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The cosmological particle horizon is the maximum measurable length in the Universe. The existence of
such a maximum observable length scale implies a modification of the quantum uncertainty principle. Thus
due to nonlocality of quantum mechanics, the global properties of the Universe could produce a signature
on the behavior of local quantum systems. A generalized uncertainty principle (GUP) that is consistent with
the existence of such a maximum observable length scale lmax is ΔxΔp ≥ ℏ

2
1

1−αΔx2 where α ¼ l−2max ≃
ðH0=cÞ2 (H0 is the Hubble parameter and c is the speed of light). In addition to the existence of a maximum
measurable length lmax ¼ 1ffiffi

α
p , this form of GUP implies also the existence of a minimum measurable

momentum pmin ¼ 3
ffiffi
3

p
4
ℏ

ffiffiffi
α

p
. Using appropriate representation of the position and momentum quantum

operators we show that the spectrum of the one-dimensional harmonic oscillator becomes Ēn ¼ 2nþ
1þ λnᾱ where Ēn ≡ 2En=ℏω is the dimensionless properly normalized nth energy level, ᾱ is a
dimensionless parameter with ᾱ≡ αℏ=mω and λn ∼ n2 for n ≫ 1 (we show the full form of λn in the
text). For a typical vibrating diatomic molecule and lmax ¼ c=H0 we find ᾱ ∼ 10−77 and therefore for such a
system, this effect is beyond the reach of current experiments. However, this effect could be more important
in the early Universe and could produce signatures in the primordial perturbation spectrum induced by
quantum fluctuations of the inflaton field.
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I. INTRODUCTION

Quantum theory (QT) has been tested to a great extent in
the context of microphysical systems and has been shown
to be consistent with all current experiments. It is a self-
consistent and well-established theory. Despite the signifi-
cant success of QT there are two issues that appear to
challenge the theory:
(1) QT appears to be incompatible with general rela-

tivity (GR) due to nonrenormalizable divergences
that appear when GR is quantized. This incompat-
ibility implies that at least one of the two theories
(GR or QT) needs to be modified.

(2) There is no clear and unique interpretation of QT.
Even though QT has withstood rigorous and
thorough experimental testing, the outcomes of these
experiments are open to different interpretations of
physical reality.

It is therefore clear that a possible generalization of QT is a
viable and interesting prospect. Such a generalization
would most likely affect the cornerstone of QT that
effectively defines it: the Heisenberg uncertainty principle
[1,2] (HUP) converting it to a generalized uncertainty
principle (GUP) [3,4].
A well-motivated form of GUP is based on the

assumption of the existence of a fundamental ultraviolet

cutoff or equivalently a minimum measurable length. This
assumption has been suggested in quantum gravity [5–8]
and quantum geometry [9], as well as in string theory
[10–14]. It is based on the expectation that high energies
used in the resolution of small scales will lead to significant
disturbances of spacetime structure by their gravitational
effects [15]. Such a disturbance, which may take the form
of a black hole, could prohibit the probe of scales smaller
than a cutoff which is expected to be of the order of the
Planck scale. Thus, the coexistence of QT with GR
naturally leads to the requirement of a modification of
both QT and GR, the introduction of a fundamental
ultraviolet cutoff and thus a GUP consistent with both a
minimum measurable length and a maximum measurable
momentum (ultraviolet cutoff). These effects are integrated
in the GUP as minimum position [7,16–21] and maximum
momentum [18,22–25] uncertainty.
This type of GUP has been extensively studied since the

pioneering work of Ref. [17] that introduced it in the form

ΔxΔp ≥
ℏ
2
ð1þ βΔp2Þ ð1:1Þ

where β is the GUP parameter defined as
β¼ β0=Mplc2¼ β0l2pl=ℏ

2, Mplc2 ¼ 1019 GeV, lpl¼10−35m
is the four-dimensional fundamental Planck scale and β0 is
a dimensionless parameter expected to be of order unity.
Estimates of the values of β0 may be obtained by using*leandros@uoi.gr
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leading quantum corrections to the Newtonian potential
[26]. At energies much lower than the Planck energy the β
correction of the GUP becomes negligible and the HUP is
recovered.
The minimum allowed position uncertainty obtained

from the GUP (1.1) is obtained for a finite value of Δp ¼
1ffiffi
β

p and corresponds to a minimum position uncertainty

different from zero (Δxmin ¼ 2ℏ
ffiffiffi
β

p
) [27]. The GUP (1.1) is

obtained from a generalized Heisenberg algebra [17] as
discussed in the next section.
A natural generalization of (1.1) corresponds to the

existence of minimum position and minimum momentum
uncertainty [28]. This is obtained by a GUP of the form
[17,29]

ΔxΔp ≥
ℏ
2
ð1þ αΔx2 þ βΔp2Þ: ð1:2Þ

The fact that this form of GUP predicts the existence of
both a minimum position and a minimum momentum
uncertainty is illustrated in Fig. 1 where we show the
deformation of the HUP due to the introduction of the
parameters α and β leading to minimum uncertainties for
both momentum and position. The uncertainties Δx, Δp
and the parameters α, β in Fig. 1 have been rescaled to
dimensionless form by appropriate microphysical scales
lmp and pmp ≡ ℏ

2lmp
which depend on the microphysical

system under consideration. For example for a harmonic

oscillator we have lmp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
. This rescaling may be

expressed as Δx
lmp

→ Δx, Δp
pmp

→ Δp, αl2mp → α and

βp2
mp → β.
Any form of GUP implies the existence of a deformed

Heisenberg algebra. For example a GUP of the form (1.2)
implies a phase space commutator in one dimension of the
form

½x; p� ¼ ℏ
2
ð1þ αx2 þ βp2Þ: ð1:3Þ

As discussed in the next section, in higher
dimensions this commutation relation becomes more com-
plicated [17] if we want to keep a commutative geometry
(½xi; xj� ¼ ½pi; pj� ¼ 0).
An alternative form of GUP is motivated by the fact that

if a fundamental minimal length indeed exists in nature it
should also have the property of being invariant with
respect to Lorentz transformations. This requires also a
deformation of the Lorentz group and a nonlinear modi-
fication of Lorentz transformations. This corresponds to a
modification of special relativity to a theory known as
“doubly special relativity” (DSR) [23,30–32]. In this class
of theories, Lorentz transformations are generalized to a
form

E0 ¼ fðE; p; lmin; vÞ ð1:4Þ

p0 ¼ gðE; p; lmin; vÞ ð1:5Þ

where ðE; pÞ are energy and momentum; lmin is the
invariant minimal length scale expected to be of the order
of the Planck scale; and v is the velocity of the trans-
formation. The functions f and g are selected so that the
length scale lmin remains invariant with respect to the new
modified Lorentz transformations and are severely con-
strained by experiments/observations [33,34]. It can be
shown [23] that in this class of models there is a natural
ultraviolet (UV) cutoff of momentum while the commu-
tation relation in one dimension gets generalized by the
addition of a linear term to the form [18,22–25]

½x; p� ¼ iℏð1 − β1pþ 2β21p
2Þ ð1:6Þ

while the uncertainty principle takes the form

ΔxΔp ≥
ℏ
2
ð1 − 2β1hpi þ 4β21hp2iÞ ð1:7Þ

where the subscript 1 is used to differentiate β1 from the
parameter β which has different dimensions. In this form of
GUP there is no explicit UV cutoff in the momentum
uncertainty even though there is an implicit such cutoff
through arguments related to DSR [23].
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FIG. 1. The deformation of the HUP in the presence of the
parameters α and β. The figure shows the allowed uncertainty
region assuming the GUP of Eq. (1.2) with a minimum position
and a minimum momentum uncertainty.
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An explicit UV cutoff can be obtained through the GUP
[27,35]

ΔxΔp ≥
ℏ
2

1

1 − βΔp2
: ð1:8Þ

It originates from a commutation relation of the form

½x; p� ¼ iℏ
1

1 − βp2
: ð1:9Þ

The GUP of Eq. (1.8) can be further generalized to include
explicit maxima and minima in both position and momen-
tum uncertainties. We thus obtain a GUP of the form

ΔxΔp ≥
ℏ
2

1

1 − βΔp2

1

1 − αΔx2
: ð1:10Þ

The allowed region of uncertainties of this very general
deformed GUP is shown in Fig. 2 (light blue region) where
Δx and Δp have been rescaled to dimensionless form by
appropriate microphysical scales lmp and pmp defined
above.
The presence of an infrared cutoff GUP (explicit pres-

ence of a maximum position uncertainty) as implemented
in Eq. (1.10) has not been considered previously in the
literature to our knowledge even though there has been a
quantum cosmological example of the existence of

quantum effects on large scales and large scale factors
emerging from the nonlocal behavior of quantum mechan-
ics [36]. However, there is a well-defined motivation for
such a cutoff in the context of either cosmological particle
horizons [37,38] or nontrivial cosmic topology [39] which
naturally predict the existence of a maximum measurable
length scale in the Universe. In particular, the particle
horizon corresponds to the length scale of the boundary
between the observable and the unobservable regions of the
Universe. This scale at any time defines the size of the
observable Universe. The physical distance to this maxi-
mum observable scale at the cosmic time t is given by

lmaxðtÞ ¼ aðtÞ
Z

t

0

cdt
aðtÞ ð1:11Þ

where aðtÞ is the cosmic scale factor. For the best-fit
ΛCDM cosmic background at the present time t0 we have

lmaxðt0Þ≃ 14 Gpc≃ 1026 m: ð1:12Þ

In the context of the presence of such an infrared cutoff the
following questions arise:

(i) What are the possible forms of GUP that include an
infrared cutoff in the form of a maximum measur-
able length and therefore a maximum position
uncertainty?
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FIG. 2. The deformation of the HUP in the presence of the parameters α and β assuming the GUP of Eq. (1.10) with both minima and
maxima in position and momentum uncertainties. The uncertainties Δx, Δp and the parameters α, β have been rescaled to dimensionless
form by appropriate microphysical scales lmp and pmp ≡ ℏ

lmp
(Δxlmp

→ Δx, Δp
pmp

→ Δp, αl2mp → α and βp2
mp → β). The left panel shows the

allowed uncertainty region for α ¼ β ¼ 0.01 while for the right panel we have α ¼ β ¼ 0.03 leading to a smaller allowed uncertainty
region.
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(ii) What are the experimental predictions of the corre-
sponding generalized quantum theories for simple
quantum systems?

(iii) What are the theoretical/observational predictions of
the corresponding generalized quantum theories for
black hole thermodynamics?

(iv) Are there cosmological signatures predicted by
such GUP?

The discussion of some of these questions and the proposal
of possible answers is the focus of the present analysis.
The structure of this paper is the following: In the next

section we review the basic forms of GUP that have been
analyzed in the literature in one and three dimensions. We
review the construction of operator representation for each
form of GUP and the analysis of simple quantum systems.
In Sec. III.1 we focus on the particular form of GUP that is
consistent with a maximum measurable length scale and
thus a maximum position uncertainty (maximum length
quantum mechanics). We show that this form of GUP
naturally also implies the existence of a minimum momen-
tum uncertainty and derive the position-momentum oper-
ator representation of this theory in terms of the usual
position-momentum operators. In Sec. III.2 we solve the
harmonic oscillator problem in the new theory and derive
the spectrum as a function of the maximum observable
length scale. In Sec. III.3 we briefly discuss the expected
time dependence of the maximum position uncertainty.
Finally in Sec. IV we conclude, summarize and discuss
future prospects of this work.

II. REVIEW OF MINIMUM LENGTH
QUANTUM MECHANICS

A. One space dimension

It is straightforward to derive the GUP Eq. (1.1) using the
generalized commutation relation

½x; p� ¼ iℏð1þ βp2Þ: ð2:1Þ

Using the general uncertainty principle for any pair of
noncommuting observables A, B

ΔAΔB ≥
1

2
jh½Â; B̂�ij ð2:2Þ

where ΔA≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðÂ − hÂiÞ2i

q
(similar for B) and Â, B̂ are

the operator representations of the observables A and B.
Using Eq. (2.1) in Eq. (2.2) we find

ΔxΔp ≥
ℏ
2
ð1þ βΔp2 þ βhpi2Þ ð2:3Þ

which leads to the GUP of Eq. (1.1). As discussed in the
Introduction, this equation may be written in the dimen-
sionless form

Δx̄Δp̄ ≥ ð1þ β̄Δp̄2Þ ð2:4Þ

where x̄≡ x
lmp
, p̄≡ p

pmp
and β̄≡ βp2

mp. In what follows we

omit the bar but we use the dimensionless form of the GUP.
The equation saturating the GUP inequality (2.4) may be

written as

Δx ¼ βΔpþ 1

Δp
: ð2:5Þ

It is easy to see that Δx is minimized for Δp ¼ 1ffiffi
β

p and the
corresponding minimum position uncertainty is

Δxmin ¼ 2
ffiffiffi
β

p
: ð2:6Þ

The operator representation that leads to the commuta-
tion relation (2.1) is not uniquely obtained. The position
and momentum operators that obey (2.1) may be defined in
terms of operators x0, p0 that obey the usual commutation
relation ½x0; p0� ¼ iℏ as

x ¼ x0 ð2:7Þ

p ¼ p0

�
1þ β

3
p2
0

�
: ð2:8Þ

An alternative representation is

x ¼ ð1þ βp2
0Þx0 ð2:9Þ

p ¼ p0: ð2:10Þ

It is easy to show that both representations (2.7)–(2.8)
and (2.9)–(2.10) satisfy the generalized commutation
relation (2.1) to OðβÞ. Both operator representations
may be used to construct and solve a generalized
Schrödinger equation for simple quantum mechanical
systems [18,40–45] in one space dimension leading to
generalized spectra that are consistent with the existence of
a fundamental minimum length scale [17]. They may also
be used to derive the thermodynamics properties of gravity
and black holes [26,46–52].
The operator representation (2.7)–(2.8) is more suitable

for perturbative analysis of quantum systems while in the
representation (2.9)–(2.10) the Hamiltonian eigenvalue
problems may usually be expressed as a relatively simpler
second order ordinary differential equation (ODE) in
momentum space which may lead to exact generalized
solutions [17].
The more general GUP (2.11) inspired from DSR may

also be written after proper rescaling in the form

Δx ≥
1

Δp
− β1 þ β21Δp ð2:11Þ
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which is easily shown to lead to a minimum position
uncertainty Δxmin ¼ β1 which is obtained when Δp ¼ 1

β1
.

B. Three dimensions

A naive generalization of the commutation relation (2.1)
to three dimensions would correspond to a commutation
relation of the form

½xi; pj� ¼
ℏ
2
δijð1þ βp2Þ: ð2:12Þ

In the context of the Jacobi identity however, this gener-
alization would lead to noncommutative geometries
(½xi; xj� ≠ 0). In order to restore commutativity of spatial
coordinates the above commutation relation should be
generalized to [17,20]

½xi; pj� ¼
ℏ
2
½δijð1þ βp2Þ þ β0pipj� ð2:13Þ

where the parameter β0 is connected to the parameter β by
demanding commutativity of position vector components

½xi; xj� ¼ 0 ð2:14Þ

and of momentum vector components

½pi; pj� ¼ 0 ð2:15Þ

in the context of the Jacobi identity

½½xi; xj�; pk� þ ½½xj; pk�; xi� þ ½½pk; xi�; xj� ¼ 0: ð2:16Þ

It is straightforward to show that to lowest order in β and β0
Eqs. (2.14) and (2.16) imply that

β0 ¼ 2β: ð2:17Þ

Equation (2.17) may also be obtained using (2.15) and the
Jacobi identity of the form

½½pi; pj�; xk� þ ½½pj; xk�; pi� þ ½½xk; pi�; pj� ¼ 0: ð2:18Þ

For a general β0 the commutators of the position vector
components may be shown to take the form [20]

½xi; xj� ¼ iℏ
ð2β − β0Þ þ ð2β þ β0Þβp2

1þ βp2
ðpixj − pjxiÞ

ð2:19Þ

which goes to 0 as expected for β0 ¼ 2β to first order in β
and β0.
The representation of position and momentum operators

that is consistent with (2.13) and (2.17) is of the form

xi ¼ x0i ð2:20Þ

pi ¼ p0ið1þ βp2
0Þ ð2:21Þ

where x0i and p0i satisfy the HUP commutation relations.
The representation (2.20), (2.21) may be used [19,

53–58] to derive the spectra of simple quantum mechanical
systems whose dynamics is determined for example by
central potentials. In such systems the Hamiltonian is of the
form [54]

H ¼ p2

2m
þ VðrÞ ¼ p2

0ð1þ βp2
0Þ2

2m
þ VðrÞ: ð2:22Þ

The energy eigenvalue problem

HjΨki ¼ EkjΨki ð2:23Þ

may be solved perturbatively setting Ek ¼ E0
k þ ΔEk with

unperturbed (β ¼ 0) states jΨ0
ki. The energy eigenvalue

shifts ΔEk are the eigenvalues of the matrix

β

m
hΨ0

kjp4
0jΨ0

ki: ð2:24Þ

For a central potential the unperturbed states are eigenstates
of the angular momentum and thus we have jΨ0

ki ¼ jnlmi
where n counts the energy eigenstates and l, m are the
quantum numbers of angular momentum.
Using the eigenvalue Eq. (2.23) in its unperturbed form it

is straightforward to show that in each subspace ðl; mÞ of
given n, the matrix hΨ0

kjp4
0jΨ00

k i ¼ hnlmjp4
0jnl0m0i is diago-

nal and the first order correction to the spectrum is

ΔEnl ¼ 4βm½ðE0
nlÞ2 − 2E0

nl · hnlmjVðrÞjnlmi
þ hnlmjVðrÞ2jnlmi� ð2:25Þ

where m (the mass) should not be confused with the
angular momentum quantum number in the bracket.
Assuming a power law central potential of the form

VðrÞ ∼ rp ð2:26Þ

and using the virial theorem hTi ¼ p
2
hVi we can write the

first order correction (2.25) as

ΔEnl ¼ 4βm

�
ðE0

nlÞ2
p − 2

pþ 2
þ hnlmjVðrÞ2jnlmi

�
: ð2:27Þ

Equation (2.27) is simple and general and can be used to
derive the predicted shift in the spectrum in realistic
systems like the hydrogen atom in the presence of a
fundamental minimal position uncertainty [53,54]. In the
case of a hydrogen atom with potential
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VðrÞ ¼ α1
r

ð2:28Þ

where α1 is the fine structure constant, Eq. (2.27) leads to a
shift of the energy spectrum of the form [54]

ΔEnl ¼ βm3α41
4n − 3ðlþ 1=2Þ
n4ðlþ 1=2Þ : ð2:29Þ

Clearly the shift of the energy eigenstates decreases
rapidly for higher excited states. Thus the most sensitive
state for measuring possible deviations from HUP is the
ground state of the hydrogen atom.

III. MAXIMUM LENGTHQUANTUMMECHANICS

A. General principles

As discussed in the Introduction, a particularly general
form of the GUP is expressed through Eq. (1.10) which
includes explicit minima and maxima in both position and
momentum. The allowed region of uncertainties in the
context of this form of GUP is shown in Fig. 2. Motivated
from the cosmological particle horizon or from possible
nontrivial cosmic topology [39] which provide a natural
maximum measurable length we now focus on the simple
case of Eq. (1.10) with β ¼ 0 i.e. without the presence of a
minimum position uncertainty but with a maximum posi-
tion uncertainty and a minimum momentum uncertainty in
one space dimension (Fig. 3). We thus consider a commu-
tation relation of the form

½x; p� ¼ iℏ
1

1 − αx2
≃ iℏð1þ αx2Þ ð3:1Þ

where the last approximate equality is applicable under the
condition αx2 ≪ 1. An operator representation that is
compatible with the generalized commutation relation
(3.1) is

p ¼ 1

1 − αx20
p0 ¼ ð1þ αx20 þ α2x40 þ � � �Þp0 ð3:2Þ

x ¼ x0: ð3:3Þ

It is straightforward to show that the commutation relation
(3.1) leads to a GUP of the form

ΔxΔp ≥
ℏ
2

�
1

1 − αx2

�
≥
ℏ
2

1

1 − αΔx2
ð3:4Þ

which has similarities to Eq. (1.8) [35,59]. Clearly, the
GUP (3.4) indicates the existence of maximum position
uncertainty:

lmax ≡ Δxmax ¼
1ffiffiffi
α

p : ð3:5Þ

It also has a minimum momentum uncertainty as can
easily be verified by minimizing the uncertainty boundary
equation

ð1 − αΔx2ÞΔxΔp −
ℏ
2
¼ 0 ð3:6Þ

with minimum momentum uncertainty

Δpmin ¼
3

ffiffiffi
3

p

4
ℏ

ffiffiffi
α

p ð3:7Þ

which occurs when Δx ¼ 1=
ffiffiffiffiffiffi
3α

p
(see Fig. 3 where

α ¼ 0.01).
The GUP (3.4) and the corresponding representation

(3.2), (3.3) make specific predictions for deformation of the
spectra of quantum mechanical systems that reduce to the
HUP quantum mechanics in the limit α → 0. As discussed
in the Introduction, a physically motivated maximum
position uncertainty corresponds to the present day particle
horizon given in Eq. (1.12). Thus, by combining Eqs. (3.5)
and (1.12) we obtain a physically motivated value of the
parameter α as

α ¼ l−2max ≃Oð10−52Þ m−2: ð3:8Þ

Thus an important question that needs to be addressed is
the following: What is the modification of the spectra of
simple quantum systems induced in the context of the GUP
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FIG. 3. The deformation of the HUP in accordance with
Eq. (3.4) after rescaling to dimensionless form.
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(3.4) and the corresponding representation (3.2), (3.3)
for the physically motivated value of α given in Eq. (3.8)?
The answer to this question could also lead to the

derivation of the specific signatures of the GUP (3.4) in
the spectra of physical systems and the potential of
detectability of such signatures in present and future
experiments. The presence of such signatures is a mani-
festation of the nonlocality of quantum mechanics which
allows local systems to probe global properties of
spacetime.
Even though the parameter α is dimensionful, a relevant

dimensionless parameter can be constructed for a given
quantum system by rescaling α with the typical scale of the
system. For example the typical microphysical length scale
of a harmonic oscillator is

xmp ¼ xosc ¼
ffiffiffiffiffiffiffi
ℏ
mω

r
≃Oð10−12Þ m ð3:9Þ

where in the last equality we have assumed the massm and
the angular frequency ω corresponding to a typical
diatomic molecule even though a charged particle in a
homogeneous magnetic field (Landau levels) could also be
used as a physical system. Thus by combining Eqs (3.8),
(3.9) we obtain a dimensionless version of α useful for the
particular quantum system which may be written as

ᾱ≡ αx2osc ≃Oð10−77Þ ð3:10Þ

which is extremely small. Even though the smallness of ᾱ
indicates that the corresponding deformation of the spec-
trum will turn out to be undetectable by current experi-
ments it is still interesting to identify the predicted form of
the spectral deformation and find the part of the spectrum
that is mostly affected by this deformation. Thus in the next
subsection we focus on the derivation of this deformation in
the simple harmonic oscillator in one spatial dimension.

B. An example: The harmonic oscillator

The Hamiltonian of the one-dimensional harmonic
oscillator is of the form

H ¼ p2

2m
þ 1

2
mω2x2: ð3:11Þ

Assuming the GUP (3.4) and using the corresponding
operator representation (3.2), (3.3) the Hamiltonian takes
the form

H ¼ 1

2m
1

1 − αx20
p0

1

1 − αx20
p0 þ

1

2
mω2x20: ð3:12Þ

In position space the undeformed momentum operator p0

takes the form

p0 ¼ −iℏ
d
dx0

¼ −iℏ
d
dx

: ð3:13Þ

Using Eqs. (3.12) and (3.13) it is straightforward to show
that the Schrödinger equation HΨðxÞ ¼ EΨðxÞ in position
space takes the generalized form

d2Ψ
dx2

þ 2αx
1 − αx2

dΨ
dx

þ ð1 − αx2Þ2ðE − ηx2ÞΨ ¼ 0 ð3:14Þ

where E ≡ 2mE
ℏ2 , η≡ mω

ℏ and x2 ∈ ½0; 1a�. This equation,
corresponding to an IR cutoff, is formally the same as
the corresponding equation obtained when an explicit UV
cutoff is imposed (explicit maximum momentum uncer-
tainty) [35] and may be studied using similar approximate
analytical methods. However, here we choose the use of
numerical methods as they lead to a better description of the
global behavior of the solutions.
Clearly there are two scales in Eq. (3.14): the micro-

physical system scale x2osc ≡ 1
η and the fundamental GUP

scale l2max ¼ 1
α. We now define the dimensionless quantities

x̄≡ x
ffiffiffi
η

p
, ᾱ≡ α

η and

Ē ≡ E
η
¼ E

1
2
ℏω

: ð3:15Þ

In the absence of maximal position uncertainty (α ¼ 0)
ĒðnÞ ¼ 2nþ 1. Using these quantities, the generalized
Schrödinger equation (GSE) of (3.14) may be written in
dimensionless form as

d2Ψ
dx̄2

þ 2ᾱ x̄
1 − ᾱx̄2

dΨ
dx̄

þ ð1 − ᾱx̄2Þ2ðĒ − x̄2ÞΨ ¼ 0: ð3:16Þ

The rescaled GSE (3.16) involves a single dimensionless
parameter ᾱ. In what follows we omit the bar for simplicity.
It is straightforward to solve the GSE (3.16) numerically
using Mathematica [60] under the following boundary
conditions:

(i) The wave functions should vanish at the maximal
position lmax ¼ 1ffiffi

α
p [ΨðlmaxÞ ¼ 0] as indicated by the

divergence of the effective potential in Eq. (3.16).
(ii) The wave function should have definite par-

ity [ΨðxÞ ¼ �Ψð−xÞ].
(iii) The wave function should be properly normalized

(
Rþlmax
−lmax

ð1 − αx2ÞjΨðxÞj2dx ¼ 1). The term (1 − αx2)
in the scalar product definition used in the normali-
zation is needed in order to retain symmetry of the
momentum operator defined in Eq. (3.2) [17,35].

These conditions are sufficient to lead to both the energy
spectrum and the wave functions for any value of α. In
Fig. 4 we show the ground state and the first excited state
normalized wave functions for α ¼ 0.01 and for α ¼ 0.2.
As imposed by the boundary conditions, the wave functions
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vanish at x ¼ lmax ¼ 1ffiffi
α

p . Notice the confinement of the

wave function for larger values of α which leads to
increased energy eigenvalues.

The energy spectrum Eðn; αÞ may also be evaluated
numerically using the above boundary conditions and
Eq. (3.16). The energy eigenvalues as a function of the
dimensionless parameter α for n ¼ 0–6 are shown in
Fig. 5 (thick dots). Clearly the dependence of the eigen-
values on α is linear for both small and large values of α.
The slope of the linear dependence however changes at a
critical value αcrit that depends on the value of the quantum
number n. It is straightforward to show using Mathematica
[60] that the linear dependence of the energy eigenfunc-
tions on α may be very well approximated by the following
parametrization,

Eðn;αÞ ¼ 2nþ 1þ
�
1

2
þnðnþ 1Þ

�
α; α< αcrit ð3:17Þ

Eðn; αÞ ¼ 1

2
þ 11

2
ðnþ 1Þ2α; α > αcrit ð3:18Þ

where

αcritðnÞ ¼
4nþ 1

11ðnþ 1Þ2 − 2nðnþ 1Þ − 1
: ð3:19Þ

The quality of fit of the parametrization (3.17), (3.18) to the
numerically obtained energy spectrum is demonstrated in
Fig. 5 where we superpose the numerically obtained
eigenvalues (thick dots) for various values of n with the
corresponding linear relations (3.17), (3.18) (continuous
lines). The linear relation for small α is particularly
interesting in view of the physical arguments leading to
Eq. (3.10). The energy eigenvalues in this range of α ≪
αcrit are shown in Fig. 6 along with the corresponding fits of
Eq. (3.17) which clearly provide an excellent fit to the
numerically obtained eigenvalues Eðn; αÞ.
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FIG. 4. The ground state (left panel) and the first excited state (right panel) wave functions for α ¼ 0.01 and for α ¼ 0.2. The wave
functions vanish at the IR cutoff x ¼ lmax ¼ 1ffiffi

α
p .
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FIG. 5. The dependence of the energy eigenvalues of the dimensionless parameter α for n ¼ 0–6. There is a linear dependence but the
slope increases at a critical value αcritðnÞ ¼ 4nþ1

11ðnþ1Þ2−2nðnþ1Þ−1. The slope for low α is well fit by the linear function E ¼ 2nþ 1þ
ð1
2
þ nðnþ 1ÞÞα while the linear function for α ≫ αcrit is E ¼ 1

2
þ 11

2
ðnþ 1Þ2α. The thick dots correspond to the numerical results while

the continuous line is the analytical parametrization provided by (3.17), (3.18).
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C. Time dependence of maximum position uncertainty

If the maximum position uncertainty lmax (and therefore
α) is assumed to be determined by the comoving particle
horizon then it should be a time dependent quantity on
cosmological time scales. This time dependence is
expressed in a cosmological setup as a scale factor a or
redshift z dependence. We thus have

lmaxðzÞ ¼ c
Z

z

0

dz
HðzÞ ð3:20Þ

where HðzÞ is the redshift dependent Hubble expansion
rate which in ΛCDM takes the form

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mð1þ zÞ3 þ Ω0rð1þ zÞ4 þΩΛ

q
ð3:21Þ

and the Hubble radius is

c
H0

≃ 9 × 1025 hmeters ð3:22Þ

while h is the Hubble parameter in units of
100 km=ðsec ·MpcÞ. Using Eqs. (3.20)–(3.22) it is straight-
forward to obtain the maximum position uncertainty
lmaxðzÞ vs redshift (in meters) assuming a ΛCDM universe

with Ω0m ¼ 0.3, Ω0r ¼ 10−4. Such a log-plot of lmaxðzÞ is
shown in Fig. 7. Clearly at high redshift the maximum
position uncertainty becomes microphysical and may
produce signatures in the quantum fluctuations produced
during inflation leading to structure formation. In particular
a generalized commutation relation of the form (3.1) is
expected to also modify the commutation relation between
creation and annihilation operators of the harmonic
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oscillator (generalized bosonic Heisenberg algebra [21,61])
leading also to quantum field theoretical effects. These
effects are unobservable in the present Universe but in the
early Universe they may lead to observable deviations from
the scale invariant primordial power spectrum generated
during inflation. The investigation of these effects is
beyond the scope of the present analysis.

IV. CONCLUSION: EARLY
UNIVERSE SIGNATURES

We have demonstrated that the existence of a maximal
position uncertainty leads to nontrivial modifications of the
properties of local quantum systems due to the nonlocality
that is inherent in quantum mechanics. The existence of
such a maximal position uncertainty is generic in a
cosmological setup due to the presence of particle horizons.
If the maximal position uncertainty is as large as the

present particle horizon of the Universe then its effects on
local microphysical quantum systems like the harmonic
oscillator exist but they are not large enough to be
observable. However, in the early Universe when the
comoving particle horizon is much smaller than its present
size, the effects of a maximum position uncertainty may be
important thus leaving a signature on the shape of the
primordial power spectrum of quantum cosmological
fluctuations generated during inflation.
These results are generic, model independent and are

generated simply by demanding consistency of quantum
mechanics with the description of the Universe in the
context of big bang cosmology. Their increased importance
in the physical processes of the early Universe makes them
particularly interesting and raises the possibility of the
existence of observational signatures in cosmological data.

This possibility leads to a wide range of possible extensions
of the present work. These extensions include the
following:

(i) 3D systems: Investigate the spectrum modifications
induced by the presence of maximal position un-
certainty in three-dimensional quantum systems like
the hydrogen atom.

(ii) Field theoretical effects: Study the predicted effects
of maximal position uncertainty in the context of
field theory [21] and the predicted modifications
induced in scattering amplitudes and path integral
[62] formalism.

(iii) Early Universe signatures: The effects of a maxi-
mum position uncertainty due to particle horizon on
nontrivial cosmic topology are expected to be
amplified in the early Universe and lead to observ-
able effects in the context of nucleosynthesis, the
primordial fluctuation spectrum, effects on thermal
equilibrium, etc.

(iv) Simultaneous presence of maximal and minimal
position uncertainty: As stated in the Introduction,
quantum gravitational considerations imply the
existence of a minimal position uncertainty. The
behavior of quantum systems in the simultaneous
presence of maximal and minimal position uncer-
tainties [Eq. (1.10)] is also an interesting extension
of the present analysis.

The MATHEMATICA code used for the construction of the
figures may be obtained from [63].
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