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In this work we propose a new general model of the eternal cyclic Universe. We start from the
assumption that quantum gravity corrections can be effectively accounted by the addition of higher order
curvature terms in the Lagrangian density for gravity. It is also taken into account that coefficients
associated with these curvature corrections will in general be dependent on a curvature regime. We
therefore assume no new ingredients, such as extra dimensions, new scalar fields, phantom energy or
special space-time geometries. Evolution of the Universe in this framework is studied and general
properties of each phase of the cycle—cosmological bounce, low curvature (ΛCDM) phase, destruction of
bounded systems and contracting phase—are analyzed in detail. Focusing on some simple special cases, we
obtain analytical and numerical solutions for each phase confirming our analysis.
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I. INTRODUCTION

More than a century after its discovery by Albert Einstein
[1,2], general relativity (GR) is still one of the most
successful physical theories and currently our best empiri-
cally verified description of gravity. In its essence, general
relativity rejected the old Newtonian concept of gravitational
force and replaced it with the concept of deformation of
space-time structure caused by the distribution of mass-
energy. Einstein’s general relativity is shown to be consistent
with various empirical observations and tests—such as the
light deflection, the perihelion advance of Mercury, the
gravitational redshift, the gravitational wave-damping in
binary pulsars, different solar system measurements, and
the recent LIGO detection of GW150914 [3–6]. Einstein’s
discovery not only fundamentally changed our understand-
ing of space, time, and gravitational interaction, but it also
opened theway for the foundation of physical cosmology, as
the study of the Universe in its totality. First steps in this
direction were done by Einstein himself [7], followed by the
important Hubble’s discovery of the expanding Universe
[8,9], and theoretical models proposed by Friedmann and
Lamaitre [10]—finally leading to the establishment of the
standard model of cosmology in the following decades
[11,12]. The standard model of cosmology, based on GR
and assumptions of large-scale homogeneity and isotropicity,
was tested by a plethora of observations—such as supernova
and microwave background measurements, consistency of
the age of the Universe with the age of astronomical objects,
abundances of chemical elements, growth of cosmological
perturbations etc. [13]. However, the standard model of

cosmology cannot explain the observed astronomical and
cosmological dynamics without introducing new forms of
matter-energy, for which there is currently still no empirical
evidence. Various observations, from type Ia supernovae
[14,15], large scale structure [16] and cosmic microwave
background radiation [17], confirm that the Universe is
characterized by accelerated expansion. Moreover, different
observations on astronomical [18–20], as well as cosmo-
logical scales [21,22] in the framework of standard GR
require that most of the matter in the Universe consists of
some unknown nonbaryonicmatter. The approachwithin the
standard ΛCDM cosmological model [23], which assumes
complete validity of Einstein’s GR, was to introduce cold
darkmatter and dark energy as dominant contributions to the
mass-energy of the Universe in order to explain the “missing
mass” and accelerated expansion of the Universe. One of the
big unsolved problems of the ΛCDM model is that the
cosmological constant, playing the role of dark energy, needs
tohave an extremely small observedvalue so that it cannot be
simply attributed to the vacuum energy [24,25].
However, it can as well be the case that these observations

are a consequence of our incomplete knowledge of gravity,
and not the assumed existence of still unobserved dark
energy and dark matter. Therefore, another popular route of
research is to examine the potential generalizations of
Einstein’s GR, which could explain cosmological observa-
tions without postulating dark energy and dark mater, and
also pass all the classical tests of GR. There is a large number
of proposed modified theories of gravity [26,27], including
some of the more popular models such as Brans-Dicke
gravity [28], modified fðTÞ teleparallel gravity [29], Kaluza-
Klein theories [30], and Hořava-Lifshitz gravity [31]. In the
last decades special attention was given to modified theories
that preserve all fundamental physical assumptions of
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Einstein’s GR and only generalize the gravitational action
integral. The simplest of these models is probably modified
fðRÞ gravity [32]. In this approach the Ricci scalar curvature,
R, is replaced by an arbitrary function of scalar curvature,
fðRÞ, in the gravitational Lagrangian density. Research on
the possible modifications and extensions of Einstein’s GR
can be further justified by the fact that GR can not be a
complete theory because it does not take into account the
principles of quantum physics. Since we still do not have a
developed and verified theory of quantum gravity, work on
modified gravity can potentially lead to new insights regard-
ing its principles, properties and mathematical form. Indeed,
it was shown that modifications of the Lagrangian density
including higher order curvature invariants can lead to
quantization of gravity [33,34].
As proven by the singularity theorems of Hawking, if

standard GR is correct and if some general and usual
conditions on the space-time and matter (energy condi-
tions) are satisfied, then our Universe needed to have a
beginning in the initial singularity of the big bang [35–37].
The idea of a beginning of the Universe leads to the
philosophical problems of creation ex nihilo (for instance it
is difficult to see how starting from the persistence of pure
nothingness a tendency toward the creation of something
can arise all of a sudden). Also, this initial singularity
would mean the breaking of GR, as well as losing the
possibility of a physical description of the Universe.
Moreover, the big bang paradigm leads also to some
important physical difficulties such as the flatness problem
and horizon problem, requiring some new mechanisms for
the solution of these issues. The most popular attempt of
such mechanism is inflationary cosmology [38]. However it
requires even more additions to the ΛCDM model, such as
specific scalar fields to support inflation. Also, all the
inflationary models have to be fine-tuned in order that the
spectrum and amplitude of primordial density perturbations
agree with observations.
But, as it will be discussed later, singularity theorems are

strongly dependent on the structure of the field equations in
GR. Even some simple generalizations of the action integral
for gravity can prevent the initial big-bang singularity from
occurring, and enable a transition from expansion of the
Universe to an earlier phase of contraction—a cosmological
bounce. It is usually assumed that the quantization of gravity
will wipe out the singularities existing in classical GR [39].
If, in a new theory of quantum gravity, the big-bang
singularity will not exist, it seems plausible that the
described cosmological bounce needed to occur instead.
Extending the idea of a bounce to construct a logically
consistent picture of a full evolution of the Universe,
naturally leads to the paradigm of a cyclic Universe—an
infinitely existing Universe, undergoing a bounce at the
beginning and at the end of each cycle, as well as the phases
of radiation,matter and dark energy domination predicted by
the standard ΛCDM cosmology. All of the presented

arguments therefore naturally establish a connection
between modified gravity and cyclic cosmology.
In this work our aim will be to propose a new model of

cyclic cosmology based on modified gravity. The under-
laying idea is that standard GR is no longer valid for the
regimes of high curvatures, and that quantum gravity
corrections can be effectively accounted by the addition
of higher order curvature terms in the Lagrangian density
for gravity. Significance of specific terms in these effective
corrections will therefore determine the physical regime of
cosmological evolution, finally leading to standard GR and
ΛCDM model in the low curvature limit. We discuss the
properties and establish the conditions for different regimes
in order to have a potentially viable model of cyclic
cosmology. For simplicity we present the mathematical
analysis in metric fðRÞ gravity, but our approach could as
well be extended to other frameworks of modified gravity.
This paper is organized as follows: in Sec. II we present the
idea of a cyclic cosmology, its historical background, and
its recent developments. In Sec. III we show the possibility
of a simple modification of GR in the context of fðRÞ
gravity and its relationship to quantum gravity. In Sec. IV
we carefully analyze the bouncing phase of a Universe with
two different techniques, using perturbative calculation and
numerically. In Sec. V we show how the inflationary phase
can be incorporated into our model. In Sec. VI the present
ΛCDM cosmology is brought into a relationship with our
model in the low curvature limit and the rip phase is
analyzed as a necessary condition to avoid entropy issues
during contraction. In Sec. VII the final phase of a cycle,
the contraction phase, is analyzed both analytically and
numerically. In Sec. VIII we reconstruct a concrete example
of fðRÞ function leading to cyclic model and in Sec. IX we
conclude our work.

II. MODELS OF CYCLIC COSMOLOGY

Although the idea of an eternally existing Universe,
which undergoes infinite cycles of creation and destruction,
reaches far back in the history of philosophy and mythol-
ogy (probably even before the idea of a Universe which is
finite in time), in the context of physical cosmology it was
first proposed in the 1930s by Tolmann [40], and also
discussed by Lemaitre under the name of the “phoenix
Universe” [41]. In the early Tolmann’s idea this oscillatory
behavior was enabled by the geometry of the Universe—it
was the property of the solution of the Friedmann equations
for the case of a closed Universe. These first models were
singular—after the initial singularity, the Universe would
undergo a decelerated expansion, and after reaching a
turnaround point it would again collapse to itself. Apart
from the existence of singularities, there are also intrinsic
difficulties associated with this contracting phase. The
collapse of matter would lead to a state of high densities
and pressures leading to an unstable behavior, even more if
the existence of black holes is taken into account—they
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would grow so large that the equations would break or
cause a premature bounce [42–44]. Even if one could
somehow resolve this stability and black holes issues, the
collapse of matter would enormously increase the entropy
of the Universe. It would therefore increase by each cycle,
and connecting this increasing entropy with increasing of
the maximum radius of the Universe, one would get that
radii were gradually smaller in the past. Thus, this argument
would again lead to the initial singularity [45]. With time it
also became obvious that ingredients of these first cyclic
models are not favored by the observations—it is currently
believed that the Universe is flat rather than closed, so that
Friedmann equations, assuming ordinary matter, do not
lead to cyclic solutions. Therefore, cosmological bounce
and turnaround would require some unknown special
physical mechanisms. For this reasons work on the cyclic
cosmology was mostly abandoned for decades. This sit-
uation changed with the discovery of accelerated expansion
of the Universe in 1998, which opened an era of extensive
research on modified gravity theories. In fact, cosmological
solutions with cyclic properties are not rarely encountered
in different theoretical frameworks of modified gravity
[46–52], and there are also numerous works analyzing the
construction of bouncing cosmologies in modified gravity
[53–62]. However, we will here be interested only in the
full and potentially viable cyclic models. In our opinion, in
order that cyclic models can be considered as viable it
needs to lead to empirically observed aspects of ΛCDM
cosmology in the current epoch—after the beginning of the
radiation era until today—and also solve the above stated
problems connected to the contraction phase.
Important attempts to address these issues started around

2001 with Ekpyrotic model as an alternative to inflation
[63]. The idea that dark energy could actually be a phantom
energy, i.e., characterized by equation of state (EOS)
parameter w ¼ p=ρ < −1, with ρ dark energy density
and p dark energy pressure, also played a significant role
in cyclic models. If dark energy is characterized by w < −1
then its energy density becomes so dominant that it
destroys every gravitationally bounded system until it
diverges in the big rip singularity [64] (for a recent
discussion on the effects of quantum fields and second-
order curvature correction in the gravitational Lagrangian
on future singularities see [65]). Using this fact, together
with some mechanism that could start a contraction before
the big rip singularity is reached, the Universe could be
treated as essentially empty at contraction, and then also
black holes can disappear due to the failing of the Hawking
area theorem [66]. This assumption—together with the
modification of Friedmann equations due to the string-
theory “braneworld” scenarios—was used in [67] to pro-
pose a new cyclic cosmological model. Other recently
proposed types of models also typically use string-theory
framework to achieve bounce and turnaround, as can be
reviewed in [68]. On the other hand, the cyclic model

presented in [69] achieves viability by introducing a
negative scalar field potential and a coupling of this
postulated field with radiation and matter densities—which
are however also motivated by string theory. Recently, the
original Tolmann’s idea of cyclic cosmology based on a
closed Universe has been revisited in [70] using a phase
plane analysis, with the addition of decaying cosmological
term, and where also the coupling with a scalar field has
been introduced. The reconstruction of different fðRÞ
functions leading to cyclic solutions, corresponding to
some of the previously mentioned models, was analyzed
in [71]. An interesting discussion on possible influences
of contracting phase on cosmic microwave background
asymmetries can be found in [72,73].
In our model we do not work within the string theory or

any other specific framework, but assume that quantum
gravity effects can be modeled by higher order curvature
corrections to the standard GR Lagrangian density for
gravity. In this picture “dark energy” can be considered
simply as a zeroth contribution of these corrections. There is,
moreover, no need for introducing any new hypothetical
ingredients—like scalar fields, phantom energy, and extra
dimensions. Since the spacial curvature plays no role in
supporting the cyclical behavior in our model, we take the
generally accepted case where the Universe is flat. We also
take into account that coefficients associated with curvature
corrections will in general be dependent on the curvature
regime. Each cycle starts from the cosmological bounce,
which ends the contraction phase of the previous cycle, and
then follows the evolution which subsequently leads to a
decrease of the Ricci curvature scalar, such that higher order
corrections become insignificant. After the standard ΛCDM
era cosmology, the variation of the coefficients leads to a fast
growth of effective “dark energy” contribution, causing a
nonsingular rip of bounded systems and the transition to a
contraction phase of the Universe. Then, during the con-
traction of an essentially empty Universe, higher order
curvature terms again become significant, supporting the
evolution that enables the transition to a new bounce and
beginning of a new cycle. We will examine each of the
mentioned regimes and determine the necessary conditions
and relations such that the above describedmodel is possible.

III. f ðRÞ MODIFIED GRAVITY

The lack of a complete understanding and theoretical
motivation—which makes ΛCDM model more an empiri-
cal fit than a complete model—signifies the need for
finding a quantized theory of gravity. This need supports
the interest for investigation of modified theories of gravity.
As has been said, one of the simplest possible modification
of GR is the fðRÞ gravity. This theory generalizes the
Lagrangian density in the Einstein-Hilbert action [74,75]:

SEH ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð1Þ
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to become a general function of the Ricci curvature scalar,
R [76]:

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ; ð2Þ

where κ ¼ 8πG (c ¼ ℏ ¼ 1), G is the gravitational con-
stant and g is the determinant of the metric. This modifi-
cation can give a simple insight on modified gravitational
effects and can serve as a toy theory of quantum gravity.
The main interest in fðRÞ theories comes from the
possibility of explaining the accelerated expansion of the
Universe without introducing dark energy. In fact, one can
show that the vacuum solution of the field equations in
fðRÞ, for the special case R ¼ const, are the same as in
ordinary GR with the addition of a cosmological constant,
which then naturally results in a Schwarzschild-de Sitter
Universe and the accelerated expansion of the Universe
[32]. Also, as pointed out in [77] fðRÞ theories with
minimal modification lead to new degrees of freedom
and these new states can potentially provide the main
contribution to the nonbaryonic dark matter. The fðRÞ
theory includes the four-derivative terms in the metric and
does not violate general covariance; moreover the four-
derivative gravity is known to be renormalizable [78–84].
The fðRÞ should in our opinion be considered as a toy
theory, since it would be naive to think that a real new
theory of gravity could be constructed without changing the
notion of space-time. The problem of quantum gravity will,
in our opinion, not be solved by some random guess of the
appropriate fðRÞ function. Instead, the general founda-
tional questions should be reconsidered with the new
notions of dynamics and space-time learned from quantum
mechanics and general relativity. Taking the fðRÞ formal-
ism as an effective toy theory for modeling the quantum
effects on high curvatures, we will not be concerned here
with specific forms of fðRÞ function. Our approach will be
to change the GR with minimal modification in action
similar to [77], where we assume that fðRÞ is analytic
around R ¼ R0 and can be expanded in Taylor series
[85–89]:

fðRÞ ¼ c0 þ
c1
1!

ðR − R0Þ þ
c2
2!

ðR − R0Þ2

þ c3
3!

ðR − R0Þ3 þOððR − R0Þ4Þ… ð3Þ
the dimension of fðRÞ should be the same as R, it then
follows that the dimension of ci is ½R�1−i. We will use this
expansion in order to find conditions on coefficients in
different regimes, which makes our approach general and
nondependent on specific models.
We also take into consideration that the given Taylor

expansions—corresponding to a different fðRÞ function—
will in general be dependent on a specific curvature regime.
It seems plausible that quantum corrections will effectively
manifest in a different form, depending on the properties of
the system under consideration. Otherwise, if one fðRÞ

function could cover all the scales and regimes, it could in
principle already be considered as a complete theory of
quantum gravity, and not just an effective description—
which we assume it is not the case. We take this into
account making the coefficients of the Taylor expansion
mildly dependent on curvature cðRÞ such that their varia-
tion can be neglected in a specific curvature region. To
make it more suitable for our cyclic model we express (3) in
terms of the maximal Ricci curvature of the Universe, Rmax,
and take R0 ¼ 0. Moreover, we identify c0, as an effective
cosmological term (which is now no longer constant but
mildly dependent on curvature), c0 ¼ −2Λ. Then the
expansion (3) reads:

fðRÞ ¼ −2ΛðRÞ þ
X∞
i¼1

ciðRÞðR=RmaxÞi; ð4Þ

where we also made the substitution ci → ciRi
max. We note

that the functional scale dependence of the couplings
defining the theory, ciðRÞ, is to be expected from an
effective field theory, as for example analyzed in asymp-
totically safe approach towards quantum gravity [90,91].
The scale of interest is here naturally given by the curvature
scalar, whose value determines UV and IR regimes of the
theory. Since the Ricci curvature scalar is a function of time
in the cosmological context, it follows that these couplings
will be time dependent. We emphasize that termsP∞

i¼1 ciðRÞðR=RmaxÞi can simply be redefined to a new
single function of Ricci scalar, which enters into
Lagrangian density as any other fðRÞ function, and there-
fore variational procedure is still well defined. From a
mathematical perspective any fðRÞ function with appro-
priate behavior in specific curvature regimes, satisfying
conditions imposed on the expansion coefficients—which
will be determined in the following sections—can support
our cyclic model. However, reconstruction of a single fðRÞ
function, satisfying these conditions in specific regimes, is
beyond the scope of our work. Moreover, in our opinion it
is unrealistic to expect that a single fðRÞ function could
properly model effects of quantum gravity at all scales of
interest. Therefore, the approach that we use should be
considered as a more general expansion in the Ricci
curvature with running couplings, rather than a single
fðRÞ function formalism.
Modified fðRÞ gravity, and therefore also the expansion

(4), is known to be free from the Ostrogradsky instability
[92]. Moreover, the theory based on the expansion (4) will
be stable and ghostfree if the following conditions are
satisfied [32,93,94]

dfðRÞ
dR

> 0; ð5Þ

d2fðRÞ
dR2

≥ 0: ð6Þ

In order to obtain the field equations we will use the
standard metric formalism. Beginning with the action (2)
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adding the matter term, Smðgμν;ϕÞ, and varying it with
respect to the metric we get the modified field equations:

f0ðRÞRμν −
1

2
fðRÞgμν − ð∇μ∇ν − gμν□Þf0ðRÞ ¼ κTμν;

ð7Þ

as usual the stress-energy tensor is

Tμν ¼
−2ffiffiffiffiffiffi−gp δSm

δgμν
; ð8Þ

where the prime denotes differentiation with respect to the
argument, ∇μ is the covariant derivative, and □ is ∇μ∇μ.
The field Eq. (7) will be used in order to solve the modified
Friedmann equations in different regimes.
The structure of the field equations in fðRÞ makes it

possible to avoid singularities which are inevitable in
standard GR. The necessary ingredient of the singularity
theorems is the requirement that the strong energy con-
dition (SEC) is satisfied [95]. Namely, if ξμ is a unit
timelike four-vector than SEC reads:

ξμξνTμν ≥ −
1

2
T; ð9Þ

where T is the trace of the stress-energy tensor defined in
(8). Since all ordinary matter satisfies SEC, it appears that
realistic cosmologies based on the standard GR must lead
to singularities. However, in fðRÞmodified gravity one can
require that SEC for the matter stress-energy tensor is
satisfied, while Rμνξ

μξν < 0. If one defines the effective
stress-energy tensor, Teff

μν , which takes into account the
effect of non-Hilbert terms in the action, then the Eq. (7)
can be rewritten as:

Rμν −
1

2
gμνR ¼ κðTμν þ Teff

μν Þ: ð10Þ

It can be required that the total effective SEC can be
violated:

ðTμν þ Teff
μν Þξμξν < 0; ð11Þ

while matter components, Tμν, can still satisfy SEC. Under
these conditions it is possible to avoid singularities in
modified gravity, which is an essential component of our
cyclic model.
We will take the assumption that the Universe is

homogeneous and isotropic (the cosmological principle),
which then is described by the FLRW line element in
spherical coordinates:

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð12Þ

where aðtÞ is the scale factor, k ¼ �1 describes the spatial
curvature, where k ¼ þ1 describing positive spatial cur-
vature, k ¼ −1 negative curvature and k ¼ 0 corresponds
to local flat space. Current observations seem to favor the
flat Universe, so in this work we will consider the case
k ¼ 0 [22]. The matter in this model of the Universe will be
described as a perfect-fluid with the energy-momentum
tensor:

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð13Þ
where ρ is the density, p is the pressure, uμ is the four-
velocity and satisfies uμuμ ¼ −1. The energy momentum
conservation:

∇μTμν ¼ 0; ð14Þ
yields the equation:

_ρþ 3HðtÞðρþ pÞ ¼ 0; ð15Þ

where the dot is the time derivative and HðtÞ ¼ _a
a is the

Hubble parameter.

IV. BOUNCING PHASE

According to the framework of our previously described
cosmological model, we assume that each cycle of the
Universe begins from the contraction phase of the previous
cycle, so that curvature, densities and all other physical
quantities remain finite and well defined. Following already
established terminology we will call this transition—from
contraction in the previous cycle to expansion in the new
cycle—the bouncing phase of the Universe. This directly
leads to some simple conditions for the Hubble parameter
which need to be satisfied by any bouncing, and therefore
also the cyclical, cosmological model. If the scale factor of
the Universe has a minimum at some moment t0 (measured
from some time, arbitrarily chosen, as an origin in infinite
history of the Universe) then, taking d > 0 to be the time
parameter, it follows (i) Hðt0 − dÞ < 0, (ii) Hðt0 þ dÞ > 0,
(iii)Hðt0Þ ¼ 0 if jd − t0j < jtmax − t0j, where tmax is the time
where the scale factor reaches its maximal value. For
simplicity, we can focus our attention on a special case
which satisfies all three conditions and assumes the
symmetry of the scale factor around t0: Hðt0 − dÞ ¼
−Hðt0 þ dÞ. In accord with the limit of cosmology based
on the general relativity, our second physical requirement is
that the Ricci curvature reaches its maximal value during the
bouncing phase of the cycle, at t ¼ t0. It can be shown in
general that if the curvature scalar reaches its maximal and
finite value at a certain point in time, FLRW geometry leads
to the solutions which satisfy bouncing conditions [(i)—(iii)]
on some interval around this point. If the Ricci scalar has a
maximum at t0, then for sufficiently small intervals of time
around it, jt − t0j ≪ 1, it can bedescribed by first terms in the
Taylor expansion:
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6 _H þ 12H2 ¼ Rmax þ R2ðt − t0Þ2 þ R3ðt − t0Þ3
þ R4ðt − t0Þ4 þOððt − t0Þ5Þ…; ð16Þ

where Rmax > 0, R2 < 0 and Rmax is the curvature at the
minimum of the scale factor, which happens at time t0. If we
also assume that RðtÞ is even around t0, choosing R3 ¼ 0,
one can also easily obtain the following conditions:

(i) _Hðt0 þ dÞ ¼ _Hðt0 − dÞ,
(ii) _HðtÞ > 0 in the bouncing region,
(iii) 6 _Hðt0Þ ¼ Rmax,
(iv) Ḧðt0Þ ¼ 0,
(v) R̈ðt0Þ ¼ 6H⃛ðt0Þ þ 24 _H2ðt0Þ.

The equation6 _H þ 12H2 ¼ Rðt0Þ ¼ Rmax has the analytical
solution:

HðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Rmax

p

2
ffiffiffi
3

p tanh

� ffiffiffiffiffiffiffiffiffiffiffiffi
3Rmax

p
t − C

3

�
; ð17Þ

with integration constant C. The complete Eq. (16) can
therefore be solved by a perturbation procedure. It can be
easily checked that this solution, consisting of (17) and small
higher order corrections, satisfies the bouncing conditions [(i)
—(iii)] on a sufficiently small interval around t0, and this also
determines the value of the integration constant. Requirement
of a small time interval leads to the physically plausible
demand that bouncing phase needs to be small when
compared to the period of a complete cycle of the
Universe. We see that a bouncing solution in general appears
as a rather natural feature of the FLRW geometry. Of course,
this is only a geometrical consideration and the real physical
question is if the field equations for gravity admit solutions
which lead to a Ricci scalar that satisfies Eq. (16). In general
relativity, which leads to an initial singularity in the curvature,
this condition is obviously not fulfilled. This shows that the
paradigm of the beginning of the Universe (i.e., noncyclicity
of the Universe) in standard cosmology is entirely based on
the specific mathematical form of the field equations, and not
on the features ofFLRWmetric based onobservations. This is
important, since the field equations based on the same set of
physical assumptions as the standard general relativity can in
principle have different form (as explored in modify gravity
theories), as long as they are consistent, and lead to the same
Newtonian and low-curvature limit.Aswewill show, even the
introduction of very simple higher-order curvature terms in
the action integral for gravity can lead to field equations that
satisfy (16).
After these completely general remarks about the bounce

in FLRW geometry, we turn to the proposed concrete
model of cyclical Universe in general fðRÞ gravity. In this
model the bouncing phase comes after the rip phase, and is
induced by an increase of the curvature which effectively
activates higher terms in the expansion of the fðRÞ
function. It is followed by the inflation phase [or possibly
some other phase determined by the lower order in fðRÞ

expansion] during which curvature continues to diminish,
and which subsequently leads to the low-curvature phase of
the standard cosmology, fðRÞ ≈ −2Λþ R. Therefore, in
the bouncing phase one naturally needs to take into account
the expansion of fðRÞ function to the highest order, N, with
respect to other phases. As we have already discussed, we
take the bouncing phase to be significantly shorter than the
total time of one cycle of the Universe. Therefore, the
coefficients cn can be taken to be constant on this small
interval of time. Then starting from Eqs. (4), (7), (12), (13)
we obtain the modified Friedmann equation in the bounc-
ing region:

3HðtÞ2
XN
n¼0

cnnRðtÞn−1

¼ ρðtÞmat þ ρðtÞrad

þ 1

2

�
RðtÞ

XN
n¼0

cnnRðtÞn−1 −
XN
n¼0

cnRðtÞn
�

− 3HðtÞ
XN
n¼0

cnðn − 1ÞnRn−2 _RðtÞ; ð18Þ

where HðtÞ needs to be a solution of Eq. (16) and RðtÞ is
given by the expansion given in the right-hand side (RHS)
of the same equation. The problem of constructing a
bouncing phase in general fðRÞ gravity after its expansion
in curvature terms, is therefore reduced to the problem of
finding some set of coefficients cn which are consistent
with (18) and (16) on some interval d around t0. Energy
densities are given as a functions of the scale factor by the
conservation of the stress-energy tensor, (15), and can be
expressed as a function of the Hubble parameter, according

to aðtÞ ∼ e
R

HðtÞdt. Therefore any fðRÞ theory whose
factors of high-curvature expansion around t0 satisfy
(18) and (16) leads to a cosmological bounce, which is
the necessary component of cyclical cosmology.
For simplicity we will consider this fðRÞ expansion only

to the third order in R. Higher orders introduce more
parameters and therefore make the physical goals of the
cyclical model, such as a nonsingular and well-behaved
bounce, in principle more easily obtainable—although
leading to more complicated equations. On the other hand,
our approach here will be to construct a viable cosmologi-
cal cyclical model in general fðRÞ gravity in the simplest
possible mathematical framework suitable for analytical
treatment, with the smallest amount of assumptions and
free parameters as possible. If necessary all of the expan-
sions taken here can be easily extended. We have discussed
why the viable cyclical cosmological model should have a
rip phase (without a singularity), which brings perfect fluid
densities to negligible levels and happens before the
contracting phase. It will also be assumed that we can
effectively treat the Universe as empty at the end of the
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previous and the beginning of the next cycle—i.e., during
the bouncing phase. Strictly speaking, at the beginning of
the expanding phase (at the minimum of the scale factor)
values of densities need to be set in accordance to empirical
findings [22] according to the later evolution of densities in
the FLRW model. If we do not want to introduce special
mechanisms of matter and radiation creation after the
bouncing phase, one would expect that these values are
reached by the end of the contracting phase of the previous
cycle, in which values of densities rise as the scale factor
gets smaller. Therefore, not only that densities are actually
not equal to zero at the beginning of the expanding phase,
but they are in fact at their maximum there. Nevertheless,
we will for simplicity assume that in the bouncing region
higher order curvature terms dominate over densities
which, in turn, can be neglected. This leads to the
condition:

ρmax
mat þ ρmax

rad ≪
1

2
ðfRðRmaxÞ − fðRmaxÞÞ

− 3Hðt0Þ
dfRðRÞ

dt

����
R¼Rmax

; ð19Þ

where ρmax
mat and ρmax

rad are maximal values of matter and
radiation densities. Since the minimum of the scale factor,
amin, is a free parameter of the model, we can in principle
always choose it high enough to satisfy this condition

according to ρmax ¼ ρtodaya
−3ð1þwÞ
min as long as it stays

smaller than scales corresponding to the highest observed
redshift factor.
Thus, expanding the fðRÞ to the third other in R, and

solving the Eqs. (16) and (18) to the fourth order in time for
the coefficients of fðRÞ expansion, we obtain the following
relations:

R4 ¼ −
R2ð3Λ − 1þ 45ΛR2 − 24R2 þ 324ΛR2

2Þ
18ð3Λ − 1Þ ; ð20Þ

c2 ¼
3Λþ 36ΛR2 − 2

1 − 12R2

; ð21Þ

c3 ¼
−2Λ − 12ΛR2 þ 1

1 − 12R2

; ð22Þ

where for simplicity (and easier comparison with the
standard GR) we took c1 ¼ 1. We present solutions for
time evolution of HðtÞ and RðtÞ corresponding to param-
eters (20)–(22) in Fig. 1 and Fig. 2. Also, in the same
figures we compare this analytical perturbative solutions
with the numerical results in the bouncing phase to get
more accurate and reliable results. Numerical solutions are
obtained by solving the full modified Friedmann equation:

3HðtÞ2 df
dR

−
1

2

�
RðtÞ df

dR
− fðRÞ

�
þ 3HðtÞ d

2f
dR2

_RðtÞ ¼ 0;

ð23Þ

taking fðRÞ as in (4), expanded to the third order. The field
equation is a second order differential equation in HðtÞ, in
order to solve it we need two initial conditions. From the
bounce definition at t ¼ t0 the Hubble parameter should be
Hðt0Þ ¼ 0. We note that in a small time region around the
maximum the Ricci scalar appears to be symmetric. This
comes from the fact that for small intervals the second order
term in Taylor expansion of RðtÞ will be dominant, but for
larger intervals the Ricci scalar is not necessary symmetric
in our model. It can be seen that the numerical results are
matching the perturbative method. While perturbative and
numerical solutions are in an excellent agreement for the
Hubble parameter, we see that for large ðt − t0Þ

ffiffiffiffiffiffiffiffiffiffi
RMax

p
the

respective Ricci scalars start to slightly differ. This comes
from the fact that for larger time intervals higher order
terms become significant, and this error accumulates in the

FIG. 1. Time evolution of the Hubble parameter, HðtÞ, in the
bouncing phase with parameters Λ ¼ 0.0005, R2 ¼ −2. The
perturbative solution (full line) is obtained from (16) and (18),
using (20)–(22). The numerical result (dashed line) is obtained by
solving (23).

FIG. 2. Time evolution of the Ricci curvature, RðtÞ, in the
bouncing phase with parameters Λ ¼ 0.0005, R2 ¼ −2. The
perturbative solution (full line) is obtained from (16) and (18),
using (20)–(22). The numerical result (dashed line) is obtained by
solving (23).
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Ricci scalar which we compute from the HðtÞ obtained by
the perturbative calculation.
The transition through a cosmological bounce signifies

the beginning of a new cycle of the Universe, with the
evolution that will be subsequently described by lower
curvature regimes.

V. EARLY EXPANSION PHASE

In principle, the bouncing phase—characterized by the
significance of the highest order curvature corrections, can
be followed by some phase of lower order Lagrangian
corrections. In order that this phase matches the bouncing
phase and the standard radiation era it follows that _RðtÞ < 0
and _aðtÞ > 0 during this phase. Any set of parameters in the
fðRÞ expansion leading to these conditions and solving the
modified Friedmann equation is therefore consistent with
the description of this phase. More specific, although
inflationary expansion may be conceptually unnecessary
in the framework of the cyclic Universe it can easily be
embedded in our model. It would then just be a result of
modifying gravity and not supported with any kind of
special field. In fact, historically it was the Starobinsky’s
proposal for the inflation model that brought attention to
the fðRÞ modified gravity [96]. We will therefore not study
this phase in detail here, but only give a simple demon-
stration of this, taking a second order curvature correction
and assuming that a variation of ci can be neglected in this
phase:

fðRÞ ¼ −2Λþ ðR=RmaxÞ þ c2ðR=RmaxÞ2: ð24Þ

Assuming that during this early expansion phase there is
an era where RðtÞ changes very slowly we can take
RðtÞ=Rmax ≡ Rc ≈ const. Then if c2R2 þ Λ ≫ ρmatðtÞ þ
ρradðtÞ it follows

H2 ¼ c2R2
c þ 2Λ

6ð1þ 2c2RcÞ
; ð25Þ

leading therefore to the inflationary growth of the scale
factor after an initial time, tin, given by

aðtÞ ¼ aðtinÞe
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2R

2
cþ2Λ

6ð1þ2c2RcÞ

q
ðt−tinÞ: ð26Þ

VI. PHASE OF STANDARD COSMOLOGY
AND THE RIP PHASE

When the value of the Ricci curvature scalar of the
Universe becomes small enough, R=Rmax ≪ 1, all higher
terms in fðRÞ expansion are negligible and the evolution is
governed by the fðRÞ ¼ −2Λþ R function. In order to
have the observed evolution of the Universe—with a
radiation dominant era, matter dominant era, and structure
growth, as well as the late accelerated expansion—this

regime of a small curvature must last for a sufficiently long
time. Therefore, on this time interval the coefficients ci
should not be considered as constants—as was the case
with the earlier phases, but rather as slowly varying
functions of RðtÞ. In the following, we will assume for
simplicity that this time dependence can be completely
absorbed in the ΛðtÞ function and ignore time variation of
other coefficients. However, considering the case where
ttoday − tbounce ≪ tmax − tbounce, ΛðtÞ can still be considered
as a constant on time scales from bounce till today. We
remind the reader that tmax is the time where the scale factor
reaches its maximal value. In this time region standard
cosmological results are obtained, with an approximately
constant zero order-term of fðRÞ expansion playing the role
of the standard cosmological term. After the era of radiation
and matter domination, this term starts to dominate and
leads to the long period of accelerated expansion of the
Universe. The matter, ρmat

todayða=atodayÞ−3, and radiation,

ρradtodayða=atodayÞ−4, content become negligible and after
long enough time the Universe can be treated as essentially
empty, with its dynamics completely determined by the Λ
term. On time scales of this assumed long accelerated
expansion, the time variation of Λ term now becomes
essential. In order to more easily study this regime,
Friedmann equations can now be rearranged to read:

H2 ¼ κ

3
ðρþ ρeffÞ; ð27Þ

_H þH2 ¼ −
κ

6
ðρþ ρeff þ 3ðpþ peffÞÞ; ð28Þ

where p ¼ ð1=3Þρrad and we have introduced the effective
energy density, ρeff , and effective pressure, peff , which
describe the contribution of the non-Hilbert term, ΛðRÞ, in
the action integral for gravity. These effective terms do not
correspond to any real physical fluid, but just effectively
model the influence of the generalization of the standard
field equations. The obvious advantage of this notation is
that this model of modified gravity can be formally
compared to other models, also the ones including
quintessence, scalar fields etc. From the modified
Friedmann Eq. (23) with fðRÞ ¼ −2ΛðRÞ þ R using the
chain rule, dΛðtÞ=dRðtÞ ¼ _ΛðtÞ= _RðtÞ, and comparing it
with Eqs. (27) and (28) we determine that the effective
terms are given by:

ρeff ¼
1

κ
�
1 − 2 _ΛðtÞ

_RðtÞ

	
�
ΛðtÞ − RðtÞ

_ΛðtÞ
_RðtÞ

þ 6

�
Λ̈ðtÞ
_RðtÞ −

_ΛðtÞR̈ðtÞ
_R2ðtÞ

�
HðtÞ þ κρ

2 _ΛðtÞ
_RðtÞ

�
; ð29Þ
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peff ¼ −
1

3κ
�
1 − 2 _ΛðtÞ

_RðtÞ

	
�
RðtÞ

�
1 −

_ΛðtÞ
_RðtÞ

−
ΛðtÞ
RðtÞ

�

− 6

�
Λ̈ðtÞ
_RðtÞ −

_ΛðtÞR̈ðtÞ
_R2ðtÞ

�
HðtÞ

− κ

�
ρ − 3p

�
1 −

2 _ΛðtÞ
_RðtÞ

���
: ð30Þ

Since the Universe can be considered as nearly empty, in
the remaining discussion we will take ρ ¼ 0, and the
effective equation of state (EOS) can then be written as:

weffðtÞ ¼ −
1

3

RðtÞ
�
1 −

_ΛðtÞ
_RðtÞ −

ΛðtÞ
RðtÞ

	
− 6

�
Λ̈ðtÞ
_RðtÞ −

_ΛðtÞR̈ðtÞ
_R2ðtÞ

	
HðtÞ

ΛðtÞ − RðtÞ _ΛðtÞ
_RðtÞ þ 6

�
Λ̈ðtÞ
_RðtÞ −

_ΛðtÞR̈ðtÞ
_R2ðtÞ

	
HðtÞ

:

ð31Þ

For time intervals such that t ≪ ðtmax − tbounceÞ one can
take Λ ≈ const.. and then weff ≈ −1. For these early times
we therefore obtain the standard cosmological term with
the usual EOS.
In the cyclical model, the Universe needs to reach the

maximal value of the scale factor at time tmax and then enter
into the contracting period of the cycle, finally leading to
the bouncing phase and beginning of a new cycle. If this
contracting phase would immediately follow after the phase
of accelerated expansion with Λ ¼ const.. it would lead to
the collapse of galaxies and matter of the Universe, new
phase transitions, and therefore enormous increase of the
temperature end entropy—which would then be progres-
sively higher at the beginning of every new cycle. In order
to prevent these problems we assume that prior to entering
into the contraction phase, all structures of the Universe
need to be thorn apart due to the contribution of modified
terms (29) and (30). Moreover, also due to the long period
of accelerated expansion, we treat the Universe as empty
when entering into the contraction phase. Therefore we call
this phase of the cycle—a ripping phase, with the crucial
difference with respect to the previously proposed big rip
scenarios [64,97,98] that the scale factor remains always
finite. This means that the contribution of the effective
energy density contained in the modified terms needs to
increase with time, in order to become significantly large to
destroy all bounded systems in the Universe. Starting from
(29), (30) and (31) modified Einstein’s equation can be
written as in (10). Using the conservation of the energy-
momentum tensor for matter, and ∇μGμν ¼ 0, it also
follows that ∇μTeff

μν ¼ 0, leading to the equation for the
evolution of the effective energy density component

_ρeffðtÞ þ
_aðtÞ
aðtÞ ρeffðtÞð1þ weffðtÞÞ ¼ 0: ð32Þ

On the small interval around some time instant, t ¼ ti, weff
can be considered as constant, and it is then easy to see that
the effective energy contribution will grow on that interval
if weff < −1. Therefore, for the late times it follows that
weffðtÞ < −1, so that the effective energy contribution be
always growing—in order to destroy all bounded systems.
Although this represents the condition for phantom energy
EOS, our framework differs from various phantom energy
proposals both physically and mathematically. The physi-
cal difference comes from the fact that we do not assume
the existence of any substance that would have the proper-
ties of the phantom energy, but this effective behavior
comes just as a result of generalizing the action for GR. The
important mathematical difference lies in the fact that the
structure of the field equations is essentially different from
the case when one would assume the existence of the time
dependent phantom energy contribution to the energy-
momentum tensor of standard general relativity. In the
later case the system would be described by the equation

H2 ¼ κ

�
ρþ ρtodayΛ

�
a

atoday

�
−3ð1þwΛÞ�

; ð33Þ

with wΛ ¼ const instead of our Eqs. (27), (29), and (30).
Since ρþ 3p can be considered as a source of gravita-

tional potential, one can make an estimate of the rip time of
a gravitationally bounded system. If we have an orbit
around a massM then the rip time is roughly determined by
the condition: ð4π

3
r3Þ½ρeff þ 3peff � ≈M. Therefore the rip

time, trip, for an astrophysical object determined by the
typical values for M and r can be written as:

4πr3

3κ

2ΛðtripÞ − RðtripÞ þ 12
d2ΛðtÞ
dR2 H _RðtÞ

1 − 2 _ΛðtripÞ
_RðtripÞ

≈M: ð34Þ

In accord with the previous discussion, we require that trip,
which will depend on a specific form of the ΛðRÞ function,
satisfies the condition trip ≤ tmax. In order to have the
transition from the expanding, HðtÞ > 0, to the contracting
phase HðtÞ < 0, the scale factor must reach its maximum
value, which leads to the conditions:

ΛðtmaxÞ
_ΛðtmaxÞ

¼ RðtmaxÞ
_RðtmaxÞ

; ð35Þ

ρeffðtmaxÞ þ 3peffðtmaxÞ > 0: ð36Þ

It is clear that a viable model of cyclic cosmology cannot
be obtained by adding new fluid components with a fixed
EOS to the ΛCDM ones. Effective EOS needs to be a time
dependent variable, changing from weff < −1 at trip to
weff > −1=3 at tmax, as given by (36). There is a broad
potential class of ΛðtÞ functions that can satisfy this
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requirement, together with (34), (35), (36). For simplicity
we will here focus on functions which also have the
following properties: (i) limt→∞ΛðtÞ ¼ Λ0 ¼ const,
(ii) limt→0ΛðtÞ ¼ Λ0, (iii) _ΛðtÞ > 0 for ttoday < t < trip,
(iv) ΛðtÞ ≈ cðt − tzpÞ for jt − tripj ≪ jtrip − ttodayj, where c
is a real number. These functions therefore all have a zero
point, tzp, and sufficiently far away from it can be considered
as constants. In this case the influence of the time change in
the Λ term can be ignored for all other phases of a cycle of
the Universe. Some examples of functions with these proper-

ties include: Λ0ð1− 1þðt−tzpÞ
1þðt−tzpÞ2Þ, Λ0ð1 − sinhðlnð1þ ffiffiffi

2
p Þþ

ðt − tzpÞÞe−ðt−tzpÞ2…
In order to solve the Friedmann equation we should

choose a Λ that satisfy the above mentioned requirements.
Physically interesting regions are those in the vicinity of tzp
where we approximate ΛðtÞ ≈ cðt − tzpÞ and the asymp-
totical region t → ∞ where we take ΛðtÞ as a constant, Λ0.
Solving the Friedmann equation with ΛðtÞ ¼ Λ0 gives

the well-known result from general relativity with empty
space filled with an effective cosmological constant:

H2 ¼ Λ
3
; ð37Þ

as it should be if we want a smooth transition from the
phase of the standard late time cosmology.
Now we want to find the solution near tzp, where

approximately ΛðtÞ ¼ cðt − tzpÞ. By inserting ΛðtÞ into
Friedmann equation we get:

6 _RH2 ¼ c

�
6
R̈
_R
H þ 6H2 − Rþ _Rðt − tzpÞ

�
: ð38Þ

It can be shown that HðtÞ ¼ Aðt − tzpÞ þ b is a solution of
(38) on a sufficiently small interval around tzp, where
higher orders of ðt − tzpÞ are negligible. From the field
equation we get the following conditions:

A ¼ −2b2; ð39Þ

c ¼ −48b3: ð40Þ

We depict HðtÞ, aðtÞ and various ΛðtÞ in Figs. 3, 4, and 5.
After reaching the maximal value of the scale factor, the

Universe will contract following the same dynamics gov-
erned by (27), (28) until the value of the Ricci curvature
becomes high enough so that the term ðR=RmaxÞ2 is again
significant.

VII. TRANSITION TO A NEW BOUNCE

When the second order term again becomes significant,
the modified Friedmann equation must lead to solutions
which will enable the Universe to contract with an increasing
curvature scalar, in order to reach a new bouncing phase and
start a new cycle, thus _RðtÞ > 0, _aðtÞ < 0. As was the case
with the early expansion phase, many different solutions will
enable this transition. In general, the contracting Universe in
the Einstein-Hilbert low curvature regime which enters into
contracting phase with a small cosmological constant will

FIG. 3. Time evolution of the Hubble parameter, HðtÞ, near the
maximum of the scale factor in the rip phase, obtained as a
solution of (38) with b ¼ 5.

FIG. 4. Time evolution of the scale factor, aðtÞ, near its
maximum in the rip phase, with b ¼ 5.

FIG. 5. Example of the family of functions ΛðtÞ which satisfy
conditions (i) limt→∞ΛðtÞ ¼ Λ0 ¼ const, (ii) limt→0ΛðtÞ ¼ Λ0,
(iii) _ΛðtÞ > 0 for ttoday < t < trip, iv) ΛðtÞ ≈ cðt − tzpÞ for

jt − tripj ≪ jtrip − ttodayj, with D ¼ lnð1þ ffiffiffi
2

p Þ.
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continue to contract, therefore again leading to high curva-
ture regime and the bouncing phase. But for the sake of
concreteness let us concentrate on a particularly simple case
where the (negative) Hubble parameter has a polynomial
dependence on time

HðtÞ ¼
XN
i¼1

Aiðt − tfinÞi þHfin; ð41Þ

where tfin is the time when the rip phase ends, and obviously
HðtfinÞ < 0. Since the rip phase ends with a negative value
of the Ricci scalar there is a further constraint on para-
meters: A1 < −2HðtfinÞ2. Since we are again dealing with
the second order curvature correction to standard GR
Lagrangian, the considered fðRÞ has the same form as in
(24), but now with a different value for the parameters c1 and
c2. Using the modified Freidman Eq. (23), with the curvature
expansion to the second order, and taking the Universe to
still be essentially empty while ignoring the variation of Λ,
the modified Friedmann equation in this phase reads

3H2ðtÞ½c1 þ 2c2ð6 _HðtÞ þ 12H2ðtÞÞ�
¼ c2

2
½6 _HðtÞ þ 12H2ðtÞ�2

þ Λ − 6HðtÞc2½6ḦðtÞ þ 24 _HðtÞHðtÞ�: ð42Þ

Solving (42) with the ansatz (41) in the simplest case,
N ¼ 1, we obtain the solutions

c1 ¼
2Λ
A1

; ð43Þ

c2 ¼ −
Λ

18A1

: ð44Þ

We depict HðtÞ, RðtÞ, and aðtÞ corresponding to (41) and
compare it with numerical results obtained by solving (42)
using (43)–(44) in Fig. 6, 7, and 8.

When the value of the Ricci scalar increases enough,
higher order terms in the field Lagrangian will become
relevant, leading to a new bounce—as already described in
Sec. I. In this way the Universe eternally oscillates between
bouncing phases, undergoing all phases of the standard
ΛCDM cosmology in the low curvature limit, where the
effective corrections coming from the quantum effects can
be ignored. Due to the variation of the expansion factors of
the Lagrangian, the standard ΛCDM phase is followed by a
cosmological rip and the beginning of a contraction phase,
opening the way for the beginning of a new cycle in the
infinite history of the Universe.

VIII. EXAMPLES OF CONCRETE MODELS
SUPPORTING THE CYCLIC COSMOLOGY

As previously discussed, it is natural to assume that
quantum corrections to the Lagrangian density of GR will
have a different form in different curvature regimes. It is

FIG. 6. Time evolution of the Hubble parameter, HðtÞ, during
the transition to a cosmological bounce following (41), with
parameters A1 ¼ −0.005,Hfin ¼ −0.03withN ¼ 1. The numeri-
cal result (dashed line) is obtained by solving (42) with Λ ¼ 0.01,
A1 ¼ −0.005, Hfin ¼ −0.03, using (43) and (44).

FIG. 7. Time evolution of the Ricci curvature, RðtÞ, during the
transition to a cosmological bounce following (41), with param-
eters A1 ¼ −0.005, Hfin ¼ −0.03 with N ¼ 1. The numerical
result (dashed line) is obtained by solving (42) with Λ ¼ 0.01,
A1 ¼ −0.005, Hfin ¼ −0.03, using (43) and (44).

FIG. 8. Time evolution of the scale factor, aðtÞ, during the
transition to a cosmological bounce following (41), with param-
eters A1 ¼ −0.005, Hfin ¼ −0.03 with N ¼ 1. The numerical
result (dashed line) is obtained by solving (42) with Λ ¼ 0.01,
A1 ¼ −0.005, Hfin ¼ −0.03, using (43) and (44).
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therefore not probable that the effects of quantum gravity
could be fully modeled with a single fðRÞ function. In
accord with this reasoning, we based the proposed model
of cyclic cosmology on model independent analysis—
deriving specific conditions and relations between coef-
ficients of curvature corrections specific for each regime of
the cyclic universe. However, it is interesting to ask what
would be the archetypal forms of Lagrangian modifications
supporting the cyclic cosmology, and therefore in this
section we reconstruct concrete example of fðRÞ function
leading to cosmological bounce, rip and contraction, based
on our previous discussions.
Using the Eq. (4) to the third order, as well as (21) and

(22) and prescribing Λ and R2 we can obtain a specific
model consistent with bouncing solutions, which we depict
on Fig. 9. Here we have assumed that variation of
coefficients of the expansion can be neglected during the
bouncing phase. As expected, we see that the action
integral for gravity effectively reduces to the GR case
when curvatures are small compared to the maximal
curvature of the Universe, reached at the bouncing phase.
To couple this regime with the later rip phase and turn-
around, we need to take into account the effective scaling of
cosmological term, ΛðRÞ, as proposed in Sec. VI. As a
simple test function that satisfies necessary properties
described in Sec. VI we take

ΛðtÞ ¼ Λ0 − A
1 − ðt − tmaxÞ2
1þ ðt − tmaxÞ4

; ð45Þ

where tmax is the time when the scale factor reaches its
maximum, and A is a constant. Since the Ricci scalar has a
minimum in this phase it can be approximated as
RðtÞ ¼ Rmin þ Bðt − tmaxÞ2, which is also consistent with
the solution of the Eq. (38) around zero point of ΛðtÞ, given
by: HðtÞ ¼ Cðt − tmaxÞ. We therefore obtain the following
dependence of cosmological term on the curvature

ΛðRÞ ¼ Λ0 − A
1 − ðR − RminÞ=B
1þ ðR − RminÞ2=B2

; ð46Þ

which we show in Fig. 10.
Finally, neglecting the variation of all other coefficients,

we show the complete modified Lagrangian density,
fðRÞ¼−2ΛðRÞþðR=RmaxÞþc2ðR=RmaxÞ2þc3ðR=RmaxÞ3,
leading to bouncing, rip and contraction phase in Fig. 11.
When the values of the Ricci curvature scalar are high
compared to Rmax, Λ can be considered as constant, but
higher order corrections cause a significant departure from
the GR description. This corresponds to the bouncing and
early expansion phase. Then, as curvature decreases during
the evolution of the universe, contribution of the higher
order terms become negligible, and the action approxi-
mately matches the one corresponding to the standard GR
with the constant cosmological term, leading to ΛCDM
cosmological phase. Finally, at the end of asymptotic de
Sitter phase, Λ starts to vary significantly. Its value rises at
first, leading to the rapid expansion and ripping of all
bounded systems, and then abruptly decreases becoming
negative, leading to decelerated expansion of the universe

FIG. 9. Typical form of fðRÞ function leading to the bouncing
solution in the third order expansion, given by Eq. (4), (21) and
(22) (full line), compared to the standard GR with cosmological
constant (dashed line). Here Λ ¼ 0.0005, R2 ¼ −2.

FIG. 10. Typical scaling of cosmological term, ΛðRÞ, with
curvature, as discussed in Sec. VI, and given by Eq. (46). Here
Rmin ¼ −0.5=Rmax, B ¼ 2=Rmax, A ¼ 0.5

FIG. 11. Typical form of fðRÞ function leading to cosmological
bounce, rip phase and entering into contracting phase (full line),
obtained by combining third order expansion of the action,
given by Eqs. (4), (21), and (22), together with the scaling of
ΛðRÞ given by Eq. (46) compared to the standard GR with
cosmological constant (dashed line). Here Λ ¼ 0.0005, R2 ¼ −2,
Rmin ¼ −0.5=Rmax, B ¼ 2=Rmax, A ¼ 0.5.

PETAR PAVLOVIC and MARKO SOSSICH PHYSICAL REVIEW D 95, 103519 (2017)

103519-12



and finally beginning of the contracting phase. Then
subsequently, the increase of the curvature scalar during
the contraction phase causes the higher order corrections to
again become significant leading to the new bouncing
phase.

IX. CONCLUSION

The question of the origin of the Universe, and its later
evolution, has always been one of the leading intellectual
driving forces in the development of mythologies, reli-
gions, philosophical systems, and physical theories. In the
last hundred years the development of the physical cos-
mology has enabled us to make the first steps in a
quantitative and empirical understanding of this question.
The standard cosmological ΛCDMmodel based on general
relativity, and the ad hoc addition of dark matter and dark
energy, predicts the beginning of the Universe in the initial
singularity. But, one must admit that up to this date some of
the crucial assumptions of the ΛCDMmodel have not been
empirically verified. Moreover, singularity theorems which
lead to the initial singularity are dependent on the validity
of Einstein’s GR, which cannot be a complete theory since
it does not take into account the principles of quantum
physics. Taking the usually assumed position that the
quantization of gravity will remove singularities existing
in GR, it seems natural to replace the big bang paradigm
with the idea of an eternally existing cyclic Universe.
Inspired by the works on cyclic cosmology in the

previous decades, we propose a new potentially viable
model of cyclic cosmology which is assuming no hypo-
thetical ingredients such as extra dimensions, new scalar
fields, phantom energy, and special space-time geometries.
Also, we do not use any specific theoretical framework,
such as string theory or loop quantum gravity. In our
approach we start from the idea that quantum gravity
effects can be modeled by higher order curvature correc-
tions to the standard GR Lagrangian density for gravity. For
the sake of simplicity we describe these contributions in the
framework of fðRÞ in the metric formalism, using a power
law expansion in terms of the Ricci curvature scalar. We
also take into consideration that a given power expansions,
corresponding to a different fðRÞ function, will in general
be dependent on a specific curvature regime. In this model
each cycle of the eternally existing Universe starts from the
cosmological bounce, which ends the contraction phase of
a previous cycle, gradually leading to the regime of
standard ΛCDM cosmology. At the end of this regime
the variation of the coefficients leads to a nonsingular rip of
bounded systems, where the non-Hilbert terms contribution
plays a dominant role and leads to the transition to a
contraction phase of the Universe. Then, during the
contraction of an essentially empty Universe, higher order
curvature terms again become significant and lead to a new
bounce and the beginning of a new cycle.

We have first analyzed the mathematical properties and
necessary conditions for the establishment of a bounce—a
transition from contraction to an expanding phase of the
Universe. It has been shown that a bouncing solution
appears as a rather natural and general feature of the FLRW
geometry. Namely, if the Ricci scalar has a maximum at a
certain point in time, then on some small interval around
that point it is given by a function satisfying the require-
ments for a bouncing solution. The critical question is if
these conditions can be satisfied in the framework of the
given field equations. Using the perturbative approach up to
the fourth order in time and third order in Ricci power law
series, we have determined the relations between the
coefficients of expansion and obtained the solutions for
HðtÞ and RðtÞ, which we compare with numerical sol-
utions, showing a good agreement of different techniques.
Inflationary expansion of the Universe may be conceptually
unnecessary in the framework of the cyclic Universe, but
we still briefly discuss it in the following chapter for
completeness, where we have shown that inflation can
easily be obtained in our model. After this potential phase
of the early expansion—possibly incorporating the infla-
tion phase—during the subsequent evolution of the
Universe all higher order curvature corrections to GR
Lagrangian density become negligible and its dynamics
is approximately described by the standard ΛCDM model.
The late time evolution of this regime leads to an essentially
empty Universe dominated by the effective cosmological
term. In our model the slow variation of the coefficients in
the curvature corrections then leads to the strong growth of
terms playing the role of the effective dark energy, and
therefore leading to the destruction of all bounded systems
in the Universe—in order to avoid problems with the
increase of entropy during the contraction phase. We have
then assumed that after this rip phase, the Universe reaches
the maximal value of the scale factor, and starts the
contraction. The equations leading to this scenario, as well
as the necessary conditions for the rip and entering into the
contraction period have then been studied. Absorbing all
the time dependence of the expansion coefficients in the
zeroth order term, and choosing a family of functions with a
suitable asymptotical behavior, we also presented the
corresponding solutions of the modified Friedmann equa-
tions. To get the full period of a cycle we need one last
phase—the contraction phase. In this regime, the Ricci
scalar must increase in order to reach its maximum at a
bounce, and in the same time the scale factor must decrease
and reach its minimum at a bounce. Many different
solutions will enable this transition, but for simplicity
we demonstrated the features of this phase by modeling
the Hubble parameter as a decreasing polynomial function
in time. We have then analytically solved the modified
Friedmann equation to the third order in non-Hilbert
curvature corrections. Again, we compared the numerical
solution, using the same parameters obtained by the
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analytical method, with the simple analytical solution, and
conclude that the solutions in both techniques are in a good
agreement.
We have thus analyzed the basic aspects of a new

general cyclic model based on the corrections and gen-
eralization of the standard GR. Further work should
concentrate on the question of potential observational
consequences of this model, and also on the more detailed
discussion of the open cosmological problems within this
framework. In the present work it was assumed that the
contribution of stress-energy tensor components can be
neglected in all phases of the cycle, apart from the low
curvature regime. It would be important to avoid this

assumption and also to address in a greater detail the issue
of entropy evolution during a cycle of the Universe,
specially during the contracting phase. Moreover, it would
also be interesting to apply the same scenario to the other
variants of modified gravity formalisms, such as fðTÞ
gravity and Palatini or metric-affine fðRÞ gravity formal-
ism, to see if other formalisms lead to the same physical
conclusions.
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