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We derive the classical null energy condition, understood as a constraint on the Ricci tensor, from the
second law of thermodynamics applied locally to Bekenstein-Hawking entropy associated with patches of
null congruences. The derivation provides evidence that the null energy condition, which has usually been
regarded as a condition on matter, is fundamentally a property of gravity.
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I. INTRODUCTION

The null energy condition (NEC) plays a critical role in
classical general relativity. It is used in proving a host of
gravitational theorems, from the area theorem that states
that classical black holes cannot shrink [1], to singularity
theorems that guarantee the existence of the big bang [2].
The NEC is also invoked in excluding bouncing cosmol-
ogies and exotic spacetimes containing traversable worm-
holes and time machines, which might otherwise be exact
solutions of Einstein’s equations [3–7]. And in asymptoti-
cally anti–de Sitter spaces, the validity of the NEC is
equivalent to a c-theorem in the holographic dual theory
[8]. The NEC is usually expressed as the condition

Tμνvμvν ≥ 0; ð1Þ

where vμ is any light-like vector. Here Tμν is the energy-
momentum tensor of matter, suggesting that the NEC
should be a property of matter. However, our best frame-
work for describing matter—quantum field theory—does
not appear to have a consistency requirement of the form of
Eq. (1), even as a classical limit. Moreover, several explicit
examples of effective theories that violate Eq. (1) but that
are nevertheless not in manifest conflict with the principles
of quantum field theory are now known. Thus the origin of
a vitally important aspect of general relativity has been
mysterious. With no apparent fundamental principle from
which the NEC flows, the validity of the NEC has been
called into question [9,10].
Motivated by this failure to derive the NEC in some

classical limit of quantum field theory, it has been proposed
that the NEC should be regarded as a property not purely of
matter but of a combined theory ofmatter and gravity [11]. In
such a theory, Einstein’s equations imply that theNECcan be
reformulated in a quite different, though equivalent, form as

Rμνvμvν ≥ 0; ð2Þ

where Rμν is the Ricci tensor. This is now a constraint on
spacetime geometry, rather than on energy densities; indeed,

it is this geometric form of the null energy condition, known
as the Ricci or null convergence condition, that is ultimately
invoked in gravitational theorems. Recently it has been
shown that precisely this condition can be derived from
string theory [11], which of course is a theory of both matter
and gravity. For a closed bosonic string propagating in an
arbitrary graviton-dilaton background, the Virasoro con-
straints of the effective action lead precisely to Eq. (2) in
the Einstein frame, including even the contractions with null
vectors. This is a very satisfying derivation of the null energy
condition for a number of reasons: it is another example of the
beautiful interplay between a worldsheet and spacetime, the
Virasoro constraints are none other than Einstein’s equations
in two dimensions, and there is a physical principle—
worldsheet diffeomorphism invariance—that is associated
with the null energy condition, which until now had been an
ad hoc condition lacking a clear origin.
Here we shall derive the NEC in an entirely different

way. Our premise is that gravity emerges from the coarse
graining of some underlying microscopic theory. This is
perhaps a more speculative starting point than string theory,
but the derivation has its appeal because it relies on a
universal theory, namely thermodynamics. A relation
between thermodynamics and the null energy condition
is already present in black hole physics. Recall that the
NEC is used in deriving the second law of thermodynamics
for black holes [1]. The logic runs as follows:

Tμνvμvν ≥ 0 ⇒ Rμνvμvν ≥ 0 ⇒ _θ ≤ 0 ⇒ θ ≥ 0

⇒ _A ≥ 0 ⇒ _S ≥ 0: ð3Þ

Here θ is the expansion of a pencil of null generators of a
black hole event horizon and the dot stands for a derivative
with respect to an affine parameter, which can be thought
of as time. The first arrow follows from Einstein’s equa-
tions, the second from the Raychaudhuri equation, the
third from the avoidance of horizon caustics, the fourth
from the definition of θ, and the last from the definition of
Bekenstein-Hawking entropy. Ideally, we would like to be
able to reverse all these arrows so that the NEC flows from
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the second law of thermodynamics, rather than the other
way around [12]. However, although the first and last
arrows can readily be reversed, provided we assume
Einstein gravity and the validity of the gravitational
equations, the remaining arrows do not appear reversible.
In particular, a serious problem with reversing the arrows
is that the second law is a global statement, whereas the
NEC is a local condition.
However, in an ingenious paper [13], Jacobson was able

to obtain Einstein’s equations, which are also local, from
essentially the first law of black hole thermodynamics. The
key idea was to assume that, in keeping with the univer-
sality of horizon entropy, the first law could be applied to
local Rindler horizons. Thus a global law was “gauged,”
which was a prerequisite for obtaining the local gravita-
tional equations of motion. In the same vein, we will show
that the null energy condition too, in the form of the Ricci
or null convergence condition, Eq. (2), comes out of
thermodynamics applied to a local holographic screen.
In a nutshell, just as Jacobson regarded the first law as an
input and obtained Einstein’s equations as an output
(reversing the laws of black hole mechanics, as it were),
we shall regard the second law as an input and obtain the
null energy condition as an output.
Note that we will consider only the classical null energy

condition. Much effort in the literature [14–19] has been
directed at proving a quantum null energy condition,
hTμνikμkν ≥ 0, or generalizing the concept to some kind
of averaged null energy condition. Indeed, the standard null
energy condition is known to be violated even by Casimir
energy. So why focus on the classical NEC? First, the
properties of the classical stress tensor are of independent
interest. Typically, whenever exotic matter is proposed in the
literature e.g. phantom fields, Galileons, ghost condensates,
etc., the gravitational consequences are worked out by
coupling Einstein gravity to the classical stress tensor of
suchmatter. So it is important to prove the generic properties
of this tensor. Second, in attempts to prove the quantum null
energy condition, the validity of the classical NEC is often
assumed–yet this needs to be proven. Third, it is not obvious
that the expectation value of the quantum stress tensor, as
computed, has any gravitational consequences. A quantum
null energy condition hTμνikμkν ≥ 0 would certainly be
meaningful if there were a semiclassical Einstein equation
of the form Gμν ¼ 8πGhTμνi. However, such an equation is
not known to have any rigorous derivation. By contrast,
whatever be the ultimate theory of quantummatter coupled to
quantum gravity, it surely admits a well-defined ℏ ¼ 0 limit
of classical gravity coupled to classical matter, which is the
situation considered here.

II. FROM THE SECOND LAW TO THE NEC

Before entering into the details, let us summarize the
logic of the derivation. First we will quote a statistical-
mechanical result about the nonpositivity of the second

time derivative of entropy. This is a very general result
which holds for virtually all near-equilibrium thermody-
namic systems. Next we will propose a prescription for
associating thermodynamic systems to patches of null
congruences in spacetime. Then we will show that, in the
vicinity of any point in spacetime, null congruences corre-
sponding to near-equilibrium thermodynamic systems can
always be found. By the quoted result, these then necessarily
have a nonpositive second time derivative of entropy.
Finally, substituting this into the Raychaudhuri equation
will imply the Ricci convergence condition, Eq. (2), which is
the geometric form of the null energy condition.
Consider then a finite thermodynamic system and let

Smax be its maximum coarse-grained entropy. For systems
already at equilibrium, S ¼ Smax, and _S, S̈ ¼ 0. For systems
approaching equilibrium, S < Smax and the second law
says that _S ≥ 0. Now, since the entropy tends to a finite
maximum value as it approaches thermal equilibrium, and
since _S ≥ 0, it seems intuitively reasonable that the first
time derivative of entropy will be a decreasing function of
time: S̈ ≤ 0. This inequality, which will be crucial below,
indeed holds for a great many systems of interest. For such
systems, the coarse-grained entropy satisfies

S ≥ 0; _S ≥ 0; S̈ ≤ 0: ð4Þ

For example, consider a clump of particles, with some
initial Gaussian density distribution, ρ ∼ expð−r2=2Þ,
diffusing outwards with diffusion constant D. The dif-
fusion equation implies that ρðr;tÞ¼ð2πð1þ2DtÞÞ−3=2 ×
expð− r2

2ð1þ2DtÞÞ. It is then easy to check that the entropy,

S ¼ −
R
dVρ ln ρ, obeys S̈ ¼ − 2

3
_S2 at all times, so that

Eq. (4) holds.
In fact, this is a very general property. As reviewed in the

Appendix, it can be shown quite generally [20] that S̈ ≤ 0
for virtually all near-equilibrium systems approaching
internal equilibrium. That is, finite, closed systems at late
times inevitably obey Eq. (4). By near equilibrium, we
mean systems that are characterized by ð _S=SÞ2 ≪ jS̈=Sj,
which follows from S ∼ Smax in this context. For systems
that are not near equilibrium, S̈ can generically have either
sign and hence Eq. (4) may or may not hold; the diffusing
gas is an example of a system in which Eq. (4) does hold
even though the system is never near equilibrium unless the
gas is placed in a finite volume. But we emphasize that, as
shown in the Appendix, Eq. (4) is guaranteed to hold for
near-equilibrium systems.
Next, let us attempt to connect thermodynamics to local

regions of spacetime. The motivation is as follows. The
Bekenstein-Hawking entropy formula associates entropy to
the area of black hole horizons. The formula is universal,
applying to the horizons of all kinds of black holes in any
number of dimensions. It even applies to de Sitter horizons.
But most strikingly, the formula is also considered to hold
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(as an entropy density) for acceleration horizons. Since such
horizons could be anywhere, this suggests that there might
be a local entropy associated with the areas of patches of
certain null surfaces. The idea of emergent gravity is to
assume that this local entropy is similar to entropy in
statistical-mechanical systems. That is, we assume that
gravitational entropy arises as the coarse-grained entropy
of some microscopic system of Planckian degrees of free-
dom associated with patches of certain null surfaces. What
these degrees of freedom are is unknown and also largely
irrelevant. It is not even clear whether these degrees of
freedom live in spacetime or, because they have to account
for an entropy that scales as an area, in some dual space in
one lower dimension. We do know that for stationary
horizons (including de Sitter and Rindler horizons), there
is also an associated temperature. It therefore seems
natural to assume that the underlying microscopic system
is in fact a thermodynamic system. These two points are
the basis for the idea that gravity might be described
locally by some dual thermodynamic system. Despite
little being known about the underlying system, the
emergent gravity paradigm has met with great success
due to Jacobson’s remarkable result [13] that Einstein’s
equations follow from what is essentially the first law of
thermodynamics. Here, the only feature we will need to
assume is that the underlying system either is already at,
or is approaching, internal equilibrium via the second law
of thermodynamics. Since the second law of thermody-
namics is perhaps the most universal law in physics, this is
not much of an assumption; we merely need to assume
that the system is closed over the time scales of interest.
Moreover, since the idea is that the system is dual to an
infinitesimal region of spacetime, the requirement that it
be closed over infinitesimal times also seems natural.
Next, we would like to have a prescription for how to

choose our null congruences. In Jacobson’s paper, the
thermodynamic system was taken to be instantaneously at
equilibrium, and hence the corresponding null congruence
was chosen to be a local Rindler horizon, with vanishing
expansion and shear at the point of interest. Here we are
interested in the second law, so we allow for nonequili-
brium systems with increasing entropy. Correspondingly,
we allow our congruences to have positive, or at least non-
negative, local expansion. Our prescription then is very
simple: we postulate that every noncontracting infinitesi-
mal open patch of the integral curves of every null geodesic
congruence is associated with a thermodynamic system
obeying the second law; the restriction to noncontracting
patches enforces the second law of thermodynamics,
which is the basic premise from which we will derive
the null energy condition. Through a given spacetime point
p with a given future-directed null vector vμ in the tangent
space at p, there are infinitely many noncontracting
geodesic congruences with tangent vμ at p. We associate
thermodynamic systems to all such infinitesimal patches.

A particular class of expanding congruences consists of
future light cones of earlier spacetime points. Among these,
a special limiting case consists of the integral curves
emanating from the future light cone of a point in the
infinite past of p. Near p, the patch of such a stationary
congruence is a local planar Rindler horizon, corresponding
to an equilibrium system. Thus our prescription covers both
equilibrium and nonequilibrium systems; it generalizes
Jacobson’s local Rindler horizons to patches whose local
expansion can be not only zero, but also positive.
With this background, we identify the gravitational

entropy of our infinitesimal patch with the coarse-grained
entropy of a thermodynamic system. Then

S ¼ A
4
: ð5Þ

It is implicit in this formula that classical physics is
described by Einstein gravity minimally coupled to matter;
for higher-curvature theories of gravity, or for nonmini-
mally coupled gravity [12], the Bekenstein-Hawking
entropy would have to be replaced by its appropriate
generalization, such as the Wald entropy [21]. Next, we
identify the affine parameter of the null congruencewith the
time parameter in our thermodynamic system. Then

_S ¼ A
4
θ; ð6Þ

and

S̈ ¼ A
4
ðθ2 þ _θÞ: ð7Þ

Here we are assuming that θ is roughly constant over the
surface; this is valid because the surface is infinitesimal.
Notice that the near-equilibrium condition, ð _S=SÞ2 ≪ jS̈=Sj,
translates to θ2 ≪ j_θj.
Now because the congruence is null, its generators obey

the optical Raychaudhuri equation:

_θ ¼ −
1

2
θ2 − σ2 þ ω2 − Rμνvμvν: ð8Þ

By hypersurface orthogonality, ω2 ¼ 0. The shear, σ, can
always be chosen to vanish at a point. Choose an initial
surface near or enclosing this point. In this region the shear
will be small compared to θ. Moreover, for small enough
affine parameter λ the shear will remain small compared to θ.
Then, for small times, σ2 is negligible. We therefore drop the
σ and ω terms from Raychaudhuri’s equation. Then we have

Rμνvμvν ¼ −ð_θ þ θ2Þ þ 1

2
θ2

¼ −
S̈
S
þ 1

2

�
_S
S

�2

: ð9Þ
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Now, for systems that are already at equilibrium, _S and S̈ are
both zero. Hence

Rμνvμvν ¼ 0: ð10Þ

Next, consider systems approaching equilibrium. Then
_S > 0. For systems that are far from equilibrium, S̈ can
have either sign. Therefore, for expanding patches that
correspond to far-from-equilibrium thermodynamic systems,
the two terms on the right ofEq. (9) could have different signs
so that nothing can be inferred about the sign of Rμνvμvν

without knowing the precise values of _S and S̈; no general
statement can be made for such systems. However, for
patches that correspond to near-equilibrium systems, we
are guaranteed that S̈ ≤ 0. The existence of such systems
would guarantee that Rμνvμvν ≥ 0.
To complete the proof, we show the existence of such

congruences by construction. In the vicinity of the point p,
Rμνvμvν is a constant, namely RμνðpÞvμvν. Call this
constant C. We will shortly determine the sign of C from
thermodynamics. Solving the Raychaudhuri equation for a
shear-free congruence, we find

θ ¼
ffiffiffiffiffiffi
2C

p
tan

�
−

ffiffiffiffi
C
2

r
λþ b

�
; ð11Þ

where b is a constant of integration; different choices of b
correspond to different congruences. Choosing b ¼ 0, we
see that θ vanishes for λ ¼ 0. Suppose we consider some
open patch for very small λ (but not including the point
λ ¼ 0, where the sign of θ changes). Then

θ ≈ −Cλ; _θ ≈ −C: ð12Þ

If θ ¼ _θ ¼ 0 then C ¼ 0; stationary (equilibrium) con-
gruences require Eq. (10). Otherwise, since λ is chosen
to be small, we see that θ2 ≪ j_θj. This translates to
ð _S=SÞ2 ≪ jS̈=Sj, which means that the system is indeed
near equilibrium. We have thus shown, by explicit solution
of the Raychaudhuri equation, that congruences corre-
sponding to stationary (equilibrium) or near-equilibrium
systems exist everywhere.
But if the system is near equilibrium, then we know from

statistical mechanics that S̈ < 0. By Eq. (7), this in turn
means _θ < 0, so that C > 0, which is to say

Rμνvμvν > 0: ð13Þ

Therefore, for both equilibrium and nonequilibrium
thermodynamic systems, we find Rμνvμvν ≥ 0. This is
precisely the geometric form of the null energy condition
(2). Since vμ is any arbitrary future-directed null vector, this
establishes the null energy condition.

III. DISCUSSION

The null energy condition was initially proposed as a
plausible but ad hoc requirement on matter. This condition,
which does not seem to follow from any first principles, has
sweeping consequences when matter is coupled to gravity.
Here we have taken a different view: we regard the null
energy condition not as an ad hoc characteristic ofmatter, but
as a fundamental property of gravity. Moreover, we have
shown that this property, in the formof theRicci convergence
condition, follows directly from an assumption that some
underlying conventional nongravitational microphysics
accounts for the Bekenstein-Hawking entropy and obeys
the second law of thermodynamics. It is remarkable that the
pointwise classical null energy condition, which in its matter
form has so far been impossible to derive from quantum field
theory, follows in its geometric form so readily from the
thermodynamics of emergent gravity. It is a satisfying result
because the universality of the null energy condition—which
is supposed to hold for all physical spacetimes—is traced to
another universal condition, namely the second law of
thermodynamics.
In this work, our underlying premise has been that all

noncontracting infinitesimal open patches of the integral
curves of null geodesic congruences can be associated with
thermodynamic systems. How then, should we interpret
geodesic congruences that are locally contracting? One can
imagine several alternatives. First, it may well be that the
existence of congruences with θ < 0 (or in which θ changes
sign) merely indicates that our premise is wrong. This is
certainly a logical possibility. But the same critique could
be applied to Jacobson’s original paper, which restricted
discussion to patches of null congruences with vanishing θ
(“local Rindler horizons”), an even more restrictive set of
congruences than the one we consider. In both cases,
however, accepting the premise leads to a nontrivial result
(Einstein’s equations, null energy condition). Perhaps one
could regard this as evidence for the assumption. Second, it
may be that the correct way to associate thermodynamics
with geometry is to start from the microscopic system. In
this case, not every geometric surface or congruence need
correspond to something that has a meaningful microscopic
interpretation. In this approach, if we start with microscopic
thermodynamic systems that obey the second law, we
should necessarily consider only null congruences with
θ ≥ 0, and we need not inquire about the interpretation of
other congruences. Third, it may be that all congruences,
even those with θ < 0, do in fact correspond to thermo-
dynamic systems. For suppose we have a contracting patch.
We could simply identify thermodynamic time with neg-
ative affine parameter, λ. Then θ < 0would still correspond
to _S > 0. The Raychaudhuri equation is invariant under
λ ↔ −λ, and so we would still obtain the null energy
condition as a consequence of thermodynamics; in this
way, patches in which θ < 0 can be accommodated as well.
That leaves only patches for which θ changes sign. But
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these are rare events of measure zero; one can speculate that
these may correspond to rare violations of the second law.
Finally, it is striking that there are two distinct deriva-

tions of the null energy condition, from worldsheet string
theory [11] as well as from thermodynamics in the
emergent gravity paradigm, and it would surely be illumi-
nating to understand why two derivations exist [22].
Another interesting question is whether this calculation
can be extended to higher-derivative gravity. Indeed it has
been nontrivial to derive the generalized Einstein’s equation
from thermodynamics [23,24]. In higher-derivative gravity,
Eqs. (1) and (2) are no longer equivalent so it is not clear
what the correct condition is [12,25]. Perhaps the approach
here will point the way.
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APPENDIX: S̈ ≤ 0

Here we reproduce a proof of Falkovich and Fouxon [20]
showing that typical near-equilibrium thermodynamic sys-
tems relaxing to equilibrium must have S̈ ≤ 0. Consider a
phase-space density ρ associated with a reduced description
of the system (due to coarse-graining). Suppose the system is
close to thermodynamic equilibrium. Then the phase-space
density is near the value ρ0 that maximizes the entropy:

ρ ¼ ρ0 þ δρ: ðA1Þ

Then

Sðρ0 þ δρÞ ¼ −
Z

ðρ0 þ δρÞ lnðρ0 þ δρÞ

≈ Smax −
Z �

ρ−10
ðδρÞ2
2

�
; ðA2Þ

where Smax ¼ −
R
ρ0 ln ρ0 and we have used the fact that

δSjρ0 ¼ 0. Near equilibrium, the time derivative of the
density fluctuation satisfies a linear Onsager relation:

δ_ρ ¼ L̂δρ; ðA3Þ

where the Onsager L̂ matrix is taken to be symmetric. As
Onsager showed [26], the symmetry of L̂ follows from the
principle of microscopic reversibility, so long as the macro-
scopic thermodynamic state variables are themselves time
invariant; this is the case for all but a few “exceptional”
systems of interest (usually involving magnetic fields). It
seems quite likely that the thermodynamics of the micro-
scopic theoryof gravity satisfies these time-invarianceproper-
ties; herewe assume that this is the case. (L̂ is presumably also
invariant under time translations.) When L̂ is symmetric, we
can expand δρ into orthonormal eigenfunctions of L̂:

δρ ¼
X
k

ffiffiffiffiffi
ρ0

p
akψk; ðA4Þ

where L̂ψk ¼ λkψk. Now

_S ¼ −
Z

ρ−10 δρðL̂δρÞ: ðA5Þ

Then the second law implies

−
X
j;k

Z
ðajakλkψ jψkÞ ≥ 0 ⇒ λk ≤ 0; ðA6Þ

for all k. That is, the second law indicates that the eigenvalues
of the operator L̂ are real (and nonpositive). Now consider the
second derivative:

S̈ ¼ −
Z

ρ−10 ½δ_ρðL̂δρÞ þ δρðL̂δ_ρÞ�

¼ −
Z

ρ−10 ½ðL̂δρÞ2 þ δρðL̂2δρÞ�: ðA7Þ

Inserting the eigenfunction expansion, we find

S̈ ¼ −2
X
k

a2kλ
2
k; ðA8Þ

so that [27]

S̈ ≤ 0: ðA9Þ

Note from Eq. (A6) that if _S ¼ 0 then S̈ ¼ 0 while if _S > 0

then S̈ < 0.
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