameter
we use is v≡ ω1=3 ¼ ηL−1.

(v) We test our analytic solution by comparing it to the
numerical solution to the precession equations for
certain systems. We select a NSNS, a BHNS, a
BHBH, and a highly spinning (HS)NSBH system
with parameters given in Table I in a frame were the
z axis is aligned with the orbital angular momentum.
The angles θL and ϕL are the polar angles of L, while
θA and ϕA are the polar angles of SA.

II. SPIN AND ANGULAR MOMENTUM
EVOLUTION

A quasicircular binary system consisting of generic
spinning compact objects is subject to spin-orbit and
spin-spin interactions that force all angular momenta to
precess. Averaging over one orbit,4 the precession equa-
tions governing the conservative evolution of the orbital
and spin angular momenta are [42–44]5

_̂L ¼
��

2þ 3

2
q

�
−
3

2

v
η
½ðS2 þ qS1Þ · L̂�

�
v6ðS1 × L̂Þ

þ
��

2þ 3
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�
−
3

2

v
η

��
S1 þ

1

q
S2

�
· L̂

��
v6ðS2 × L̂Þ

þOðv7Þ; ð1Þ

TABLE I. Parameters of the systems we use for comparisons of
our analytic solution to the numerical solution to the PN
precession equations. All parameters are defined at 50 Hz and
in a frame were the orbital angular momentum is aligned with the
z axis.

NSNS BHNS BHBH HSNSBH

m1 1.6 M⊙ 10 M⊙ 10 M⊙ 10 M⊙
m2 1.4 M⊙ 1.4 M⊙ 5 M⊙ 1.4 M⊙
cos θL 1 1 1 1
ϕL 0 0 0 0
cos θ1 0.5 0.5 0.5 0.5
ϕ1 1.2 1.2 1.2 1.2
χ1 0.08 0.7 0.7 0.7
cos θ2 0.7 0.7 0.7 0.7
ϕ2 2.5 2.5 2.5 2.5
χ2 0.1 0.1 0.6 0.6

4Orbit-averaging should be well justified provided there is a
clean separation between the orbital and the precessional time
scales, as is the case in the early inspiral.

5The precession equations used here are only strictly valid for
BHs, as for NSs they acquire additional terms describing the
quadrupole moment of the bodies [45]. However, the extra terms
are degenerate with the spins [46] and difficult to measure.
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Radiation reaction drives the evolution of the magnitude
of the orbital angular momentum, leaving the magnitude of
the spin angular momenta unaltered to our current knowl-
edge of the PN expansion and ignoring all energy and
angular momentum flux through BH horizons [47,48]. The
magnitude L is related to the evolution of the orbital
frequency ω, and the PN expansion parameter v, leading to

_v ¼ v9

3

1P
7
n¼0 ½gn þ 3gln lnðvÞ�vn

: ð4Þ

The coefficients fgn; glng are functions of the symmetric
mass ratio and inner products of the angular momenta,
given in Appendix A.
Equations (1)–(3) describe the conservative dynamics,

while Eq. (4) describes the dissipative dynamics. The
former models the spin-spin and spin-orbit interactions,
that change only the direction of L, S1 and S2. We use only
the leading PN order expressions in each interaction.6 We
do not use higher PN order corrections because the spin-
spin and spin-cubed terms have not been fully calculated
for generic precessing orbits yet [51,53]. In principle, we
could have included the spin-orbit corrections. However, as
explained later, our solution makes use of a certain quantity
[54] that is conserved by the leading-order in spin-orbit and
spin-spin interactions precession equations. If we use
partial precession equations (including spin-orbit but not
spin-spin corrections) it is not clear if we can modify this
quantity so that it remains conserved. Once the spin-spin
and spin-cubed terms have been fully calculated we can
revisit this problem.
The dissipative dynamics govern the GW frequency

evolution by changing the magnitude of the Newtonian
orbital angular momentum L ¼ η=v. This equation is
known to 2.5PN order in all spin interactions [53], 4PN
in linear-in-spin terms [50,53,55–58] and 22PN order in the
point particle limit, neglecting spins and BH absorption
effects [59–62]. In our analysis we keep terms in Eq. (4) to
3.5PN order since this is the highest complete PN order,
ignoring spin-spin terms. In this case, we can easily include
partial PN terms in radiation reaction to make the evolution

more accurate. When the 3PN spin-spin term has been fully
calculated for precessing orbits [51] we can include it in
our model.
Conservative and dissipative equations evolve on distinct

time scales. The former evolve on the precession time scale

Tpr ≡ jS1j
j _S1j

∼ v−5; ð5Þ

while the later evolve on the radiation reaction time scale

Trr ≡ v
_v
∼ v−8: ð6Þ

The ratio Tpr=Trr ∼ v3 is a small quantity in the inspiral and
thus a natural expansion parameter.
Recently, Kesden et al. [10] found an exact solution to

the precession equations [Eqs. (1)–(3)] ignoring radiation
reaction [Eq. (4)]. This solution can be used to “precession-
average” the full precession equations with radiation
reaction (analogously to orbit-averaging). The final pre-
cession-averaged equations depend only on quantities that
vary on the radiation reaction time scale, and can be
numerically integrated with a larger step size [11].
Here we take a different approach. Rather that precession-

averaging Eqs. (1)–(3) and numerically accounting for
Eq. (4), we make explicit use of the fact that Tpr=Trr ∼ v3

to solve the precession equations analytically. We use a
perturbation theory technique known as multiple scale
analysis (MSA) and treat radiation reaction as a slowly-
evolving perturbation on top of precession. This approach
allows us to find a solution to the full set of Eqs. (1)–(4) as an
expansion in Tpr=Trr.

III. ANALYTIC SOLUTION TO THE
PRECESSION EQUATIONS WITHOUT

RADIATION REACTION

Ignoring radiation reaction, the precession equations can
be solved analytically by making use of certain conserved
quantities of the system. Below we review and complete the
solution first presented in [10].
A precessing binary has a total of 9 degrees of freedom

arising from the 3 components of 3 Newtonian vectors
ðL; S1; S2Þ. The precession equations lead to 7 conserved
quantities, reducing the degrees of freedom to 2. Of the
remaining degrees of freedom, one is associated with the
choice of a coordinate system, while the other corresponds
to a dynamical quantity that changes with time. This
dynamical quantity is chosen to be the magnitude of the
total spin angular momentum S ¼ jS1 þ S2j.
The conserved quantities are λ≡ ðS1; S2; L; J; Ĵ; ξÞ: the

magnitudes of the spin angular momenta, the magnitude of
the orbital angular momentum, the magnitude and direction
of the total angular momentum, and the mass weighted
effective spin [54]

6Spin-orbit corrections can be found in [49,50], spin-spin in
[51], and spin-cubed in [52].
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ξ≡ ð1þ qÞS1 · L̂þ ð1þ q−1ÞS2 · L̂: ð7Þ

In the effective-one-body formalism, ξ corresponds to the
projection of the spin angular momentum of the body at the
center of mass onto the orbital angular momentum. Once
the system is allowed to evolve under radiation reaction, S1,
S2, and ξ are still conserved, while L, J and Ĵ evolve on the
radiation reaction time scale.
In the remainder of this section we use these 7 conserved

quantities to geometrically solve for the 9 components of
the angular momenta as a function of S in a specific
coordinate system. We then complete the solution for the
angular momenta as a function of time by solving a
differential equation to determine SðtÞ.

A. Precession in a noninertial frame

The identification of Ĵ as a conserved quantity suggests a
coordinate frame where ẑ ¼ Ĵ (see Fig. 1). We further pick
the x and y axes to be precessing around ẑ (a noninertial
frame), following the precession of the orbital angular
momentum which is chosen to be in the x − z plane, at an
angle

cos θL ¼ Ĵ · L̂ ¼ J2 þ L2 − S2

2JL
; ð8Þ

from the ẑ axis. This allows us to express L as

LðS; λÞ ¼ L½sin θL; 0; cos θL�: ð9Þ

The total spin angular momentum then is

SðS; λÞ ¼ J − L ¼ ½−L sin θL; 0; J − L cos θL�: ð10Þ

In another frame with ẑ0 ¼ Ŝ, ŷ0 ¼ ŷ, and x̂0 ¼ ŷ0 × ẑ0, we
define angles ðθ0;ϕ0Þ (see Fig. 1) such that

S10 ¼ S1½sin θ0 cosϕ0; sin θ0 sinϕ0; cos θ0�: ð11Þ

Using the definition of ξ given in Eq. (7) we get

cos θ0 ¼ Ŝ1 · Ŝ ¼ S2 þ S21 − S22
2SS1

; ð12Þ

cosϕ0 ¼ fðJ2 − L2 − S2Þ½S2ð1þ qÞ2 − ðS21 − S22Þð1 − q2Þ�
−4qS2Lξg=½ð1 − q2ÞA1A2A3A4�; ð13Þ

where

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − ðL − SÞ2

q
; ð14Þ

A2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ SÞ2 − J2

q
; ð15Þ

A3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 − ðS1 − S2Þ2

q
; ð16Þ

A4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1 þ S2Þ2 − S2

q
: ð17Þ

In the original unprimed system

S1ðS; λÞ ¼ Rðŷ; θSÞS01; ð18Þ

where Rðŷ; θSÞ is a rotation around ŷ by an angle θS and

cos θS ¼ Ŝ · Ĵ ¼ J2 þ S2 − L2

2JS
: ð19Þ

Once we have S1 in the original unprimed system, then

S2ðS; λÞ ¼ J − L − S1: ð20Þ

Equations (9), (18), and (20) determine the angular
momenta in a noninertial frame as a function of S up to
the sign of sinϕ0 in Eq. (18), which we will tackle
shortly.
At this point, the various orbital angular momenta have

been written in a noninertial frame in terms of S using
purely geometrical arguments. The evolution equation of S
can be derived from Eqs. (1)–(3):

�
dS2

dt

�
2

¼ −A2ðS6 þ BS4 þ CS2 þDÞ; ð21Þ

where the coefficients A, B, C,D depend only on quantities
that change on the radiation reaction time scale. Their
explicit form is given in Appendix B. The roots of the
polynomial on the right-hand side of Eq. (21) have a simple
interpretation. When S2 is equal to one of the roots, its
derivative is zero. Therefore, two of the roots are the
maximum S2þ and the minimum S2− of S2. The third root S23

FIG. 1. Initial configuration of the angular momenta in a
noninertial frame precessing around ẑ.
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does not correspond to any physically interesting scenario;
in fact, it is negative for most systems.7

Making explicit use of the roots of the polynomial, we
can rewrite Eq. (21) as

�
dS2

dt

�
2

¼ −A2ðS2 − S2þÞðS2 − S2−ÞðS2 − S23Þ: ð22Þ

The solution to this equation is

S2 ¼ S2þ þ ðS2− − S2þÞsn2ðψ ; mÞ ð23Þ

where sn is a Jacobi elliptic function (see Sec. 16 of [63] for
a detailed introduction to the Jacobi elliptic functions, and
[64] for a physics-oriented approach), ψ is its phase, and
m ∈ ½0; 1�. When m ¼ 0, sn reduces to a sine, while for
m ¼ 1 it gives a hyperbolic tangent. The period of S2 is
2KðmÞ, where KðmÞ is the complete elliptic integral of the
first kind. The phase and the parameter m are given by

dψ
dt

¼ A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2þ − S23

q
ð24Þ

and

m ¼ S2þ − S2−
S2þ − S23

: ð25Þ

Clearly, this solution requires that S2þ ≠ S23, which is almost
always the case because S2þ and S23 are defined to be the
largest and smallest roots respectively. The only possible
case when S23 ¼ S2þ is when S2þ ¼ S2−, but then S2 is
constant in the first place and there is no precession.
The phase ψ can be obtained by noticing that _ψ is constant
if we ignore radiation reaction, so that

ψ ¼ A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2þ − S23

q
t: ð26Þ

The final ingredient we need in order to have a complete
expression for all angular momenta as function of time in a
non-inertial frame precessing around ẑ is the sign of sinϕ0.
Equation (11) implies that

signðsinϕ0Þ ¼ signðS1 · y0Þ; ð27Þ

which after some algebra can be shown to be equivalent to

signðsinϕ0Þ ¼ sign½ðL̂ × S1Þ · S2� ¼ sign

�
−
dS2

dt

�
¼ sign½snðψ ; mÞcnðψ ; mÞ�; ð28Þ

where cnðψ ; mÞ is another Jacobi elliptic function and in
the last equality we have used Eq. (23).

B. Precession in an inertial frame

All angular momenta so far have been expressed in a
noninertial frame that precesses around Ĵ. An Euler rotation
of L, S1, and S2 around ẑ by some angle ϕz and substitution
into the precession equations yields [10]

dϕz

dt
≡Ωz ¼

J
2
v6
�
1þ 3

2η
ð1 − ξvÞ

−
3ð1þ qÞ
2qA2

1A
2
2

ð1 − ξvÞ½4ð1 − qÞL2ðS21 − S22Þ

−ð1þ qÞðJ2 − L2 − S2ÞðJ2 − L2 − S2 − 4ηLξÞ�
�
:

ð29Þ

The precession angle ϕz changes on the precession time
scale through S and on the radiation-reaction time scale
through J and L. We recast it in the form

_ϕz

J
¼ aþ c0 þ c2sn2ðψ ; mÞ þ c4sn4ðψ ; mÞ

d0 þ d2sn2ðψ ; mÞ þ d4sn4ðψ ; mÞ ; ð30Þ

where a, the di’s and the ci’s are quantities that evolve on
the radiation reaction time scale only. Their explicit form is
given in Appendix B. Now _ϕz can be integrated exactly in
the absence of radiation reaction to give

ϕz

J
¼ Aϕ

ψ

_ψ
þ iBϕ

F½isinh−1ðscðψ ; mÞÞ; 1 −m�
_ψ

þ iCϕ
Π½nc; isinh−1ðscðψ ; mÞÞ; 1 −m�

_ψ

þ iDϕ
Π½nd; isinh−1ðscðψ ; mÞÞ; 1 −m�

_ψ
; ð31Þ

where _ψ is given by Eq. (24), F is the elliptic integral of the
first kind,Π is the elliptic integral of the third kind, and sc is
a Jacobi elliptic function. The quantities Aϕ, Bϕ, Cϕ, Dϕ,
nc, nd are functions of fa; ci; dig, and they are constant in
the absence of radiation reaction. They are given in
Appendix B.
This concludes the solution to the precession equations

in the absence of radiation reaction in a frame where Ĵ ¼ ẑ.
In summary, at some initial time:

(i) The orbital angular momentum L is given by Eq. (9),
which depends on the angle θL given in Eq. (8). The

7In the most generic case, a third order polynomial with real
coefficients can have complex roots. However, we argue that this
is an unphysical scenario. Unless two of the roots are real, S2 will
increase or decrease with no bound. If two roots of a third order
polynomial with real coefficients are real, then the third root must
be real too.
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latter depends on S, which varies on the precession
timescale as described in Eq. (23);

(ii) The spin angular momentum of the heavier body S1
is given in Eq. (18), which depends on the angle θS
given in Eq. (19) as well as on S01 given in Eq. (11) in
terms of the angles ðθ0;ϕ0Þ of Eqs. (12) and (13). All
of these depend on S, which again is described
by Eq. (23);

(iii) The spin angular momentum of the lighter body S2
is given by Eq. (20), which depends on L and S1
described above.

The full precessional motion of these angular momenta in
an inertial frame is obtained by rotating them around ẑ by
ϕz, given in Eq. (31).

IV. ADDITION OF RADIATION REACTION

The exact solution to the precession equations obtained
in the previous section is valid only in the absence of
radiation reaction. The problem of including radiation
reaction admits a perturbative solution owing to its two
distinct time scales: radiation reaction unfolds on a much
longer time scale than precession. This natural separation of
timescales allows us to treat radiation reaction as a slow
perturbation of the more rapid precession, a technique
formally known as multiple scale analysis [16].
In MSA, every quantity is expanded in the ratio of the

two distinct timescales. In our case, we expand in the ratio
of the precessional time scale Tpr to the radiation reaction
time scale Trr; radiation reaction is a 1.5PN effect on top of
precession. This is not the first application of MSA to the
precession problem. In fact, the precession equations we
started with are orbit-averaged, which would be the first
term in an MSA expansion about the ratio of the fast orbital
time scale to the precession time scale.

A. Choice of an inertial frame

The precession solution of Sec. III was built around the
assumption that Ĵ is conserved and aligned with ẑ. Our first
task when adding radiation reaction is to check whether this
remains true. If it does, then the functional form of Eqs. (9),
(18), and (20) holds, since they were derived solely on
geometrical arguments.
Radiation reaction does not strictly conserve the

direction of the total angular momentum. However, it
has been argued [19] that in the context of simple
precession ðS2 ¼ 0Þ the variation of Ĵ in a precession
cycle averages out. Here we show that this is approximately
true for generic precession as well [65].
Equations (1)–(3) imply

_J ¼ _L L̂; ð32Þ

and after some algebra we can rewrite this as

_̂J ¼
_L
JL

L −
_J
J2

J: ð33Þ

Averaging over ϕz we find

h_Jxiϕz
¼

	
_L
J
sin θL cosϕz



ϕz

; ð34Þ

h _Jyiϕz
¼

	
_L
J
sin θL sinϕz



ϕz

; ð35Þ

h _Jziϕz
¼ 0: ð36Þ

This averaging induces an error in _̂J that is OðTpr=TrrÞ, or
_̂J − h _̂Jiϕz

∼ v3. At this order, we can treat _L as a constant,
since the spin couplings in Eq. (4) first enter atOðv3Þ. They
are therefore of the same order as the averaging error, and
can be neglected.
Working to this order we have

h_Jx;yiϕz
∼ hsin θL cosϕziϕz

∼

* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
J2 þ L2 − S2

2JL

�
2

s
cosϕz

+
ϕz

: ð37Þ

Since L ∼Oðv−1Þ, J ∼Oðv−1Þ, and S ∼Oðv0Þ, a PN
expansion yields schematically

h_Jx;yiϕz
∼ hcosϕziϕz

þ v2hS2 cosϕziϕz
þOðv4Þ: ð38Þ

The first term vanishes, while the second is of higher PN
order and we neglect it. This situation is different from

simple precession. In the latter the averaging out of _̂J is
exact, while here it requires a PN expansion. We therefore
expect this result to become less and less accurate as the
binary approaches merger.
The above calculation implies that h _̂Jiϕz

¼ 0; radiation
reaction changes the magnitude of J while leaving its
direction approximately constant. The components Jx and
Jy are expected to oscillate with an amplitude much smaller
than Jz without exhibiting any secular growth. Figure 2
tests the validity of this statement. We select 4 systems with
typical parameters as expected for NSNS, BHNS, BHNS,
and HSNSBH binaries (see Table I) and plot the compo-
nents of J obtained by numerically solving Eqs. (1)–(4) as a
function of the GW frequency f. In all cases Jx and Jy are at
least 2 orders of magnitude smaller that Jz and oscillate
around 0, with no signs of secular growth.
Based on this result we can build a solution to the

precession equations including radiation reaction in the
inertial frame introduced in Sec. III. That is, we neglect any
variation in the direction of Ĵ and align it with ẑ. This
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choice of frame automatically means that the functional
form of Eqs. (9), (18), and (20) for the orbital and spin
angular momenta respectively is still valid, since they were
derived on purely geometric arguments. On the contrary,
any quantity that was derived based on Eqs. (1)–(3) needs
to be revisited and recalculated by taking Eq. (4) into
account. This involves the remaining 5 conserved quantities
of precession ðS1; S2; L; J; ξÞ, Eq. (22) for the magnitude of
the total spin angular momentum, and Eq. (30) for the
precession angle.

B. Constants of the precessional motion

In principle, the constants of the precessional motion
need not remain constant when radiation reaction is
invoked. The magnitudes of the two spin angular momenta
S1 and S2, and the mass weighted effective spin ξ remain
constant under radiation reaction to the PN order we work
here and ignoring horizon absorption. The magnitude of the

orbital angular momentum L is updated by definition
through L ¼ η=v. The magnitude of the total angular
momentum J depends on L and also changes under
radiation reaction. The evolution equation for J averaged
over one period of SðtÞ is [10]

	
dJ
dL



pr
¼ J2 þ L2 − hS2ipr

2JL
: ð39Þ

This can be integrated exactly to yield

J2 ¼ L2 þ 2c1
η

L − L
Z hS2ipr

L2
dL; ð40Þ

where here and in what follows J is approximated by
its precession average, and c1 is an integration constant.
As we will show below, hS2ipr is constant when ignoring
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FIG. 2. (Top Panel) Comparison between the numerical PN and the analytic components of the total angular momentum as a function
of the GW frequency for the NSNS (Top Left), the BHNS (Top Right), the BHBH (Bottom Left), and the HSNSBH (Bottom Right)
system of Table I. (Bottom Panel) Fractional error between the magnitude of the total angular momentum obtained numerically and
analytically.
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high-order PN effects, and the integral of Eq. (40) can be
calculated to give

J2 ¼ L2 þ 2c1
v

þ hS2ipr þOðvÞ: ð41Þ

The quantity hS2ipr can be computed from Eq. (23):

S2av ≡ hS2ipr ¼
1

m

�
ðm − 1ÞS2þ þ S2− þ EðmÞ

KðmÞ ðS
2þ − S2−Þ

�
;

ð42Þ

where KðmÞ and EðmÞ are the complete elliptic integrals of
the first and second kind respectively. PN expanding S2þ
and S2− around their initial value we find

S2� ¼ S2�;0 þOðvÞ; S23 ¼ Oðv−2Þ; ð43Þ

which together with Eq. (25) yields

m ¼ Oðv2Þ; ð44Þ

and

S2av ¼
1

2
ðS2þ;0 þ S2−;0Þ þOðv2Þ: ð45Þ

In the above expressions S2�;0 are the roots computed from
the initial conditions.
Combining the result for J obtained here and Sec. IVA

where we justified keeping Ĵ aligned with ẑ, our analytic
approximation for the total angular momentum is

J ¼ ½0; 0; J�: ð46Þ

To verify that this approximate J stays close to the
numerical PN solution we plot it in Fig. 2 as a function
of the GW frequency for our three study systems. The
analytic Jx and Jy are identically zero, so we omit them.
The bottom panel shows the fractional error in the
magnitude of the total angular momentum when approxi-
mated by Eq. (41). The maximum discrepancy in the
magnitude J is of Oð10−2Þ in those particular examples
indicating both that Eq. (41) is accurate and that setting Jx
and Jy equal to zero is justified.

C. Magnitude of the total spin angular momentum

Once radiation reaction is included, Eq. (22) for the
magnitude of the total spin angular momentum needs to be
solved with MSA. We first explicitly separate the time
scales by writing S2ðtÞ ¼ S2ðtpr; trrÞ, where tpr denotes
variation on the precession time scale, while trr ¼ ϵtpr

denotes variations on the radiation reaction time scale, with
ϵ a bookkeeping parameter.
Expanding S2 as

S2ðtpr; trrÞ ¼
X
n≥0

ϵnS2nðtpr; trrÞ ð47Þ

and substituting this expression into Eq. (22), at leading
order in ϵ, we recover Eq. (22) for S20ðtpr; trrÞ with the time
derivative taken on the precession time scale tpr:�∂S20
∂tpr

�
2

¼ −A2ðtrrÞ½S20ðtpr; trrÞ − S2þðtrrÞ�

× ½S20ðtpr; trrÞ − S2−ðtrrÞ�½S20ðtpr; trrÞ − S23ðtrrÞ�:
ð48Þ

The solution to this differential equation is similar to
Eq. (23), except that quantities that were previously
constant are now promoted to functions of trr:

S20 ¼ S2þðtrrÞ þ ½S2−ðtrrÞ − S2þðtrrÞ�sn½ψðtpr; trrÞ; mðtrrÞ�;
ð49Þ

where S2þðtrrÞ, S2−ðtrrÞ, and mðtrrÞ now depend on time
through LðtrrÞ and JðtrrÞ.
The angle ψðtpr; trrÞ satisfies

dψ
dt

¼ AðtrrÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2þðtrrÞ − S23ðtrrÞ

q
: ð50Þ

where we keep terms of OðϵÞ by taking the derivative with
respect to t rather than tpr. We can integrate this equation
using a PN integration, i.e. expanding it in powers of v and
integrating term by term. The result is

ψ ¼ ψ0 −
3g0
4

δmv−3ð1þ ψ1vþ ψ2v2Þ; ð51Þ

where ψ0 is an integration constant, and the constants ψ1,
ψ2 are given in Appendix C. We find that expanding
Eq. (51) to relative 1PN order suffices.
We test this solution for S in Fig. 3 by plotting the

numerical PN, analytic, and hybrid magnitude of the total
spin angular momentum S as a function of the GW
frequency for the 4 systems we study. The hybrid S is
obtained through Eq. (49) but with a numerical solution to
Eq. (50). For all systems, the amplitude of S shows
excellent agreement with the numerical PN results, which
is controlled by the roots S2þ and S2−. For the NSNS and
BHBH systems, the analytic phase ψ also shows very good
agreement with the numerical PN result, although the
dephasing for the BHNS and HSBHNS systems is about
2 cycles. However, both systems are dominated by the spin
of the BH, making the motion close to that of simple
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precession; the variation in S is very small as demonstrated
by the scale of the y axis of the right panels of Fig. 3 and
this dephasing should not affect the emitted waveform
considerably.
On the other hand, the phase of the hybrid S is always in

excellent agreement with the numerical solution, indicating
that if we do indeed need an improved solution in the
future8 we can obtain it by carrying out the expansion of
Eq. (51) to higher order.

D. Precession angle

The final quantity that needs to be recalculated to
account for radiation reaction is the precession angle. Its
derivative, given in Eq. (30), depends both on the pre-
cession and the radiation reaction time scale, so it requires a
MSA treatment.

We write

dϕz

dt
¼ Ωz½SðtÞ; LðtÞ; JðtÞ� ¼ Ωz½Sðtpr; trrÞ; LðtrrÞ; JðtrrÞ�;

ð52Þ

and expand the precession angle as

ϕzðtpr; trrÞ ¼ ϵ−1ϕz;−1ðtpr; trrÞ þ ϕz;0ðtpr; trrÞ þOðϵÞ: ð53Þ

The reason ϕz includes a term of Oðϵ−1Þ is because the
binary precesses even in the absence of radiation reaction.
Solving Eq. (52) order by order in ϵ, we find to Oðϵ−1Þ

1

ϵ

∂ϕz;−1

∂tpr ¼ 0; ð54Þ

which means ϕz;−1 ¼ ϕz;−1ðtrrÞ. To next order, we find
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FIG. 3. Comparison between the numerical PN (black solid), the analytic (red dashed), and the hybrid (blue dot-dashed) magnitude of
the total spin angular momentum as a function of the GW frequency for the NSNS (Top Left), the BHNS (Top Right), the BHBH
(Bottom Left), and the HSNSBH (Bottom Right) system of Table I.

8For example, if and when LIGO’s sensitivity increases, so will
its requirement for more accurate waveforms.
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∂ϕz;−1

∂trr þ ∂ϕz;0

∂tpr ¼ Ωzðtpr; trrÞ; ð55Þ

and averaging over tpr we find

dϕz;−1

dtrr
¼ hΩziprðtrrÞ; ð56Þ

where we set h∂ϕz;0=∂tpripr ¼ 0 to cancel secular terms.
Equation (56) can be solved with a PN integration. Going
back to Eq. (55) we get

∂ϕz;0

∂tpr ¼ Ωzðtpr; trrÞ − hΩziprðtrrÞ: ð57Þ

Integrating the first term on the right-hand side of Eq. (57)
we recover Eq. (31) for ϕz in the absence of radiation
reaction. Integrating the second term is straightforward.
The full solution for ϕz is then

ϕz ¼ ϕz;−1 þ ϕz;0 þOðϵÞ; ð58Þ

where

ϕz;−1 ¼
Z

hΩziprðtrrÞdtrr; ð59Þ

ϕz;0 ¼
Z

Ωzðtpr; trrÞdtpr −
Z

hΩziprðtrrÞdtpr: ð60Þ

The meaning of each term in the MSA expansion is clear.
The first term ϕz;−1 is averaged over the fast (relative to
radiation reaction) precession time scale, and then inte-
grated over radiation reaction. The next term ϕz;0 is a first
order correction to this precession averaging.

1. Leading order MSA

The leading order MSA term is defined in Eq. (56) which
to first order in ϵ is equivalent to

	
dϕz

dt



pr
¼ hΩzipr: ð61Þ

The average of Ωz can be obtained by taking the difference
between Eq. (31) evaluated at ψ ¼ 0 and at ψ ¼ 2KðmÞ,
where recall that KðmÞ is the complete elliptic integral
of the first kind. However, for reasons explained in
Appendix E, we prefer to use Eq. (30) and find an
alternative way of calculating h _ϕzipr. We write

_ϕz

J
− a≡ _ϕred

z ¼ c0 þ c2sn2ðψ ; mÞ þ c4sn4ðψ ; mÞ
d0 þ d2sn2ðψ ; mÞ þ d4sn4ðψ ; mÞ ⇒

½d0 þ d2sn2ðψ ; mÞ þ d4sn4ðψ ; mÞ� _ϕred
z

¼ c0 þ c2sn2ðψ ; mÞ þ c4sn4ðψ ; mÞ ⇒
d0h _ϕred

z ipr þ d2hsn2ðψ ; mÞ _ϕred
z ipr þ d4hsn4ðψ ; mÞ _ϕred

z ipr
¼ c0 þ c2hsn2ðψ ; mÞipr þ c4hsn2ðψ ; mÞipr;

where on the third line we average over precession.
Unfortunately, no closed form expressions exist for
hsn2ðψ ; mÞipr and hsn4ðψ ; mÞipr for arbitrary m. We can,
however, calculate these averages as an expansion in m ≪
1 since, as already discussed, m ∼Oðv2Þ. We could in
principle retain high order in m terms in this expansion, but
in practice we find that working to leading order in m
suffices. Expanding the above expression to leading order
in m ≪ 1, we find

d0h _ϕred
z ipr þ d2h _ϕred

z sin2ψipr þ d4h _ϕred
z sin4ψipr

¼ c0 þ
1

2
c2 þ

3

8
c4 ⇒

d0h _ϕred
z ipr þ d2D2h _ϕred

z ipr þ d4D4h _ϕred
z ipr

¼ c0 þ
1

2
c2 þ

3

8
c4 ⇒

h _ϕzipr ¼ J

�
aþ c0 þ 1

2
c2 þ 3

8
c4

d0 þ d2D2 þ d4D4

�
; ð62Þ

where we have defined

D2 ≡ h _ϕred
z sin2ψipr
h _ϕred

z ipr
¼

hc0þc2sin2ψþc4sin4ψ
d0þd2sin2ψþd4sin4ψ

sin2ψi
pr

hc0þc2sin2ψþc4sin4ψ
d0þd2sin2ψþd4sin4ψ

i
pr

; ð63Þ

D4 ≡ h _ϕred
z sin4ψipr
h _ϕred

z ipr
¼

hc0þc2sin2ψþc4sin4ψ
d0þd2sin2ψþd4sin4ψ

sin4ψi
pr

hc0þc2sin2ψþc4sin4ψ
d0þd2sin2ψþd4sin4ψ

i
pr

: ð64Þ

The quantities D2 and D4 are functions of v and can be
calculated exactly. For reasons explained in Appendix E we
do not wish to use these full expressions, but rather we keep
the quantities D2 and D4 constant and set them equal to
their leading PN order expressions.
We can now integrate the right-hand side of Eq. (62) by

first PN expanding it. However, we find it more convenient
to factor J out of hΩzipr and PN expand the remaining
terms. We do so to avoid artificial divergences in the small
mass ratio limit arising from expanding around essentially
η=v; see Appendix E. We, then, have to perform an integral
of the form
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ϕz;−1 ¼
Z

J
ξ3

X5
n¼0

hΩziðnÞvndξ; ð65Þ

where the coefficients hΩziðnÞ are given in Appendix D.
This integral can be directly calculated to give

ϕz;−1 ¼
X5
n¼0

hΩziðnÞϕðnÞ
z þ ϕ0

z;−1; ð66Þ

where ϕðnÞ
z are functions given in Appendix D and ϕ0

z;−1 is
an integration constant.

2. Correction to MSA

The first-order correction to MSA is given in Eq. (60).
The solution to the first integral is Eq. (31) where we set
m ¼ 0. The second integral is trivial since hΩzipr does not
depend on the precession time scale tpr, and the result is

hΩziprtpr. In that expression, we choose for convenience to
substitute tpr ¼ ψ= _ψ .
Collecting all the elements together, the correction to the

precession phase is given by

ϕz;0 ¼
Cϕ

_ψ

ffiffiffiffiffi
nc

p
nc − 1

arctan

�ð1 − ffiffiffiffiffi
nc

p Þ tanψ
1þ ffiffiffiffiffi

nc
p

tan2ψ

�

þDϕ

_ψ

ffiffiffiffiffi
nd

p
nd − 1

arctan

�ð1 − ffiffiffiffiffi
nd

p Þ tanψ
1þ ffiffiffiffiffi

nd
p

tan2ψ

�
; ð67Þ

where _ψ is given in Eq. (24), ψ is given in Eq. (51) and Cϕ,
Dϕ, nc and nd are functions of v given in Appendix B.

3. Comparisons

In Fig. 4 we plot the numerical PN and analytic solutions
for ϕz with and without the MSA corrections. The small
oscillations of the numerical PN phase are reproduced by
the analytic phase with MSA corrections. These oscilla-
tions are more pronounced for the NSNS and BHBH
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FIG. 4. (Top Panel) Comparison between the numerical PN and the analytic precession phase as a function of the GW frequency for
the NSNS (Top Left), the BHNS (Top Right), the BHBH (Bottom Left), and the HSNSBH (Bottom Right) system of Table I. (Bottom
Panel) Error in ϕz with and without the MSA corrections.
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systems where both spins contribute significantly to the
dynamics. The bottom panel shows the error in the
precession phase with and without MSA corrections.

V. BUILDING THE WAVEFORM

Using the solution for the angular momenta described
above, we calculate an analytic time-domain waveform for
generic precessing binaries. The gravitational wave signal
emitted by a precessing binary system as observed in an
interferometric detector is [18,19,24,31,66]:

hðtÞ ¼ Fþhþ þ F×h×; ð68Þ

where

Fþ ¼ 1

2
ð1þ cos2θ0NÞ cos 2ϕ0

N cos 2ψp

− cos θ0N sin 2ϕ0
N sin 2ψp; ð69Þ

F× ¼ 1

2
ð1þ cos2θ0NÞ cos 2ϕ0

N sin 2ψp

þ cos θ0N sin 2ϕ0
N cos 2ψp; ð70Þ

are the antenna pattern functions, hþ;× are the GW
polarization states, ðθ0N;ϕN

0Þ are the polar angles of N̂ in
a frame tied to the arms of the detector with ẑ0 the normal to
the detector plane, and ψp is given by

ψp ¼ arctan

� ðPN ĴÞ · ẑ0
ðN̂ × ĴÞ · ẑ0

�
; ð71Þ

where PN acts as a projection along N̂.
The polarization states can be decomposed into a spin-

weighted spherical harmonic basis [24,31,66]

hþ − ih× ¼
X
l≥2

Xl

m¼−l
Hlmðθs;ϕsÞe−imΦ; ð72Þ

where

Φ ¼ ϕorb − 3v3ð2 − ηv2Þ ln v; ð73Þ

and ðθs;ϕsÞ are the spherical angles of N̂ in a framewhere Ĵ
is aligned with the z-axis, ϕorb is the orbital phase, and

Hlm ¼ hlm
Xl

m0¼−l

Dl
m0;mðϕz; θL; ζÞ−2Ylm0 ðθs;ϕsÞ; ð74Þ

where sYlm are the spin-weighted spherical harmonics,
the amplitudes hlm are in [18], Dl

m;m0 are the Wigner
D-matrices, the angles θL and ϕz are the spherical angles
of L̂ in the frame where Ĵ is aligned with the z-axis, and ζ

satisfies _ζ ¼ _ϕz cos θL. In order to solve for ζ we can
employ the same techniques as for ϕz, namely MSA. An
explicit expression for ζ is given in Appendix F.
The above prescribe a waveform hðtÞ in the time domain.

To compute its Fourier transform, we use the shifted
uniform asymptotics method of [17]

~hðfÞ ¼
ffiffiffiffiffiffi
2π

p X
m≥1

Tmeið2πftm−mΦ−π=4Þ

×
X
l≥2

Xkmax

k¼−kmax

ak;kmax

2 − δk;0
Hlmðtm þ kTmÞ; ð75Þ

where tm and Tm are defined by

2πf ¼ m _ΦðtmÞ; ð76Þ

Tm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mΦ̈ðtmÞ

p ; ð77Þ

Hlm ¼ 1

2
ðFþ þ iF×Þ

×
Xl

m0¼−l

hlmDl
m0;mðϕz; θL; ζÞ−2Ylm0 ðθs;ϕsÞ

þ 1

2
ðFþ − iF×Þ

×
Xl

m0¼−l

hl;−mDl
m0;−mðϕz; θL; ζÞ−2Ylm0 ðθs;ϕsÞ; ð78Þ

and the constants ak;kmax
satisfy the linear system

ð−iÞp
2pp!

¼
Xkmax

k¼0

ak;kmax

k2p

ð2pÞ! ; ð79Þ

for p ∈ f0;…; kmaxg. In this expression, Eq. (76) expresses
the stationary time tm as a function of the frequency f. For a
LIGO-type detector, Hlm depends on time through ϕz, θL,
and ζ.
Figure 5 compares the frequency domain GWs for the 4

systems of Table I using only the leading ðl ¼ 2; m ¼ 2Þ
harmonics of Eq. (75). The two waveforms are computed
with the numerical solution to the PN precession equations
and with the analytic solution described in Secs. III and IV.
Both waveforms are Fourier-transformed with SUA,
allowing us to assess the effect of our new analytic solution
to the GW amplitude and phase. The agreement between
the wave amplitudes is excellent over a wide range of
frequencies, while the dephasing between the two wave-
forms never exceeds 0.3 radians, even for our BHBH
system. This figure serves as a first indication of the
accuracy of our model to accurately capture generic
precessing features in GWs.

CONSTRUCTING GRAVITATIONAL WAVES FROM GENERIC … PHYSICAL REVIEW D 95, 104004 (2017)

104004-13



VI. WAVEFORM COMPARISON

In order to have a more complete picture of our wave-
form’s ability to model generic systems, we carry out a
Monte Carlo study randomizing over the 15 parameters
describing a quasicircular compact binary waveform. For
the randomization, we draw the components’ masses form
a flat distribution in log space between ½1; 2.5�M⊙ for NSs
and ½2.5; 20�M⊙ for BHs, while the components’ spin
magnitudes are uniformly distributed in [0, 0.1] for NSs
and [0, 1] for BHs. We selected seemingly low BH masses
in order to focus on systems for which the inspiral part is
the most important. Indeed, those are the ones for which the
accurate modeling of the precession effects are the most
challenging, due to the increased number of precession
cycles that low masses entail. All directions (spin, sky
location, orbital angular momentum) are drawn uniformly
on a unit sphere. The phase of coalescence is assumed to be
uniform in ½0; 2π�, while the time of coalescence and the
distance are fixed at 105 seconds and 100 Mpc respectively.

The large number of systems simulated can only be
analyzed through some appropriate and efficient statistic;
we use the faithfulness (or match) defined as

F≡max
tc;ϕc

ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ
p : ð80Þ

The faithfulness is calculated between two waveforms h1
and h2 with the same physical parameters, but maximized
over any unphysical parameters: the time tc and phase ϕc of
coalescence. As such, it is a good estimator of a model’s
suitability for parameter estimation. The faithfulness
always falls between −1 and 1, with the latter indicating
perfect agreement between the waveforms.
Unlike fitting factors,9 selecting a value for the faithful-

ness that is “good enough” is not straightforward. The
nominal fitting factor threshold of 0.965 corresponds to a
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FIG. 5. (Top Panel) Amplitude of the GW including only the dominant ðl ¼ 2; m ¼ 2Þ harmonic as a function of the GW frequency
for the numerical PN and analytic SUAwaveforms for the NSNS (Top Left), the BHNS (Top Right), the BHBH (Bottom Left), and the
HSNSBH (Bottom Right) system of Table I. The reference amplitude j ~href j is the numerical PN SUA amplitude at 50 Hz. (Bottom Panel)
GW dephasing between the numerical PN and analytic SUA waveforms.

9A fitting factor is the faithfulness maximized over all model
parameters, quantifying a model’s suitability for detection.
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10% drop in detection rates. On the other hand, a faithful-
ness threshold should be translatable to a requirement about
parameter estimation accuracy: the systematic mismodeling
error should be smaller than the statistical measurement
error. The latter depends on the signal-to-noise ratio (SNR)
of the signal, while the former does not, meaning that any
faithfulness threshold should take the strength of the signal
into account. In Appendix G we calculate the faithfulness
threshold as a function of the SNR and find that for an SNR
of 10(25)[50], a faithfulness of 0.96(0.9936)[0.9984] suf-
fices for accurate parameter estimation. Led by the SNR of
the first detected GW [67], we set our faithfulness threshold
to 0.994.

In our study h1 is a waveform calculated by numerically
solving the precession equations, while h2 uses our new
analytic solution. Both waveforms are Fourier-transformed
with the SUA method, justified by [17] where it was shown
that SUA induces a negligible loss of faithfulness compared
to a discrete Fourier transform. The use of SUA in both
waveforms allows us to isolate the effect of our new
solution: any mismatch is solely caused by the solution
to the precession equations described in this paper.
The inner product in Eq. (80) is defined in the usual way

ðh1jh2Þ≡ 4ℜ
Z

fmax

fmin

~h1ðfÞ ~h�2ðfÞ
SnðfÞ

df; ð81Þ

FIG. 6. Distribution of 1 − F for NSNS (Top Left), BHNS (Top Right), BHBH (Bottom Left) and the 4th generic set containing all
masses and spins (Bottom Right) for waveforms with full harmonic content (solid black line) and waveforms restricted to the leading
ðl ¼ 2; m ¼ 2Þ mode (dashed red line). Top panels show cumulative distribution functions, and bottom panels give the corresponding
probability distribution function. The leftmost vertical line denotes a faithfulness F ¼ 0.994, corresponding to 0.3% of systems for
NSNS (both waveforms), 1.6% for BHNS (both waveforms), 10.4% (RWF) and 10.7% (FWF) for BHBH, and 9.2% (RWF) and 9.9%
(FWF) for the 4th set. The other vertical lines correspond to the medians of the distributions, which are 1 − F ¼ 2.7 × 10−6 (RWF), and
1 − F ¼ 6 × 10−6 (FWF) for NSNS, 1 − F ¼ 7.6 × 10−5 (RWF), and 1 − F ¼ 8.3 × 10−5 (FWF) for NSBH, 1 − F ¼ 7.1 × 10−4

(RWF), and 1 − F ¼ 7.4 × 10−4 (FWF) for BHBH, and 1 − F ¼ 9.3 × 10−4 (RWF), and 1 − F ¼ 8.6 × 10−4 (FWF) for the 4th set.
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where fmin ¼ 10 Hz is aLIGO’s lower frequency cutoff,
fmax is the frequency that corresponds to an orbital
separation of 6M, and SnðfÞ is aLIGO’s design zero-
detuning, high power noise spectral density [68].
Figure 6 shows the distributions of 1 − F for 4 sets, each

containing 10,000 systems. The first 3 sets contain systems
with masses and spins corresponding to NSNS, BHNS, and
BHBH systems, respectively. The fourth set contains an
additional, less astrophysically motivated but useful to test
our model in the most challenging setting, type of system
where both masses were drawn from a log-flat distribution
ranging from 1 M⊙ to 20 M⊙, and both spin magnitudes
uniformly distributed in [0, 1]. We study 2 different types of
waveforms: full waveforms (FWF) contain all the known
harmonics in Eq. (75), while restricted waveforms (RWF)
contain only the dominant ðl ¼ 2; m ¼ 2Þ harmonic.
The agreement between our analytical waveform and the

numerical PN one is excellent for a wide range of
parameters. In the NSNS case we find that only 0.06%
(0.3%) of the systems have a faithfulness below the 0.965
(0.994) for both waveforms, while for BHNS systems, this
number is 0.33%(1.6%) for both waveforms. The percent-
age of systems below the nominal faithfulness threshold is
increased to 1.85%(10.4%) (RWF) and 1.85%(10.7%)
(FWF) in the case of BHBHs and 1.14%(9.2%) (RWF)
and 1.26%(9.9%) (FWF) for the 4th generic set. This
increase is not unexpected, since precessional features are
more pronounced, and hence more difficult to model, when
the spins are large and the masses different. In the next
section we study the various sources of error in our
analytical waveform and quantify their effect. Table II
summarizes these results.

VII. SOURCE OF ERROR

The subthreshold systems of Fig. 6 can be split into two
rough categories: systems for which the faithfulness is very
low F ≲ 0.8, and systems for which the faithfulness is high,
but not high enough 0.8≲ F ≲ 0.994. Systems falling into
the first category can mainly be explained by the effect
described in Appendix E. For them the orbital angular
momentum becomes approximately (anti)aligned with the
total spin angular momentum at some point in the evolution
of the systems. In this case the PN expansion of Eq. (62)
becomes ill-defined. Our specific choice for the values of
D2 andD4 in Eqs. (63) and (64) to some extent ameliorates

this problem, yet it does not fully solve it. We have explored
many choices for D2 and D4, some even leading up to 8%
of systems with faithfulnesses below 0.96 in the BHBH
case. The particular values forD2 andD4 we employ in our
model [Eqs. (E3) and (E4)] yield the best results among all
the expressions we tested.
Systems falling in the second category can be modeled

accurately only for low SNR signals. The unfaithfulness of
these systems can be attributed to the various approxima-
tions we have used in our model construction. In order to
quantify the effect of each approximation, we retrace the
steps we followed in Sec. IV to add radiation reaction
effects to the exact precession solution of Sec III.
(1) Our first task when adding radiation reaction effects

is to specify a coordinate system. In Sec. IVA we
assume that Ĵ is constant and identify it with the ẑ
axis of our system.

(2) In Sec. IV B we use MSA to solve for the magnitude
of the total angular momentum J.

(3) In Sec. IV C we use MSA and a PN approximation
to solve for the total spin magnitude S.

(4) Finally, in Sec IV D we use the J and S obtained
above to solve for the precession angle ϕz.

Overall, the addition of radiation reaction effects requires
the identification of a coordinate system and the solution to
3 coupled differential equations. Below we perform each of
these steps numerically and each time compute matches for
BHBH systems in order to quantify the improvement. The
unfaithfulness distributions are given in Fig. 7, while the
inset focuses on the region of interest F ∈ ½0.9; 0.999� with
the vertical line denoting F ¼ 0.994. The different curves
in this figure represent the following:

TABLE II. Percentages of subthreshold systems encountered in
our analysis for each type of system.

Waveform Threshold NSNS BHNS BHBH HSNSBH

RWF 0.965 0.06% 0.33% 1.85% 1.14%
RWF 0.994 0.3% 1.6% 10.4% 9.2%
FWF 0.965 0.06% 0.33% 1.85% 1.26%
FWF 0.994 0.3% 1.6% 10.7% 9.9%
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FIG. 7. Cumulative distribution of 1 − F for waveforms
including different degrees of numerical and analytical calcu-
lations. The difference between these distributions is a quanti-
fication of the error from each analytic approximation we have
made. The inset shows the faithfulness range of interest
F ∈ ½0.9; 0.999�, while the vertical line denotes the faithfulness
threshold F ¼ 0.994. See the text for more details and discussion.
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(i) The black solid line corresponds to the fully analytic
waveform also studied in Fig. 6, with approximately
10% of the systems below 0.994.

(ii) The maroon dashed line was created with a wave-
form that evaluates Eq. (52) for ϕz with the ana-
lytical J and S, and then solves this equation
numerically, bringing the percentage of subthreshold
systems down to ∼4%.

(iii) The green dot-dashed line again uses a numerical
solution to Eq. (52) but where now S and J are
obtained and substituted by numerically solving their
corresponding differential equations.We stress that in
this version of the waveform, S and J are solved for
numerically only when used in Eq. (52). This corre-
sponds to the most accurate solution for ϕz possible
and results in ∼2% of subthreshold systems.

(iv) The blue dot-double-dashed line again uses the most
accurate ϕz from the previous waveform, and now
the numerical S is also used for the entire waveform.
This brings the percentage of subthreshold systems
down to ∼1%.

(v) Finally, the red dotted line is produced with a
waveform that solves for all ϕz, S, and J numeri-
cally. The faithfulness distribution for this waveform
is almost indistinguishable from the previous wave-
form with ∼1% of subthreshold systems.

The above results suggest a clear-cut way to improve our
model if a more faithful waveform model is required in the
future. The largest improvement would be obtained if we
found a more accurate solution to Eq. (52) for the
precession angle ϕz, either by improving the PN solution
to Eq. (61), or by taking Eq. (67) to higher order in MSA.
We have studied those two error sources separately, and
have found the former to dominate over the latter. The
second step would be to improve the solution for the total
spin magnitude by employing elements of MSA to solve
Eq. (22), or a more accurate PN prescription for Eq. (50) for
the phase of S. Finally, improving the solution for the
magnitude of the total angular momentum J will not affect
the waveform considerably.
Even with these improvements, we still have ∼1% of our

systems with F < 0.994. The only approximation we have
made for these systems is that the total angular momentum
has a fixed direction, and to verify that this approximation
indeed breaks, we studied 100 of these systems explicitly.
We evolved J⃗ and found that 2 of these systems undergo the
effect of transitional precession [19]. The remaining 98
systems do not undergo transitional precession but (i) have
parameters that are statistically consistent with what is
required for transitional precession (small mass ratios, large
and misaligned spin for the larger body, everything else
random), and (ii) the components Jx and Jy always remain
smaller than Jz, but by about an order of magnitude only.
Compare this with Fig. 2 where Jx and Jy remain at least
3 orders of magnitude below Jz for all frequencies.

As a concluding remark, we should mention the effect of
the inclination angle L · N on our results. It is well known
that binaries observed approximately edge-on (L · N ∼ 0)
exhibit the largest precessional effects. We indeed find that
all other things being equal, the more edge-on the binary is,
the lower its faithfulness. This is because when preces-
sional effects become more pronounced, a better and better
modeling of them is required in order to achieve a certain
goodness of fit. In other words, inclination does not cause
problems on its own, but rather it amplifies preexisting
ones, an effect also observed in [37]. We should note,
however, that edge-on systems are less likely to be detected
by aLIGO due to selection effects [69].

VIII. DISCUSSION

We have constructed the first closed-form fully analytic
GW template in the frequency domain that can accurately
model quasicircular systems of generic masses, spin
magnitudes, and spin orientations in the inspiral phase.
We expand the exact solution to the precession equations in
the absence of radiation reaction derived by Kesden et al.
[10] to include radiation reaction using elements from
multiple scale analysis. This allows us to derive the first
closed-form time-domain GW model valid for generic
inspirals. We then use the method of shifted uniform
asymptotics to transform this waveform from the time
domain to the frequency domain.
The resulting waveform is ideal for extracting parameters

from generically precessing quasicircular inspirals as dem-
onstrated by a Monte Carlo study of 40,000 system; only
0.8%(5.4%) of them had a faithfulness with a numerical PN
waveform that solves the precession equations numerically
below 0.965(0.994). The remaining inaccuracies of our
model can be mapped back to specific assumptions we
madewhile solving the spin-precession equations including
radiation reaction. Analytical understanding of all these
assumptions and the elements that enter our waveform
construction enable us to improve the accuracy of our
model if deemed necessary when more sensitive GW
detector networks become available. This is, perhaps, the
most attractive feature of having analytic control over
complicated processes like spin-precession.
Finally, analytic methods have the potential to be much

faster than numerical ones, while still encompassing all
precessional effects. We estimate that our analytic SUA
waveform can be up to 15 times faster to evaluate than the
numerical SUA waveform in certain regions of the param-
eter space. Interestingly, the region of the parameter space
where the analytic SUA waveform presents the maximum
improvement over the numerical SUA waveforms (the
BHBH case) is distinct from the region where the numerical
SUAwaveform is much faster than fully numerical PN time-
domain models (the NSNS case) [17]. This suggests that a
hybrid model where the numerical or the analytical SUA is
called depending on the system’s mass can achieve both
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high accuracy and numerical efficiency. Further improve-
ment could be obtained through reduced order modeling
and reduced order quadrature integration in data analysis
implementations [70]. We leave such studies to future work.
As a final remark, we note that our results lay the

framework for the construction of full inspiral-merger-
ringdown (IMR) waveforms following similar procedures
as IMRPhenomP [23,33,34]. This is a promising avenue for
future research since such an IMR waveform has the
potential to be more accurate than the IMRPhenomP due
to more accurate description of precessional dynamics, as
well as faster than SEOBNRv3 [29] due to the analytic
treatment of the inspiral dynamics.
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APPENDIX A: COEFFICIENTS OF _v

The coefficients of the evolution of the PN parameter v
as defined in Eq. (4) are

g0 ¼
1

a0
; ðA1Þ

g2 ¼ −
a2
a0

; ðA2Þ

g3 ¼ −
a3
a0

; ðA3Þ

g4 ¼ −
a4 − a22

a0
; ðA4Þ

g5 ¼ −
a5 − 2a3a2

a0
; ðA5Þ

g6 ¼ −
a6 − 2a4a2 − a23 þ a32

a0
; ðA6Þ

gl6 ¼ −
3b6
a0

; ðA7Þ

g7 ¼ −
a7 − 2a5a2 − 2a4a3 þ 3a3a22

a0
; ðA8Þ

with all other terms vanishing. The coefficients fai; big are
given in Appendix A of [39]. The spin couplings in the
above expressions are evaluated with all angular momenta
averaged over one precession cycle using the solution of
Secs. III and IV. The error induced by this is of 4PN order,
higher that the order to which we know the _v expansion.
Explicitly, we use

S1 · L̂ → hS1 · L̂ipr ¼
c1ð1þ qÞ − qηξ

ηð1 − q2Þ ; ðA9Þ

S2 · L̂ → hS2 · L̂ipr ¼ −q
c1ð1þ qÞ − ηξ

ηð1 − q2Þ ; ðA10Þ

S1 · S2 → hS1 · S2ipr ¼
S2av
2

−
S21 þ S22

2
; ðA11Þ

ðS1 · L̂Þ2 → hðS1 · L̂Þ2ipr ¼ hS1 · L̂i2pr þ
ðS2þ − S2−Þ2v20
32η2ð1 − qÞ2 ;

ðA12Þ

ðS2 · L̂Þ2 → hðS2 · L̂Þ2ipr ¼ hS2 · L̂i2pr þ
q2ðS2þ − S2−Þ2v20
32η2ð1 − qÞ2 ;

ðA13Þ

ðS1 · L̂ÞðS2 · L̂Þ → hðS1 · L̂ÞðS2 · L̂Þipr
¼ hS1 · L̂iprhS2 · L̂ipr −

qðS2þ − S2−Þ2v20
32η2ð1 − qÞ2 ; ðA14Þ

where v0 corresponds to the value of v at the initial
time, ξ, S2av, c1 are defined in Eqs. (7), (45), and (41)
respectively, and S2þ, S2− are the roots of the right-hand side
of Eq. (21).

APPENDIX B: COEFFICIENTS
OF THE PRECESSION SOLUTION

Below, we provide explicit expressions for the coeffi-
cients appearing in the precession solution of Sec. III.
The coefficients of Eq. (21) are

A ¼ −
3

2
ffiffiffi
η

p v6ð1 − ξvÞ; ðB1Þ

B¼ ðL2þS21Þqþ 2Lξ− 2J2−S21−S22þ
L2þS22

q
; ðB2Þ

C ¼ ðJ2 − L2Þ2 − 2LξðJ2 − L2Þ

− 2
1 − q
q

ðS21 − qS22ÞL2 þ 4ηL2ξ2

− 2δmðS21 − S22ÞξLþ 2
1 − q
q

ðqS21 − S22ÞJ2; ðB3Þ
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D ¼ 1 − q
q

ðS22 − qS21ÞðJ2 − L2Þ2 þ δm2

η
ðS21 − S22Þ2L2

þ 2δmLξðS21 − S22ÞðJ2 − L2Þ: ðB4Þ

The coefficients of Eq. (30) are

a ¼ 1

2
v6
�
1þ 3

2η
ð1 − ξvÞ

�
; ðB5Þ

c0 ¼
3

4
ð1 − ξvÞv2

�
η3 þ 4η3ξv

−2η½J2 − S2þ þ 2ðS21 − S22Þδm�v2

−4ηξðJ2 − S2þÞv3 þ
ðJ2 − S2þÞ2

η
v4
�
; ðB6Þ

c2 ¼ −
3η

2
ðS2þ − S2−Þ

�
1þ 2ξv −

J2 − S2þ
η2

v2
�
ð1 − ξvÞv4;

ðB7Þ

c4 ¼
3

4η
ðS2þ − S2−Þ2ð1 − ξvÞv6; ðB8Þ

d0 ¼ −½J2 − ðLþ SþÞ2�½J2 − ðL − SþÞ2�; ðB9Þ

d2 ¼ −2ðS2þ − S2−ÞðJ2 þ L2 − S2þÞ; ðB10Þ

d4 ¼ −ðS2þ − S2−Þ2: ðB11Þ

The coefficients of Eq. (31) are

Aϕ ¼ Aþ c4
d4

; ðB12Þ

Bϕ ¼
�
c4
d4

−
c0 þ c2 þ c4
d0 þ d2 þ d4

�
; ðB13Þ

Cϕ ¼ C1 þ C2; ðB14Þ

Dϕ ¼ C1 − C2; ðB15Þ

nc ¼ 2
d0 þ d2 þ d4
2d0 þ d2 þ sd

; ðB16Þ

nd ¼
2d0 þ d2 þ sd

2d0
; ðB17Þ

where

C1 ¼ −
1

2

�
c0
d0

−
c0 þ c2 þ c4
d0 þ d2 þ d4

�
; ðB18Þ

C2 ¼
c0ð−2d0d4 þ d22 þ d2d4Þ − c2d0ðd2 þ 2d4Þ

2d0ðd0 þ d2 þ d4Þsd
þ c4d0ð2d0 þ d2Þ
2d0ðd0 þ d2 þ d4Þsd

; ðB19Þ

sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d22 − 4d0d4

q
: ðB20Þ

APPENDIX C: COEFFICIENTS OF ψ

The coefficients in Eq. (51) are

ψ1 ¼ 3
2ξη2 − c1
ηδm2

; ðC1Þ

ψ2 ¼
3g2
g0

þ 3

2η3

�
2Δ − 2

η2

δm2
S2av − 10

η

δm4
c21

þ2
η2

δm2

7þ 6qþ 7q2

ð1 − qÞ2 c1ξ −
η3

δm2

3þ 4qþ 3q2

ð1 − qÞ2 ξ2

þ η

ð1 − qÞ2 ½qð2þ qÞS21 þ ð1þ 2qÞS22�
�
; ðC2Þ

where

Δ¼
��

c21η
qδm4

−
2c1η3ð1þqÞ

qδm4
ξ−

η2

δm4
½δm2S21 − η2ξ2�

�

×

�
c21η

2

δm4
−
2c1η3ð1þqÞ

δm4
ξ−

η2

δm4
½δm2S22 − η2ξ2�

��
1=2

:

ðC3Þ

APPENDIX D: COEFFICIENTS OF ϕz

For the PN expansions of the coefficients of Eq. (65) we
define

Rm ¼ S2þ − S2−; ðD1Þ

cp ¼ ðS2þη2 − c21Þ; ðD2Þ

cm ¼ ðS2−η2 − c21Þ; ðD3Þ

a1 ¼
1

2
þ 3

4
η; ðD4Þ

a2 ¼ −
3

4η
ξ; ðD5Þ

ad ¼
−3ðS21 − S22Þ η

δm þ 3 c1
η ðc1 − 2ξη2Þ

4
ffiffiffiffiffiffiffiffiffifficpcm

p ; ðD6Þ
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cd ¼ −
3

128

Rm

η
ffiffiffiffiffiffiffiffiffifficpcm

p ; ðD7Þ

hd ¼
c1
η2

�
1 −

cp þ cm
2

ffiffiffiffiffiffiffiffiffifficpcm
p

�
; ðD8Þ

Ωz;0 ¼ a1 þ ad; ðD9Þ

Ωz;1 ¼ a2 − adξ − adhd; ðD10Þ

Ωz;2 ¼ adhdξþ cd − adfd þ adh2d; ðD11Þ

Ωz;3 ¼ ðadfd − cd − adh2dÞðξþ hdÞ þ adfdhd; ðD12Þ

Ωz;4 ¼ ðcd þ adh2d − 2adfdÞðhdξþ h2d − fdÞ − adf2d;

ðD13Þ

Ωz;5 ¼ ðcd − adfd þ adh2dÞfdðξþ 2hdÞ
− ðcd þ adh2d − 2adfdÞh2dðξþ hdÞ − adf2dhd;

ðD14Þ

With these definitions, the coefficients of Eq. (65) are

hΩzið0Þ ¼ 3g0Ωz;0; ðD15Þ

hΩzið1Þ ¼ 3g0Ωz;1; ðD16Þ

hΩzið2Þ ¼ 3ðg0Ωz;2 þ g2Ωz;0Þ; ðD17Þ

hΩzið3Þ ¼ 3ðg0Ωz;3 þ g2Ωz;1 þ g3Ωz;0Þ; ðD18Þ

hΩzið4Þ ¼ 3ðg0Ωz;4 þ g2Ωz;2 þ g3Ωz;1 þ g4Ωz;0Þ; ðD19Þ

hΩzið5Þ ¼ 3ðg0Ωz;5 þ g2Ωz;3 þ g3Ωz;2 þ g4Ωz;1 þ g5Ωz;0Þ:
ðD20Þ

The functions ϕðnÞ
z in Eq. (66) are

ϕð0Þ
z ¼ J

η4

�
c21
2
−
c1η2

6v
−
S2avη2

3
−

η4

3v2

�
−
c1
2η

�
c21
η4

−
S2av
η2

�
l1;

ðD21Þ

ϕð1Þ
z ¼ −

J
2η2

ðc1 þ ηLÞ þ 1

2η3
ðc1 − η2S2avÞl1; ðD22Þ

ϕð2Þ
z ¼ −J þ

ffiffiffiffiffiffi
S2av

q
l2 −

c1
η
l1; ðD23Þ

ϕð3Þ
z ¼ Jv − ηl1 þ

c1ffiffiffiffiffiffi
S2av

p l2; ðD24Þ

ϕð4Þ
z ¼ J

2S2av
vðc1 þ vS2avÞ −

1

2ðS2avÞ3=2
ðc21 − η2S2avÞl2;

ðD25Þ

ϕð5Þ
z ¼ −Jv

�
c21

2ðS2avÞ2
−

c1v
6S2av

−
v2

3
−

η2

3S2av

�

þ c1
2ðS2avÞ5=2

ðc21 − η2S2avÞl2; ðD26Þ

where we have defined

l1 ¼ ln ðc1 þ Jηþ LηÞ; ðD27Þ

l2 ¼ ln ðc1 þ J
ffiffiffiffiffiffi
S2av

q
vþ S2avvÞ; ðD28Þ

In the above expressions we keep the roots S2þ and S2−
constant and equal to their initial value. The complexity
of the roots’ PN expansion makes its use prohibitive.
Note that we do not expand the roots at all, but rather use
their initial value as a formof partial resummation to increase
the accuracy of our results. We find that this approximation
does not affect our final result for the GW significantly.

APPENDIX E: JUSTIFICATION
OF THE ϕz CALCULATION

The precession-averaged h _ϕzipr given in Eqs. (62)–(64)
is exact. In principle, we could calculate D2 and D4 as
functions of v, substitute them in Eq. (62), and carry out a
PN expansion and integration to obtain hϕzipr ¼ ϕz;−1.
Though this approach should work, in practice we run

into 2 considerable problems. First, the resulting ϕz;−1 is ill-
behaved in the small mass ratio limit, despite never having
assumed comparable masses. Second, ϕz;−1 diverges when,
at any point in the evolution of a precessing system, the
total spin angular momentum is (anti)aligned with the
orbital angular momentum. We stress that this does not
mean that S is approximately (anti)aligned with L all the
time; a brief moment of (anti)alignment suffices.
Both issues are not caused by real physical divergences

in Ωz. First, at no point did we assume comparable masses.
The second issue is more subtle. It might be true that the
denominator of Ωz vanishes if S and L are (anti)aligned.
However, the binary (and ϕz) is well behaved at the
moment of (anti)alignment since the numerator of Ωz
vanishes too, leading to a 0=0 type situation10

We argue that even though Eq. (62) is well behaved in
both the small mass ratio and the (anti)alignment between S
and L limit, the same need not be true for its PN expansion.
Consider the following function11

10We have verified that this is the case both analytically and
numerically.

11The similarity between our toy function and J given in
Eq. (41) is not accidental.
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hðx; h2; h1; h0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h22
x2

þ h1
x
þ h0

s
; ðE1Þ

and its expansion around x ¼ 0

hexpðx; h2; h1; h0Þ ¼
h2
x
þ h1
2h2

−
h21 − 4h0h4

8h32
xþOðx2Þ:

ðE2Þ

Clearly, hðxÞ is finite as h2 → 0. However, hexpðxÞ is not,
and the h2 → 0 limit is worse and worse as we keep more
terms in the x expansion.
This is exactly the situation we encounter with Eq. (62)

both in the small mass ratio limit, and in the approximate S
and L (anti)alignment limit. Fixing the small mass ratio
limit is straightforward: we identify the problem as origi-
nating from expanding the J multiplying the entire right-
hand side of Eq. (62), and factor it out. This is the reason
behind the form Eq. (65) has.
The second problem is more complicated. We can still

identify the terms that, when expanded, cause the limit
when S and L are (anti)aligned to be problematic. However,
if we do not expand them, we can no longer perform the
integral of Eq. (65). Using this fully expanded hϕzipr causes
5% of the systems studied here to have faithfulnesses below
threshold (see Sec. VI).
In light of this, we tried a number of alternative,

approximate methods for calculating hϕzipr. We discovered
that if we keep the terms D2 and D4 in Eqs. (63) and (64),
our results are greatly improved by about an order of
magnitude: only 0.8% of the systems are below the
faithfulness threshold (see Sec. VI). We examined a
number of different definitions for D2 and D4, from using
their initial value as given directly from Eqs. (63) and (64)
to retaining different orders in a PN expansion, but
evaluated at the initial time. We found out that these
methods give comparable results, so we choose, for
simplicity, to setD2 andD4 equal to their leading PN order:

D2 →
cp −

ffiffiffiffiffiffiffiffiffifficpcm
p

Rmη
2

; ðE3Þ

D4 →
cpðcp − ffiffiffiffiffiffiffiffiffifficpcm

p Þ
R2
mη

4
−

ffiffiffiffiffiffiffiffiffifficpcm
p
2Rmη

2
; ðE4Þ

where cp, cm, Rm are defined in Appendix D.
We expect this problem to be solved if we consistently

PN expand both ðD2; D4Þ and the roots S2þ, S2− (see
Appendix D). The complexity of the roots’ expansion
poses some serious problems in this calculation and we
here opt for the approach described above and the partial
resummation of the roots explained in Appendix D. This
approach yields satisfactory results for the waveform
precision required for aLIGO (see Fig. 6), but can be

improved if need be through expansions appropriate for
these systems, like a small misalignment between S and L
expansion.

APPENDIX F: COEFFICIENTS OF ζ

The angle ζ that enters in the transformation to the
waveform to the frame corotating with the precession of L
can be calculated by solving

_ζ ¼ _ϕz cos θL ¼ Ωz cosϕL ≡Ωζ: ðF1Þ

The solution to this equation can be obtained
through MSA and it is very similar to the solution to
Eq. (30)

ζ ¼ ζ−1 þ ζ0; ðF2Þ

where

ζ−1 ¼
Z

hΩζiprðtrrÞdtrr; ðF3Þ

ζ0 ¼
Z

½Ωζðtpr; trrÞ − hΩζiprðtrrÞ�dtpr: ðF4Þ

Following the same steps as in Sec. IV D 1 and for
reasons explained in Appendix E we find

ζ−1 ¼ ηv−3
X5
i¼0

hΩζiðnÞvn þ ζ0−1; ðF5Þ

where ζ0−1 is a constant of integration and we have defined

hΩζið0Þ ¼ −g0Ωζ;0; ðF6Þ

hΩζið1Þ ¼ −
3

2
g0Ωζ;1; ðF7Þ

hΩζið2Þ ¼ −3ðg0Ωζ;2 þ g2Ωζ;0Þ; ðF8Þ

hΩζið3Þ ¼ 3ðg0Ωζ;3 þ g2Ωζ;1 þ g3Ωζ;0Þ; ðF9Þ

hΩζið4Þ ¼ 3ðg0Ωζ;4 þ g2Ωζ;2 þ g3Ωζ;1 þ g4Ωζ;0Þ; ðF10Þ

hΩζið5Þ ¼
3

2
ðg0Ωζ;5 þ g2Ωζ;3 þ g3Ωζ;2 þ g4Ωζ;1 þ g5Ωζ;0Þ;

ðF11Þ

and

Ωζ;0 ¼ Ωz;0; ðF12Þ

Ωζ;1 ¼ Ωz;1 þ
c1
η2

Ωz;0; ðF13Þ

CONSTRUCTING GRAVITATIONAL WAVES FROM GENERIC … PHYSICAL REVIEW D 95, 104004 (2017)

104004-21



Ωζ;2 ¼ Ωz;2 þ
c1
η2

Ωz;1; ðF14Þ

Ωζ;3 ¼ Ωz;3 þ
c1
η2

Ωz;2 þ gd; ðF15Þ

Ωζ;4 ¼ Ωz;4 þ
c1
η2

Ωz;3 − gdξ − gdhd; ðF16Þ

Ωζ;5 ¼ Ωz;5 þ
c1
η2

Ωz;4 þ gdhdξþ gdðh2d − fdÞ; ðF17Þ

where the Ωz;i’s, fd and hd are given in Appendix D and

gd ¼
3

64

R2
m

η3
c1 − η2ξffiffiffiffiffiffiffiffiffifficpcm
p : ðF18Þ

The first correction to MSA is given by

ζ0 ¼
AθL

_ψ
ðCϕ þDϕÞ þ 2d0

BθL

_ψ

�
Cϕ

sd − d2
−

Dϕ

sd þ d2

�
;

ðF19Þ

where Cϕ, Dϕ, d0 and d2 are given in Appendix D, _ψ is
Eq. (51), and

AθL ¼ J2 þ L2 − S2þ
2JL

; ðF20Þ

BθL ¼ S2þ − S2−
2JL

: ðF21Þ

APPENDIX G: FAITHFULNESS REQUIREMENT

The agreement between two waveforms h, h̄ with
parameters λ⃗ is measured in terms of the faithfulness F

Fðh; h̄Þ ¼ ðhjh̄Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞðh̄jh̄Þ

p : ðG1Þ

In the high SNR regime, a typical waveform sample from
the posterior distribution function [71] is given by

h̄ ¼ hþ h;iΔλi þ
1

2
h;ijΔλiΔλj þ � � � ðG2Þ

where the Δλ⃗ ¼ λ⃗ − λ⃗0 are described by the multivariate
normal distribution

pðΔλ⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΓ=2πÞ

p
e−ΓijΔλiΔλj=2; ðG3Þ

with Γij ¼ ðh;ijh;jÞ and λ⃗0 are the true parameters. Treating
the Δλi as small and expanding we get

F ¼ 1 −
1

2
gijΔλiΔλj þ � � � ðG4Þ

where

gij ¼
ðhijhjÞ
ðhjhÞ −

ðhjh;iÞðhjh;jÞ
ðhjhÞ2 : ðG5Þ

Using E½ΔλiΔλj� ¼ Cij ≃ Γ−1
ij , we find

E½F�≃ 1 −
ðD − 1Þ
2SNR2

; ðG6Þ

for the expectation value of the faithfulness, where D is the
dimension of λ⃗. The factor of D comes from CijΓij ≃ δii ¼
D and the factor of −1 from the ðhjh;iÞðhjh;jÞ=ðhjhÞ2
removing the dependence on the overall amplitude of the
waveform, thus reducing the dimensions count by one.
The expected value of the faithfulness in Eq. (G6)

describes the impact of statistical errors. In deciding
how accurate a waveform model needs to be, we should
at a minimum demand that the systematic errors from
mismodeling are smaller than the statistical errors. If we
wish to model spin-precessing binaries with D ¼ 8 intrin-
sic parameters for systems with SNRs up to 50 then the
modeling unfaithfulness should be below 8=5000 ¼
0.0016 (there is no −1 for just intrinsic parameters, the
amplitude is extrinsic). For a SNR of 25 we obtain the
faithfulness requirement of 0.994 that we used in Sec. VI.
To calculate the variance, it is easier to work with the

unfaithfulness, 1 − F. The expectation of the square is
given by

E½ð1 − FÞ2� ¼ 1

4
gijgklE½ΔλiΔλjΔλkΔλl�

¼ 1

4
gijgklðCijCkl þ CikCjl þ CilCjkÞ

≃ 3ðD − 1Þ2
4SNR4

: ðG7Þ

Thus

var½1 − F� ¼ 2ðD − 1Þ2
4SNR4

: ðG8Þ

This shows that the average faithfulness is slightly less than
1-σ from a perfect faithfulness (σ=

ffiffiffi
2

p
to be precise). This

agrees with what we see when computing the distribution
of the match from MCMC waveform samples. The dis-
tribution is not Gaussian, and has a larger tail toward small
values of the match.
An alternative derivation of the faithfulness requirement

makes direct use of the posterior distribution function in the
case of uniform priors

pðλ⃗Þ ∼ e−
ðd−hjd−hÞ

2 ; ðG9Þ
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where d is the data. The peak of the posterior, evaluated at
the best-fit parameters is

pðλ⃗bfÞ ∼ e−
ðd−hbf jd−hbf Þ

2 ∼ e−
ðdjdÞþðhbf jhbf Þ−2ðd−hbf Þ

2

∼ e−
SNR2þSNR2−2SNR2FF

2 ∼ e−SNR
2ð1−FFÞ; ðG10Þ

where FF is the fitting factor, or the faithfulness maximized
over all model parameters. The posterior on the true
parameters is

pðλ⃗0Þ ∼ e−
ðd−h0 jd−h0Þ

2 ∼ e−SNR
2ð1−FÞ; ðG11Þ

From Eq. (G3) we can calculate the value of the multi-
dimensional posterior1 − σ away fromthebest-fit parameters

pðλ⃗1−σÞ ∼ e−
ΓijΔλ

iΔλj

2 ∼ e−
ΓijC

ij

2 ∼ e−
D
2 ; ðG12Þ

Assuming that the model can fit the data perfectly for
some parameters (an assumption that will lead to a
conservative faithfulness threshold) we set FF ¼ 1 and
requiring that the true parameters are less than 1 − σ away
from the best-fit ones we find

1 − F <
D

2SNR2
; ðG13Þ

where D is the number of parameters whose measurability
is affected by the model inaccuracy. For spin-precessing
models with 8 intrinsic parameters, D ¼ 8.
This derivation translates the results of [72] that were

written in terms of requirements on the GW amplitude and
phase to requirement on the faithfulness.
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