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The Raychaudhuri equation for null rays is a powerful tool for finding consistent embeddings of
cosmological bubbles in a background spacetime in a way that is largely independent of the matter content.
We find that spatially flat or positively curved thin wall bubbles surrounded by a cosmological background
must have a Hubble expansion that is either contracting or expanding slower than the background, which is
a more stringent constraint than those obtained by the usual Israel thin-wall formalism. Similarly, a
cosmological bubble surrounded by Schwarzschild space, occasionally used as a simple “swiss cheese”
model of inhomogenities in an expanding universe, must be contracting (for spatially flat and positively
curved bubbles) and bounded in size by the apparent horizon.
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I. INTRODUCTION

Cosmic bubbles—spherically symmetric homogeneous
and isotropic spacetimes surrounded by a spherically
symmetric background spacetime—can arise in many
interesting applications of general relativity, including local
inflation, eternal inflation, cosmological phase transitions,
and gravitational collapse. In these scenarios, spacetime is
separated into two separate manifolds Mþ and M−, with
their own distinct metrics, which are typically joined across
a “thin wall” hypersurface1 using the Israel junction
conditions [2].
The dynamics of such bubbles can be extremely com-

plicated, depending on the matter content of the back-
ground and interior of the bubble as well as the tension on
the bubble wall and how it interacts with the surrounding
matter. The most well-understood solutions involve
simple assumptions, such as the dust-collapse model of
Oppenhemier-Snyder [3] or false vacuum de Sitter bubbles
in empty space [4,5]. Some results have also been obtained
for interior and exterior spacetimes described by homo-
geneous and isotropic Friedmann-Lemaitre-Robertson-
Walker (FLRW) spaces [6–10]. See also [11–17] for other
investigations of cosmic bubble dynamics.
More recently, there has been renewed interest in the

onset of local inflation arising from inhomogeneous initial
conditions, in which inflation starts in a small patch
surrounded by a noninflating background. Earlier analyti-
cal arguments and numerical work suggested that the

inflationary patch will not grow unless the initial size of
the homogeneous patch is larger than the Hubble length
(see e.g. [18–21] and the recent review [22]). These results
have been revisited by recent works [23,24], which use
modern numerical relativity codes to study the conditions
under which local inflation begins. While these numerical
analyses are not necessarily spherically symmetric, infla-
tion will act to homogenize and isotropize the spacetime
inside the bubble, so we can view these models as cosmic
bubbles embedded into a larger spacetime.
The dynamics of cosmic bubbles appear to be strongly

model dependent, so it has been difficult to make general
statements about their behavior. In this paper, we will
consider cosmic bubbles from a different angle, by using
the null Raychaudhuri equation to study the consistency of
cosmic bubble embeddings. While we will not be able to
derive dynamical equations of motion for the bubble wall—
which arise from the Israel boundary conditions—we will
nonetheless find interesting constraints from the consis-
tency of the null Raychaudhuri equation for the propaga-
tion of null rays across the bubble wall. The Raychaudhuri
equation is particularly powerful because it is independent
of specific solutions to the Einstein equations, and it has
been used before [25,26] to study the consistency of
embeddings of local inflation.
In particular, we will be interested in the behavior of the

expansion θ of radial, inwardly directed, future-oriented
null rays Nα. For an affinely parametrized null tangent
vector Nα∇αNβ ¼ 0, the expansion θ ¼ ∇αNα satisfies the
null Raychaudhuri equation,

dθ
dλ

¼ −
1

2
θ2 − jσj2 − RαβNαNβ; ð1Þ
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1The assumption of an infinitesimally thin bubble wall does

not apply to phase transition bubbles formed in new inflation [1].
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where λ is an affine parameter along the geodesic and σ is
the shear tensor. The Raychaudhuri equation (1) arises from
the geometric properties of null vectors, and as such is
independent of the Einstein equations and their solutions.
Imposing the Einstein equations on the last term of (1),
we have

dθ
dλ

¼ −
1

2
θ2 − jσj2 − TαβNαNβ: ð2Þ

If we assume that the matter inside and outside of the
bubble as well as on the bubble wall obeys the null energy
condition (NEC) TαβNαNβ ≥ 0, the Raychaudhuri equa-
tion (2) implies that the expansion must be nonincreasing,

dθ
dλ

≤ 0: ð3Þ

As a null ray traverses the bubble wall boundary Σ from
the background spacetime into the bubble, as shown in
Fig. 1, the value of θ will, in principle, change. In order
for the bubble embedding to be consistent with the
Raychaudhuri equation (3), the value of θ must not increase
across the wall,

Δθ ¼ θ− − θþ ≤ 0: ð4Þ

It is common to study cosmic bubbles in the “thin wall”
limit in which the boundary is infinitesimally thin, for
which (4) must be true when evaluated at the (singular)
boundary; however, (4) must also be satisfied for “thick
wall” bubbles as well, as a null ray leaves the background
and enters the bubble.
The Raychaudhuri equation (2) is independent of spe-

cific solutions to the Einstein equations, and thus (4) must
be satisfied for any inwardly directed radial null ray,
independent of the details of the matter content of the
background and bubble spacetimes as well as the bubble

wall, as long as such matter obeys the NEC. In order to
evaluate the constraints implied by (4), we need to evaluate
the expansion θ on the bubble and background spacetimes.
There are a number of possible choices for these space-
times, depending on the specific details of the bubble wall
and matter content as well as the bubble embedding
structure.
In order to make progress, we will consider in this paper

two simple choices for the bubble and background space-
times: first, we will consider both bubble and background
spacetimes to be described by distinct homogeneous and
isotropic FLRW metrics. Then we will consider the case in
which the bubble interior is a FLRW spacetime, while the
background is Schwarzschild spacetime, as a “swiss
cheese” model of the bubble inhomogeneity. In both cases,
the Raychaudhuri equation in the form (4) will allow us to
constrain the allowed bubble embeddings.

II. A BUBBLE IN A COSMOLOGICAL
BACKGROUND

We will begin by considering a spatially flat homo-
geneous and isotropic cosmological bubble embedded at
the origin of a homogeneous and isotropic cosmological
background, as in [6–10]; nonspatially flat bubble and
background spacetimes will be considered in Sec. II B.
Both spacetimes are described by the FLRW metric,

ds2� ¼ −dt2� þ a�ðt�Þ2dr2� þ a�ðt�Þ2r2�dΩ2; ð5Þ

where � refers to the background/bubble spacetimes,
respectively. The choice of a homogeneous FLRW back-
ground represents an assumption of vanishing (or small)
gravitational backreaction of the bubble, as in the sponta-
neous formation of a bubble through a phase transition [27]
or the “detonation wave” approximation in which the
energy density of the background is converted into energy
of the bubble interior on the bubble wall, leading to
vanishing surface energy density [7,8]. However, we will
also allow for the presence of a thick wall, which can
presumably capture some of the local backreaction of the
bubble on the background for more general bubbles, and
derive constraints on the required thickness of such a
backreacted interpolating region.
The (timelike) boundary upon which these spacetime

regions are joined is the wall of the bubble Σ. The metric
must be continuous across the bubble wall,2 which implies
that the coefficient of dΩ2 in the metric must be continuous
across the boundary aþðtþÞrþjΣ ¼ a−ðt−Þr−jΣ ≡ RðτÞ,
where τ is the proper time of the wall. Since the bubble
and background spacetimes have (in principle) different
cosmological evolutions, the comoving radial coordinates
r� cannot be continuous across the wall. The “areal radius”

FIG. 1. Wewill be considering radially ingoing null rays as they
cross the boundary Σ from a spherically symmetric background
into an embedded cosmological bubble.

2See [9,10] for an analysis of the Israel junction conditions
across the boundary.
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~r≡ aðtÞr, however, will be continuous across the wall, and
we will set ~rþjΣ ¼ ~r−jΣ ¼ R on the bubble wall.
Radial, inwardly directed, future-oriented null rays in the

cosmological spacetimes (5) are described by the (affine)
null tangent vector

Nα
� ¼ ða−1� ;−a−2� ; 0; 0Þ ð6Þ

in either spacetime. The expansion of these rays θ� ¼
∇αNα

� is then

θ� ¼ 2

a�

�
H� −

1

~r

�
: ð7Þ

Following [28,29], (7) defines an apparent horizon for the
bubble and background spacetimes where θ� ¼ 0,

~r�AH ¼ H−1
� : ð8Þ

Null rays that are at an areal distance from the origin that is
smaller than the radius of the apparent horizon ~r < ~r�AH
have negative expansion, as is expected for converging
rays. However, null rays that are at an areal distance larger
than the radius of the apparent horizon ~r > ~r�AH have a
positive divergence, indicating that the expansion of space
is overcoming the expected geometric convergence of
the rays.

A. Crossing the bubble wall

In the limit of an infinitesimally thin bubble wall, as a
null ray crosses the boundary the radial coordinate is
continuous ~r�jΣ ¼ R but the scale factor a� and Hubble
expansion rate H� are not. Thus, the requirement that θ
must decrease (4) becomes

Δθ ¼ 2

a−

�
H− −

1

R

�
−

2

aþ

�
Hþ −

1

R

�
≤ 0: ð9Þ

The metrics (5) contain an ambiguity: it is always possible
to make a simultaneous rescaling of the scale factor and
comoving radial coordinate by a constant a� →
λ�a�; r� → λ−1� r� that leaves the metric and physical
distances invariant. We will use this freedom to fix the
bubble and background scale factors to be equal to one
at the time of the null ray wall crossing t�;cross for
the respective spacetimes only, e.g. aþðtþ;crossÞ ¼
a−ðt−;crossÞ ¼ 1. Since the matter content of the background
and bubble generically differs, this implies that the scale
factors should typically not be the same at any other time.
Utilizing this freedom, we can simplify (9) to

Δθ ¼ θ− − θþ ¼ 2ðH− −HþÞ ≤ 0: ð10Þ

This constraint has important implications for bubble
embeddings described by (5).

If the background is expanding but the bubble
spacetime is collapsing H− < 0, then we are able to satisfy
)10 ) without any difficulty, indicating that a collapsing

bubble inside an expanding background is always an
allowed solution. Alternatively, if the background space-
time is collapsing, then (10) indicates that the bubble
spacetime cannot be expanding while still satisfying the
Raychaudhuri equation. Since this is of little practical
cosmological interest for us, however, we will not consider
this situation further.
If both the bubble and the background spacetimes are

expanding H� > 0, then (10) is only satisfied for a bubble
that has a lower Hubble rate than the backgroundH− < Hþ,
indicating that the energy density of the bubble is smaller
than the background ρ− < ρþ. Some simple examples
include a true vacuum bubble embedded inside a false
vacuum background, or a low temperature bubble inside a
higher temperature background. However, (10) fails for a
bubble that has a higher Hubble rate than the background
H− > Hþ, including false vacuum or high temperature
bubbles. This further extends the results of [9,10], which
found that the Israel junction conditions do not allow for a
spatially flat bubble embedded in the spacetime (5) with
H− > Hþ unless the bubble is superhorizon sized.We find a
stronger result here, which is that a spatially flat bubblewith
H− > Hþ is not allowed for any size bubble. It is interesting
that this result is independent of the details of the matter
content inside and outside of the bubble aswell as the tension
of the bubble wall, as long as the matter obeys the NEC and
the embedding is as described by (5).
A limited form of this result was found in [25], which

considered an inflationary bubble embedded inside a non-
inflationary cosmological background with H− > Hþ. The
authors of [25] noticed that for inflationary bubbles that are
larger than their own apparent horizon but smaller than the
apparent horizon of the background ~r−AH < R < ~rþAH, an
ingoing light ray traversing the bubble wall that starts in the
background will begin with negative expansion θþ < 0.
However, after traversing the bubble wall boundary, the
expansion is now positive θ− > 0 and therefore θ is
nondecreasing, in violation of the Raychaudhuri equa-
tion (4). This change in sign of θ can be avoided if the
inflationary bubble is larger than both the bubble and
background apparent horizons R > ~rþAH; ~r

−
AH, so that θ� is

positive in both spacetimes [25]. Putting aside the difficulty
of establishing such a configuration in a causal way, our
result (10) indicates that it is not sufficient for θ� to simply
be positive in both spacetimes, as θ− for the inflationary
bubble is still larger than θþ for the background when
H− > Hþ for any size bubble.
The challenge presented by (10) to bubbles with H− >

Hþ is quite basic, and it is compelling to view the failure of
(10) as due to the unrealistic assumption that the bubble and
background cosmological spacetimes (5) are glued together
on an infinitesimally thin wall with no backreaction on the
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background spacetime. We would expect that for a generic
bubble the energy density of the bubble should locally
backreact on the background metric so that it deviates from
the pure cosmological form. Indeed, for a generic de Sitter
bubble embedded in a background that is empty [5] or
dominated by a positive cosmological constant [13], the
spacetime is approximately Schwarzschild in the vicinity of
the bubble wall. Unfortunately, analytic forms3 for the
backreaction of the bubble energy density are not known
when the bubble and background are filled with a generic
cosmological fluid.
Nevertheless, we can move beyond our approximation of

an infinitesimally thin wall in a generic way by assuming
that the bubble wall now has a “thickness” of 2δ, as in
Fig. 2. We will leave the spacetime geometry inside the
thick wall unspecified, as its form likely will include
the unknown backreaction of the bubble and tension of
the wall. Since we do not know the details of the metric
inside of the thick wall, we cannot compute θ inside the
wall. Nevertheless, it must still be true that (4) is satisfied
for a null ray as it enters and exits the thick wall.
An ingoing null ray enters the thick wall from the

background at ~r ¼ Rþ δ and leaves the wall in the bubble
at ~r ¼ R − δ, so we have4

Δθ ¼ 2ðH− −HþÞ −
4δ

R2 − δ2
≤ 0: ð11Þ

In contrast to (10), it is now possible to solve (11) for an
expanding bubble with H− > Hþ.
In particular, (11) is satisfied if the thickness of the wall

is larger than

δ ≥
1

2
R2ΔH; ð12Þ

where ΔH ¼ H− −Hþ, and we assumed5 RjΔHj ≪ 1.
It is interesting to see how the presence of a thick wall

satisfying (12) also evades the argument of [25] described
above. In the presence of a thick wall of size ~r−AH < R <
~rþAH satisfying (12), a null ray exits the wall and enters the
bubble cosmology at the inner boundary of the wall
~r ¼ R − δ. Since H−ðR−δÞ≤H−Rð1− 1

2
H−Rð1−Hþ

H−
ÞÞ≤

1− 1
2
ð1−Hþ

H−
Þ<1, the inner boundary of the wall is smaller

than the bubble apparent horizon R − δ < H−1
− ¼ ~r−AH.

Thus, the expansion of the null ray is negative when it
enters the cosmological part of the bubble, and
Raychaudhuri’s equation (11) can be satisfied.
It is important to note that the condition (12) is a

necessary condition for the thickness of a wall surrounding
a cosmological bubble with H− > Hþ, but it is not
sufficient. Our approach has avoided specifying the behav-
ior of θ inside the thick bubble wall, and it must be the case
that θ is decreasing inside the thick bubble wall in a way
that interpolates between the expansions θ of the exterior
and interior spacetimes to satisfy the Raychaudhuri equa-
tion. In Sec. III we consider a cosmological bubble
surrounded by a Schwarzschild spacetime, which can serve
as a swiss cheese model for the backreaction of the bubble
on the background, in which the empty Schwarzschild
spacetime serves as a model for the thick wall. In the next
subsection, we generalize our argument to include nonzero
spatial curvature for both the bubble and the background,
finding that the main results of this section hold for a larger
range of signs of the spatial curvature of the bubble and
background.

B. Nonzero spatial curvature for bubble
and background

The constraint (10), while independent of the matter
content of the bubble and background, applies only to
bubble and background spacetimes that are spatially flat.
In general, however, the bubble and background can
have their own distinct spatial curvature. Indeed, [26]

FIG. 2. A null ray traveling across a thick wall boundary
between a cosmological background Hþ and bubble H− leaves
the background at ~r ¼ Rþ δ and enters the bubble at ~r ¼ R − δ.

3A notable exception is the McVittie metric [30], which is a
specific solution representing a central inhomogeneity in an
asymptotically FLRW background with a cosmological fluid that
does not accrete onto the central object. We will attempt to
include the effects of backreaction in a less specific way through
the inclusion of an unknown thick wall, though it would be
interesting to study the constraints from the Raychaudhuri
equation for the McVittie metric in a future work.

4We have again used the rescaling freedom in the scale factor
to set aþ ¼ a− ¼ 1 when the ray crosses the respective exterior
and interior boundaries.

5If RΔH ∼Oð1Þ, then the wall must be approximately the
same size as the bubble itself δ ≥ ΔH−1 ∼ R in order to solve
(11), which implies that the bubble spacetime is almost certainly
not described by a homogeneous and isotropic cosmological
metric.
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generalized the argument of [25] to nonflat spatial sections
and found that it is possible to avoid changes of sign of θ�
when crossing the boundary if the bubble is initially
negatively curved. In this section, we will generalize our
results from Sec. II A to nonflat spatial geometries by
requiring that θ be nonincreasing.
Including spatial curvature in a homogeneous and

isotropic spacetime, we start with the metrics

ds2� ¼ −dt2� þ a�ðtÞ2
�

dr2�
1 − k�r2�

þ r2�dΩ2

�
; ð13Þ

where k� > 0 (k� < 0) corresponds to positive (negative)
spatial curvature, and k� ¼ 0 is flat space. Note that (13)
still allows for an independent constant rescaling of the
scale factors a� → λ�a� as long as the comoving radial
coordinates and spatial curvatures are rescaled as well as
r� → λ−1� r�; k� → λ2�k�. This is consistent only if one
does not choose k� ¼ �1, as is common in the presence of
spatial curvature, which we will avoid.
Radially inward affine null rays in the spacetimes (13)

take the form

Nα
� ¼ 1

a�

�
1;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k�r2�

p
a�

; 0; 0

�
; ð14Þ

with corresponding expansion θ� ¼ ∇αNα
�,

θ� ¼ 2

a�

�
H� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k�r2�

p
~r

�
; ð15Þ

where again we have used the areal radius
~r ¼ a−r− ¼ aþrþ, which is continuous across the boun-
dary, even in the presence of spatial curvature. As in flat
space, a vanishing expansion for ingoing null rays θ� ¼ 0
defines an apparent horizon for nonspatially flat FLRW
space,

~r�AH ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

� þ k�=a2�
p : ð16Þ

For ~r > r�AH, the expansion is positive due to the expansion
of space.
As the null ray crosses the boundary ~rjΣ ¼ R, the

requirement from the Raychaudhuri equation (4) that θ
must be nonincreasing Δθ ¼ θ− − θþ ≤ 0 becomes

Δθ ¼ 2

a−

 
H− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k−r2−

p
R

!
−

2

aþ

 
Hþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kþr2þ

p
R

!

¼ 2ðH− −HþÞ −
2

R

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k−r2−

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kþr2þ

q �
≤ 0;

ð17Þ

where we again used our rescaling freedom to set a� ¼ 1 at
the wall crossing. It does not seem possible to make general
statements about the implications of (17), so we will
examine the constraints imposed by (17) for specific cases.
The results are summarized in Table I.
In particular, for a background that is either flat or

negatively curved kþ ≤ 0, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kþr2þ

p
≥ 1, while

a bubble that is either flat or positively curved k− ≥ 0 hasffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k−r2−

p
≤ 1. Combining these two inequalities with

(17), we find

H− −Hþ ≤ 0: ð18Þ

This is an analogous constraint as (10) from Sec. II A: for
an expanding bubble and background, only bubbles with a
smaller Hubble rate than that of the background are
consistent with the Raychaudhuri equation. (Similar argu-
ments as given in Sec. II A hold for a nonexpanding bubble
or background.)
For a background with positive spatial curvature kþ > 0

and positive or flat spatial curvature for the bubble k− ≥ 0,
we can rearrange (17) into the form

H− −Hþ ≤
1

R

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k−r2−

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kþr2þ

q �
≤

1

R
; ð19Þ

where the last inequality follows because the square roots
are bounded for non-negative k�. This constraint (19) is
considerably less stringent than (18) since while an
expanding bubble with a Hubble rate smaller than that
of the background still satisfies (19), we can now have an
expanding bubble with a Hubble rate larger than that of the
background, provided that the size of the bubble is smaller
than R ≤ ðH− −HþÞ−1. If the bubble and the background
expansion rates are not too different, this does not amount
to too stringent of a constraint. However, if the bubble is
expanding much faster than the background H− ≫ Hþ,
then the bubble size is bounded above by the bubble’s
inverse Hubble length R < H−1

− . Similarly, if the back-
ground itself is collapsingHþ < 0, the size of the bubble is
again constrained by a combination of the expansion rates.
Alternatively, if the bubble is collapsing, (19) is automati-
cally satisfied, as in the flat space case.

TABLE I. Requiring that the expansion θ of a null ray be
nonincreasing as the ray traverses the boundary between a
background spacetime and bubble spacetime when including
spatial curvature leads to different constraints depending on the
relative signs of the spatial curvatures of the spaces.

Bubble Background
kþ > 0 kþ ¼ 0 kþ < 0

k− > 0
H− −Hþ ≤ R−1 H− < Hþk− ¼ 0

k− < 0 RðH− −HþÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jk−jr2−

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kþr2þ

p
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Finally, to enumerate all possibilities we must consider
the cases when the bubble is negatively curved k− < 0. In
all of these cases, (17) implies a bound on the size of the
bubble,

R ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jk−jr2−

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kþr2þ

p
H− −Hþ

ð20Þ

(where we took the absolute value of the bubble spatial
curvature for clarity).
It is interesting to compare the results of Table I with the

constraints obtained from the Israel boundary conditions on
FLRW spacetimes embedded in FLRW backgrounds from
[9,10]. In particular, the authors of [10] finds that there are
no restrictions on the bubble embedding when the differ-
ence in energy density between the background and bubble
is positive ρþ > ρ− and larger than the surface energy
density S of the bubble wall ρþ − ρ− > 6πGS. However,
when this difference is either negative, as when ρ− > ρþ, or
smaller than the surface energy density, then it is not
possible to satisfy the Israel junction conditions for flat or
negatively curved spacetimes kþ ≤ 0 (for any value of the
bubble spatial curvature) unless the bubble is larger than
super-Hubble size R > H−1þ . In contrast, we find a much
stronger result since if the background is flat or negatively
curved and the bubble is flat or positively curved, the
embedding is inconsistent with the NEC and the
Raychaudhuri equation unless the bubble expansion rate
is smaller than the background H− < Hþ, for any sized
bubble. On the other hand, if the bubble is negatively
curved, our constraint (20) appears to put an upper bound
on the size of an allowed bubble, rather than the lower
bound of [10]. Thus, we see that the constraints imposed by
the Raychaudhuri equation are complementary, and in
some cases much stronger than constraints obtained by
the Israel boundary conditions.
As in Sec. II A, it is tempting to see the failure of the

Raychaudhuri equation for nonspatially flat bubbles as due
to a possibly unrealistic assumption that the size of the
bubble wall is infinitesimally thin. We can generalize our
argument here to include a wall with a thickness of 2δ as in
Fig. 2 with unspecified geometry, so that a null ray leaves
the background and enters the wall at ~r ¼ Rþ δ and leaves
the wall and enters the bubble at ~r ¼ R − δ. The expansion
θ must be nonincreasing from when the null ray leaves the
background and enters the bubble wall,

Δθ ¼ θ−j~r¼R−δ − θþj~r¼Rþδ ð21Þ
leading to the constraint

2

a−ðt�−Þ

 
H− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k−ðR − δÞ2=a2−

p
R − δ

!

−
2

aþðt�þÞ

 
Hþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kþðRþ δÞ2=a2þ

p
Rþ δ

!
≤ 0; ð22Þ

where t�� are the times when the null ray crosses the
boundary out of (into) the background (bubble) spacetimes.
It is difficult to draw generic conclusions from (22). Specific
constraints can be obtained in the Hþ → 0 limit, though
since in this limit the background is empty, so we should
consider a Schwarzschild background spacetime instead.

III. BUBBLE IN A SCHWARZSCHILD
BACKGROUND

We will now consider our cosmological bubble
to be surrounded by a background which is vacuum
Schwarzschild spacetime. This can serve as a model of a
false vacuum bubble in flat space, as in [4,5,31], or as a
Schwarzschild vacuole or swiss cheese model of an inho-
mogeneity embedded in a larger cosmological background,
as in Fig. 3. Indeed, the authors of [16,17] have argued that
vacuum bubbles will develop just such a Schwarzschild
layer as they evolve in a postinflationary universe. This
Schwarzschild layer can thus serve as a simplemodel for the
backreaction inside the thick wall introduced in Sec. II, or as
a background for the bubble in its own right.
We will thus take the background spacetime to be

spatially flat Schwarzschild space,

ds2S ¼ −
�
1 −

2GM
~rS

�
dt2S þ

�
1 −

2GM
~rS

�
−1
d~r2S þ ~r2SdΩ2;

ð23Þ

FIG. 3. A FLRW bubble surrounded by a Schwarzschild
background can serve as a model for a “vacuole” or swiss cheese
inhomogeneity embedded in a larger expanding background. We
study the behavior of radial null rays as they traverse from the
Schwarzschild background into the bubble.
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where we will use a subscript S for the background to avoid
confusion with the FLRW background coordinates from the
previous section. A radially ingoing (affine) null ray in this
spacetime,

Nα
S ¼

��
1 −

2GM
~rS

�
−1
;−1; 0; 0

�
; ð24Þ

has the expansion

θS ¼ ∇αNα
S ¼ −

2

~rS
; ð25Þ

which is what we would expect to get by settingHþ ¼ 0 in
the FLRW background of the previous section.
As the null ray traverses the bubble wall, the spacetime

changes from the exterior Schwarzschild space to the
interior FLRW cosmology (we will consider k− ≠ 0 here),

ds2 ¼ −dt2− þ a−ðt−Þ2
1 − k−r2−

dr2− þ a−ðt−Þ2r2−dΩ2: ð26Þ

As before, we will find it convenient to work with the areal
radius ~r− ¼ a−ðt−Þr−, which is continuous across the
boundary of the bubble. A radially ingoing affine null
ray for this nonspatially flat FLRW spacetime takes the
form

Nα
− ¼ 1

a−

�
1;−a−1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k−r2−

q
; 0; 0

�
; ð27Þ

which has the expansion

θ− ¼ 2

a−

 
H− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k− ~r2−=a2−

p
~r−

!
: ð28Þ

In order for the Raychaudhuri equation (4) to be satisfied as
the null ray crosses the thin wall boundary
~rSjΣ ¼ ~r−jΣ ¼ R, we must have

Δθ ¼ θ− − θS

¼ 2

a−
H− þ 2

R

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k−R2=a2−

p
a−

!
≤ 0: ð29Þ

Note that since θ− is positive when the size of an
expanding bubble is larger than its apparent horizon
R > ~r−AH, while θS is always negative, the requirement
from the Raychaudhuri equation that θ be nonincreasing
implies that the bubble may never be larger than its own
apparent horizon. Thus, an arbitrarily large expanding
bubble cannot develop when surrounded by a
Schwarzschild spacetime. It is interesting to compare this
result to that of [31], which found that an expanding bubble
larger than its apparent horizon must have begun in an

initial singularity. We find a complementary result here,
that such a bubble embedding would not be consistent with
the Raychaudhuri equation to begin with.
Utilizing our freedom to rescale the scale factor of the

bubble to aðt�−Þ ¼ 1 at the time of crossing t�−, the condition
(29) becomes

2H− þ 2

R

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k−R2

q �
≤ 0: ð30Þ

As in the previous section, we can impose stronger
constraints from (30) for specific assumptions about the
spatial curvature of the bubble. Assuming a bubble that is
either spatially flat or positively curved k− ≥ 0, the second
term of (30) is always positive; thus (30) requires that the
bubble spacetime be contracting

H− ≤ 0: ð31Þ
This implies that a flat or positively curved cosmic bubble
embedded inside of a Schwarzschild background must be
collapsing in order to satisfy the Raychaudhuri equation.
This is consistent with the k− ≥ 0 Oppenheimer-Snyder
solutions [3] for a ball of collapsing dust, some of the first
and most famous solutions of cosmological bubbles
embedded in a Schwarzschild spacetime background.
While the Oppenheimer-Snyder solution is specifically
for pressureless dust and zero surface tension, our result
(31) does not make any assumptions about the matter
content of the bubble or surface tension (as long as it
satisfies the NEC), thus generalizing the conditions under
which the bubble collapses.
One motivation for considering a background described

by a Schwarzschild spacetime was that it could serve as a
simple model of a backreacted thick wall between a
cosmological FLRW background and the bubble.
Because of this, we have assumed the thin wall approxi-
mation for the bubble wall. However, it can be the case that
the boundary between the Schwarzschild and bubble
spacetimes is also itself thick; we will therefore generalize
our results for a thick wall of size 2δ, as in Sec. II.
First, note that even in the presence of a thick wall, the

inner boundary of the wall R − δ must be smaller than the
apparent horizon of the bubble, for the same reasons as
described below (29), again indicating that the bubble size
may not be larger than its apparent horizon for any value of
the bubble spatial curvature. Constraints on the minimum
thickness of a subhorizon bubble wall can be obtained from
(22) by setting Hþ ¼ 0 and kþ ¼ 0 (since θS and θþ agree
in this limit). For a spatially flat bubble, the thickness of the
bubble wall must be larger than

δ > H−1
−

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2H2

−

q �
; ð32Þ

in order to satisfy the Raychaudhuri equation. For bubbles
much smaller than their apparent horizon size RH− ≪ 1,
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the required thickness δmin is small compared to the size of
the bubble δmin=R ¼ 1

2
H−R ≪ 1. However, for bubbles

that are comparable in size to their apparent horizon
H−R ∼ 1, the wall thickness is comparable to the size of
the bubble itself δ ∼ R, necessitating a different spacetime
structure for the entire bubble. Thus, even with a thick wall
with an unspecified metric, large expanding bubbles
embedded into Schwarzschild space are inconsistent with
the Raychaudhuri equation.

IV. DISCUSSION

The Raychaudhuri equation requires that the expansion
of radially inward null rays must be nonincreasing as long
as matter obeys the NEC, independent of the Einstein
equations. We have used this to study allowed spherically
symmetric embeddings of FLRW cosmological bubbles
into various background spacetimes.
We found that when the background is FLRW space, as

in the cases of a spontaneous phase transition or a
“detonation wave” bubble wall, with nonpositive spatial
curvature kþ ≤ 0 and the bubble has non-negative spatial
curvature k− ≥ 0, the Raychaudhuri equation constrains the
bubble’s Hubble expansion rate to be smaller than that of
the background’s H− < Hþ for any size bubble. (For other
combinations of the spatial curvature of the bubble and
background, see Table I.) This result has important impli-
cations for cosmological bubbles of this type. In particular,
it rules out embeddings of false vacuum bubbles into true
vacuum backgrounds (with vanishing local backreaction),
irrespective of the details of the matter content as long as
the matter obeys the NEC, extending a more limited earlier
result [25].
We also considered bubbles surrounded by empty

Schwarzschild space, which could serve as a model of a
vacuole embedded in a larger FLRW background. We
found that expanding bubbles must be smaller than their
own apparent horizon in order to satisfy the Raychaudhuri
equation, extending the result [31] that a vacuum domi-
nated bubble must start from an initial singularity. Further,
we show that a bubble of any size with flat or positive
spatial curvature cannot be expanding but rather must be
contracting, generalizing the collapsing behavior of the
Oppenheimer-Snyder dust ball solution [3] to any matter
content satisfying the NEC.
We also considered the relaxation of the infinitesimal

thin wall approximation for the bubble wall as a model for
including local gravitational backreaction of the bubble on
the background spacetime. Without specifying the metric
within the thick wall of the bubble, the Raychaudhuri
equation requires that the expansion of the null rays be
nonincreasing between the outer and inner boundaries of
the bubble wall. For a cosmological background, we
derived a lower bound on the required thickness of the
bubble wall to satisfy the Raychaudhuri equation, and we
showed that for a spatially flat background and bubble the

inner boundary of the bubble is smaller than the apparent
horizon of the bubble spacetime, so that again the bubble
may not be larger than its own apparent horizon. For a
Schwarzschild background the bubble must be much
smaller than its own apparent horizon or else the required
thickness of the wall is comparable to the size of the bubble
itself.
It is possible to avoid the constraints we have derived

here by embedding the cosmological bubble in such a way
that the bubble is casually disconnected from the back-
ground spacetime. In particular, an expanding cosmologi-
cal bubble tucked behind a wormhole will be casually
disconnected from radially ingoing null rays from the
background, as in Fig. 4. Solutions of this type have been
described previously in [4–6] for a de Sitter bubble and
Schwarzschild background, in [8] for some limited FLRW
spacetimes, in [11,13] for de Sitter bubble and background
spacetimes, and in [16,17] for false-vacuum and domain-
wall bubbles embedded in FLRW backgrounds. It is
important to note, however, that the conclusions of [31]
still apply, so that bubbles that are bigger than their
apparent horizons still must begin in an initial singularity,
even if they are tucked behind a wormhole.
Finally, it would be useful to see how robust these

arguments are to deviations from homogeneous spherical
symmetry in the bubble and the background (see [32] for a
discussion of an inhomogeneous background). We have
also been assuming that the matter content of the back-
ground, bubble interior, and bubble wall obeys the NEC; it
is possible to consider cosmological models based on
violations of the NEC, through quantum gravity effects
[33], NEC-violating matter fields (see e.g. [34,35] for some
commonmodels), or nonminimal coupling [36,37]. Wewill
leave a detailed study of bubbles with these effects for
future work.

FIG. 4. One way to evade the constraints on bubble embeddings
from the Raychaudhuri equation is for the bubble to become
disconnected from the background spacetime by the creation of a
wormhole, as shown in this Penrose diagram adapted from [16].
Radially ingoing null rays starting in the background either see
the bubble contracting or are casually disconnected from the
bubble, while the bubble continues to expand in a “baby
universe.”
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