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We consider the prescription dependence of the Higgs effective potential under the presence of general
nonminimal couplings. We evaluate the fermion loop correction to the effective action in a simplified
Higgs-Yukawa model whose path integral measure takes simple form either in the Jordan or Einstein frame.
The resultant effective action becomes identical in both cases when we properly take into account the
quartically divergent term coming from the change of measure. Working in the counterterm formalism, we
clarify that the difference between the prescriptions I and II comes from the counter term to cancel
the logarithmic divergence. This difference can be absorbed into the choice of tree-level potential from the
infinitely many possibilities, including all the higher-dimensional terms. We also present another
mechanism to obtain a flat potential by freezing the running of the effective quartic coupling for large
field values, using the nonminimal coupling in the gauge kinetic function.
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I. INTRODUCTION

The Higgs inflation [1,2] is one of the closest to the best
fit point in the tensor-to-scalar ratio vs spectral-index plane
among various inflation models [3]. The model requires
rather a large nonminimal coupling ξ ∼ 105–6 between the
Higgs-squared H†H and the Ricci scalar R.1 On the other
hand, the observed value of the Higgs mass mH ¼
125.09� 0.24 GeV [10] indicates that the standard model
(SM) is at the criticality, that is, the Higgs potential
becomes small and nearly flat when the Higgs-field value
is close to the Planck-scale; see e.g. Refs. [11,12].
In the flat spacetime, the renormalized Higgs potential V

can be computed as a sum of the tree-level potential VR and
the loop correction ΔVR, both of them being finite but
depending on the renormalization scale μ, in the counter-
term formalism. Since V is independent of μ, we may
choose μ arbitrarily. A convenient choice is μ ∼ φ, where φ
is the Higgs field value. This choice minimizes ΔVR, and
then V can be approximated by the tree-level poten-
tial: V ≃ VRjμ¼φ.

When we couple this system with gravity, in general,
there arise corrections from the nonrenormalizable cou-
plings such as ξ. Under the presence of ξ, it has been said
that there are two different “prescriptions” in which the
renormalized Higgs potential is approximated by the tree-
level one with [13–15]

μ ∼

8<
:

φffiffiffiffiffiffiffiffiffiffi
1þξφ

2

M2
P

q in prescription I;

φ in prescription II;
ð1Þ

where MP ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.4 × 1018 GeV is the reduced
Planck scale. The prescriptions I and II are claimed to
correspond to a φ-independent ultraviolet (UV) cutoff in
the Einstein and Jordan frames, respectively [13,14]. Here
the Jordan frame refers to the original action with a
nonvanishing ξ, while the Einstein frame is the one without
ξ, obtained by the field redefinition of the metric gμν. Note
that if we introduce a UV cutoff as a φ-independent
constant in either frame, then it becomes dependent on
φ in the other frame. If we accept Eq. (1) literally, the value
of ξ can be as low as of order 10 in the prescription I
[12,16,17] and 102 in II [12,16], under the SM criticality.
The physical difference comes from the different large φ
limit of Eq. (1).
In this paper, we will revisit the relation between the UV

cutoff and the renormalization scale. We clarify that the
different choice of the cutoffs does not directly lead to the
difference in Eq. (1). We argue that, in the counterterm
formalism, it may be regarded as the choice of the counter-
term to cancel the logarithmic divergence, and can be
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1The earlier model [1,4–6], without the Einstein-Hilbert action

at the tree level, requires ξ ∼ 1034 [2]. In Ref. [1], the authors have
also studied the Higgs inflation model in Ref. [2] with essentially
the same parameter ξ ∼ 104 and λ ∼ ðξ=105Þ2 ∼ 10−2. See also
Refs. [7,8] for inflation with the nonminimal coupling, and
Ref. [9] for a possible issue with the large nonminimal coupling.
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absorbed into the choice of the tree-level potential from
infinitely many possibilities.
For that purpose, we consider the fermion loop correction

to the effective action in a simplified Higgs-Yukawa model.
This toy model captures the essential features necessary to
grasp what is going on in the realistic Higgs inflationmodel:
As in the realworld,we neglect theHiggsmass termwhich is
much smaller than the one from quartic coupling λ4 at the
large field values under consideration; the renormalization
group (RG) running of λ4 is governed by the loop of top-
quark, which is represented by ψ.2

This paper is organized as follows. In Sec. II, we obtain the
one-loop effective action in the Higgs-Yukawamodel both in
the Jordan and Einstein frames. We show that the effective
action is independent of the frame if we properly take into
account the change of the path integral measure. This change
ofmeasure affects only thequartically divergent term, andhas
nothing to do with the difference between the prescriptions I
and II that is related to the logarithmic divergence. In Sec. III,
in the counterterm formalism, we show that the difference
between prescriptions I and II comes from the choice of the
counterterm to cancel the logarithmic divergence. We point
out that this difference can be absorbed into the choice of the
tree-level potential, including higher dimensional terms, from
the infinite possibilities. In Sec. IV, we present a mechanism
that uses the gauge kinetic function to stop the running of
effective quartic coupling for largeφ as in the prescription I in
Eq. (1), which helps to further flatten the Higgs potential at
high scales. In the last section, we summarize our result.

II. QUANTUM CORRECTION
FROM FERMION LOOP

A. Frames at classical level

We first review the transformation from Jordan to
Einstein frames at the classical level. Our starting action
in Jordan frame is

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
FRðφÞR−

1

2
FΦðφÞgμν∂μφ∂νφ−VðφÞ

−FΨðφÞψ̄γμDμψ −FYðφÞyφψ̄ψ
�
; ð2Þ

where y is the Yukawa coupling3 and Dμ ¼ ∂μ þ Ωμ is the
general covariant derivative on spinor, with Ωμ being the

spin-connection. We assume that we may take a weak-field
limit φ → 0 so that we can expand the action around φ ¼ 0.
That is,

FXðφÞ ¼ 1þ ξX
φ2

M2
þ � � � ð3Þ

for X ¼ R, Φ, Ψ and Y, where ξX is the first-order
nonminimal coupling and M is the typical scale of UV
theory, such as the string scale.4 We have also assumed for
simplicity that the action is invariant under a chiral Z2

symmetry

φ → −φ; ψ → γ5ψ : ð4Þ
In general, the potential contains all the higher dimensional
terms:

VðφÞ ¼
X

n∶even;n≥0
λn

φn

Mn−4 : ð5Þ

By the field redefinition

gEμν ¼ FRðφÞgμν; ð6Þ

we obtain the Einstein-frame action5

S¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

P

2
RE −

1

2

�
FΦðφÞ
FRðφÞ

þ 3

2

�
MPF0

RðφÞ
FRðφÞ

�
2
�

× gμνE ∂μφ∂νφ−
VðφÞ

ðFRðφÞÞ2

−
FΨðφÞ

ðFRðφÞÞ3=2
ψ̄γμED

E
μψ −

FYðφÞ
ðFRðφÞÞ2

yφψ̄ψ

�
: ð7Þ

Here and hereafter, we put either sub- or superscript “E”
and “J” on quantities in the Einstein and Jordan frames,
respectively, when it is preferable; the ones without such
sub- or superscript are given in the Jordan frame unless
otherwise stated.
The original Higgs inflation [2] assumes that the poten-

tial (5) can be approximated by

VðφÞ ¼ λ4φ
4; ð8Þ

namely λn ≪ 1 for n ≠ 4, at around the scale
φ ∼M ≲MP.

6 That is, one assumes that all the higher
2In reality, the loop of gauge bosons also contributes to the

running of λ4. However, the φ-dependent effective mass of the
canonically normalized gauge boson, gφ, has the same FRðφÞ
dependence in the Einstein frame, gφ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
FRðφÞ

p
, as the effective

mass of fermion yφ which becomes yφ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
FRðφÞ

p
; see e.g.

Ref. [12]. Therefore the arguments for frame independence and
for prescription dependence should apply without modification
after we include gauge boson loops.

3This y is related to the SM top Yukawa coupling yt by
y ¼ yt=

ffiffiffi
2

p
.

4The nonminimal coupling ξ between Higgs and Ricci scalar in
the ordinary notation reads ξ ¼ ξRM2

P=M
2 [2]. See also Ref. [18]

for more arbitrary extension with large nonminimal couplings.
5In Ref. [12], the factor in front of the scalar kinetic term has a

typo and should read ½BA þ 3
2

M2
PA

02

A2 �.
6For the Higgs inflation under SM criticality [12,16], we

further assume the flatness λ4 ≪ 1 at high scales. In terms of the
quartic coupling λ in Refs. [12,16], the quartic coupling in this
paper is written as λ4 ¼ λ=4.
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order terms are small at φ ∼M so that V ≪ M4 ≲M4
P.

Combined with the assumption FR ¼ 1þ ξφ2=M2
P, the

potential in Eq. (7),

U ≔
V
F2
R
; ð9Þ

becomes constant in the large φ limit:

U →
λ4
ξ2

M4
P; ð10Þ

leading to the inflation. The field φ is not canonically
normalized in the Einstein frame, and the change of equation
ofmotionmust be taken into account; see AppendixA. Note
that it is important to terminate the expansion ofV andFR at
φ4 and φ2, respectively, in order to obtain this constant
potential.7

B. Frame dependence of UV cutoffs

Now we take into account the quantum corrections. In
this paper, we evaluate the one-loop correction to the
effective action from the fermion loop, leaving those from
the graviton and ϕ loops.8 We compute the corrections to λn
only. That is, we neglect all the corrections to other
couplings y, ξX, etc. and hence do not distinguish the bare
and renormalized couplings for them.
In a given frame, short-distance cutoff l is given by

l2 ¼ gμνΔxμΔxν: ð11Þ

Then the metric redefinition (6) relates the cutoff lengths in
two frames by

l2
J ¼ gJμνΔxμΔxν ¼

gEμν
FRðφÞ

ΔxμΔxν ¼ l2
E

FRðφÞ
: ð12Þ

That is, the UV cutoff scales are related by [13]

Λ2
E ¼ Λ2

J

FRðφÞ
: ð13Þ

As pointed out in Refs. [13], we may choose eitherΛJ orΛE
to be independent of φ, but not both.9 In the prescriptions I
and II in the original sense [13], we set ΛE and ΛJ to be a
constant, respectively.

C. Frame independence of effective action up to
quartic divergence

In general, the effective action should not depend on the
choice of frame if we properly take into account the change
of the path integral measure as well as that of the cutoff
(13). We demonstrate it at the one-loop level under the
simplifying assumption given above.
The one-loop effective action induced by the fermion

loop in the Jordan frame is given by

eiΔS
J
eff ≔

Z
DgJψDgJ ψ̄

×exp

�
i
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p
ψ̄ð−FΨDgJ −FYyφÞψ

�
: ð14Þ

There is no unique definition of the path integral measure
DgJψ . Here we take a simple measure that is induced from
the following distance in the functional space

∥δψ∥2gJ ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p
δψ̄δψ ; ð15Þ

which is invariant under the diffeomorphism.
Let us rewrite Eq. (14) into the path integral in Einstein

frame. Because we have

∥δψ∥2gJ ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p
δψ̄δψ

¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p
F−2
R δψ̄δψ ; ð16Þ

the functional measure satisfies

DgJψDgJ ψ̄ ¼ DgEψDgE ψ̄

�Y
x
F−2
R

�
−4

¼ DgEψDgE ψ̄ exp½−4 Tr
gE;ΛE

lnF−2
R �; ð17Þ

where the measure DgEψ is the one induced from the
following distance in the functional space

∥δψ∥2gE ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p
δψ̄δψ ; ð18Þ

and TrgE;ΛE
indicates that the functional trace depends both

on the metric gE and the cutoff ΛE; the more explicit form
will be presented below.10

When we rewrite the functional measure DgJψDgJ ψ̄
in terms of DgEψDgE ψ̄ , there has appeared the extra
contribution to the effective action:

7The other option is to terminate them at the 2nth and nth
orders, respectively; see the last point in Appendix B.

8The correction from ϕ loop is proportional to λn, which are
assumed to be small here; see Refs. [11,19,20] for arguments
in support of the smallness of λn at high scales.

9We note that such a field-dependent cutoff itself does not lead
to any logical inconsistency. For example, a position-dependent
momentum cutoff follows from the Pauli-Villars regularization in
warped space even if we start from a position-independent bulk
mass for the regulator [21].

10The extra minus sign of −4 in Eq. (17) is from the Jacobian
for fermionic variables.
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exp½−4 Tr
gE;ΛE

lnF−2
R �: ð19Þ

As we will see below, this factor contains quartic diver-
gence, and is absorbed into the renormalized couplings
including the coefficients of higher dimensional terms.
Finally, Eq. (14) becomes

eiΔS
J
eff ¼ exp½−4 Tr

gE;ΛE

lnF−2
R �
Z

DgEψDgE ψ̄

× exp

�
i
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p
ψ̄

�
−

FΨ

F3=2
R

DgE −
FY

F2
R
yφ

�
ψ

�

≕ exp½−4 Tr
gE;ΛE

lnF−2
R �eiΔSEeff ; ð20Þ

where we have defined the Einstein-frame effective action
ΔSEeff , which is obtained from the path integral measure
DgEψ .

11 In this section hereafter, we will put the superscript
J (E) for the effective potential of the theory that is defined
by using the measure DgJψ (DgEψ), as well as the effective
action.

D. Explicit computations

Now we verify the equality (28) through more explicit
computations under the assumption that φ and gμν are
slowly varying backgrounds so that they may be treated as
constants in the computation of the effective action.
As a preparation, let us first compute the extra factor (19)

coming from the change of measure:

exp½−4 Tr
gE;ΛE

lnF−2
R � ¼ exp

�
−4i

Z
d4x

ffiffiffiffiffiffiffiffi
−gE

p hxj lnF−2
R jxiΛE

�

¼ exp

�
i
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
−
Λ4
E

8π2
lnF−2

R

��
;

ð21Þ

where we have used

hxjxiΛE
¼
Z

ΛE d4p
ð2πÞ4 ¼

Z
ΛE

0

2π2p3dp
ð2πÞ4 ¼ Λ4

E

32π2
: ð22Þ

Here and hereafter, the momentum integral is taken in the
Euclidean space.

The effective action (14) reads

eiΔS
J
eff ¼ Det

gJ;ΛJ

�
−FΨDgJ − FYyφ

μ0

�

¼ exp

�
Tr
gJ;ΛJ

ln

�
−FΨDgJ − FYyφ

μ0

��

¼ exp

�
4i
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p Z
ΛJ d4p
ð2πÞ4

×
1

2
ln
�
F2
Ψp

2 þ F2
YðyφÞ2

μ20

��

≕ exp

�
i
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p ð−ΔVJ
effÞ
�
; ð23Þ

where μ0 is an arbitrary reference scale and we have defined
the correction to the Jordan-frame potential ΔVJ

eff . It may
be computed as

ΔVJ
eff ¼ −2

Z
ΛJ d4p
ð2πÞ4 ln

�
F2
Ψp

2 þ F2
YðyφÞ2

μ20

�

¼ −
1

16π2

�
Λ4
J

�
ln

�
F2
Ψ
Λ2
J þM2

J

μ20

�
−
1

2

�

þ Λ2
JM

2
J þM4

J ln

�
M2

J

Λ2
J þM2

J

��
; ð24Þ

where

MJðφÞ ≔ yφ
FYðφÞ
FΨðφÞ

ð25Þ

is the field-dependent mass for canonically normalized
fermion in the Jordan frame.12 We may rewrite the effective
action (23) with the Einstein-frame metric:

eiΔS
J
eff ¼ exp

�
i
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
−
ΔVJ

eff

F2
R

��

≕ exp

�
i
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p ð−ΔUJ
effÞ
�
; ð26Þ

where we have defined the correction to the potential (9).
That is,

ΔUJ
eff ¼

ΔVJ
eff

F2
R

¼ −
1

16π2F2
R

�
Λ4
J

�
ln

�
F2
Ψ
Λ2
J þM2

J

μ20

�
−
1

2

�

þ Λ2
JM

2
J þM4

J ln

�
M2

J

Λ2
J þM2

J

��
: ð27Þ

11The same argument applies if we start from a different theory
defined with another measure induced from the distance (18)
instead of Eq. (16). Then the Jordan-frame effective action will
receive extra contribution from the change of measure,
exp½4 Tr

gJ;ΛJ

lnF−2
R �, which again will make the difference only in

the renormalization conditions.

12For a more realistic top quark loop,ΔVeff is multiplied by the
color degrees of freedom N ¼ 3.

HAMADA, KAWAI, NAKANISHI, and ODA PHYSICAL REVIEW D 95, 103524 (2017)

103524-4



To summarize, we have started from the measure (15),
and computed the one-loop correction (24). One may worry
that the change of path measure (17) might introduce a trace
anomaly in addition to Eq. (21). However, it is taken into
account as a form of the logarithmic UV cutoff dependence
in Eq. (24). Indeed, the constant shift of lnΛJ correctly
reproduces the trace anomaly, as can be seen from Eq. (34)
with Eq. (25), compared to Eq. (41).
We may instead perform the field redefinition (6) to the

Einstein frame first, and compute the Einstein-frame
effective action in the right-hand side of Eq. (28):

eiΔS
E
eff ¼ exp

2
4 Tr
gE;ΛE

ln

0
@− FΨ

F3=2
R

DgE −
FY
F2
R
yφ

μ0

1
A
3
5

¼ exp

2
44i Z d4x

ffiffiffiffiffiffiffiffi
−gE

p Z
ΛE d4p

ð2πÞ4

×
1

2
ln

0
@F2

Ψ
F3
R
p2 þ F2

Y
F4
R
ðyφÞ2

μ20

1
A
3
5

≕ exp

�
i
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p ð−ΔUE
effÞ
�
; ð28Þ

where ΔUE
eff is the fermion loop correction to the potential

(9) that is obtained with the measure DgEψ :

ΔUE
eff ¼ −2

Z
ΛE

0

d4p
ð2πÞ4

2
4ln
0
@F2

Ψ
F3
R
p2 þ F2

Y
F4
R
y2φ2

μ20

1
A
3
5

¼ −
1

16π2

8<
:Λ4

E

"
ln

 
F2
Ψ

F3
R

Λ2
E þ M2

J
FR

μ20

!
−
1

2

#

þ Λ2
E
M2

J

FR
þM4

J

F2
R

ln

 M2
J

FR

Λ2
E þ M2

J
FR

!9=
;: ð29Þ

With the identification of UV cutoff scales (13), we may
rewrite

ΔUE
eff ¼ −

1

16π2F2
R

�
Λ4
J

�
ln

�
F2
Ψ

F4
R

Λ2
J þM2

J

μ20

�
−
1

2

�

þ Λ2
JM

2
J þM4

J ln
�

M2
J

Λ2
J þM2

J

��
: ð30Þ

We see that

ΔUE
eff ¼ ΔUJ

eff −
1

16π2
Λ4
E lnF

−4
R : ð31Þ

Using Eq. (21), we see that Eq. (31) is equivalent to
Eq. (30). We note that the difference in (31) is quartically

divergent, which will be subtracted by the renormalization.
In particular, this difference does not change the running of
couplings, as we will see.
To summarize, once we fix the path integral measure,

say, to be DgJψ , we obtain the same result ΔUJ
eff , no matter

in which frame we compute it: When we compute it in the
Jordan frame, we obtain

eiΔS
J
eff ¼ ei

R
d4x

ffiffiffiffiffiffi−gJ
p ð−ΔVJ

effÞ

¼ ei
R

d4x
ffiffiffiffiffiffi−gE

p ð−ΔUJ
effÞ; ð32Þ

while when we compute it in the Einstein frame,

eiΔS
J
eff ¼ ei

R
d4x
ffiffiffiffiffiffi−gE

p ð−Λ4
E

8π2
lnF−2

R Þei
R

d4x
ffiffiffiffiffiffi−gE

p ð−ðΔUJ
eff−

Λ4
E

16π2
lnF−4

R ÞÞ

¼ ei
R

d4x
ffiffiffiffiffiffi−gE

p ð−ΔUJ
effÞ: ð33Þ

We have explicitly checked that these two agree.
The frame independence of the effective potential has

been verified in various ways: In Refs. [22,23], the authors
have obtained one-loop RG equations for the tree level
action in both the Jordan and Einstein frames, and have
found the agreement between both results; see also appen-
dix of Ref. [24]. In Ref. [25], the authors checked that both
the tree-level actions are equivalent when written in terms
of dimensionless variables, as it should be. In Ref. [26], the
authors have computed the one-loop divergent part of the
effective potential in both frames, and have shown that both
coincide at on-shell. In Refs. [27–29], the authors have
discussed frame independence of physical observables.

III. PRESCRIPTIONS I AND II

We now discuss the meaning of the prescriptions I and II.
We first clarify how the difference of the prescriptions in
Eq. (1) arises in the ordinary context. Then we will show, in
the counterterm formalism, that this difference can be
absorbed into the choice from infinitely many possibilities
of the coefficients of higher dimensional terms in the tree-
level potential.
We consider the cutoff theory containing infinite number

of higher dimensional terms. We tune the infinite number of
bare couplings in the large cutoff limit ΛJ;ΛE → ∞ such
that the renormalized effective potential becomes a function
of φ=M, where M is the physical mass scale; see, e.g.
Ref. [30]. We work in the counterterm formalism so that
MJ and FΨ are treated as finite renormalized quantities. To
be concrete, we consider the theory defined by the path
integral measure DgJψ , and we omit the superscript J from
the potentials VJ, ΔVJ

eff ;…, etc. hereafter.13

13Exactly the same argument applies if we consider the theory
defined by the measure DgEψ .
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A. Prescription II in ordinary context

We clarify how the prescription II in Eq. (1) appears in
the ordinary context. The contribution from fermion to the
effective potential (24) contains the quartic, quadratic, and
logarithmic divergences:

ΔVeff ¼ −
1

16π2

�
Λ4
J

�
ln

�
F2
Ψ
Λ2
J

μ20

�
−
1

2

�
þ 2Λ2

JM
2
J

þM4
J

�
ln
M2

J

Λ2
J
−
1

2

��
þOðΛ−2

J Þ: ð34Þ

Then in the full effective potential

V ¼ VB þ ΔVeff ; ð35Þ
we cancel the divergences in Eq. (34) by the bare couplings
λnB in the bare potential

VB ≔
X
n

λnB
φn

Mn−4 : ð36Þ

The quartic and quadratic divergences in Eq. (34) can be
simply subtracted by the counterterm

Vc:t:
power ¼

1

16π2

�
Λ4
J

�
ln

�
F2
Ψ
Λ2
J

μ20

�
−
1

2

�
þ 2Λ2

JM
2
J

�
: ð37Þ

However, we need a special care in subtracting the
logarithmic divergence in Eq. (34) because the counter term
should be analytic around φ ¼ 0: A counterterm having
lnMJ ¼ lnφþ � � � breaks the analyticity around φ ¼ 0. In
particular, the (nþ 1)th derivative of the term φn lnφ is
singular, and the (nþ 1)-point function becomes ill-defined
in the weak field limit φ → 0 if the bare action has such a
term.14 Because we employ the analytic tree-level potential,
the counterterm should then be analytic too.
A natural choice of the counterterm that is analytic

around φ ¼ 0 would be

Vc:t:II
log ¼ M4

J

16π2
ln

μ2

Λ2
J
; ð38Þ

where μ is the renormalization scale. The resultant bare
potential is

VII
B ¼ VII

R þ Vc:t:
power þ Vc:t:II

log

¼ VII
R þ 1

16π2

�
Λ4
J

�
ln

�
F2
Ψ
Λ2
J

μ20

�
−
1

2

�

þ 2Λ2
JM

2
J þM4

J ln
μ2

Λ2
J

�
; ð39Þ

where VII
R is the tree-level potential in the counterterm

formalism. We note that VII
R is μ-dependent:

VII
Rðφ; μÞ ¼

X
n

λnRðμÞ
φn

Mn−4 ; ð40Þ

and the μ-independence of VB determines the running of
λnRðμÞvia Eq. (39). In particular, becauseMJ¼yφþOðφ3Þ,
we obtain the ordinary running of the quartic coupling:

dλ4RðμÞ
d ln μ

¼ −
y4

8π2
: ð41Þ

Substituting the bare potential (39) into VB in Eq. (35),
we obtain

VðφÞ ¼ VII
B þ ΔVeff

¼ VII
Rðφ; μÞ þ ΔVII

Rðφ; μÞ; ð42Þ

where

ΔVII
Rðφ; μÞ ≔ −

½MJðφÞ�4
16π2

�
ln
½MJðφÞ�2

μ2
−
1

2

�
ð43Þ

is the one-loop correction in the counterterm formalism in
the prescription II. Now both VII

R and ΔVII
R are finite.

When we want to minimize the correction (43), we may
choose the renormalization scale15

μ ∼MJ: ð44Þ
This result reproduces the prescription II in the sense of
Eq. (1), namely μ ∼ φ for FΨ ¼ FY ¼ 1.

B. Prescription I in ordinary context

We clarify how the prescription I in Eq. (1) appears in
the ordinary context. We can rewrite Eq. (34) by using
Eq. (13)16:

ΔVeff ¼ −
F2
R

16π2

�
Λ4
E

�
ln

�
F2
Ψ
FRΛ2

E

μ20

�
−
1

2

�

þ 2Λ2
E
M2

J

FR
þM4

J

F2
R

�
ln
M2

J=FR

Λ2
E

−
1

2

��
þOðΛ−2

E Þ:

ð45Þ

The quartic and quadratic divergences are canceled by the
same counterterm (37). This time, a natural choice to cancel
the logarithmic divergence would be, instead of Eq. (38),

14In contrast, the singular behavior of (nþ 1)th derivative of
the effective action represents the infrared singularity of the
(nþ 1)-point scattering of massless scalar, which is cured by
taking into account the Higgs mass in reality and/or by concen-
trating on the infrared-safe physical quantities.

15The constant −1=2 is scheme-dependent and does not affect
our argument here.

16This may also be verified by substituting Eq. (29) into
Eq. (31), dividing both-hand sides by F2

R, and expanding it in
terms of ΛE.
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Vc:t:I
log ¼ M4

J

16π2
ln

μ2

Λ2
E
: ð46Þ

Then the bare potential becomes

VI
B ¼ VI

R þ Vc:t:
power þ Vc:t:I

log

¼ VI
R þ 1

16π2

�
Λ4
EF

2
R

�
ln

�
F2
Ψ
FRΛ2

E

μ20

�
−
1

2

�

þ 2Λ2
EFRM2

J þM4
J ln

μ2

Λ2
E

�
; ð47Þ

and we obtain

VðφÞ ¼ VI
B þ ΔVeff

¼ VI
Rðφ; μÞ þ ΔVI

Rðφ; μÞ; ð48Þ

where

ΔVI
Rðφ; μÞ ≔ −

½MJðφÞ�4
16π2

�
ln
½MJðφÞ�2=FR

μ2
−
1

2

�
: ð49Þ

Again the μ-independence of V fixes the running of the
couplings. The running of quartic coupling becomes the
same as inEq. (41) becauseFR¼1þOðφ2Þ andhence theφ4

term is not affected by lnFR; see the discussion below.
When we want to minimize the second term in Eq. (48),

we may choose the renormalization scale

μ ∼
MJffiffiffiffiffiffiffi
FR

p : ð50Þ

This result reproduces the prescription I in the sense of
Eq. (1), namely μ ∼ φ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξφ2=M2

P

p
for FΨ ¼ FY ¼ 1;

see also footnote 4.

C. Where the difference comes from

Let us summarize the difference between the prescrip-
tions I and II. The difference of prescriptions I and II comes
from that of the subtractions of logarithmic divergence in
Eqs. (38) and (46):

Vc:t:I
log −Vc:t:II

log ¼ M4
J

16π2
ln
Λ2
J

Λ2
E
¼ M4

J

16π2
lnFR ¼ ξRy4

16π2
φ6

M2
þ�� � ;

ð51Þ

where we used Eq. (13). This difference amounts to the
finite renormalization of VR. Note that the difference (51) is
analytic around φ ¼ 0 and that it has only higher order
terms with n ≥ 6.
Originally the prescription has been introduced as a

choice of frame in which the theory is defined, and it was
believed that the radiative correction to the effective
potential is minimized by the choice of the renormalization

scale as in Eq. (1). As we have shown, however, the physics
does not depend on the choice of the frame in which the
theory is defined. Instead, for a given renormalized tree-
level action, the difference of the prescriptions (1) can be
understood as that of the logarithmic counterterms (51):
The different counterterms lead to the different scales (44)
and (50) that minimize the radiative corrections.

D. Renormalized potential

Theoretically, the potential VR in Eq. (42) or (48),

VR ¼
X

n∶ even;n≥0
λnRðμÞ

φn

Mn−4 ; ð52Þ

may take arbitrary form, so long as it is analytic around
φ ¼ 0. How do we determine its form?
We may reproduce the ordinary Higgs inflation [2] that

does not assume the criticality, by tuning the infinite
number of bare couplings such that VR becomes

VRðφ; μÞjμ∼M ≃ λ4RðμÞφ4; ð53Þ

where all the couplings λnRðμÞ with n ≠ 4 are suppressed at
μ ¼ M. When the form (53) is put into Eqs. (42) and (48),
which result from the counterterms (38) and (46), we obtain
the Higgs potential in the prescriptions II and I in the
ordinary context, respectively:

VII ¼ λ4RðμÞφ4 −
M4

J

16π2

�
ln
M2

J

μ2
−
1

2

�
; ð54Þ

VI ¼ λ4RðμÞφ4 −
M4

J

16π2

�
ln
M2

J=FR

μ2
−
1

2

�
: ð55Þ

However, we may as well obtain the potential of the form
of VI in Eq. (55) even when we employ the counterterm
Vc:t:II
log in Eq. (38) if we choose the following form of the

tree-level potential VR in Eq. (42),

VRðφ; μÞ ¼ λ4RðμÞφ4 þ ½MJðφÞ�4
16π2

lnFRðφÞ; ð56Þ

instead of the form (53). From the same countertermVc:t:II
log in

Eq. (38), wemay obtain the forms (54) and (55) by assuming
the tree-level potentials (53) and (56), respectively. Recall
that the second term in the right-hand side of Eq. (56)
modifies only the higher dimensional terms ofOðφ6Þ. There
are infinitely many possibilities for the tree-level potential.
Therefore there is no reason to suppose one (or any) of the
above two as the proper tree-level potential if we restrict
ourselves to the low-energy effective field theory.17

17The tree-level potential is determined once we fix the
underlying UV-finite theory; see, e.g., Refs. [19,20] for discus-
sions based on string theory.
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IV. FLATTENING HIGGS POTENTIAL BY GAUGE
KINETIC FUNCTION

Let us turn to more realistic running of the quartic
coupling in the SM:

VSM ¼ λ4RðμÞφ4 þ ΔVRðφ; μÞ; ð57Þ

where ΔVR is the finite correction (43) or (49) in the
counterterm formalism; see also footnote 6. In the SM,
β4R ≔ d

d ln μ λ4R turns from negative to positive around the

scale μmin ∼ 1017 GeV, and we may approximate as [12,16]

λ4RðμÞ ≈ λmin
4R þ b4R

�
ln

μ

μmin

�
2

; ð58Þ

where b4R can be computed within the SM as

b4R ≃ 0.1
ð16π2Þ2 ≃ 5 × 10−6: ð59Þ

The negative β4R for μ < μmin is dominated by top quark
loop, while the positive β4R for μ > μmin by the Uð1ÞY and
SUð2ÞL gauge boson loops.
For top quark loop, the contribution is through the

effective mass MJ ¼ yφFY=FΨ. In the prescription I in
the sense of Eq. (1), namely in Eq. (55) with the tree-level
potential (53), we get the constant μ in the large φ limit,

μ ∼
MJffiffiffiffiffiffiffi
FR

p →
MPffiffiffi
ξ

p ; ð60Þ

and the effective quartic coupling λ4RðμÞjμ∼MJ=
ffiffiffiffiffi
FR

p stops
running for large φ [15].18 This mechanism makes the
potential even flatter at the SM criticality and helps to earn
a sufficiently large e-folding number for smaller ξ ∼ 10; in
the prescription II we lack this mechanism and need larger
ξ ∼ 102 [12,16].
Similarly, the contribution of the gauge boson loop is

through [12]

Mgauge
J ¼ gφ

ffiffiffiffiffiffiffi
FΦ

Fg

s
; ð61Þ

where g is the gauge coupling and Fg is the gauge kinetic
function, namely the function of φ in front of the gauge
kinetic term.

When we raise the scale beyond μ > μmin in the SM, the
top Yukawa coupling becomes smaller and smaller. To the
first approximation, the running at μ > μmin is governed by
the gauge boson loop. Then in the prescription II in the
ordinary context, which corresponds to Eq. (54) with the
tree-level potential (53), the effective potential becomes

VSM ¼ λ4RðμÞφ4jμ¼Mgauge
J

: ð62Þ

When we assume that FΦ ≃ 1, we obtain

Mgauge
J ¼ gφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξg
φ2

M2

q : ð63Þ

In the large-φ limit,

Mgauge
J →

gffiffiffiffiffi
ξg

p M: ð64Þ

We propose that this can be used in the prescription II in the
ordinary context as an alternative mechanism to Eq. (60) in
order to stop the running of quartic coupling λ4RðμÞjμ∼Mgauge

J

for large φ.19

The φ-dependent mass (63) takes the same form as the
prescription I in Eq. (1) if we neglect the gauge coupling g.
Therefore, for example, we may set ξg ¼ ξR and M ¼ MP,
then the subsequent analysis becomes identical to those in
Ref. [12]. This serves as an explicit example of viable
parameter set that realizes the above-mentioned idea.

V. SUMMARY

We have analyzed the one-loop effective action in the
simplified Higgs-Yukawa model, which captures essential
features of the Higgs potential in the Higgs inflation. We
have shown that the effective actions obtained in the Jordan
and Einstein frames are exactly the same if we properly
take into account the change of path integral measure. We
show that, in the counterterm formalism, the prescriptions I
and II are merely two specific choices of counterterms to
cancel the logarithmic divergence. We point out that the
difference between I and II can be absorbed into the choice

18Here we have assumed FY ¼FΨ ¼ 1. If FY ¼ 1þ ξYφ
2=M2

and FΨ ¼ 1þ ξΨφ
2=M2, we obtain

μ ∼
MJffiffiffiffiffiffiffi
FR

p →
ξYffiffiffi
ξ

p
ξΨ

MP

instead of Eq. (60); see also footnote 4.

19When the top Yukawa contribution is non-negligible, one
may further introduce e.g.

FΨðφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξΨ

φ2

M2

r
¼ 1þ ξΨ

φ2

M2
−
ξ2Ψ
2

φ4

M4
þ ξ3Ψ

2

φ6

M6
þ � � �

together with FY ¼ 1, which stops running due to the top
contribution too:

MJ ¼
yφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ξΨ
φ2

M2

q →
yffiffiffiffiffiffiffiffi
2ξΨ

p M:
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of tree-level potential, including higher dimensional terms,
from infinitely many possibilities.
We have also proposed a mechanism to stop the running

of the effective quartic coupling in the prescription II in the
ordinary context, using the gauge kinetic function:
μ ∼ φ=

ffiffiffiffiffiffi
Fg

p
→ M=

ffiffiffiffiffi
ξg

p
. Detailed phenomenological study

of this scenario will be presented in a separate publication.
We briefly comment on the remaining points to be

addressed: In this paper, we have concentrated on the
fermion loop. It would be worth including the scalar loop,
as inRef. [26], and also the gauge boson loop. It is alsoworth
studying the issue of gauge dependence in these loops.
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APPENDIX A: CLASSICAL DYNAMICS
IN TERMS OF JORDAN-FRAME FIELD

When we consider the classical dynamics of scalar field
under gravity, it is convenient to define the canonically
normalized scalar field

dχ ¼ GðφÞdφ; ðA1Þ

where

GðφÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FΦðφÞ
FRðφÞ

þ 3

2

�
MPF0

RðφÞ
FRðφÞ

�
2

s
: ðA2Þ

Weuse the Friedmann-Lemaître-Robertson-Walker ansatz20

gEμνdxμdxν ¼ −dtE2 þ ðaEðtEÞÞ2dx2: ðA3Þ

In the Einstein frame, the Einstein equations reduce to the
ordinary Friedmann equation21:

H2
E ¼ ρE

3M2
P
; ðA4Þ

dρE
dtE

¼ −3ðρE þ pEÞHE; ðA5Þ

where

ρE ¼ 1

2

�
dχ
dtE

�
2

þUEðφÞ; ðA6Þ

pE ¼ 1

2

�
dχ
dtE

�
2

−UEðφÞ; ðA7Þ

and HE ≔ 1
aE

daE
dtE
.

The Higgs-field equation reads

d2χ
dt2E

þ 3HE
dχ
dtE

¼ −
dUE

dχ
: ðA8Þ

In terms of the Jordan-frame field,

d2φ
dt2E

þ dφ
dtE

�
3HE þ

d
dtE

lnG
�

¼ −
1

G2

dUE

dφ
: ðA9Þ

The universe expands with the rateHE, whereas the Jordan-
frame field φ receives extra friction d

dtE
lnG, and rolls slower

(faster) than under its absence when it is positive (negative).
This term will turn out to be the same order as the slow-roll
parameter under the slow-roll condition shown below.
We assume the slow-roll inflation. The slow-roll param-

eters read

ϵ ≔
M2

P

2U2
E

�
dUE

dχ

�
2

¼ M2
P

2U2
EG

2

�
dUE

dφ

�
2

≪ 1; ðA10Þ

η ≔
M2

P

UE

d2UE

dχ2
¼ M2

P

UEG
d
dφ

�
1

G
dUE

dφ

�
≪ 1: ðA11Þ

The Friedmann and Higgs-field equations become,
respectively,

3M2
PH

2
E ¼ UE; ðA12Þ

3HE
dχ
dtE

¼ −
dUE

dχ
: ðA13Þ

In terms of the Jordan-frame field, the latter reads

3HE
dφ
dtE

¼ −
1

G2

dUE

dφ
≕ −

dUE

dφ
; ðA14Þ

where we have defined the effectual potential

UE ¼
Z

dφ
1

G2

dUE

dφ
þ const; ðA15Þ

which takes into account the effect from G. Using this
potential, the slow-roll parameters can be rewritten as

ϵ ¼ G2M2
P

2U2
E

�
dUE

dφ

�
2

; ðA16Þ

η ¼ M2
P

UE

�
d2UE

dφ2
þ dUE

dφ
d
dφ

lnG
�
; ðA17Þ

20We neglect the spatial curvature, but may recover it by
dx2 → dx2 þ K ðx·dxÞ2

1−Kx2 .21We may recover the spatial curvature by H2
E → H2

E þ K
a2.
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though this expression may not be particularly convenient.
In this paper, we omit the subscript E from UE and UE
which are always given in the Einstein frame.

APPENDIX B: EXAMPLES THAT LEAD
TO VARIOUS HIGGS INFLATIONS

Even if we decide to take the simple form of the tree-
level potential (53) in Eq. (42) or (48), we still have
freedom to choose any form of FXðφÞs. We review several
examples that lead to viable cosmic inflations:

(i) In Ref. [12], the authors have spelled out the result
from prescriptions I and II in the ordinary context,
with the tree-level potential (53) in Eq. (48) and (42),
respectively, and with the function FX ¼ 1 except

for FR ¼ 1þ ξR
φ2

M2. The former prescription I allows
smaller ξ ≔ ξRM2

P=M
2 ∼ 10 because the coupling

stops running for φ ≫ M=
ffiffiffiffiffiffi
ξR

p
:

μ ∼
φffiffiffiffiffiffiffi
FR

p →
Mffiffiffiffiffiffi
ξR

p : ðB1Þ

The latter prescription II can have a chaotic
inflation for ξ∼102, since the effectual potential
(A15) becomes

U ∼ constþ βλM2
P

48ξ2
φ2; ðB2Þ

due to

G →

ffiffiffi
6

p
MP

φ
ðB3Þ

for large ξR; see Appendix A.
(ii) When we have large ξΦ only, in particular with

FR ¼ 1 which gives U ¼ V ¼ λ
4
φ4, we get

G →
ffiffiffiffiffi
ξΦ

p φ

M
ðB4Þ

and hence

U ¼ constþ λM2

2ξΦ
φ2: ðB5Þ

This can also lead to a chaotic inflation when
λ=ξΦ ≪ 1 [31].

(iii) When we terminate the tree-level potential at the
2nth order

V ¼
X

n0∶ even;4≤n0≤2n

λn0
φn0

Mn0−4 ; ðB6Þ

instead of Eq. (53), and the function at the nth order

FR ¼
X

n0∶ even;0≤n0≤n

ξR;n0
φn0

Mn0 ; ðB7Þ

the resultant classical potential becomes constant
[32]:

U →
λ2n
ξ2R;n

M4: ðB8Þ
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