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We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-
classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction
between the system and environment, we derive a quantum master equation for the reduced density matrix
of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of
fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical
solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This
allows us to write down a Langevin equation with stochastic noise for the classical trajectories which
emerge from the quantum system on super-horizon scales. In particular, we find that environmental
decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white
noise coming from local contributions to environmental correlations. Finally, we use our master equation to
quantify the strength of quantum correlations as captured by discord. We show that environmental
interactions have a tendency to decrease the size of the discord and that these effects are determined by the
relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of
the competing effects of particle creation versus environmental fluctuations, which tend to increase and
decrease the discord respectively.
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I. INTRODUCTION

The inflationary paradigm [1,2] successfully describes
the present-day uniformity of the Universe on large scales,
as well as accounting for small fluctuations in the cosmic
microwave background (CMB) [3–5], leading to a nearly-
scale-invariant power spectrum of temperature anisotro-
pies. According to the inflationary hypothesis, the origin of
these inhomogeneities can be traced to primordial quantum
fluctuations produced during the inflationary epoch, which
become stretched and amplified across the sky by the quasi-
de Sitter expansion. In this sense, primordial fluctuations
sow the seeds for the large-scale structure observed today.
However, both the large-scale structure and even the CMB
are treated in an essentially classical way, in that they are
described by classical probabilities. A question of funda-
mental importance is therefore to understand how, and in
what sense these fluctuations are rendered classical as they
journey outside the horizon.
For free fields in (quasi-)de Sitter there is a standard

answer to this question. Since the fluctuations are isolated,
they can be described by a pure state whose corresponding
wave function

Ψ½χk� ¼
�
2ReΩk

π

�
1=2

exp ð−Ωkjχkj2Þ; ð1Þ

becomes highly squeezed (in the momentum direction) as
modes exit the horizon. As explained in [6–8] expectation
values calculated in this squeezed state can be described as
averages over a set of classical stochastic trajectories in
analogy with a Gaussian wave packet of a free particle.
Nevertheless, the wave function is still a pure state with
long range coherence in field space and the interpretation in
terms of classical stochastic trajectories is seen to be special
to a free theory. It is interesting to go beyond the free theory
and study the quantum-to-classical transition when there
are nontrivial interactions.
Indeed, in reality, fluctuations are not truly isolated and

will interact with other fields (at the very least they must
interact with metric fluctuations) playing the role of an
“environment.” Therefore, one necessarily has to under-
stand the emergence of classicality in open systems, and in
what sense a classical stochastic description emerges. This
is the subject of open quantum systems [9], which provides
a formalism to analyze the reduced density matrix of the
particular system (and its evolution via a quantum master
equation) by tracing out the environmental degrees of
freedom. In particular, this formalism allows one to study
the process of environmental decoherence, which at the
simplest level, leads to the decay of quantum interference in
the system. It also allows one to understand how, starting
from an initially quantum state, classical stochastic dynam-
ics emerges due to interaction with an environment—this is
of course more challenging than the situation in the free
theory where the classical description is rather trivial.

*t.hollowood@swansea.ac.uk
†pymcdonald@swansea.ac.uk

PHYSICAL REVIEW D 95, 103521 (2017)

2470-0010=2017=95(10)=103521(25) 103521-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1103/PhysRevD.95.103521


Steps towards understanding the evolution of the density
matrix during inflation in the presence of an external
environment have already been made in Refs. [6,10,11]
where a phenomenologically motivated ansatz of the form

hχkjρ̂j~χki≡ ρðχk; ~χkÞ

¼
�
2ReΩk

π

�

× exp

�
−ΩkðηÞjχkj2 −Ω�

kðηÞj~χkj2 −
ξ

2
jχ − ~χj2

�
;

ð2Þ

was considered, where Ωk are simply the free solutions
associated to Eq. (1). This ansatz consists essentially of
adding by hand an additional factor exp½−ξ=2jχ − ~χ0j2� to
the free density matrix associated to (1), where ξ is assumed
to be a constant determined by the details of the environ-
ment. Plainly Eq. (2) is heuristic and warrants further
investigation in a concrete model. For instance, ΩkðηÞ will
obviously receive corrections of order the coupling strength
with the environment, thereby incorporating new features
into the power spectrum (which is proportional to
½ReΩk�−1). Similarly, one would expect, and as we shall
see, that ξ has some time and momentum dependence
ξkðηÞ. What is needed is to consider particular interactions
in order to formulate a more comprehensive analysis of the
evolution of the density matrix allowing one to build on the
work of, e.g. [12,13] which sketched the implications of
particular environment-system couplings. In particular one
would like to examine the time evolution of ΩkðηÞ and
particularly ξkðηÞ in a specific model coupling fluctuations
to another field.
Under favorable conditions, one can then obtain a

quantum master equation for the time evolution of ρ into
which the ansatz (2) can be substituted to determine the
evolution equations for ΩkðηÞ and ξkðηÞ.
In order to have a model of environmental interactions

which is amenable to explicit calculation, it is very useful to
have one that maintains the description in terms of
individual momentum modes of the perturbations χk.
This leads us to consider the model developed by
Boyanovksy [14,15] where the interaction is between the
“system” field ϕ and another “environment field” φ
coupled via

Sint ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
λϕφ2 ¼

Z
d4xaðηÞλχψ2; ð3Þ

where χ ¼ aϕ and ψ ¼ aφ are the usual conformally
rescaled fields. Note that the special form of the coupling
here, linear in χ (i.e. ϕ), means that the interaction does not
mix the different momentum modes χk up to and including
Oðλ2Þ, and so at lowest order we can still consider the
problem mode-by-mode providing a great computational

simplification. In [15], Boyanovksy was focused more on
using the master equation to derive corrections to the power
spectrum rather than the details of decoherence and the
quantum-to-classical transition. In this paper, we shall
develop his analysis and use the interaction (3) as a toy
model in which to address the evolution of decoherence and
the onset of classical stochastic behavior as modes exit the
horizon.
There are different formalisms for modeling the effects

of interactions with an environment involving apparently
rather different approximations. On the one hand, via a
master equation for the reduced density matrix, and on the
other, via the influence action. The latter approach can be
shown, under suitable circumstances, to be equivalent to
the master equation approach in flat space problems [14],
but it is by no means clear whether this will be true in the
inflationary context. Although it seems the key observable
of the fluctuations—the power spectrum—can be calcu-
lated in either approach with agreement [15]. Some
previous works on decoherence in the inflationary context
have concentrated on the influence action formalism
[16,17]; however, the master equation route offers the
advantage of allowing one to follow the quantum state
explicitly as expansion and decoherence proceeds and
provides a way to calculate the growth of entropy and
assess the degree to which the perturbations are classical.
Other important work on cosmological perturbations,
decoherence and the quantum-to-classical transition
includes [7,8,11,13,18–28].

A. Key results

(1) By deriving and solving evolution equations for
ξkðηÞ and ΩkðηÞ we are able to show that ΩkðηÞ does
indeed receive additional λ-dependent corrections.
For instance we find that

Re½ΩkðηÞ�

¼ k3η2 exp

�
λ2

12π2H2

�
log2

η

η0
−
4

3
log

η

η0

��

þOðη3Þ: ð4Þ

Therefore by direct computation of the density
matrix we are able to reproduce, via an alternate
calculational route, the resummed corrections to the
power spectrum (which is proportional to 1=Re½Ωk�)
found by Boyanovksy [15]. On super-horizon scales
these corrections are dominated by nonlocal corre-
lations of the “environment field” φ, corresponding
to long-time correlations, i.e. memory effects, as
noted in [15].

(2) We find that decoherence, as characterized by ξkðηÞ,
exhibits time dependence, oscillating on sub-horizon
scales (kη ≫ 1) and growing monotonically outside
the horizon (kη ≪ 1)—a manifestation of the fact
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that by virtue of the operator being relevant the
factor aðηÞ in the RHS of (3) leads essentially to an
interaction strength which grows in time. By contrast
to ΩkðηÞ, we find that the super-horizon evolution
of the decoherence parameter, ξkðηÞ is driven by
the local environment correlators, in other words,
by white noise relating to delta function self-
correlations of the environment.

(3) We find that on sub-horizon scales the density matrix
violates positivity, a symptom of the fact that the
master equation is not in Lindblad—the manifestly
positivity preserving—form. This shows that on sub-
horizon scales the assumptions that go into deriving
the master equation cannot be completely consistent.
However, positivity is recovered on super-horizon
scales when the state becomes very squeezed. We
also see the same behavior at the level of the Wigner
function, which satisfies a Fokker-Planck equation
exhibiting unphysical “negative-diffusion” on sub-
horizon scales which becomes unimportant as
modes exit the horizon. In this sense we provide a
complete picture of how decoherence and positivity
emerge as modes exit the horizon leading to the
interpretation of the density matrix as a classical
probability density function (PDF) after it becomes
both diagonal and positive.

(4) It is a well-known fact that in realistic systems,
entanglement between spacelike separated regions is
extremely sensitive to noise from the local environ-
ment [9], it is therefore important to ask how
vulnerable entanglement produced during inflation
is to decoherence. The final part of this paper uses
the quantum master equation and its solutions to
study the effects of environmental noise on entan-
glement produced during inflation. The principle
measure we use is quantum discord [29,30]. Our
analysis reveals that the environment does indeed
weaken the strength of discord with the corrections
being of order λ=H, a ratio characterizing the relative
strength of entangled particle pair production and the
interaction rate with the environment.

The structure of the remainder of the paper is as follows.
Beginning in Sec. II, we discuss open quantum systems in
general terms using the paradigm of quantum Brownian
motion to describe various concepts, which is particularly
fitting as the mode-by-mode master equation of cosmo-
logical perturbations assumes the same schematic form.
Then, in Sec. III, we introduce the simplified model used to
study an open system of primordial perturbations and
review the derivation of the corresponding master equation
outlined in [15].
Once this groundwork is laid, in Sec. IV we provide a

detailed analysis of the master equation, drawing compar-
isons with quantum Brownian motion [9,31,32], where we
identify the usual fluctuation-dissipation terms, in addition

to the unitary coherent evolution associated to the isolated
squeezed state. We find that, although the master equation
is not in Lindblad form, positivity of the density matrix is
established on super-horizon scales, providing a natural
emergence of classicality at late times. We also write the
master equation in terms of the Wigner function which we
then use to construct a Langevin-type equation. This
provides an equivalent description of the model—in the
sense of expectation values—in terms of a stochastic theory
of classical trajectories. In this sense we provide a first-
principles derivation in the context of the model (3), of a
classical stochastic equation which reproduces the dynam-
ics of the quantummaster equation on super-horizon scales.
It should be noted that this is different from the stochastic
inflation paradigm [33,34], where the noise is described by
sub-Hubble modes in contrast to the present setup, where
the noise arises from another field, conformally coupled so
that it can mimic the sub-Hubble environment in a
computational tractable model [15].
Finally, in Sec. V we shall address the question of

whether quantum correlations (generated by entangled
pair creation) are robust to environmental decoherence.
Recently, a novel approach to entanglement in inflationary
cosmology has been explored by Lim [35] and Vennin and
Martin [36]. The idea is to harness the power of correlations
in the system of perturbations using quantum discord
[29,30] which relies on the difference between classical
and quantum correlations to quantify the extent to which a
particular system exhibits quantum features. It is natural to
expect entanglement between different regions of a system
to be subdued due to entanglement with a local environ-
ment. Indeed it has already been noted in other contexts that
an external environment weakens discord [37]. The detailed
analysis of decoherence provided by our quantum master
equation and its solutions allows us to examine precisely
this question. We find that environmental decoherence has
a tendency to reduce the size of the discord and offer an
interpretation of this in terms of the competing effects of
particle pair creation in de Sitter (which tends to increase
the strength correlations) and random production of par-
ticles due to the environmental scatterings, which weakens
the strength of correlations. In Sec. VI we offer our
conclusions and some suggestions for future work.

II. THE QUANTUM MASTER EQUATION

Since our central goal is to understand how a quantum
state can end up classical, the nature of the quantum-to-
classical transition deserves some comment. We take a
pragmatic view here: classical mechanics is manifestly an
emergent phenomenon of quantum systems in certain
circumstances and the two key issues are: (i) what are
those circumstances? And, (ii) what are the phenomeno-
logical rules that describe how the classical state emerges
from an underlying quantum state?

DECOHERENCE, DISCORD, AND THE QUANTUM MASTER … PHYSICAL REVIEW D 95, 103521 (2017)

103521-3



We view the emergence of classical mechanics in the
same way one views any effective theory of some under-
lying microscopic system. The resulting description will
always be phenomenological and only appropriate to a
coarse-grained perspective. By “coarse-grained” we mean
that the effective theory is couched in terms of observables
that have some realistic finite resolution scales, e.g. the
dynamics of fluctuations on super-horizon scales in the
cosmological setting. For observers probing these scales, an
evolving quantum state can be equivalent to an ensemble of
classical stochastic trajectories in the sense that quantum
expectation values are captured by stochastic averaging.
The final step is to postulate that an individual classical
stochastic trajectory is real for the coarse-grained observer.

A. Analogy with quantum Brownian motion

A useful toy model which has many parallels with the
present investigation is the much-discussed subject of
quantum Brownian motion [9,31,32,38]. The system con-
sists of a particle, which, in the simplest setup, moves in
one dimension, interacting with an environment. The
environment can be modeled in many different ways
leading to the same universal behavior for the particle.
The first level of coarse graining is to take a perspective—
defined by a set of observables—which act on the particle
alone, e.g. its position and momentum. In these circum-
stances, one can trace out the environment and work with
the reduced density matrix of the particle, ρ ¼ TrE jΨihΨj.
Here, jΨi is the state vector of the joint environment-
particle system whose evolution is unitary. In general, ρ
does not satisfy an autonomous dynamical equation;
however, there are circumstances for which one can derive
an approximate autonomous equation for ρ known as the
“master equation.” In going from the unitary evolution of
the total state, to nonunitary evolution encoded in the
quantum master equation, there are essentially three stages
of approximation which must be made and justified:
(1) The first is the Born approximation, in which one

replaces the total (pure) state of the system jΨi by a
product of density matrices for the particle and
environment ρS ⊗ ρE . The idea is that the environment
is so large compared with the system (the particle) that
in every instant the system is interactingwith a fresh bit
of the environment and the overall environment is
barely affectedby the interactionwith themuch smaller
system. Any entanglement that previously builds up
between the particle and the environment is encoded in
the von Neumann entropy of the reduced density
matrix of the particle which increases over time.

(2) The second approximation is the Markov approxi-
mation that allows one to replace terms that depend
on the history of the system by the instantaneous
state ρ. This approximation is justified when the
dynamics of E is suitably fast compared with the
slow dynamics of the macroscopic particle.

(3) Finally, the resulting equation for ρ has terms that
oscillate rapidly on the fast environmental time
scale. Temporal coarse graining amounts to remov-
ing these terms by hand in a form of rotating wave
approximation [9].

If all these steps are followed, a master equation for ρ can
emerge with solutions that are physically consistent, i.e.
which preserve the positivity of the spectrum of ρ. The
latter is needed for a consistent density matrix which must
have a spectrum fpng for which pn ≥ 0 and

P
npn ¼ 1

(the normalization condition). The necessary and sufficient
condition for this is that the master equation can be written
in Lindblad form, that is as

_ρ ¼ 1

iℏ
½H; ρ� þ

X
i

αið2AiρA
†
i − A†

i Aiρ − ρA†
i AiÞ; ð5Þ

with αi ∈ R > 0. It is the second term here that encodes the
interaction with the environment. For quantum Brownian
motion, the form of the master equation in the position
basis ρðx; x0Þ ¼ hxjρjx0i, is the Caldeira-Leggett master
equation [31].

ð6Þ

Here, Heff is the Hamiltonian of the particle with some
additional additive terms that arise from the coupling of the
particle and E. In fact, strictly speaking, this master
equation is not in Lindblad form. To render it so, one
must take

A ¼ xþ iβp; α ¼ 2mγkBT
ℏ2

; β ¼ γ

α
; ð7Þ

in the Lindblad form (5), and this gives rise to extra terms
quadratic in momentum. However, in realistic situations
where T is not too small, the departure from positivity is
small at the level of solutions, so the lack of terms needed
for positivity in (6) can be neglected. The characteristic
features of the master equation are the dissipation (or
relaxation) and fluctuation (decoherence) terms.
Now thatwe have an explicit example of an open quantum

system, we can ask the all-important question: what makes a
state of this system “classical?” To start with the word
“classical” is attached to quantum states in different ways.
One answer is that a classical state is one which is highly
localized in position and momentum, like a coherent state
(i.e. a state which provides the minimal level of uncertainty
allowed by theHeisenberg relation). If the spread δx is much
smaller than the scale over which the potential energy VðxÞ
varies then Ehrenfest’s theorem guarantees that the quantum
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state follows the classical trajectory. Unfortunately, this
reasoning, although often invoked in textbooks, is com-
pletely unrealistic. Even in free systems, wave functions
spread over time. This spreading is slow for a macroscopic
particle but in any chaotic system this spreading becomes
remarkably fast, order tc logðI=ℏÞ, where tc is the character-
istic (classical) chaos time scale and I is the characteristic
(macroscopic) action scale of the system. In summary, we
cannot rely on Ehrenfest’s theorem to describe the quantum-
to-classical transition (see the discussion in [39]).
The second use of the word “classical” is in “semi-

classical,” or WKB states. These kinds of state are pure and
are smeared along classical trajectories of the system in
phase space and so are not the kind of state that can
describe the quantum-to-classical transition [40].
Finally, we have the notion of a classical state that is

meaningful for the quantum-to-classical transition. These
states are very spread out in both position and momentum.
This seems paradoxical: how can such states be classical? It
will emerge that the answer is that these states give
quantum expectation values that can be captured by a
classical stochastic process.
A state which is very spread out in position and

momentum has coherence lengths lx and lp (the scales
over which the off-diagonal elements of the density matrix
fall off in position and momentum space, respectively)
which are very small in the sense that

lxlp ≪ ℏ: ð8Þ

Such states must necessarily be mixed states rather than
pure and can be given a useful phase space representation
by using, for example, the Wigner function. We choose the
latter for its ubiquity even though there is nothing that
really singles it out from other alternatives (e.g. the Husimi
function):

Wðx; pÞ ¼ 1

π

Z
∞

−∞
dx0ρ

�
x −

x0

2
; xþ x0

2

�
e2ipx

0=ℏ: ð9Þ

In general, there is nothing to guarantee the positivity of
Wðx; pÞ—unlike the Husimi function which is manifestly
positive—but for a “classical state” spread out in phase
space over an area ≫ ℏ, Wðx; pÞ becomes positive.
The master equation (6) can be written in terms of the

Wigner function as

ð10Þ

Note that the quantum corrections above arise from non-
linear terms in the dynamics, that is, on the derivatives of
the potential VðxÞ of order three and greater.
We can now consider the effect of the various terms in

the master equation. Firstly, with only the Poisson bracket
term on the right-hand side, Liouville’s theorem would
ensure that the area of the support of W is preserved.
Consider an initial state with minimal support allowed by
the uncertainty principle A ∼ ℏ—a coherent state. The
nonlinear interactions in the Poisson bracket term have
the tendency to makeW spread out in phase space but at the
same time vary on small scales so that the area remains
fixed A ∼ ℏ. Generally the area is squeezed in some
directions and expands in other directions in such a way
that the perimeter grows rapidly. Now consider the effect of
the quantum corrections in (10). These generally destroy
the probability density interpretation of W and encode
nontrivial quantum interference. Specifically, these terms
will lead to a violation of the positivity of the Wigner
function as it “interferes with itself.”
However, the decoherence terms coming from the

interactions of the particle with the environment can rescue
a probabilistic interpretation. In particular the decoherence
term, causes the Wigner function to spread out but also
become smooth on small scales. The positivity violations
are alleviated and the area of support is driven to A ≫ ℏ.
This spreading and smoothing goes hand in hand with
coherence lengths that are driven to the regime (8). This
lack of purity can also be quantified by the entanglement
entropy. Note that the smoothing out caused by
decoherence also implies that the different phase space
representations of a state, Wigner, Husimi, etc., essentially
become indistinguishable.
The fact that the Wigner function becomes smoothed out

means that the derivatives ∂n
pW are small and so the

quantum corrections in (10) are suppressed [39].
Effectively one can describe the dynamics of the Wigner
function by the much simpler equation

_W ≈ fHeff ;Wg þ 2γ∂pðpWÞ þ 2mγkBT∂2
pW: ð11Þ

Now comes the key point for the quantum-to-classical
transition. This simplified master equation has precisely the
form of a Fokker-Planck equation where the decoherence
term corresponds to diffusion and the dissipation term to
friction. In other words, the Wigner function can now be
given the interpretation of a classical probability density
function for a set of classical stochastic trajectories
described by the Langevin equations

_x ¼ fx;Heffg; _p ¼ fp;Heffg − 2γpþ σ; ð12Þ

where σðtÞ is a Gaussian white noise term with
characteristics
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EðσðtÞÞ ¼ 0; EðσðtÞσðt0ÞÞ ¼ 4mγkBTδðt − t0Þ: ð13Þ

The final step in the quantum-to-classical transition is to
interpret the Langevin equation as describing classical
trajectories that have emerged out of the underlying
quantum dynamics at the level of the coarse-grained
perspective (after tracing over the environment). Note that
the equivalence to a classical stochastic process means that
quantum expectation values can be captured by averages
over classical stochastic trajectories:

TrðρðtÞOðx; pÞÞ ≈
X

fxðt0Þ;pðt0Þg
OðxðtÞ; pðtÞÞ; ð14Þ

where the average on the right-hand side is over the
stochastic trajectories up to time t with random initial
conditions that correspond to the initial Wigner function.
Let us summarize the phenomenological approach to the

quantum-to-classical transition:

We shall now see how this same chain of steps emerges
during inflation, with environmental interactions leading to
diffusion/decoherence terms in the master equation that are
then interpreted as stochastic noise acting on the emergent
classical trajectories. The reduced dynamics is given by
tracing out this environment with an additional level of
coarse graining provided by restricting to super-Hubble
modes—the appropriate scales for analyzing the CMB.
It is worth pointing out at this stage, that what we have

described above is a way to think about the quantum-to-
classical transition and how classical trajectories can be
thought to have emerged from the quantum system in an
interacting system. However, the simplest cosmological
model is free, i.e. VðxÞ is quadratic and there is no
environment. In that case, the master equation for the
Wigner function obviously takes the form of a Fokker-
Planck equation immediately and therefore is clearly
equivalent to a classical stochastic process where the
trajectories in this case satisfy the classical equations of
motion (there is no noise in this case because there is no
diffusion term) but with initial conditions that are defined

randomly with respect to a PDF that is the initial Wigner
function (this is shown quite explicitly in [6–8]). Note that
this interpretation can be made even though the quantum
state remains pure. It is really a moot point as to whether
this as a valid description of the quantum-to-classical
transition because in any realistic system, including the
cosmological one, we expect that there will be interactions
that cannot be ignored.

III. MASTER EQUATION FOR THE REDUCED
DENSITY MATRIX

In order to study an open system of the scalar cosmo-
logical perturbations, we introduce a simplified model
considered by Boyanovsky [15] (whose notation we
follow) by coupling the scalar perturbations ϕ to an
external scalar field φ via the action

S ¼
Z

d3xdta3
�
1

2
_ϕ2 −

ð∇ϕÞ2
2a2

−
1

2
ðM2

ϕ þ ξϕRÞϕ2 þ 1

2
_φ2

−
ð∇φÞ2
2a2

−
1

2
ðM2

φ þ ξφRÞφ2 − λϕ∶φ2∶
�
; ð15Þ

where

R ¼ 6

�
ä
a
þ _a2

a2

�
; ð16Þ

is the Ricci scalar and ξ ¼ 0; 1=6 correspond to the cases of
minimal and conformal coupling, respectively. The inter-
action is normal-ordered so that

∶φ2 ≔ φ2 − hφ2i; ð17Þ

where h� � �i denotes a quantum field theory correlator. We
shall work in conformally rescaled fields ϕ ¼ χ=a and φ ¼
ψ=a and introduce conformal time η ¼ −1=aH, in which
the action becomes

S ¼
Z

d3xdη

�
1

2
½χ02 − ð∇χÞ2 −M2

χðηÞχ2�

þ 1

2
½ψ 02 − ð∇ψÞ2 −M2

ψðηÞψ2� þ λ

Hη
χ∶ψ2∶

�
; ð18Þ

where

Mχ;ψðηÞ ¼
�
M2

χ;ψ

H2
þ 12

�
ξχ;ψ −

1

6

��
1

η2
; ð19Þ

provides an effective, time-dependent mass.
In order to provide a simplified model of the cosmo-

logical perturbations, χ plays the rôle of the Mukhanov-
Sasaki variable and so is a minimally coupled (ξχ ¼ 0)
massless field. In fact, the bare mass will be nonvanishing
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in order to absorb a UV divergence. On the other hand, for
the environment field, choices can be made. We follow [15]
and take ψ to be a conformally coupled field (ξψ ¼ 1=6).
The intuition for this choice is that the field ψ can either be
viewed as a field in its own right or as a proxy for the high
frequency components of χ whose wavelength remain
inside the horizon during inflation. This mimics a nonlinear
self-interaction that couples modes of different momentum.
In this sense, the simplified model attempts to model an
IR-UV split of the degrees of freedom of a single
(interacting) field.
It is convenient—at least to start with—to work in the

interaction picture where the observables evolve in the free
Heisenberg picture and the density matrix evolves accord-
ing to the von Neumann equation with the interaction
Hamiltonian

dρIðηÞ
dη

¼ −i½HIðηÞ; ρIðηÞ�; ð20Þ

where

HIðηÞ ¼ −
λ

Hη

Z
d3xχðx; ηÞ∶ψ2ðx; ηÞ∶; ð21Þ

and where χðx; ηÞ and ψðx; ηÞ are fields in the free
Heisenberg representation. It is worth pointing out at this
stage that since the interaction (3) is time dependent, naïve
perturbation theory is only valid on timescales satisfy-
ing λ=H ≲ jηj.
The von Neumann equation (20) has solutions

ρIðηÞ ¼ ρIðη0Þ − i
Z

η

η0

dη0½HIðη0Þ; ρIðη0Þ�: ð22Þ

Feeding this back into (20) gives the leading terms in the
perturbative expansion describing the evolution of ρI:

dρIðηÞ
dη

¼ −i½HIðηÞ; ρIðη0Þ�

−
Z

η

η0

dη0½HIðηÞ; ½HIðη0Þ; ρIðη0Þ��: ð23Þ

In order to derive an autonomous equation for the
evolution of the density matrix of the field χ—the master
equation—some familiar approximations are necessary.
Firstly, the Born approximation assumes that the total
density matrix can effectively be factorised as

ρIðηÞ ¼ ρIχðηÞ ⊗ ρIψðη0Þ: ð24Þ

As described in Sec. II, this is justified when the environ-
ment is large enough such that in each time interval, the
system effectively interacts (weakly) with a fresh part of the
environment. Essentially, the environment is unaffected by

the interaction, while the system’s entanglement with the
environment is encoded in the reduced density matrix ρIχ .
The reason why factorization may be justified in the present
context is due to the fact that a single mode of the field χ
couples to a pair of modes of the environmental scalar field
and in a de Sitter background there are no particle thresh-
olds. Brownian motion, described in Sec. II, provides a
familiar example which exploits these same approxima-
tions. In the present context, this approximation is
described in greater detail in [9,14,15].
Combining the approximations (23) and (24) leads to the

following equation [15] for the reduced interaction-picture
density matrix ρIχðηÞ (in the following we will now denote
the reduced density matrix of χ: ρI ≡ ρIχ):

dρIðηÞ
dη

¼ −λ2

H2η

Z
η

η0

dη0

η0

Z
d3x

×
Z

d3yfχðx; ηÞχðy; η0ÞρIðη0ÞG>ðx − y; η; η0Þ

þ ρIðη0Þχðy; η0Þχðx; ηÞG<ðx − y; η; η0Þ
− χðx; η0ÞρIðη0Þχðy; ηÞG<ðx − y; η; η0Þ
− χðy; ηÞρIðη0Þχðx; η0ÞG>ðx − y; η; η0Þg; ð25Þ

where

G>ðx − y; η; η0Þ ¼ Tr½∶ψ2ðx; ηÞ∶∶ψ2ðy; ηÞ∶ρIψðη0Þ�;
G<ðx − y; η; η0Þ ¼ Tr½∶ψ2ðy; ηÞ∶∶ψ2ðx; ηÞ∶ρIψðη0Þ�; ð26Þ
are environmental correlators.
Our next step is to make the Markov approximation by

taking ρIðη0Þ → ρIðηÞ in the integral expression in Eq. (25).
This is consistent with the weak coupling limit, as can be
seen with an integration by parts of (25), noting that
dρI=dη ∝ λ2=H2 ≪ 1 and neglecting the resulting term
of Oðλ4Þ. Going to momentum space, we write

G≶ðx − y; η; η0Þ ¼ 1

V

X
k

K≶ðk; η; η0Þe−ik·ðx−yÞ; ð27Þ

where V is the quantization volume, an IR regulator.
In order to proceed, we must compute the objects

K≶ðp; η; η0Þ. As shown in [15], after specializing to a
Bunch-Davies (BD) vacuum [41] for the initial conditions
of the field ψ , ρIψ ðη0Þ ¼ j0iψψh0j, we find

K>ðq; η; η0Þ≡ Kðq; η; η0Þ

¼ 2

Z
d3k
ð2πÞ3 vðk; ηÞv

�ðk; η0Þvðp; ηÞv�ðp; η0Þ

ð28Þ
and K<ðq;η;η0Þ ¼K�ðq;η;η0Þ, where q¼ jkþ pj and
vðk; ηÞ, etc., are the mode functions associated to the
environment field ψ . They satisfy
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v00 þ
�
k2 −

1

η2

�
ν2ψ −

1

4

��
v ¼ 0; ð29Þ

with ν2ψ ¼ 9=4 − ðM2
ψ=H2 þ 12ξψ Þ. The steps above lead

to a master equation

dρIðηÞ
dη

¼ −
λ

H2η

Z
η

η0

dη0

η0
X
k

fχkðηÞχ−kðη0ÞρIðηÞKðk; η; η0Þ

þ ρIðηÞχ−kðη0ÞχkðηÞK�ðk; η; η0Þ
− χkðηÞρIðηÞχ−kðη0ÞK�ðk; η; η0Þ
− χ−kðηÞρIðηÞχkðηÞK�ðk; η; η0Þg; ð30Þ

where χkðηÞ are the Fourier modes of the field satisfying
χ†k ¼ χ−k.
Since ψ is massless and conformally coupled, with BD

vacuum initial conditions, it has simple mode functions

vðk; ηÞ ¼ e−ikηffiffiffiffiffi
2k

p : ð31Þ

In this case,

Kðp; η; η0Þ ¼ −
i

8π2
e−ipðη−η0ÞP

�
1

η − η0

�
þ 1

8π
δðη − η0Þ;

ð32Þ

where P stands for the principal part, which can be
written as

P
�

1

η − η0

�
¼ −

1

2

d
dη

log

�ðη − η0Þ2 þ ε2

ð−η̄Þ2
�
: ð33Þ

Here ε → 0 is a UV regulator and η̄ is an arbitrary scale to
make the argument of the logarithm dimensionless, and, as
we shall see shortly, it also acts as a renormalization scale.
Inserting Eqs. (32) and (33) into Eq. (30) leads to terms of
the form

Z
dη0

η0
χ−kðη0ÞK½q;η;η0�

≡−
1

2

Z
η

η0

dη0χ−k
e−ikðη−η0Þ

η0
d
dη0

log

�ðη− η0Þ2þ ε2

ð−η̄Þ2
�
: ð34Þ

Integrating by parts yields

−
1

2
χ−kðη0Þ

e−ikðη−η0Þ

η0
log

�ðη − η0Þ2 þ ε2

ð−η̄Þ2
�				

η0¼η

η0¼η0

þ
Z

η

η0

dη0
d
dη0

�
e−iðη−η0Þ

χ−kðη0Þ
η0

�
log

�
η − η0

−η̄

�
: ð35Þ

As explained in [15] by identifying the RG scale with η0
and by taking −kη0 ≫ 1 we can neglect the lower end of

the surface term. The upper end gives a UV divergence
which is removed by an additive mass renormalization of χ.
These steps lead to a master equation consisting of local

and nonlocal terms

dρIðηÞ
dη

¼ DL½ρI� þDNL½ρI�; ð36Þ

where

DL½ρI� ¼ −
iλ2

8π2H2η
log

�
ε

−η0

�X
p

½χqðηÞχ−pðηÞ;ρIðηÞ�

−
λ2

16πH2η2
X
p

fχpðηÞχ−qðηÞρIðηÞ

þ ρIðηÞχpðηÞχ−pðηÞ− 2χ−pðηÞρIðηÞχpðηÞg; ð37Þ

and,

DNL½ρI� ¼
iλ2

8πH2η2
X
p

fχpðηÞX−qðηÞρIðηÞ

− ρIðηÞX̄−pðηÞχpðηÞ þ χpðηÞρIðηÞX̄−pðηÞ
− X−pðηÞρIðηÞχpðηÞg; ð38Þ

with

X−kðηÞ¼
Z

η

η0

dη0
d
dη0

�
e−ikðη−η0Þ

χ−kðη0Þ
η0

�
log

�
η−η0

−η0

�
ð39Þ

and

X̄−kðηÞ ¼
Z

η

η0

dη0
d
dη0

�
eikðη−η0Þ

χ−kðη0Þ
η0

�
log

�
η − η0

−η0

�
: ð40Þ

The ε divergence in the local term is removed by mass
renormalization of χ. Notice that the nonlocal contribution
arises as a result of integrations over long-time environment
correlations, and is therefore associated with memory
effects. In contrast, the local terms are Markovian, and
in the stochastic interpretation that we will develop,
corresponds to white noise. This distinction will prove
important in our subsequent analysis. This completes our
derivation of the master equation and review of the main
steps in [14,15].

IV. INTERPRETING THE MASTER EQUATION

We begin by rewriting the master equation in the
Schrödinger picture, which allows us to draw close
parallels with quantum Brownian motion. To do this, we
rewrite the nonlocal contribution in terms of Heisenberg
operators at time η by writing the modes χ−kðη0Þ in the
integral kernel as

TIMOTHY J. HOLLOWOOD and JAMIE I. MCDONALD PHYSICAL REVIEW D 95, 103521 (2017)

103521-8



χðη0Þ ¼ fðη0; ηÞχðηÞ þ k−1gðη0; ηÞΠðηÞ; ð41Þ

where f and g are functions to be determined. For now we
have suppressed the momentum labels k. The factor k−1 is
there on dimensional grounds and will drop out of our
calculations at a later stage. Notice in particular that the
Heisenberg equations of motion for χðη0Þ imply that f and g
must satisfy the mode equation with respect to η0; namely

f00 þ
�
k2 −

a00

a

�
f ¼ 0; ð42Þ

and similarly for g. Furthermore, the relation

Π ¼ χ0 −
a0

a
; ð43Þ

means that

Πðη0Þ ¼
�
f0 −

a0

a
f

�
χðηÞ þ k−1

�
g0 −

a0

a
g

�
ΠðηÞ: ð44Þ

Noting that a0=a ¼ −1=η, we see that f and g must satisfy
the boundary conditions

fðη0 ¼ ηÞ ¼ 1; ∂η0fðη0 ¼ ηÞ ¼ −1=η;

gðη0 ¼ ηÞ ¼ 0; ∂η0gðη0 ¼ ηÞ ¼ k: ð45Þ
Solving explicitly for the mode functions, we find

gðη0; ηÞ ¼
�

1

kη0
−

1

kη

�
cos½kðη − η0Þ�

−
�
1þ 1

k2ηη0

�
sin½kðη − η0Þ�; ð46Þ

and

fðη0; ηÞ ¼ sin ½kðη − η0Þ�
kη0

þ cos ½kðη − η0Þ�: ð47Þ

With these definitions we find that the nonlocal objects
X−kðηÞ in (38)–(40) can be written as a linear combination
of Heisenberg operators χðηÞ and ΠðηÞ, multiplied by
integrals over the functions fðη0; ηÞ and gðη0; ηÞ, i.e.

X−kðηÞ ¼ kχ−kðηÞFðηÞ þ Π−kðηÞGðηÞ ð48Þ

where

FðηÞ ¼ 1

k

Z
η

η0

dη0
d
dη0

�
fðη0; ηÞ e

−ikðη−η0Þ

η0

�
log

�
η− η0

−η0

�
; ð49Þ

GðηÞ ¼ 1

k

Z
η

η0

dη0
d
dη0

�
gðη0; ηÞ e

−ikðη−η0Þ

η0

�
log

�
η− η0

−η0

�
; ð50Þ

and correspond to long-time correlations in the environ-
ment. We can now perform the switch to the Schrödinger
picture. Using the result

Uðη; η0ÞχkðηÞU−1ðη; η0Þ ¼ χk ð51Þ

and the relation between the interaction density matrix and
the (time-dependent) Schrödinger picture density operator

ρIðηÞ ¼ U−1
0 ðη; η0ÞρðηÞU0ðη; η0Þ; ð52Þ

as well as

dU0ðη; η0Þ
dη

¼ −i½H0ðηÞ; ρ�; ð53Þ

we find that after appropriate insertions of UU−1 in the
standard way, one obtains a Schrödinger representation of
the master equation

dρðηÞ
dη

¼ −i½H0; ρðηÞ� −
λ2

16πH2η2
X
k

fχkχ−kρðηÞ þ ρðηÞχkχ−k − 2χ−kρðηÞχkg

þ ikλ2

8π2H2η

X
k

fFðηÞ½χkχ−kρðηÞ − χ−kρðηÞχk� − F�ðηÞ½ρðηÞχ−kχk − χkρðηÞχ−k�g

þ iλ2

8π2H2η

X
k

fGðηÞ½χkΠ−kρðηÞ − Π−kρðηÞχk� −G�ðηÞ½ρðηÞΠ−kχk − χkρðηÞΠ−k�g; ð54Þ

The Hamiltonian in (54) is

H0 ¼
1

2

X
k

�
ΠkΠ−k þ k2χkχ−k þ

a0

a
ðχkΠ−k þ Πkχ−kÞ

�
: ð55Þ

The full density matrix can then be factorized as

ρðηÞ ¼
Y
jkj

⊗ ρðk;−kÞ þOðλ3Þ; ð56Þ
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where the modes of different wavelengths only mix at Oðλ3Þ. Under this assumption [remembering to pick out the þk and
−k terms from the mode sum in Eq. (54)] we find, dropping the k subscripts, the following master equation for the two-
mode density matrix ρðk;−kÞ

ð57Þ

where the renormalized Hamiltonian Heff ¼ H0 þ δH
contains the contributions

δH¼−
kλ2

4π2H2η
ReFχ†χ;

H0 ¼ k2χ†χþΠ†Πþ a0

2a
ðχΠ†þΠχ†þχ†ΠþΠ†χÞ: ð58Þ

This reveals striking similarities between the dynamics of
inflation and quantum Brownian motion as described in
Sec. II. This provides a deeper insight into the master
equation first presented in [14] and will prove important
in subsequent analysis. It also paints a richer and more
detailed picture than the simple master equation presented in
[12] [see for instance their Eq. (10)]. However, as in [12] we
too shall see that the master equation is dominated by a
simple diffusion term on super-horizon scales. The first term
on the right-hand side describes the unitary dynamics (with
renormalized Hamiltonian) and the second and third terms
correspond respectively to dissipation (i.e. a friction term)
and fluctuations/decoherence of the system due to the
environmental noise. The final term, which does not fit
the quantum Brownian motion scheme, will be discussed

more shortly. These first three terms are easily identified
with corresponding terms in the Caldeira-Leggett master
equation of quantum Brownian motion (6). Whilst the
similarities are striking, an important difference is that in
the cosmological setting the couplings of the various terms
are time-dependent.
The interpretation of the dissipation-fluctuation terms

becomes more apparent if we write the master equation in
terms of matrix elements in the field basis ρðχk; ~χkÞ≡
hχkjρðk;−kÞj~χki. Given any operator M, the action of Π is
given by

hχjMΠ†j~χi ¼ i
∂
∂ ~χ hχjMj~χi;

hχjMΠj~χi ¼ i
∂
∂ ~χ� hχjMj~χi: ð59Þ

Theses relations follow from the commutation relations
½χ;Π†� ¼ 1 and the fact that expðiχΠ†Þ is the generator of
translations. The action of other terms involving Π can be
inferred from these expressions by appropriate complex
conjugation. This gives rise to the following equation for
the matrix elements:

dρ
dη

¼ −i
�
k2 −

kλ2

4π2H2η
ReF

�
ðjχj2 − j~χj2Þ þ i

� ∂2ρ

∂χ∂χ� −
∂2ρ

∂ ~χ∂ ~χ�
�
−
a0

a

�
χ
∂ρ
∂χ þ χ�

∂ρ
∂χ� þ ~χ

∂ρ
∂ ~χ þ ~χ�

∂ρ
∂ ~χ� þ 2ρ

�

þ λ2

4π2H2η
ReG

�
ðχ − ~χÞ

�∂ρ
∂χ −

∂ρ
∂ ~χ

�
þ ðχ� − ~χ�Þ

� ∂ρ
∂χ� −

∂ρ
∂ ~χ�

��

−
λ2

8π2H2η2
ðπ þ 2kηImFÞjχ − ~χj2ρ

þ iλ2

4π2H2η
ImG

�
ðχ − ~χÞ

�∂ρ
∂χ þ

∂ρ
∂ ~χ

�
þ ðχ� − ~χ�Þ

� ∂ρ
∂χ� þ

∂ρ
∂ ~χ�

��
; ð60Þ

which can be compared with the Brownian motion case in
Eq. (6).
One can also use this master equation to study the phase-

space of the theory as captured by the Wigner function,
cf. (9),

Wðχ;ΠÞ¼ 1

π2

Z
∞

−∞
d2χ0ρ

�
χ−

χ0

2
;χþχ0

2

�
ei2χ

0
RΠRþi2χ0IΠI ; ð61Þ

which provides a quantum analogue of a phase-space
probability distribution. By Wigner transforming the
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master equation (60) we can derive the following equation
for W, mirroring the case of quantum Brownian motion
(10),

∂W
dη

¼ fHeff ;Wg − λ2

4π2H2η
ReGð∂ΠðΠWÞ þ ∂Π̄ðΠ̄WÞÞ

þ λ2

8π2H2η2
ðπ þ 2kηImFÞ∂Π∂Π̄W

−
λ2

8π2H2η
ImGð∂χ∂Π̄W þ ∂ χ̄∂ΠWÞ; ð62Þ

This has the usual terms: decoherence (the diffusion terms
involving two-derivatives), the dissipation/friction term
(single derivatives) and the renormalization of the
Hamiltonian. Note that in our model, the field χ has no
self-interactions and so there is no analogue of the quantum
terms in (10).
The diffusion term on the right-hand side can be written

in the form Dij∂i∂̄jW, where the derivatives are defined
by ∂1 ¼ ∂χ and ∂2 ¼ k∂Π, with the diffusion matrix
defined by

D ¼ λ2

8π2H2kη

�
0 −ImG

−ImG ðπ þ 2kηImFÞ=ðkηÞ

�
: ð63Þ

This has eigenvalues

μ� ¼ λ2

16π2H2k2η2
ðπþ2kηImFÞ

� λ2

16π2H2k2η2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπþ2kηImFÞ2þ4ðkηImGÞ2

q
: ð64Þ

We see immediately that the eigenvalue μ− < 0. In fact, the
plot in Fig. 1 shows that these eigenvalues remain com-
parable in magnitude, so that positive and negative dif-
fusion, at first sight appear to be of equal importance. This
can also be seen from the asymptotic form of F and G for
jηkj ≪ 1

FðηÞ≃−
1

kη

�
1− log

η

η0

�
; GðηÞ≃ i

2kη
þ 1

3

�
1− log

η

η0

�
;

ð65Þ

which reveal that μ� scale as �1=η2 on super-horizon
scales. This “anti-diffusion” has no classically meaningful
analogue, and can be traced to the ImG term in the master
equation (60).
The other violation of positivity comes from the behavior

of the coefficients in the master equation, which exhibit
oscillatory behavior, fluctuating sign at early times.
Similar behavior is seen for coefficients of the master
equation in flat space [14], where the oscillations are due to
the nonlocal environment correlations corresponding to

memory effects. These effects are usually dealt with by
temporal coarse-graining in the form of a kind of rotating
wave approximation. This approximation is key to writing
the master equation in Lindblad, and hence manifestly
positivity preserving form.
At this stage, our situation may seem a little perilous: we

have a master equation which is not in Lindblad form and
exhibits several features, e.g. anti-diffusion and oscillatory
coefficients, which might jeopardize the positivity of the
density matrix. In fact, although the unitary evolution of
the total state ensures positivity of the full density matrix,
the series of simplifying approximations outlined in Sec. II
and carried out explicitly in Sec. III provide no guarantee
that the spectrum of the reduced density matrix remains
positive. Whilst Hermiticity and normalization follow
trivially, the most important property—that ρðηÞ be positive
definite—remains to be established. Indeed, even the
Caldeira-Leggett model can lead to a small violation of
positivity [9,32]. In fact, we shall see the operator form of
the master equation and the oscillatory behavior of the
coefficients mean that the master equation manifestly
violates positivity on sub-horizon scales.
However the master equation alone does not tell the full

story. The real question is whether physically relevant
solutions of the master equation maintain positivity as a
function of time. This shall be the subject of the following
sections.

A. Solving the master equation

In accordance with our previous boundary conditions,
we shall take Bunch Davis initial conditions which imply a
Gaussian ansatz for the density matrix

ρðχ; ~χÞ ¼ N exp

�
−Ωχ2 −Ω� ~χ2 −

1

2
ξjχ − ~χj2

�
; ð66Þ

and initial conditions

FIG. 1. The modulus of the eigenvalues μþ and μ− correspond-
ing to positive (solid) and negative (dashed) diffusion respec-
tively, where we took λ=H ¼ 0.1.
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Ωðη0Þ ¼ 1; ξðη0Þ ¼ 0; N ðη0Þ ¼
2ΩR

π
; ð67Þ

where Ω ¼ ΩR þ iΩI is complex and ξ is real, ensuring the
Hermiticity of the density matrix. Notice that although we
use the notation ΩR for the Gaussian width, it does not
describe a simple isolated squeezed state, and, in particular,
is not a simple expression which can be written in terms of
squeezing parameters rk and φk of e.g. [35,36]. On the
contrary, Ω contains Oðλ2Þ corrections and in general must
be solved numerically, as we shall see below.
Substituting the ansatz (66) into Eq. (60), and comparing

the coefficients of jχj2, j~χj2, χ ~χ� and ~χ ~χ gives the evolution
equations for Ω and ξ and N :

dΩ
dη

¼ ik2 þ 2

η
Ω − iΩRξ − iΩ2

−
iλ2

4π2H2η
ðkReF − ImðGΩÞÞ; ð68Þ

dξ
dη

¼ 2ξ

�
ΩI þ

1

η

�
þ λ2

4π2H2η2
ðπ þ 2ηkImF

þ 2ηReðGΩÞ þ 2ηReGξÞ; ð69Þ

dN
dη

¼ 2N
�
ΩI þ

1

η

�
: ð70Þ

Note that F and G are in fact dimensionless, and
functions only of the dimensional combination kη, as
can be seen from Eqs. (49) and (50).
We immediately recognize that ξ governs decoherence

since it controls the suppression of the off-diagonal
elements of ρ, corresponding to the decay of quantum
interference. Notice also that by taking the real part of
Eq. (68) and using the normalization condition (70) we get

1

ΩR

dΩR

dη
¼ 2

η
þ 2ΩI ¼

1

N
dN
dη

; ð71Þ

whose solutions give the expected normalization condition
N ¼ 2ΩR=π for a (complex) Gaussian, providing a con-
sistency check for the evolution equations.
Using these equations, and the asymptotic behavior

for F and G given in Eq. (65) we find the following
super-horizon behavior for ΩR, ΩI and ξ in the jkηj ≪ 1
limit:

ΩR ¼ k3η2 exp

�
λ2

12π2H2

�
log2

η

η0
−
4

3
log

η

η0

��
þOðη3Þ;

ð72Þ

ΩI ¼
λ2

12π2H2

1

η

�
log

η

η0
−
2

3

�
− k2ηþOðη3Þ; ð73Þ

ξ ¼ −
λ2

12π2H2

1

η
þOðηÞ: ð74Þ

These expressions will be used throughout the remainder
of this paper to study the super-horizon behavior of
fluctuations.
It is noteworthy that the expression forΩR in (72) has the

form of a re-summed quantity in perturbation theory
because it is ΩR that determines the all-important power
spectrum that is a key observable for the CMB. This re-
summed expression was first derived in [15] and in order to
make contact with that analysis, let us focus in more detail
on the equation for ΩI. Including the bare mass term for χ
and the UV divergence, this equation takes the form

dΩI

dη
¼ k2 þ M2

χ

H2η2
þ λ2

4π2H2η2
log

ε

−η0

þ 2

η
ΩI þ

λ2

4π2H2η2

�
1 − log

η

η0

�
þ � � � : ð75Þ

Note that this expression makes clear that the subtraction
point we chose to be η0 is in fact arbitrary. Let us set the
renormalized mass to zero but include a specific finite
counter-term:

M2
χ ¼ −

λ2

4π2
log

ε

−η0
−

λ2

6π2
: ð76Þ

Solving (75) and then integrating (71) to find ΩR (and
fixing the constant of integration appropriately), we find

ΩR ¼ k3η2 exp

�
λ2

12π2H2
ðlog2ð−kηÞ

− 2 logð−kηÞ logð−kη0ÞÞ
�
: ð77Þ

This quantity gives directly the power spectrum of the
scalar perturbations:

Pðk; ηÞ ¼ k3H2η2

2π2
· hχkχ†ki ¼

k3H2η2

ð2πÞ2 ·
1

ΩR

¼ H2

ð2πÞ2 exp
�

λ2

12π2H2
ð2 logð−kη0Þ logð−kηÞ

− log2ð−kηÞÞ
�
: ð78Þ

This is the result quoted in [15] for the correction to the
power spectrum. Note that the coefficient of the logð−kηÞ
in the exponent can be altered by changing the finite part of
the counter-term while the log2ð−kηÞ term is universal.
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B. Positivity on super-horizon scales and the
nature of decoherence

Positivity is guaranteed if, and only if, ρ has non-
negative eigenvalues. To find these, we note that the
density matrix (elements) factorise into a product of two
identical Gaussians of the real and imaginary parts of χ, i.e.

ρðχ; ~χÞ ¼ ρIðχI; ~χIÞρRðχR; ~χRÞ; ð79Þ

where

ρRðχR; ~χRÞ

¼
ffiffiffiffiffiffiffiffiffi
2ΩR

π

r
exp

�
−Ωχ2R −Ω� ~χ2R −

ξ

2
ðχR − ~χRÞ2

�
; ð80Þ

with an identical expression for ρðχI; ~χIÞ given by replacing
χR → χI. The eigenstates of ρ are then simply tensor
products ρI and ρR eigenstates, so that positivity of ρ is
then equivalent to positivity of ρI and ρR. Following [38],
we can write ρR in diagonal form as

ρR ¼
X
n

pnjφnihφnj: ð81Þ

The eigenstates jφni and their eigenvalues pn satisfy
(dropping the R subscript on χ)

pnφnðχÞ ¼
Z

dχ0ρRðχ; χ0Þφnðχ0Þ; ð82Þ

where φnðχÞ≡ hχjφni gives the position representation of
the fjφnig. The Gaussian form of ρR means that φnðxÞ take
the same form as harmonic oscillator wave functions, i.e.

φnðχÞ ¼ NHnðαχÞ expð−βχ2Þ; ð83Þ

where Hn are the Hermite polynomials, N is a normali-
zation factor, and α and β are functions to be determined.
Substituting this into (82) and using the integral identity in
[42] we find

α2 ¼ 2½ΩRðΩR þ ξÞ�1=2;
β ¼ iΩI þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩRðΩR þ ξÞ

p
: ð84Þ

We can also read off

pn ¼ p0ð1 − p0Þn; ð85Þ

where

p0 ¼
2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ=ΩR

p : ð86Þ

Positivity requires 0 ≤ p0 ≤ 1, which, assuming ΩR > 0,
holds if and only if ξ > 0. From the numerical solution for ξ

in Fig. 2, one can see that at early times positivity is
violated, but that ξ becomes positive as the modes exit the
horizon.
This can be understood by examining the equation (69)

for ξ, which can be re-written in the form

dξ
dη

¼
�

λ2

2π2H2η
ReGþ 1

ΩR

dΩR

dη

�
ξ

þ λ2

4π2H2η2
½π þ 2kηImF þ 2ηReðGΩÞ�: ð87Þ

One notes that on super-horizon scales (jkηj ≪ 1) the
nonlocal (memory) effects in the first square bra-ket
½…�ξ corresponding to ReðGÞ become subdominant, giving
way to the leading behavior from Ω−1

R dΩR=dη≃ 2=η.
Similarly the “forcing term” in the second square-bra-ket
is dominated by the first term (which is ultimately traced to
the local contribution in the master equation) with the
nonlocal effects from ImF and ReðGΩÞ becoming negli-
gible. Thus on super-horizon scales we find

ð88Þ

The second term in (88) drives the positive growth of ξ. It
originates from the local term in the first line of (54) and is
associated to the decoherence term in (60). Equivalently,
the relevant super-horizon dynamics in the evolution
equation for ξ can be reproduced by replacing the envi-
ronment correlators according to

Kðk; η; η0Þ → 1

8π2
δðη0 − ηÞ; ð89Þ

back in Eq. (30); in other words, long time environmental
correlations become unimportant for decoherence at late

FIG. 2. The decoherence parameter ξ as a function of
kη ¼ −k=aH.
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times, which is driven only by, what will become in the
stochastic interpretation, white noise. This is a common
feature of many systems, where they exhibit essentially
memoryless (Markov) behavior at late times, when long
time environmental correlations become negligible. This is
precisely the case for the flat space master equation
considered in [14], where initially oscillatory coefficients
in the master equation, induced by short-time environment
correlations lead to positivity on long-times. Hence, we see
that the oscillatory behavior in the interaction terms
associated to the kernels F and G, which can be traced
to nonlocal/memory effects, leads to an initial violation of
positivity. However, at late times, this gives way rather
elegantly to the dominance of effects driven by local terms
and their white noise leading to

ξ≃ λ2

12πH2

1

jηj for jkηj ≪ 1: ð90Þ

It should be noted in passing however, that by contrast,
the objectΩR is dominated by nonlocal contributions to the
master equation on super-horizon scales. In this sense,
the power spectrum receives corrections due to memory
effects—see Eq. (78). We mention this purely to point out
that although ξ becomes dominated by local effects, there
remain other physically interesting quantities which are
dominated by memory effects in the master equation.
Indeed, the resummation of nonlocal contributions and
their secular log terms is one of the key results in
Boyanovsky’s paper [15].
The growth in ξ can be traced back to the fact the

interaction strength is effectively time-dependent and
grows with time, as can be seen from Eq. (3), where
one could in principle absorb the time-dependence into the
coupling constant by taking λ2 → λ2ðηÞ≡ λ2=H2η2. It is
therefore interesting to ask how generic this growth in ξ is,
and what happens when one looks at other interactions, e.g.
marginal couplings such as Hint ¼ ffiffiffiffiffiffi−gp

ϕ2φ2 as well as
other relevant couplings to see how model-dependent the
scale-dependence of decoherence is. In addition this might
save us from some of the problems associated with having a
coupling constant that grows in time, thus invalidating
perturbativity at late times. We leave such investigations for
future work.
At this point we also highlight an important subtlety in

the evolution equation for ξ. Let us consider the first term in
Eq. (88) of the form 2=ηwhich corresponding to squeezing.
This can be traced to the Ω−1

R Ω0
R term in (87) or equiv-

alently to the a0=a term in the Hamiltonian (58). Notice that
this term gives a negative contribution to dξ=dη. At first
sight, this makes things look as though the squeezing is
slowing the increase in ξ and therefore resisting the
suppression of off-diagonal elements. This would certainly
run counter to the party line that squeezing makes a state

more classical. However, such reasoning is misleading as
we now explain.
This can be seen most clearly in the free case with λ ¼ 0.

Explicitly, the evolution equations become

dξ
dη

¼ 1

ΩR

dΩR

dη
ξ;

dΩ
dη

¼ ik2 þ 2Ω
η

− iΩRξ − iΩ2: ð91Þ

One finds that the solutions satisfy ξ ∝ ΩR. Since
ΩRðη0Þ ¼ 1, solutions are given by ξ ¼ ξ0ΩR. Again, this
makes it very tempting to suggest ΩR drives ξ to zero.
However, ρ takes the form

ρfreeðχ; ~χÞ ¼
2ΩR

π
exp

�
−ΩR

�
jχj þ j~χj þ ξ0

2
jχ − ~χj2

��
:

ð92Þ

From this we see that ΩR does decrease the size of ξ, and
therefore increases the off-diagonal extent of the density
matrix, but only in the sense that as time passes, it rescales
the entire ellipse

jχj þ j~χj þ ξ0
2
jχ − ~χj2 ¼ Ω−1

R ; ð93Þ

corresponding to surfaces of jρðχ; ~χÞj ¼ constant. This is
illustrated in Fig. 3. This clearly shows how although
ΩR → 0 does cause ξ to shrink (as off-diagonal elements
grow in size), the relative size of diagonal and off-diagonal
elements stays the same, as can be seen from the fact the
contours retain their shape. So in actual fact, squeezing
only decreases ξ in a trivial sense in that ΩR scales the size
of all density matrix elements and so contrary to initial
impressions, squeezing does not, in any real sense, resist
the onset of decoherence. Explicitly, in the free case, the
Wigner area and entanglement entropy depend only on the
ratio ξ=ΩR which is constant as explained above. Therefore

FIG. 3. The contours of jρj ¼ const at times η0 < η1 < η3 in the
free case λ ¼ 0. The ellipse as a greater extent in the “off-diagonal
direction” due to overall scaling as ΩR → 0 but does not change
shape.
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these quantities remain constant—consistent with the idea
that squeezing cannot make the state any “less-decohered”
since it is associated to unitary evolution alone. Similarly
the purity Tr½ρ2� remains constant due to the unitary
evolution of the von Neumann equation. When interactions
are switched on, we again have the Ω−1

R Ω0
R term, but the

situation is exactly the same—this acts only as an overall
rescaling and comes from the unitary dynamics.

C. Langevin equation

We now show how it is possible to derive a classical
Langevin equation which reproduces the behavior of the
density matrix ρðχ; ~χÞ on super-Hubble scales. By this, we
mean that, mirroring the case of quantum Brownian
motion, the master equation for the Wigner function
Wðχ;ΠÞ can be interpreted as a Fokker-Planck equation
associated to an auxiliary classical stochastic system whose
dynamics is described by a Langevin equation. The
interpretation is then to go beyond the mere idea that
the classical system is auxiliary to the idea that it describes
the classical (stochastic) trajectories that have emerged
from the quantum system.
To study the super-horizon behavior of solutions, we

return to Eqs. (68) and (69). From the asymptotic behavior
of G and F, (65) and Eqs. (72)–(74), we see that on super-
horizon scales the contribution to solutions from ImG is
sub-leading because it is multiplied by ΩR which goes to 0
like η2. Thus, at the level of the solutions, squeezing
ensures that the anti-diffusion term turns out to be negli-
gible. The late-time behavior is therefore captured by the
Fokker-Planck-like equation

∂W
dη

¼ fHeff ;Wg − λ2

4π2H2η
ReGð∂ΠðΠWÞ þ ∂Π̄ðΠ̄WÞÞ

þ λ2

8π2H2η2
ðπ þ 2kηImFÞ∂Π∂Π̄W; ð94Þ

valid in the region kη → 0, which, by virtue of the late-time
behavior of F, has a positive diffusion matrix.
We now go the extra step and argue that from the

perspective of the super-Hubble physics, a classical sto-
chastic dynamics emerges from the underlying quantum
system whose Fokker-Planck equation is (94). The indi-
vidual trajectories of the classical system are solutions of
the Langevin equations for the classical variable χ:

χ0 ¼ Π −
χ

η
;

Π0 ¼
�
1

η
þ kλ2

4π2H2η
ReG

�
Π

−
�
k2 þ M2

R

H2η2
−

kλ2

4π2H2η
ReF

�
þ σ; ð95Þ

where we have allowed for a renormalized mass. The above
can be rendered as a single equation for χ:

χ00 −
kλ2

4π2H2η
ReGχ0 þ

�
k2 þ M2

R

H2η2

−
2

η2
−

kλ2

4π2H2η
ReF −

kλ2

4π2H2η2
ReG

�
χ ¼ σ; ð96Þ

where the white noise σ satisfies

EðσðηÞÞ ¼ 0; EðσðηÞσðη0ÞÞ ¼ λ2

8πH2η2
δðη− η0Þ: ð97Þ

This provides a set of stochastic equations capable of
reproducing the same super-Hubble dynamics of the
quantum master equation in the sense that we have
explained in Sec. II. It should be noted that this is quite
different from the kind of stochastic equations encountered
in the usual stochastic inflation paradigm [33,34] where
Fokker-Planck equations emerge even in the absence of
interactions, where sub-Hubble modes are interpreted as
noise. By contrast, our noise arises from a genuine coupling
of different Fourier modes between χ and ψ so that there is
no noise in the λ → 0 limit.
It is interesting that the alternative formalism for dealing

with open quantum systems, the influence action approach
leads directly to a Langevin equation. For the scalar
perturbations, the influence-action Langevin equation
was derived in [15]. This equation appears to be very
different from the one we have written down here in that it
features a memory integral and also Gaussian colored
noise. In fact, one can easily show that if one substitutes
the zeroth order expression for χðη0Þ from (41) in the
memory integral on the right-hand side of Eq. (3.41) of [15]
one gets precisely the homogeneous terms in our Langevin
equation (96). Therefore, the difference between the
Langevin equations is simply the fact that our equation (96)
has only the local (white) noise component of the colored
noise term of the Langevin equation in [15]. But we have
argued that this is a good approximation for super-
horizon modes.
We now solve the Eqs. (68)–(70) numerically and

examine the evolution of various quantities which charac-
terize the emergence of classical stochastic behavior as
modes exit the horizon.
Since from now on we shall work mode-by-mode, we

shall work in units where k ¼ 1 for the remainder of the
paper, which greatly simplifies notation by effectively
removing any k from most expressions. Dimensionful
expressions can always be restored by appropriate inser-
tions of k. Throughout what follows we shall take the
indicative values

λ

H
¼ 0.1; kη0ð¼ η0Þ ¼ −20: ð98Þ
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Obviously the initial value for jkη0j is unrealistically small,
but the results are rather insensitive to its actual value.

D. Entropy

One of the most natural ways to capture the effects of
decoherence is to compute the entropy of an open system.
In the present context this is the entanglement entropy
between the field χ (or rather its modes labelled by k) and
the environment field ψ , Skent½χ;ψ �. This entanglement
entropy is, of course, identified with the von Neumann
entropy of the reduced density matrix ρ of the χ field
SvN ¼ −Trðρ log ρÞ. The growth of entropy (Fig. 4) pro-
vides an important test for the emergence of classicality and
the process of decoherence as the system evolves from an
initially pure to a mixed state.
Given that the state factorizes ρ ¼ ρRρI, as in (79), the

total entropy is the sum of identical contributions from ρR
and ρI, i.e.

Skent½χ;ψ �≡ SvNðρÞ ¼ SðρIÞ þ SðρRÞ ¼ 2SðρRÞ; ð99Þ

where

SðρRÞ ¼ −
X∞
n¼0

pn logpn; ð100Þ

with pn given by Eqs. (85) and (86). We find

SðρRÞ ¼ − log
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ=ΩR

p þ 1

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ=ΩR

p
− 1

2
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ=ΩR

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ=ΩR

p þ 1
; ð101Þ

with the corresponding plot shown in Fig. 4.
Notice that SðρÞ depends on the ratio ξ=ΩR, so that the

emergence of classical stochastic behavior (as the state
becomes more mixed), as characterized by an increase in
entropy, depends on the relative strength of squeezing and

decoherence. In the approximation of [6,10,11], ξ was
assumed to be constant, and so this ratio grows as
ξ=ΩR ∼ η−2, whereas in reality, our analysis reveals it
scales as η−3 due to the time-dependence of ξ ∼ η−1.
Hence our analysis reveals that the growth in entropy is
even faster. The same is true for the Wigner area discussed
below. This demonstrates the importance of a proper
analysis of the evolution of the density matrix in realistic
systems.

E. Wigner function and phase space

The trade-off between squeezing and decoherence can be
better understood by exploring the phase space portrait of
the state as provided by the Wigner function. Explicitly, by
performing the integral in Eq. (61) with the Gaussian ansatz
(66), we get

Wðχ;ΠÞ ¼ 4

π2
ΩR

ξþΩR
exp

�
−
2jΠþΩIχj2

ΩR þ ξ
− 2ΩRjχj2

�
:

ð102Þ

Notice that this factorises into two identical Wigner
functions for WðχR;ΠRÞ and WðχI;ΠIÞ. The evolution
ofWðχR;ΠRÞ is plotted in Figs. 5 and 6. Using this, one can
compute the spread in the “position” and “momentum” of
the field as captured by the correlators

hχ2Ri ¼
1

4ΩR
; hΠ2

Ri ¼
1

4ΩR
ðjΩj2 þ ξΩRÞ: ð103Þ

FIG. 5. Wigner function WðχR;ΠRÞ at η ¼ η0.

FIG. 6. Wigner function at kη ¼ −0.8.
FIG. 4. The entanglement entropy between the fields χ and ψ as
a function of kη. Note that the mode exits the horizon at kη ¼ −1.
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Notice that since we set k ¼ 1, we are working in a set of
coordinates in which χ and Π effectively have the same
dimension. To restore dimensions one simply re-inserts
factors of k. The size of the area in phase space explored by
the system is characterized by theWigner ellipse defined by
the contour (dropping the R subscript)

1 ¼ 2ðΠþ ΩIχÞ2
ΩR þ ξ

þ 2ΩRχ
2; ð104Þ

This describes an ellipse with a “tilt” of angle α relative to
the χ axis shown in Fig. 7. The ellipse is aligned with a
rotated set of axes χ0 and Π0, in which its equation is

χ02

a2
þ Π02

b2
¼ 1; ð105Þ

with semi-major and -minor axes a and b, respectively. The
extreme squeezing of the ellipse amounts gives a one-to-
one relation between the values of Π and χ of the form
Π≃ tan αχ. The two sets of coordinates are related by a
rotation through an angle α:

�
χ0

Π0

�
¼

�
cos α − sin α

sin α cos α

��
χ

Π

�
: ð106Þ

Inserting this expression into (105) and comparing with
(104) gives, after a little algebra,

a2; b2 ¼ ΩR þ ξ

jΩj2 þΩRξþ 1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjΩj2 þΩR − 1Þ2 þ 4Ω2

I

p ;

ð107Þ

and a rotation angle

tan 2α ¼ 2ΩR

1 − jΩj2 −ΩRξ
: ð108Þ

The area of this ellipse is given by

A ¼ πab ¼ π

2

�
1þ ξ

ΩR

�
1=2

: ð109Þ

From Fig. 7, we see that the minor axis is larger in the
interacting case due to the system diffusing in phase space.
This is reflected by a growth in the Wigner area (Fig. 8),
whose size is determined by the ratio ξ=ΩR. The growth in
the Wigner area is characteristic of open systems and
indicates that the state is becoming more “classical.”
Indeed, the inverse of the area is roughly the product of
the position and momentum correlation lengths and
increasing area means that the product of the correlation
lengths is becoming smaller than ℏð¼ 1Þ. In the associated
classical stochastic system, the widening of the ellipse is
due to diffusion created by the noise in the Langevin
equation (96). The broadening of the Wigner ellipse is also
reflected in the momentum correlator hΠ2

Ri plotted in
Fig. 9. Indeed from Eq. (103) we see the main contribution
to hΠ2

Ri comes from ξ on super-horizon scales. Thus the
broadening of the ellipse corresponds to local effects. By
contrast, the length of the ellipse, which characterizes the
size of hχ2i, appears to be roughly the same in the free and
interacting cases. The reason for this is that the corrections
to hχ2i are derived from nonlocal (memory) contributions,

FIG. 8. Area of Wigner ellipse associated to WðχR;ΠRÞ.

FIG. 9. Momentum correlator hΠ2
Ri associated to WðΠR; χRÞ in

interacting case (solid) and free case (dashed).
FIG. 7. Squeezed Wigner ellipse on super-horizon scales at
kη ¼ −0.02 in the interacting (solid) and free (dashed) cases.
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and are therefore much weaker in comparison the local-
contributions driving the momentum diffusion and broad-
ening of the ellipse.

V. SENSITIVITY OF DISCORD
TO DECOHERENCE

Entanglement is a defining feature of quantum systems
and is a subtle form of correlation that cannot be mimicked
by a classical system. However, it is not an indication of
nonlocal interaction: correlation is not interaction! So
entanglement, and its ensuing correlations, are the calling
card of a quantum system. Given the notorious sensitivity
of entanglement to environmental noise, it is of particular
interest to investigate the question of how robust the
entanglement created during inflation is to the effects of
decoherence. Examining this question will be the objective
of the remainder of this paper.
In the present context, by writing the Hamiltonian (58) in

terms of creation and annihilation operators as

H0 ¼
k
2
½aka†k þ a−ka

†
−k� þ i

a0

a
½a†ka†−k þ aka−k�; ð110Þ

it becomes apparent that the squeezing term involving a0=a
leads to the creation of entangled particle pairs with
opposite momenta. These field quanta are then separated
outside the horizon leading to spacelike field correlations
on super-Hubble scales, whose strength is related to the
expansion scaleH. The purpose of the last part of this paper
is to examine how quantum correlations are affected by
decoherence, which intuitively one expects to render an
initially quantum system more classical.

A. Overview of quantum discord

The entanglement entropy is the most familiar way to
capture the strength of quantum correlations between two
regions A and B of a bipartite system, and provides a simple
way of quantifying the degree of entanglement within a
system. However, the entanglement entropy only provides
such a measure when the state of the total system is pure.
The question is how can one measure quantum entangle-
ment between A and B when the total state is not pure. In
recent years, a new measure—quantum discord [29,30]—
has been proposed as a means of capturing quantum
correlations in just such a situation. Quantum discord
exploits the difference in classical and quantum posterior
probabilities and the discrepancy, at the quantum level,
between two classically equivalent definitions of mutual
information, defined for classical systems as

IðA∶BÞ ¼ HðAÞ þHðBÞ −HðA;BÞ; ð111Þ

where H is the Shannon entropy. Classically, this is
equivalent to

JðA∶BÞ ¼ HðAÞ −HðAjBÞ; ð112Þ

where HðAjBÞ is the Shannon entropy conditional on B
defined by

HðAjBÞ ¼
X
b

PðB ¼ bÞHðAjB ¼ bÞ; ð113Þ

with

HðAjB¼ bÞ ¼ −
X
a

pðA¼ ajB¼ bÞ logpðA¼ ajB¼ bÞ:

ð114Þ

The equivalence of these two quantities is ensured by
Bayes’ theorem

pðAjB ¼ bÞ ¼ pðA;B ¼ bÞ
pðB ¼ bÞ : ð115Þ

However, at the quantum level, defining a posterior
probability is more subtle. Indeed, the act of knowing
and measuring the state of B may affect the state of the
whole system ρAB! It is this subtlety which lies at the heart
of quantum discord. Instead, in the quantum picture, one
must first define a notion of conditional entropy, and
construct a conditional density matrix. To do this, we must
choose a positive operator valued measure (POVM)
fΠB

ng—this provides a set of measurement outcomes for
the system B on which to condition the state of A. After a
measurement outcome of Πn on B the state is projected
according to

ρAB →
ΠB

nρABΠB
n

Pn
; ð116Þ

where

Pn ¼ TrABρABΠB
n ð117Þ

is the probability that the measurement outcome ΠB
n occurs

and ensures the correct normalization of ρAjB¼ΠB
i
. Hence the

reduced density matrix of A, conditional on the measure-
ment outcome ΠB

n , is

ρAjB¼ΠB
i
¼ TrB

ρABΠB
n

PB
n

; ð118Þ

where we assumed that the POVM is projective in the sense
that Π2

n ¼ Πn. We can then define a conditional entropy
over all possible measurement outcomes in B:

SðAjB ¼ fΠB
ngÞ ¼

X
n

PnSðρAjB¼ΠB
n
Þ: ð119Þ
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With this translation to the quantum picture, the natural
definition of JðA∶BÞΠB

n
becomes

J ðA∶BÞ ¼ SðAÞ − SðAjB ¼ fΠB
ngÞ: ð120Þ

In fact, this is the Holevo information from A to B [43]. The
generalization of the mutual information is more straight-
forward and consists simply of replacing Shannon by von
Neumann entropy:

IðA∶BÞ ¼ SðAÞ þ SðBÞ − SðA;BÞ: ð121Þ

The quantum discord is then defined by the difference

δðA∶BÞΠB
n
¼ IðA∶BÞ − J ðA∶BÞΠB

n

¼ SðBÞ − SðA;BÞ þ
X
i

PiSðρAjB¼Πn
Þ: ð122Þ

Notice the appearance of the POVM fΠng in the definition,
which reminds us how conditional probability is intimately
related to measurement at the quantum level.
Note that the discord depends implicitly on the choice of

POVM and so one can define the discord by minimizing
over the choice of POVM. In general, this minimizing is
difficult to perform and below we shall content ourselves
with calculating a discord for a particular physically
motivated choice of POVM. Our POVM dependent discord
is therefore only an upper bound on the discord.

B. Decoherence and Discord in inflation

Recently, discord has been applied in the context of
cosmological inflation in [35] to probe correlations
between primordial fluctuations and environment degrees
of freedom and in [36] to probe correlations amongst an
isolated system of primordial fluctuations. Our aim is to
build on the approach of [36] and ask what happens to these
correlations once the system is exposed to an external
decohering environment. This is illustrated by the cartoon
in Fig. 10. We shall follow the approach of [36] and choose
the most natural partitioning of the (open) system by
splitting the Hilbert space into þk and −k modes.
Physically, this corresponds to studying entanglement
between field quanta created back-to-back by the de
Sitter expansion as they journey outside the horizon and
experience decoherence. Since we have an additional

environment, we are considering a tri-partition of the
overall system: the þk mode, −k mode and environmental
field ψ .
We begin by writing the density matrix in a form which

makes this partitioning more transparent, expressing it in
terms of the occupation number basis as

ρðþk;−kÞ ¼
X
n;m

Cn;m;jn0;m0 jnk; m−kihn0k; m0
−kj; ð123Þ

where Cn;mjn0;m0 ¼ hnk; m−kjρjn0k; m0
−ki are time-dependent

coefficients. We must now decide on a choice POVM in
order to compute the conditional density matrix (118). We
follow [36] and choose Π−k

n ¼ jn−kihn−kj, which leads to

ρAjB¼n−k ¼
1

pn
Tr−k½ρΠ−k

n � ¼ 1

pn

X
m

pnmjmkihmkj; ð124Þ

where

pnm ¼ hmkn−kjρjmkn−ki; ð125Þ

and, in analogy with Eq. (117),

pn ¼ Trðþk;−kÞ½ρΠ−k
n �

¼
X
m

hmkn−kjρjmkn−ki≡
X
m

pnm: ð126Þ

After a series of somewhat lengthy calculations described
in the appendix, we find

pn ¼ 4ΩR
½1 − 2ΩR þ jΩj2 þ ξΩR�m
½1þ 2ΩR þ jΩj2 þ ξΩR�mþ1

; ð127Þ

pnm ¼ 2ðmþ nÞ!
m!n!

2ΩRξ
mþn

½1þ 2ΩR þ jΩj2 þ ξΩR þ ξ�mþnþ1

× 2F1

�
−m;−n;−m − n;−

1

ξ2
ð1 − 2ΩR þ jΩj2 þ ξΩR − ξÞð1þ 2ΩR þ jΩj2 þ ξΩR þ ξÞ

�
; ð128Þ

FIG. 10. The effect of an external environment E on quantum
correlations between A and B in an open bipartite system.
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where we remember that earlier in Sec. IV C we switched to
units where k ¼ 1. To restore dimensionality to (127) and
(128) one simply re-inserts appropriate factors of k. Notice
there is a nonzero probability for states to have different
occupation numbers in the �k modes, which cannot
happen in the noninteracting case as we begin in the
vacuum and particles are created only in pairs with opposite
momenta. However, the χψ2 interaction violates χ number
in such a way as to allow differing numbers in the �k
modes. The state of the reduced density ρðkÞ is

ρðkÞ ¼
X
n

pnjnkihnkj: ð129Þ

This is a thermal state with temperature

βk ¼ − log

�
1 − 2ΩR þ jΩj2 þ ξΩR

1þ 2ΩR þ jΩj2 þ ξΩR

�
: ð130Þ

The corresponding entropy SðkÞ is given by

SðkÞ ¼ ð1þ hnkiÞ logð1þ hnkiÞ − hnki loghnki ð131Þ

where

hnki ¼
1

eβk − 1
; ð132Þ

is nothing more than the Bose-Einstein distribution.
Returning to the conditional entropy (124) we have

SðAjB ¼ fΠn
−kgÞ ¼ −

X∞
m¼0

pmn

pn
log

�
pmn

pn

�
: ð133Þ

After a short calculation we find

J ¼ −2
X∞
n¼0

pn logpn þ
X∞
m;n¼0

pmn logpmn: ð134Þ

On the other hand SðkÞ ¼ Sð−kÞ ¼ −
P

npn logpn and
Sðk;−kÞ≡ Skent½χ;ψ � is identified with the entanglement
entropy of the modes of the field χ and ψ calculated in
Sec. IV D; hence

I ¼ −2
X∞
n¼1

pn logpn − Skent½χ;ψ � ð135Þ

and then (121) and (122) give the POVM-dependent
discord

δ≡ δðk∶ − kÞΠ−k
n

¼ −Skent½χ;ψ � −
X∞
m;n¼0

pmn logpmn: ð136Þ

For the noninteracting case we find that pnm ¼ δnmpn,
which leads to

δfree ¼ −
X
n

pfree
n logpfree

n ≡ SfreeðkÞ: ð137Þ

This is nothing more than the entanglement entropy of
ρfreeðkÞ. Indeed, it is a well-known fact (see e.g. [44]) that
the discord of a bi-partite division of a system in a pure state
is equal to the entanglement entropy. On the other hand,
when there is interaction with a third system—in this case
the ψ field—it is not possible to define the entanglement
entropy between the þk and −k sub-systems and then one
needs quantities like the discord to provide a measure of the
quantum correlations between the þk and −k sectors. We
should emphasize again that what we have calculated is a
discord that depends upon the choice of POVM, albeit that
it is a particularly natural choice, and as such it provides an
upper bound on the true discord. Nevertheless it does
provide a measure of sorts of the quantum correlation
between our sub systems.
The discord is plotted in Fig. 11. Note that the “free

discord” (which is really just the entanglement entropy)
dominates the discord in the interacting case, meaning that
the Oðλ2=H2Þ corrections to the discord cannot be seen in
Fig. 11. The difference between the two is seen more
clearly in Fig. 12. Thus, as expected, we see decoherence
does have a tendency to weaken discord, though the effect
is perturbatively small in our case. One can see this more
explicitly by counting powers of λ. Firstly, we note that
since the entropy of a pure state is zero, it follows that

FIG. 11. POVM dependent quantum discord between the þk
and −k modes in the interacting case (solid thin) with λ=H ¼ 0.1
and free case (thick black dashed) λ=H ¼ 0.
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Skent½χ;ψ � ¼ Oðλ2=H2Þ: ð138Þ

Furthermore, we have

pmn ¼
�
pfree
n þOðλ2=H2Þ; if m ¼ n

Oðλ2=H2Þ; if m ≠ n
: ð139Þ

Therefore, from eqs. (122) and (137) we see

δ ¼ δfree þOðλ2=H2Þ: ð140Þ

It has already been noted in other contexts that discord is
weakened by the presence of an environment. For example,
in [37], the effect of various quantum channels acting on
spin chains was considered, and it was found that discord in
the system was not only weakened by decoherence but
actually decayed. This confirms the intuition, that, in a
broad sense, decoherence should reduce discord.
For our setup, the discord does not decrease in time, but

its growth rate is slowed relative to the free case as can be
seen from Fig. 12.
An interpretation of this might go as follows. In the free

case, the discord is just the entanglement entropy between
theþk and −kmodes. It grows with time as more and more
entangled pairs are created, leading the þk and −k sectors
to become strongly correlated as time goes on. If one
measures n particles in the −k state, this pair-rule ensures
that there have to be n particles in state þk.
However, in the interacting case, the χψ2 coupling allows

the numbers in the þk and −k modes to fluctuate
independently beyond pair production due to ψψ ↔ χ
scattering processes. Therefore, if a measurement of the
þk mode reveals an occupation number n, the state of the
−k mode need not contain the same number of particles.
This is reflected by the fact that when interactions are
switched on, pmn can be nonzero for n ≠ m. Hence
the occupation numbers in the �k modes are more
weakly correlated in the interacting case due to random
environment-induced fluctuations.

Thus two processes—pair-production and environmental
scattering—are competing to increase and decrease the
discord respectively. In the present setup, pair-production
wins, leading to an increasing discord albeit at a slower rate
in the interacting theory.
One can gain a little insight into this last point with some

power counting. The pair production rate of a massless field
on dimensional grounds must be of order H. Similarly, the
scattering rate between a massless field χ and a conformally
coupled field ψ is order λ. Therefore we expect the
correlations between þk and −k sectors to increase if
the pair production rate is greater than the scattering rate,
i.e. if 1 > λ=H, but this is precisely the perturbativity
condition. Hence for 1 > λ=H we expect the discord to
increase. In the λ > H case we might expect the opposite,
but that would lie beyond the perturbation theory used in
our present analysis. One might question how these
conclusions would be affected in the case of a different
interaction Hamiltonian. We leave such questions for
future work.
It is important to realise that, in general, many quantum

features—including entanglement—are not robust to the
effects of decoherence. In typical “laboratory” setups, even
the weakest of interactions lead to rapid decoherence and
the decay of discord, as shown in [37]. Therefore, it is far
from obvious that quantum correlations should survive the
effects of environmental noise. This reveals the importance
of the full analysis of decoherence, discord and entangle-
ment presented here. The fact that quantum correlations
do survive in the present case is due to the continual
production of entanglement by cosmological expansion
which counteracts the effects of decoherence. It is worth
noting that such a mechanism is quite novel to the
cosmological scenario.

VI. DISCUSSION

In this work we studied the process of decoherence in
inflation. By considering an explicit interaction between
scalar perturbations and a conformally coupled environ-
ment field, we derived the master equation for the reduced
density matrix of perturbations first presented in [14]. We
have provided a deeper analysis and interpretation of the
master equation by explicitly solving for the density matrix
with a Gaussian ansatz and Bunch Davies initial conditions.
This revealed a scale-dependent nature of decoherence,
with the rate at which off-diagonal elements of the density
matrix are driven to zero growing in strength on super-
Hubble scales. We also found that nonlocal contributions
(i.e. memory effects) from environmental correlators
have a negligible effect on the super-horizon strength of
decoherence which is dominated by local (white noise)
from the environment. By contrast, the Gaussian width
receives contributions from nonlocal memory effects due to
long-time environment correlations, which feed into the
power spectrum. This confirms from a different perspective

FIG. 12. The gap (which cannot easily be seen in Fig. 11)
between the values of δ in the interacting case with λ=H ¼ 0.1
and free cases.
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the power spectrum calculation of Boyanovksy [15]. We
also showed that potential positivity-violating effects are
suppressed on super-Hubble scales leading to a well
behaved density matrix for modes that cross the horizon.
This allowed us to construct a set of classical stochastic
equations. The resulting Langevin and Fokker-Planck
equations provided an emergent classical description of
the same dynamics as the quantum master equation on
super-Hubble scales. It should be noted that these are due to
genuine interaction with an environment due to direct
couplings between different Fourier modes of the system
and environment field and are therefore quite different to
the effective stochastic equations encountered in the usual
stochastic inflation paradigm [33,34].
In the remainder of the paper we used these tools to

examine the question of the quantum-to-classical transition
and the emergence of classicality from an initially pure
quantum state. The most natural quantity to consider was
the entropy, which grew in time as decoherence took effect.
In particular we saw that entropy was determined solely
by the ratio ξ=ΩR, so that the extent to which the state
became mixed was controlled by the relative strength of
squeezing and decoherence. We also examined the Wigner
function and found that the area of the Wigner ellipse A ¼
π=2ð1þ ξ=ΩRÞ1=2 can be captured by the same ratio ξ=ΩR,
revealing that decoherence has a tendency to increase the
size of phase-space explored by the system due to diffusion.
Remarkably, however, the power spectrum itself was only
affected in a very weak way via nonlocal memory effects.
Finally, we turned our attention to the question of

quantum correlations in the system and how robust they
are to environmental noise. We used quantum discord as a
measure of the strength of quantum correlations by parti-
tioning the two-mode density matrix into �k modes.
Physically, this corresponds to the correlations between
particle pairs created back-to-back by the de Sitter expan-
sion. It is these correlations which lead to the spacelike field
correlations hχkχ−ki on large scales. By looking at the
discord between these modes, we were able to see the effect
of decoherence on the strength of quantum correlations
between �k modes.
For isolated states, pair creation induces strong correla-

tions between the �k sectors, but environmental inter-
actions lead to local fluctuations in the numbers in the jnki
and jn−ki states, reducing the strength of correlations
between the two. As a result, decoherence reduces the
strength of quantum discord, and in this particular sense,
renders the system more classical. However, these correc-
tions were of Oðλ2=H2Þ, which for our weakly interacting
system was perturbatively small and discord remained
dominated by the entanglement due to pair-production.
This suggests that for weakly interacting systems, at least in
the pure de Sitter phase of expansion, pair production
dominates over decoherence effects provided the reaction
rate with the environment is less than the pair-production

rate characterized by H. For this reason it is important to
reproduce our analysis of discord and decoherence with
other interactions.
There are various avenues for developing this work.

Firstly, given the time-dependent nature of the interaction
Hamiltonian, perturbativity breaks down at late times,
meaning that one can only push the analysis used here
and in [14] so far outside the Horizon. One resolution to this
problem might be to consider other kinds of interactions,
e.g. a marginal coupling of the form λ

R
d4x

ffiffiffiffiffiffi−gp
ϕφ3 ¼

λ
R
d4xχψ3, which does not suffer from the same scaling.

This would also provide an interesting way to probe the
model-dependence of the growth in decoherence strength
observed for the particular interaction considered here.
In this paper we have only considered pure de Sitter

expansion, rather than a complete slow-roll analysis which
allows inflation to end. Therefore, a more developed
analysis of decoherence should include a generic infla-
tionary potential which would allow one to see how
decoherence changes as one exists the inflationary era.
In particular, one might expect that once the rate of particle
pair creation has dropped after inflation, decoherence may
persist and wipe out any quantum discord.
Finally, there are many parallels with pair creation in

black hole physics. Indeed, both de Sitter and black hole
spacetimes possess horizons and exhibit Hawking radia-
tion, which is described by the reduced density matrix after
tracing out the remaining member of the pair—see our
Eq. (130). Hence the analysis presented here might provide
an interesting springboard for studying decoherence and
open quantum-systems in the context of black holes.
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APPENDIX: DISCORD CALCULATIONS

We begin by describing how to compute the matrix
elements of the reduced density matrix ρðþkÞ in the
number basis, defined by

hnjρðþkÞjmi ¼
X
l

hn;ljρjm;li ðA1Þ

where we have suppressed the k subscripts. Inserting a
complete set of position eigenstates on the right hand side
gives

TIMOTHY J. HOLLOWOOD and JAMIE I. MCDONALD PHYSICAL REVIEW D 95, 103521 (2017)

103521-22



hnjρðþkÞjmi ¼
Z

d2x
Z

d2yρðy; xÞ
X
l

ψmlðxÞψ�
nlðyÞ;

ðA2Þ

where ψmlðxÞ ¼ hxjmli is the position space wave func-
tion of the number state. This can be written in the usual
way, in terms of ladder operators acting on the ground state
wave function, i.e.

ψm;lðxÞ ¼
ða†Þmffiffiffiffiffiffi

m!
p ðā†Þlffiffiffiffiffi

l!
p

ffiffiffi
2

π

r
e−jxj2 ; ðA3Þ

where the action of the ladder operators in position space is
given by

a† ¼ x − ∂̄ffiffiffi
2

p ; a ¼ xþ ∂̄ffiffiffi
2

p ; ðA4Þ

and the bar on the ladder operator denotes complex
conjugation, and comes from the ladder operators associ-
ated to the −k modes. Notice that since k will drop out of

any quantities at the end of the calculation, we have
effectively set k ¼ 1 from the outset. From this it follows
that

ψmlðxÞψ�
nlðyÞ ¼

2

π

1

l!
1ffiffiffiffiffi

n!
p ffiffiffiffiffiffi

m!
p ða†xÞmðā†xÞlðā†yÞn

× ða†yÞle−jxj2−jyj2 : ðA5Þ

Noting that

ðā†xa†yÞle−jxj2−jyj2 ¼ ð
ffiffiffi
2

p
x̄

ffiffiffi
2

p
yÞle−jxj2−jyj2 ; ðA6Þ

and inserting this expression into the sum over l gives

X
l

ψmlðxÞψ�
nlðyÞ ¼

2

π

1ffiffiffiffiffiffi
m!

p ffiffiffiffiffi
n!

p ða†xÞmðā†yÞne−jxj2−jyj2þ2x̄y:

ðA7Þ

Next one has to consider the action of the remaining
derivatives. Using āy ¼ ðȳ − ∂yÞ=

ffiffiffi
2

p
gives

X
l

ψmlðxÞψ�
nlðyÞ ¼

2

π

1ffiffiffiffiffiffi
m!

p ffiffiffiffiffi
n!

p ða†xÞm½
ffiffiffi
2

p
ðȳ − x̄Þ�ne−jxj2−jyj2þ2x̄y¼ 1ffiffiffiffiffiffi

m!
p ffiffiffiffiffi

n!
p ða†xÞm dn

dλn
e−jxj2−jyj2þ2x̄yþ ffiffi

2
p

λðȳ−x̄Þ
				
λ¼0

: ðA8Þ

We then act once again with a†x ¼ ðx − ∂̄xÞ=
ffiffiffi
2

p
, giving rise to

X
l

ψmlðxÞψ�
nlðyÞ ¼

2

π

1ffiffiffiffiffiffi
m!

p ffiffiffiffiffi
n!

p dn

dλn
f½

ffiffiffi
2

p
ðx − yÞ þ λ�me−jxj2−jyj2þ2x̄yþ ffiffi

2
p

λðȳ−x̄Þgλ¼0: ðA9Þ

Now we invoke the Leibniz rule for generalized products and take the λ → 0 limit giving

X
l

ψmlðxÞψ�
nlðyÞ ¼

2

π

1ffiffiffiffiffiffi
m!

p ffiffiffiffiffi
n!

p
Xn
k¼0

�
n

k

�
m!

ðm − kÞ! ð
ffiffiffi
2

p
ðx − yÞÞm−kð

ffiffiffi
2

p
λðȳ − x̄Þn−ke−jxj2−jyj2þ2x̄y: ðA10Þ

Inserting the matrix elements ρðy; xÞ gives

hnjρðþkÞjmi ¼ 2

π

1ffiffiffiffiffiffi
m!

p ffiffiffiffiffi
n!

p
Xn
k¼0

n!m!

ðn − kÞ!ðm − kÞ!

ffiffiffi
2

p
mþn−2k

k!
2ΩR

π

×
Z

d2x
Z

d2yðx − yÞm−kðȳ − x̄Þn−k exp
�
−ð1þ ΩÞjyj2 − ð1þ Ω�Þjxj2 − ξ

2
jx − yj2 þ 2x̄y

�
: ðA11Þ

The (complex) Gaussian integral is only nonvanishing for m ¼ n which gives

hnjρðþkÞjmi ¼ δm;n
4ΩR

π2
Xn
k¼0

n!
½ðn − kÞ!�2

2n−k

k!

×
Z

d2x
Z

d2yðxȳþ yx̄ − jxj2 − jyj2Þn−k exp
�
−ð1þΩÞjyj2 − ð1þ Ω�Þjxj2 − ξ

2
jx − yj2 þ 2x̄y

�
: ðA12Þ

We can write the Gaussian moments in terms of derivatives, so that
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hnjρðþkÞjmi ¼ δmn
4ΩR

π2
Xn
k¼0

n!
½ðn − kÞ!�2

2n−k

k!
dn−k

dzn−k

×
Z

d2x
Z

d2y exp

�
−ð1þΩþ zÞjyj2 − ð1þ Ω� þ zÞjxj2 − ξ

2
jx − yj2 þ ð2þ zÞx̄yþ zȳx

�				
z¼0

: ðA13Þ

Performing the multi-dimensional complex Gaussian integral gives a contribution π2= detA, where A is the covariance
matrix appearing in the exponent. Its determinant is given by

detA ¼ 1þ 2ΩR þ jΩj2 þ ξΩR þ z2ΩR ≡ αþ βz: ðA14Þ

From this it follows that

hnjρðþkÞjmi ¼ δmn4ΩR

Xn
k¼0

n!
½ðn − kÞ!�2

2n−k

k!
dn−k

dzn−k
½αþ βz�−1j

z¼0

¼ δm;n4ΩR

Xn
k¼0

n!
ðn − kÞ!

2n−k

k!
ð−1Þn−kðβÞn−kα−1−ðn−kÞ: ðA15Þ

Performing the binomial sum, we get

hnjρðþkÞjmi ¼ δmn4ΩR
½1 − 2ΩR þ jΩj2 þ ξΩR�n
½1þ 2ΩR þ jΩj2 þ ξΩR�nþ1

≡ δmnpn: ðA16Þ

Notice this satisfies the correct normalization
P

npn ¼ 1. The procedure for computing pmn ¼ hmnjρjnmi is similar,
leading, after a lengthy calculation, to

pnm ¼ 2ðmþ nÞ!
m!n!

2ΩRξ
mþn

½1þ 2ΩR þ jΩj2 þ ξΩR þ ξ�mþnþ1

× 2F1

�
−m;−n;−m − n;−

1

ξ2
ð1 − 2ΩR þ jΩj2 þ ξΩR − ξÞð1þ 2ΩR þ jΩj2 þ ξΩR þ ξÞ

�
: ðA17Þ
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