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The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are
hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter.
We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe
to evolve across a quantum “bounce” into an expanding universe like ours. We compute the Feynman
propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the
case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of
the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact
solutions. We show how complex classical solutions allow one to circumvent the singularity while
maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a
critical boundary, beyond which there is qualitatively different behavior, with potential for instability.
Additional scalars improve the theory’s stability. Finally, we study the semiclassical propagation of
inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at
least at this level, there is no particle production across the bounce. These results form the basis for a
promising new approach to quantum cosmology and the resolution of the big bang singularity.
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I. INTRODUCTION

On the largest scales we can observe, our Universe has a
remarkably simple structure. It is homogeneous, isotropic,
and spatially flat to very high accuracy. Furthermore, the
primordial curvature fluctuations which seeded the for-
mation of structure apparently took an extremely minimal
form: a statistically homogeneous, Gaussian-distributed
pattern of very small-amplitude curvature perturbations,
with an almost perfectly scale-invariant power spectrum.
While inflationary models are capable of fitting the data, it
is nonetheless tempting to look for a simpler and more
fundamental explanation. The early Universe was domi-
nated by radiation, a form of matter without an intrinsic
scale. In fact, it is believed that any well-defined quantum
field theory must possess a UV fixed point, signifying
conformal invariance at high energies. These lines of
argument encourage us to investigate a minimal early
universe cosmology, namely a quantum universe filled
with conformally invariant matter [1]. We start by studying
the quantum propagation of homogeneous background
universes, uncovering a number of surprising features.
Then, we include inhomogeneous perturbations, treated
semiclassically and perturbatively at both linear and non-
linear order. We do not, in this paper, propose a realistic
scenario. Nor do we proceed far enough to study the effects
of renormalization and the running of couplings, although

these are no doubt important. Our focus is on the technical
calculation of the causal (Feynman) propagator in some
specific (and quasirealistic) cosmologies. We also postpone a
discussion of the important question of the interpretation of
the propagator and its use to compute probabilities to future
work. Nevertheless, we believe our findings are instructive
and form a useful starting point for such investigations.
The simplest example of conformal matter is a perfect

fluid of radiation. In the context of cosmology, this is
extremely well motivated since the early Universe was, we
believe, radiation dominated. Furthermore, if we add a
single scalar field then at least at a classical level, minimal
coupling is equivalent to conformal coupling under field
redefinitions. So this case too may be considered as an
example of conformal matter. It is then instructive to
extend the discussion to include an arbitrary number of
conformally and minimally coupled free scalar fields.
Since the matter Lagrangian of interest is, by assumption,

conformally (Weyl) invariant at a classical level, it makes
sense to “lift” general relativity (GR) to a larger theory
possessing the same symmetry. This is done by introducing
an extra scalar field which is locally a pure gauge degree of
freedom. The full theory is now classically Weyl invariant
and it may be viewed with advantage in various Weyl
gauges. Its solutions contain all solutions of GR but the
theory allows for extended and more general solutions that
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do not possess a global gauge fixing to GR. In particular, it
turns out that while classical cosmological (homogeneous
and isotropic) background solutions are typically singular
and geodesically incomplete in Einstein gauge (the Weyl
gauge in which the gravitational action takes Einstein-
Hilbert form, with a fixed Newton’s gravitational constant
G), they are regular and geodesically complete in a more
general class of Weyl gauges, where G is no longer constant
and can even change sign. In these gauges, generic cosmo-
logical background solutions pass smoothly through the
“big bang singularity” and into new regions of field space,
including “antigravity” regions where G is negative [2].
Strictly speaking, the lifted classical theory is still incomplete
because these highly symmetrical backgrounds are unstable
to perturbations in the collapsing phase, leading to diverging
anisotropies which cannot be removed via a Weyl gauge
choice. It was argued nevertheless that the classical theory
possesses a natural continuation across singularities of this
kind [3].
In this paper, following [1], we take a different tack.

We ask whether quantum effects might rescue the theory
from its breakdown at big bang-type singularities. First, we
show that for the simplest types of conformal matter, the
Feynman propagator for cosmological backgrounds may be
computed exactly, allowing us to explore many issues with
precision in this symmetry-reduced (minisuperspace) con-
text. Second, we extend the discussion to include anisot-
ropies, resolving the ordering problems in the quantum
(Wheeler-DeWitt) Hamiltonian by imposing covariance
under field redefinitions. We go further than the treatment
of [1] by defining the quantum theory along the real axis in
superspace, and discovering some remarkable features. For
a flat, isotropic universe, quantum effects indeed become
large near the singularity. Therefore, strictly speaking, one
should not attempt to employ the real classical theory there.
Instead, one can solve the quantum Wheeler-DeWitt-type
equation for the propagator in complexified superspace,
along a contour which avoids the singularity in taking one
from the incoming collapsing universe to the outgoing
expanding one. Provided the contour stays sufficiently far
from the singularity, the semiclassical approximation
remains valid all along it, so one can employ complex
solutions of the classical theory to follow the quantum
evolution across (or more accurately, around) the singu-
larity. In doing so, we find that while quantum effects are
large near the singularity, they take a very special form such
that they are “invisible” in the evolution between incoming
and outgoing states. In the final section of this paper, we
treat inhomogeneous perturbations, at linear and nonlinear
order, showing how they may be followed smoothly and
unambiguously across (or, more accurately, around) the big
bang singularity, in a similar manner.
The theory we consider consists of Einstein gravity plus

radiation and a number of free scalar fields. All of these
forms of matter satisfy the strong energy condition, and any

cosmological solution necessarily possesses a big bang
singularity. However, there is no singularity in the Feynman
propagator for closed, open and flat Friedmann-Robertson-
Walker (FRW) and for flat, anisotropic Bianchi I cosmol-
ogies; the propagator is well behaved across a bounce
representing a transition from a large, collapsing classical
universe to a large, expanding one. We also study inho-
mogeneous perturbations of the isotropic, radiation-
dominated universe, studying the propagation of scalar
and tensor perturbations across the bounce, at linear and
nonlinear order. We find that, in the semiclassical approxi-
mation at least and with strictly conformal matter, the
incoming vacuum state evolves into the outgoing vacuum
state, with no particle production. The bounce may be
viewed as an example of quantum-mechanical tunneling,
and we use complex classical solutions as saddle points to
the path integral, in a manner which generalizes the use of
instanton solutions to describe tunneling in more familiar
contexts. Some of these results were anticipated in Ref. [1];
here we present more details on their derivation, extend
them to further cases not discussed in Ref. [1], and provide
more mathematical and conceptual background. An alter-
nate interpretation of the antigravity regions, not employing
complex solutions, has been presented in Ref. [4].
The simplest example of a “perfect bounce” is provided

by a spatially flat, homogeneous and isotropic FRW
universe, filled with a perfect radiation fluid. Adopting
conformal time (denoted by η), i.e., choosing the line
element to be

ds2 ¼ a2ðηÞð−dη2 þ dx⃗2Þ; ð1Þ

one finds the scale factor aðηÞ ∝ η. One way to see this is
from the trace of the Einstein equations. For the line
element (1), R ¼ 6ðd2a=dη2Þ=a3 and for conformal matter,
the stress tensor is traceless. So the Einstein equations
imply aðηÞ ∝ η. If spatial curvature is included, it is
subdominant at small a so that a still vanishes linearly
with η. Hence aðηÞ ∝ η is a direct consequence of con-
formal invariance and cosmological symmetry. While the
line element (1) clearly contains a big bang/big crunch
singularity at η ¼ 0, it is regular everywhere else, not only
along the real η-axis but also in the entire complex η plane.
Any complex η trajectory that connects large negative and
large positive a while avoiding a ¼ 0 gives a regular,
complexified metric that asymptotes to a large, Lorentzian
universe in the past and the future, while circumventing the
big bang singularity.
Such complex solutions have been discussed in quantum

cosmology for a long time as saddle points of the path
integral, for instance in the no-boundary proposal of Hartle
and Hawking [5,6]. The crucial difference in our proposal is
that the complex solutions connect two large, Lorentzian
regions, identified with a collapsing incoming universe and
an expanding outgoing one. The Weyl-invariant lift of GR

STEFFEN GIELEN and NEIL TUROK PHYSICAL REVIEW D 95, 103510 (2017)

103510-2



provides a convenient simplification of the geometry on
superspace, cleanly exhibiting its Lorentzian nature and the
role of the scale factor a as a single timelike coordinate for
both “gravity” regions. This leads us to a novel formalism
for quantum cosmology in which, rather than restricting to
positive a and imposing boundary conditions at a ¼ 0, a is
extended to the entire real line. The Feynman propagator
turns out to have simple behavior at large negative and
positive a, describing a contracting and reexpanding uni-
verse, respectively, and connecting them through a quan-
tum bounce. The purpose of this paper is to flesh out the
details of this formalism, and show how it leads to a novel
form of singularity avoidance in the context of an extremely
simple (but not altogether unrealistic) cosmology.
Some of the features of our discussion are not new. The

possibility of solving minisuperspace quantum cosmology
models exactly by recasting their dynamics as those of a
relativistic free particle or harmonic oscillator was pointed
out before (see, e.g., Refs. [7]). However, the crucial new
feature in our work is the existence of regular solutions
(especially complex ones) that connect two large
Lorentzian universes through a quantum bounce. This
feature relies on having a positive energy density in
radiation, a possibility which, as far as we know, was
overlooked in previous work. In fact, our results suggest
that the fact that the early Universe was dominated by
radiation may be sufficient in itself for a semiclassical
quantum resolution of the big bang/big crunch singularity,
without the need for less well-motivated ingredients such as
exotic forms of matter [8], modified theories of gravity [9],
or a proposed theory of quantum gravity [10]. To avoid any
potential confusion, let us reemphasize that the theories we
consider consist of general relativity with a radiation fluid
and a number of free scalars, and nothing more: our use of
the Weyl lift of GR does not introduce any additional
degrees of freedom.
The plan of our paper is as follows. In Sec. II, we

introduce the Weyl lift of GR plus radiation and scalars,
and show how the degree of freedom corresponding to the
metric determinant can be isolated straightforwardly, lead-
ing us to aWeyl-invariant notion of a, the “scale factor.”We
then study homogeneous, isotropic FRW universes in
Sec. III, showing that in these cases, the Einstein-matter
action corresponds to that of a massive relativistic particle
moving in Minkowski spacetime, either freely or subject
to a quadratic, Lorentz-invariant potential. We discuss the
classical and quantum dynamics of FRW universes, using
the classical Hamiltonian analysis to define the Wheeler-
DeWitt quantum Hamiltonian. We discuss the Klein-
Gordon-type inner product proposed by DeWitt [11], but
take the point of view that the fundamental quantity of
interest is really the causal (Feynman) propagator, which is
naturally defined as a path integral over four-geometries
[12]. Accordingly, in Sec. IV we calculate the propagator
for various cases of interest. While the Feynman propagator

for FRW universes is actually regular at the singularity
a ¼ 0, its asymptotic behavior for large arguments displays
interesting pathologies both for closed and, in particular,
open universes, so that only flat FRW universes seem to
consistently admit a quantum bounce. In Sec. V, we extend
the treatment to anisotropic universes of Bianchi I type,
including for generality a number of free minimally
coupled scalar fields. We resolve the ordering problem
in the quantum Hamiltonian, and we are again able to
explicitly derive the Feynman propagator. A very special,
singular potential arises centered on a ¼ 0 which, in the
minisuperspace context, is harmless and actually invisible
in the scattering amplitude between incoming and outgoing
states. The coefficient of this singular potential turns out to
take a special value for the isotropic universe with zero or
one conformally coupled scalars, placing it on the edge of a
potential quantum instability, as we discuss. The addition
of further conformally coupled scalars moves the theory
away from this edge, however. This is an intriguing result
that deserves further attention, as it could be used to select
between isotropic and strongly anisotropic universes. In
Sec. VI, we add inhomogeneities, treated linearly and
nonlinearly in the semiclassical approximation where
one employs complex classical solutions to the classical
Einstein equations. We show how this is sufficient to
determine mixing between positive- and negative-
frequency modes, and hence to compute the particle
production across the “quantum bounce.” We find no
particle production, but instead verify that the perturbation
expansion breaks down at late times due to the formation of
shocks in the fluid, a phenomenon which is now physically
well understood [13]. Section VII concludes.

II. WEYL-INVARIANT COSMOLOGY

We start by studying the cosmology of a universe filled
with perfectly conformal radiation and a number M of
conformally coupled scalar fields, with gravitational
dynamics governed by a lift of GR to a classically
Weyl-invariant theory that contains an additional dilaton
field ϕ. We stress again that the field ϕ is locally pure
gauge, and possesses no nontrivial dynamics of its own.
This formalism for GR was developed in Ref. [2] and
works in any number of dimensions D > 2 (we set D ¼ 4
shortly). The total action we consider is

S ¼
Z

dDx

� ffiffiffiffiffiffi
−g

p �
1

2
ðð∂ϕÞ2 − ð∂χ⃗Þ2Þ − ρ

� jJjffiffiffiffiffiffi−gp
�

þ ðD − 2Þ
8ðD − 1Þ ðϕ

2 − χ⃗2ÞR
�
− Jμð∂μ ~φþ βA∂μα

AÞ
�
: ð2Þ

The independent dynamical variables are the spacetime
metric gμν (assumed to be Lorentzian throughout), the
“dilaton” ϕ, M physical scalar fields χ⃗ ¼ ð χ1;…; χMÞ, and
a densitized particle number flux Jμ characterizing the
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radiation fluid. The latter can be identified by Jμ ¼ffiffiffiffiffiffi−gp
nUμ, where n is the particle number density and

Uμ is the four-velocity vector field satisfying U2 ¼ −1; the
energy density ρ is only a function of n, concretely ρðnÞ ∝
n

D
D−1 for radiation which is the case we are interested

in. There is a Lagrange multiplier ~φ which enforces
particle number conservation ∂μJμ ¼ 0, and D − 1 further
Lagrange multipliers βA, with A ¼ 1;…; D − 1, enforcing
constraints Jμ∂μα

A ¼ 0 that restrict the fluid flow to be
directed along flow lines labeled by the fields αA which
play the role of Lagrangian coordinates for the fluid.
In general, the fluid energy density ρ would also depend

on the entropy per particle. For simplicity, we henceforth
assume an isentropic fluid for which this entropy per
particle is a constant. The fluid part of our action is then
the one given for isentropic fluids in Eq. (6.10) of Ref. [14],
where further details on the construction of actions of
relativistic fluids and their corresponding Hamiltonian
dynamics can be found.
The action (2) is invariant under a Weyl transformation

that takes

gμν → Ω2gμν; ðϕ; χ⃗Þ → Ωð2−DÞ=2ðϕ; χ⃗Þ; ð3Þ

where ΩðxÞ is an arbitrary function on spacetime. Such a
transformation also takes ρ → Ω−Dρ. Because of this local
conformal symmetry, the field ϕ does not correspond to a
physical degree of freedom; indeed, if ϕ2 − χ⃗2 > 0 every-
where, one can gauge fix the conformal symmetry to
recover the usual Einstein-Hilbert formulation of GR. It
is then clear that there is no physical ghost in the theory
even though ϕ appears in Eq. (2) with the wrong-sign
kinetic term.
Let us make this explicit. For ϕ2 − χ⃗2 > 0, one can go to

“Einstein gauge” by performing a conformal transforma-
tion (3) that takes

ϕ2 − χ⃗2 → constant ≕
D − 1

2ðD − 2ÞπG ð4Þ

where G is Newton’s constant. Note that Eq. (4) does not
entirely fix the gauge freedom as one can still perform a
global rescaling that takes the constant to a different one;
the exact value of Newton’s constant is arbitrary and
corresponds to a choice of units. Einstein gauge corre-
sponds to constraining the (M þ 1)-vector formed by ðϕ; χ⃗Þ
to a hyperboloid HM in (M þ 1)-dimensional field space at
each point in spacetime. One can introduce an explicit
parametrization of this hyperboloid by M coordinates νi,

ϕ ¼ ϕðν1;…; νMÞ; χi ¼ χiðν1;…; νMÞ; ð5Þ

so that in this gauge the action (2) reads

S ¼
Z

dDx

� ffiffiffiffiffiffi
−g

p �
−
1

2
GijðνÞ∂νi · ∂νj − ρ

� jJjffiffiffiffiffiffi−gp
�

þ 1

16πG
R

�
− Jμð∂μ ~φþ βA∂μα

AÞ
�
; ð6Þ

where GijðνÞ is a positive definite metric of constant
negative curvature on the gauge-fixed field space para-
metrized by the νi. Again, Eq. (6) shows that there are no
physical ghosts in the theory, at least as long as ϕ2 − χ⃗2 > 0.
There are two different sectors in the space of field

configurations where Einstein gauge is available, corre-
sponding to “future-directed” and “past-directed” (in field
space) configurations, i.e., to ϕ > 0 or ϕ < 0. There are
also regions where ϕ2 − χ⃗2 becomes negative, identified
with “antigravity” in Ref. [2] as they would appear to
correspond to a negative G. We identify such regions with
imaginary values of the scale factor and show how the
passage of the Universe through antigravity regions is a
semiclassical representation of what is really a quantum
bounce, similar to how quantum tunneling can be described
by complex classical trajectories. The antigravity regions
do contain a ghost, as now ðϕ; χ⃗Þ would be constrained to
de Sitter space dSM−1;1 which has a timelike direction.
These regions and their ghost excitations do not appear
in the physical “in” and “out” states of the theory, which
are defined in asymptotic timelike regions where
ϕ2 − χ⃗2 → ∞; nevertheless, the existence of these regions
can cause pathologies in the quantum theory if initial
gravity states can propagate into the antigravity regions, as
we see in Sec. IV B.
Setting D ¼ 4, to make this more precise it is now

useful to define a scale factor, or rather its square a2, with
the following properties: it should be Weyl invariant, so
that it takes the same value in any conformal gauge. It
should respect the OðM; 1Þ isometry of the metric on the
space of scalar fields (defined by the kinetic terms) and so
depend only on the combination ϕ2 − χ⃗2, the radiation
density ρ and the metric determinant g. It should have
physical dimensions of an area (in the usual conventions
ℏ ¼ c ¼ 1), and scale like the square of the scale factor for
an FRW universe in Einstein gauge in conformal time.
These properties fix the “squared scale factor,” up to an
overall constant, to be

a2 ≡ 1

2ρ
ð−gÞ−1

4ðϕ2 − χ⃗2Þ: ð7Þ

We use Eq. (7) as a natural definition in general gauges (the
motivation for the factor 1

2
becomes clear shortly). Note that

a2 is in general not positive; if we assume positive ρ and a
Lorentzian metric, as we always do in the following, then in
the antigravity regions a2 < 0 and so a is imaginary. This
definition of a differs from the one in Ref. [2] as it depends
on the energy density of the radiation. In Ref. [2], there was
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no such dependence. Instead, factors of Newton’s constant
were used to ensure the correct physical dimensions.
For a2 > 0, we fix the sign of a by choosing a time

orientation in field space: a is defined to have the same sign
as ϕ. The Minkowskian field space parametrized by ðϕ; χ⃗Þ
is then partitioned into two regions with real a and one
region with imaginary a; see Fig. 1. Note that the entire
light cone corresponds to a ¼ 0. This picture, as we have
anticipated, gives physical meaning to positive, negative
and imaginary a, generalizing the case of pure radiation,
M ¼ 0, where there are no spacelike directions and a takes
values along the real axis, as in the example discussed in the
introduction.
Apart from Einstein gauge, another gauge that we often

employ, again following the framework introduced in
Ref. [2], is “Weyl gauge” where the metric determinant
g is fixed to a constant (typically −1). This gauge is
available whenever the metric is nonsingular; in particular,
it covers the entire field space pictured in Fig. 1, encom-
passing both gravity and antigravity regions. It is often a
convenient gauge to work in. In Weyl gauge, the expression
for the scale factor reduces to a2 ¼ 1

2ρ ðϕ2 − χ⃗2Þ, where
for homogeneous models by energy-momentum conserva-
tion ρ is constant. a is then proportional to the (signed)
timelike OðM; 1Þ-invariant distance from the origin in field
space, making it a natural choice of time coordinate on
superspace.
For highly symmetric solutions such as FRW universes,

conformal symmetry can be used to eliminate curvature
singularities in the metric by moving them into 0’s of the
quantity ðϕ2 − χ⃗2Þ. Since this quantity has no geometric
interpretation, it is a priori reasonable for it to vanish or
change sign. However, following the dynamical evolution
through such points is in general problematic because the
effective Newton constant diverges so gravity becomes
strongly coupled. This is reflected, for example, in the
behavior of tensor (gravitational wave) perturbations,
which diverge as the effective Newton constant does.

This leads to a diverging Weyl curvature which cannot
be removed because it is conformally invariant.
Nevertheless, in the presence of scalar fields (such as
the electroweak Higgs boson) there is generically no
Mixmaster chaos and one expects the classical evolution
to become ultralocal and Kasner-like. There are a number
of asymptotically conserved classical quantities, including
the Kasner exponents, suggesting a natural matching rule
across the singularity [3] but the issue has not been
conclusively settled [15].
In this paper, we take a different approach. We show that

by extending the classical discussion to a quantum picture
one can avoid the critical surface a ¼ 0 where the theory
becomes problematic, independently of any Weyl gauge
choice. We give a description of nonsingular quantum
bounces in terms of analytic continuation in a, where the
Universe evolves from large negative a to large positive a
along a contour in the complex a-plane which avoids
a ¼ 0. We argue that as long as the quantum mechanics of
the a degree of freedom make sense, the classical singu-
larity at a ¼ 0 can be avoided without obstruction.

III. FRW BOUNCES

As a first step, we perform the familiar symmetry
reduction of our theory to homogeneous and isotropic
FRW universes, with the metric assumed to be of the form

ds2 ¼ A2ðtÞð−N2ðtÞdt2 þ hijdxidxjÞ ð8Þ

where hij is a fixed metric on hypersurfaces of constant t,
which has constant three-curvature Rð3Þ ¼ 6κ. Note our use
of a conformal lapse function N; the usual definition of the
lapse would be N0ðtÞ ¼ AðtÞ · NðtÞ. We can now set the
function AðtÞ to one by a conformal transformation, so that
the metric becomes nondynamical and all dynamics are
in the scalar fields ϕ and χ⃗. Also, with FRW symmetry
Jμ ¼ ffiffiffi

h
p

nδμ0, and the action (2) reduces to

S ¼ V0

Z
dt

�_χ⃗2 − _ϕ2

2N
þ N

�
κ

2
ðϕ2 − χ⃗2Þ − ρðnÞ

�
− ~φ _n

�
;

ð9Þ

where : denotes derivative with respect to t and V0 ¼R
d3x

ffiffiffi
h

p
is the comoving spatial volume (which, as

usual for minisuperspace models, must be assumed to be
finite). We have simplified the last term including the
Lagrange multipliers which would be −nð _~φþ βA _α

AÞ since
the equations of motion involving βA and αA are clearly
redundant in FRW symmetry. As before, ρðnÞ ∝ n4=3, and
we can replace n by ρ as the independent variable.
It is evident that Eq. (9) is the action for a

relativistic massive free particle (for κ ¼ 0) or a relativistic
massive particle in a harmonic potential or a harmonic

FIG. 1. Associating positive, negative and imaginary scale
factor a to different regions in field space. The light cone
corresponds to the singularity a ¼ 0.
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“upside-down” potential (for κ ≠ 0) moving in (M þ 1)-
dimensional Minkowski spacetime. To make this more
explicit, we can introduce new variables

xα ≔
1ffiffiffiffiffi
2ρ

p ðϕ; χ⃗Þ; α ¼ 0;…;M; m ≔ 2V0ρ; ð10Þ

so that Eq. (9) now takes the form

S ¼
Z

dt

�
m
2

�
1

N
_xα _xα − Nðκxαxα þ 1Þ

�
− φ _m

�
ð11Þ

where we have redefined the Lagrange multiplier for
simplicity, φ ≔ ~φV0ðdn=dmÞ, and the Minkowski metric
on the space of scalar fields ηαβ ¼ diagð−1; 1; 1;…Þ is used
to raise and lower indices. A crucial role is played by the
massm which corresponds to (twice) the total energy in the
radiation; the limit m → 0 would correspond to a massless
relativistic particle moving in a potential, which is the case
well known in minisuperspace quantum cosmology with
scalar fields [7]. Having a positive mass, and hence timelike
trajectories as classical solutions, is one of the essential
features of our model that leads to a bounce. With the
definition (10), the Weyl-invariant scale factor is simply
a2 ¼ −x2, which explains the factor 1

2
in Eq. (7). The

variable a is simply a time coordinate on superspace. One
can introduce it explicitly by setting

xα ¼ avα; v2 ¼ −1 ð12Þ

so that vα is restricted to a hyperboloid HM (see Fig. 2).
This parametrization, which isolates the physical scalar
fields as the variables vα, is useful below.
Starting from Eq. (11), the classical equations of

motion are

1

N
d
dt

�
m_xα

N

�
þmκxα ¼ 0; ð13Þ

1

N2
_xα _xα þ κxαxα ¼ −1; ð14Þ

_m ¼ 0; _φ ¼ −
1

2N
_xα _xα þ

N
2
ðκxαxα þ 1Þ: ð15Þ

The general solution to these equations is m ¼ constant,

xαðtÞ ¼ xα1ffiffiffi
κ

p exp

�
i

ffiffiffi
κ

p Z
t

0

dt0Nðt0Þ
�

þ xα2ffiffiffi
κ

p exp

�
−i

ffiffiffi
κ

p Z
t

0

dt0Nðt0Þ
�

ð16Þ

with x1 · x2 ¼ − 1
4
; the lapse function NðtÞ is arbitrary and

φðtÞ is determined from integrating Eq. (15). For κ ¼ 0, the
general solution is simply a general timelike straight line in
Minkowski spacetime,

xαðtÞ ¼ xα1

Z
t

0

dt0Nðt0Þ þ xα2 ð17Þ

with x21 ¼ −1. For κ ¼ 0, all solutions describe a bounce,
similar to the example in the introduction: the Universe
comes in from negative real infinite a, goes through a ¼ 0
followed in general by an “excursion” into imaginary a, and
crosses a ¼ 0 again before going off to real positive
infinity. When we go quantum, since the action is quadratic,
the saddle point approximation is exact and the quantum
dynamics is given purely in terms of these classical
solutions. When viewed as saddle points, these trajectories
can be deformed in the complex a-plane so that the
singularity a ¼ 0 is avoided. The situation is more subtle
for κ < 0, where there are spacelike as well as timelike
solutions, and for κ > 0 where there is a turnaround in the
classical solutions and the Universe must recollapse due to
the spatial curvature. In Sec. IV, we see how the more
complicated structure of solutions for κ ≠ 0 is reflected in a
pathological behavior of the Feynman propagator for large
arguments.

A. Canonical formalism

In order to pass to the Hamiltonian formalism,
following Dirac’s algorithm [16], one computes the canoni-
cal momenta for the action (11) and finds

pα¼
∂L
∂ _xα¼

m
N
_xα; pm≈−φ; pN≈0; pφ≈0: ð18Þ

While the first equation can be inverted to express the
velocities _xα in terms of the momenta pα, the last three
equations are primary constraints—we use Dirac’s notion
of “weak equality” ≈ for equations that hold on the
constraint surface. The second and fourth constraint would
be second class, meaning one has to introduce a Dirac
bracket and “solve” them. However, in this case, one can
use the shortcut of simply identifying −φ with the

FIG. 2. The points of constant (real) a form a hyperboloid
parametrized by vα.
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momentum conjugate to m and removing the separate
variable pφ. This is equivalent to saying that the term −φ _m
in Eq. (11) is part of the symplectic form pi _qi so that one
can read off pm ¼ −φ.
The Hamiltonian is then

H ¼ N

�
p2

2m
þm

2
ðκx2 þ 1Þ

�
þ ξpN: ð19Þ

Preservation of pN ≈ 0 under time evolution gives the
secondary, Hamiltonian constraint,

C ≔
p2

2m
þm

2
ðκx2 þ 1Þ ≈ 0: ð20Þ

N can then be treated as a Lagrange multiplier; it only
enters linearly in the Hamiltonian, and its time evolution
under H is _N ¼ fN;Hg ¼ ξ where ξ is undetermined.
Removing ðN; pNÞ from the phase space (and setting
ξ ¼ 0 in the Hamiltonian), we are left with the canonical
pairs ðxα; pαÞ and ðm;pmÞ, subject to the constraint C,
which trivially satisfies fC;Hg ¼ 0. C generates time
reparametrizations,

δNxα ¼ fxα; NCg ¼ Npα

m
; ð21Þ

δNpα ¼ −Nmκxα; ð22Þ

δNpm ¼ −N
�
−

p2

2m2
þ 1

2
ðκx2 þ 1Þ

�
; ð23Þ

which correspond to the Lagrangian notion of time repar-
ametrization, by the equations of motion (13)–(15).

B. Quantization

Having set up the canonical formalism, we can
proceed with quantization in the standard way. The
Hamiltonian constraint is imposed as an operator equa-
tion restricting the set of physical states. In the ðx;mÞ
representation for the wave function, this is the Wheeler-
DeWitt equation

1

2m
ð−□x þm2ðκx2 þ 1ÞÞΨðx;mÞ ¼ 0: ð24Þ

Different m sectors simply decouple, as a consequence of
conservation of the total energy in the radiation, with no
transitions between different m values allowed. An
alternative representation of wave functions is obtained
by separating the scale factor from the physical scalar
field degrees of freedom, as in Eq. (12), and introducing
a set of coordinates νi, i ¼ 1;…;M, on the hyperboloid
HM. The Wheeler-DeWitt equation then becomes

� ∂2

∂a2 þ
M
a

∂
∂a −

1

a2
ΔHM þm2ð1 − κa2Þ

�
Ψða; νi; mÞ ¼ 0

ð25Þ

where ΔHM is the Laplace-Beltrami operator on M-
dimensional hyperbolic space, i.e., on the space para-
metrized by the coordinates νi. For example, using
Beltrami coordinates νi ¼ xi=x0 one would have

ΔHM ¼ ð1 − ν⃗2Þ½ðδij − νiνjÞ∂i∂j − 2νi∂i�: ð26Þ

This coordinate choice on superspace makes the role of
the timelike coordinate a explicit. The Wheeler-DeWitt
equation can then be simplified by Fourier transforming
from the νi coordinates to their conserved momenta ζ,

� ∂2

∂a2þ
M
a

∂
∂a−

c
a2

þm2ð1−κa2Þ
�
Ψða;ζi;mÞ¼0 ð27Þ

with

c≡ −
1

4
ðM − 1Þ2 − ζ⃗2 ð28Þ

corresponding to the eigenvalues of the Laplacian on HM

(for M ≥ 1). As we see in Sec. V below, the same form
of the Wheeler-DeWitt equation applies when including
anisotropies in a Bianchi I model or additional minimally
coupled scalar fields, with the only change that the
constant c receives additional contributions from con-
served anisotropy and scalar field momenta as well as
from fixing ordering ambiguities.
A natural inner product on solutions of a second-order

equation like Eq. (25) is the Klein-Gordon-like norm

hΨjΦi≡ iaM
Z

dMνdm
ffiffiffiffiffiffiffiffi
gHM

p �
Ψ�ða; νi; mÞ ∂

∂aΦða; νi; mÞ

−
∂
∂aΨ

�ða; νi; mÞΦða; νi; mÞ
�
; ð29Þ

with gHM being a constant negative curvature metric onHM,
which is conserved under time evolution, i.e., independent
of a, for solutions of Eq. (25). This inner product was
introduced by DeWitt [11] and has the well-known problem
(if it is used to define probabilities) that it is only positive
on positive-frequency solutions to Eq. (25), when they
exist. For some simple cosmological models, this subspace
is well defined, and may be interpreted as the space of
expanding quantum universes: if a is taken to be positive,
a wave function describing an expanding universe must
be an eigenstate of pa ¼ −i∂a with negative eigenvalue
(note that pa ¼ −m _a=N and so _a > 0 means pa < 0), i.e.,
a positive-frequency solution. This notion of positive
frequency breaks down for cosmological models with
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recollapsing solutions, such as the FRW universe with
κ > 0, where it is only well defined until one reaches the
turning point, and it is known that a decomposition into
positive and negative frequencies of the type we are using
here is not available in general [17]. The question of how
to define meaningful probabilities in quantum cosmology
has, of course, been a matter of long debate (see, e.g.,
Refs. [5,18,19]).
We do not aim to resolve this debate here. The only use

we make of the DeWitt norm (29) is to help us construct
the Feynman propagator from mode function solutions of
the Wheeler-DeWitt equation. The expansion rate −pa
does play the role of an energy, which leads us to adopt
Feynman’s picture for quantum field theory in which
positive energy (i.e., expanding) states are propagated
forward in proper time. The natural two-point function
we consider below in Sec. IV is hence the Feynman
propagator. In what follows we alternate between the path
integral and the Feynman propagator as basic formulations
of quantum cosmology, explicitly showing their equiva-
lence in simple cases.
So far, this is a completely standard definition of a

minisuperspace model in Wheeler-DeWitt quantum cos-
mology. However, there is one crucial difference between
our approach and previous treatments, in that we do not
restrict the wave function to positive a, nor do we impose
any boundary condition at a ¼ 0 [such as the popular
choice Ψða ¼ 0Þ ¼ 0]. At fixed m, the domain of the wave
function is simply RM;1. Any boundary condition at a ¼ 0
would seem artificial from the viewpoint of classical
solutions such as classical FRW “bounces” which connect
negative and positive a, as we have described, and is also
generally inconsistent with the wave function describing an
expanding Universe, i.e., a positive-frequency solution. In
our proposal, the natural choice of wave functions corre-
sponds to positive-frequency solutions that asymptote to
plane waves at large jaj, where the Universe becomes
semiclassical, while we allow for irregular behavior in the
wave function at a ¼ 0. The examples we consider all
admit a semiclassical Wentzel-Kramers-Brillouin (WKB)
expansion in which one can deform the contour from the
real a-axis into complex a, avoiding a ¼ 0 entirely.

IV. FEYNMAN PROPAGATOR
FOR FRW UNIVERSES

The Feynman propagator is one of the most basic
ingredients in relativistic quantum theory. In quantum
gravity, it plays the role of a causal Green’s function for
the Wheeler-DeWitt equation, arising from a path integral
in which one integrates only over positive values of the
lapse function [12]. If one considers amplitudes in which a
changes sign, as we do, then the Feynman propagator takes
one from a contracting universe in the initial state to an
expanding one in the final state, via a singularity of the big
bang type. Such an amplitude provides a natural way to

describe the “emergence” of spacetime from quantum-
mechanical first principles [20].
In this section, we show how to calculate the Feynman

propagator for FRW universes directly from the path
integral; in particular, the path integral may be used to
define the propagator without the need for an additional
“iϵ” prescription and, furthermore, the propagator directly
defines the positive- and negative-frequency vacuum
modes. As we have stressed, with FRW symmetry the
action is quadratic and the saddle-point approximation is
therefore exact for the path integration over the phase-space
variables. However, we also have a constraint (the
Friedmann equation) which must be imposed via an addi-
tional integration over the lapse function or Lagrange
multiplier N [21]. This integral is no longer Gaussian
and has to be considered with more care. Things are
considerably simpler for the flat FRW case κ ¼ 0, where
we have seen that the dynamics are just those of a massive
relativistic free particle in Minkowski spacetime. We
therefore begin by reviewing how the Feynman propagator
for a relativistic particle is calculated both from a path
integral and as a Green’s function for the differential
equation satisfied by physical wave functions. We then
extend these methods to treat general FRWuniverses for the
types of matter we consider.

A. Relativistic particle

Consider the action for a relativistic massive particle in
(M þ 1)-dimensional Minkowski spacetime,

S ¼ m
2

Z
dt

�
_xα _xβηαβ

N
− N

�
; ð30Þ

where m > 0, xαðtÞ is the parametrized particle world line
and NðtÞ is the “einbein.” Classically, N may be eliminated
using its equation of motion, obtaining the manifestly
reparametrization-invariant action S ¼ −m

R
dt

ffiffiffiffiffiffiffiffi
−_x2

p
.

Quantum mechanically, it is more convenient to fix the
reparametrization invariance [see also the discussion of
gauge fixing below Eq. (40)]: one can work in a gauge
in which t varies over a fixed range, conveniently taken to
be − 1

2
< t < 1

2
, and N is a t-independent constant, equal to

the total, reparametrization-invariant time
R
dtN which we

call τ. The Feynman propagator is then given by the path
integral

Gðxjx0Þ ¼
Z

dτDx exp

�
i
m
2

Z
1
2

−1
2

dt

�
_x2

τ
− τ

��

¼ i
Z

∞

0

dτ

�
m
2πiτ

�Mþ1
2

e−i
m
2
ðστþτÞ; ð31Þ

where σ ≡ −ðx − x0Þ2 and τ should be integrated over
positive values. Evaluating the Gaussian path integrals is
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straightforward, with the only unusual factor being the
prefactor of i in the second line, which arises from the
functional integral over x0, which has the “wrong sign”
kinetic term so that the overall phase factor contributed is
eþiπ=4 rather than the usual e−iπ=4.
The second line of Eq. (31) is, of course, just the familiar

Schwinger representation of the Feynman propagator, in
which the exponent is the classical action evaluated on a
solution of the equations of motion ẍ ¼ 0, satisfying the
correct boundary conditions, i.e., xðtÞ¼xðtþ 1

2
Þþx0ð1

2
− tÞ,

and the prefactor is given by the usual (regularized)
functional determinant. Note that this solution is only
the saddle point for the functional integral over paths
xðtÞ, at fixed τ. The constraint _x2 ¼ −τ2 arises sub-
sequently, as the condition for a saddle point in the
exponent of the τ integral. In fact, once the saddle point
is chosen, the integration contour is then fixed (up to an
equivalence class of contours yielding the same result) as
the complete extension of the corresponding steepest
descent contour. Integrating over negative proper time in
Eq. (31) would reverse the notion of time ordering, whereas
integrating over both positive and negative τ would lead to
a symmetrized two-point function in which one sums over
both time orderings, i.e., the Hadamard propagator.
For M > 0, the τ integral in Eq. (31) has a potential

divergence at τ ¼ 0. In fact, the integral converges at all
real values of σ except σ ¼ 0. That divergence is real: the
Feynman propagator is singular for null-separated points.
For other real values of σ, given that the integral converges
for all σ in the lower-half σ plane, one may define the
Feynman propagator as the boundary value of the function
defined by the integral, which is analytic in the lower-half σ
plane. Traditionally, the mass m is also taken to have a
small negative imaginary part, in order to make the τ
integral absolutely convergent at large positive values
(Feynman’s “iϵ” prescription). Equivalently, one may
distort the τ-contour to run to infinite values below the
real axis. The integral (31) may be directly expressed in
terms of a Hankel function, whose properties confirm these
general arguments (see the appendix).
It is instructive, however, to evaluate the τ integral in

Eq. (31) in the saddle-point approximation. First, consider
timelike separations, σ ¼ T2 > 0. The exponent in the τ
integral (31) is stationary at τ ¼ þT and τ ¼ −T, but only
the former saddle point is relevant to the contour we want,
which is deformable into the positive τ-axis. The saddle
point at τ ¼ þT gives rise to a positive-frequency result,
G ∼ e−imT at large T. The integration contour for τ may
then be taken to be the corresponding steepest descent
contour, shown as the solid line in Fig. 3. Now consider
analytically continuing T through the lower right quadrant
to the negative imaginary axis, T → −iR. It follows that G
converges as G ∼ e−mR at large R. Correspondingly, this
continuation implies that σ ¼ T2 runs below the origin in
the complex σ plane to negative values. The corresponding

saddle point for the τ integral moves as shown in
Fig. 3, passing below the origin in the complex τ plane
and down the imaginary τ-axis. At spacelike separations,
σ ¼ −R2 < 0, the saddle point is at τ ¼ −iR, and the
propagator falls exponentially with spacelike separation.
Notice that although the classical constraint _x2 ¼ −τ2
remains satisfied at the saddle point, the saddle-point
value for τ is imaginary, and hence classically disallowed.
Hence, the propagation of a massive relativistic particle in
spacelike directions may be viewed as a semiclassical
quantum tunneling process, mediated by a complex
classical solution.
In order to match the path-integral definition of the

Feynman propagator to its definition as a Green’s function,
it is convenient to use a time slicing with maximal spatial
symmetry. Here, the trivial time slicing defined by x0 is
spatially homogeneous, so one can Fourier transform in the
spatial coordinates and reduce the problem to a single
timelike dimension. Defining

Gðxjx0Þ ¼
Z

dMk⃗
ð2πÞM eik⃗·ðx⃗−x⃗0ÞGkðx0; x00Þ; ð32Þ

one finds that Gkðx0; x00Þ is given by

Gkðx0; x00Þ ¼ i
Z

∞

0

dτ

ffiffiffiffiffiffiffiffiffi
m
2πiτ

r
e
−im

2

	
ðx0−x00Þ2

τ þω2
k

m2τ



ð33Þ

where ωk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
.

By considering the saddle-point approximation to
Eq. (33), we see that the Fourier-transformed Feynman
propagator asymptotically satisfies

T

-iR

τ

FIG. 3. Integration contours in the complex τ plane, for
the relativistic massive propagator, defined in Eq. (31). As σ ≡
−ðx − x0Þ2 is varied, from timelike values σ ¼ T2 with T real, to
spacelike values σ ¼ −R2, with R real, by passing beneath the
origin in the complex σ plane, the saddle point in τ, shown by the
black point, moves correspondingly. In each case, the integral is
defined by the associated steepest descent contour running from 0
to ∞, also shown.
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Gkðx0; x00Þ ∼ e−iωkx0 ; x0 → þ∞; x00 fixed; ð34Þ

Gkðx0; x00Þ ∼ eþiωkx00 ; x00 → −∞; x0 fixed: ð35Þ

Such asymptotic expressions can be used to fix boundary
conditions for the corresponding wave (Wheeler-DeWitt)
equation, as we do shortly.
Formally, Gðxjx0Þ is the matrix element

hxj R∞
0 dτe−iHτjx0i ¼ −ihxjH−1jx0i, where we again

assume the integral converges at infinite τ. Hence,
suitably defined, Gðxjx0Þ should obey

HxGðxjx0Þ ¼ −iδMþ1ðx − x0Þ; ð36Þ

where Hx is the Hamiltonian in the x-representation,
Hx ¼ 1

2m ð−□x þm2Þ. We can check Eq. (36) is indeed
satisfied by applying Hx to the last line of Eq. (31) and
using the fact that the integrand is a product of free-
particle quantum -mechanical propagators,

1

2m
ð−□x þm2ÞGðxjx0Þ

¼ i
Z

∞

0

dτi
d
dτ

��
m
2πiτ

�Mþ1
2

e
im
2
ððx−x0Þ2τ −τÞ

�

¼ lim
τ→0

�
m
2πiτ

�Mþ1
2

e
im
2
ððx−x0Þ2τ Þ; ð37Þ

where the limit should be taken along the appropriate
contour in the complex τ plane. The last line of Eq. (37)
is a representation of the (M þ 1)-dimensional delta
function: separating it into a product of similar terms
for each coordinate xα, we determine the coefficient of
the corresponding delta function by Fourier transforming
with respect to xα, and then taking the limit τ → 0. For
the timelike coordinate we obtain −iδðx0 − x00Þ, whereas
for the spacelike coordinates we obtain δMðx⃗ − x⃗0Þ.
Together, these results verify Eq. (36).
The point is now that the Feynman propagator can also

be computed by directly solving Eq. (36) in terms of mode
functions, again because the Fourier transform allows
reduction of the problem to one dimension. Writing both
the delta function and the propagator in Eq. (36) as Fourier
transforms, one sees that Gðxjx0Þ clearly satisfies Eq. (36)
as long as

ð∂2
0 þ ω2

kÞGkðx0; x00Þ ¼ −2imδðx0 − x00Þ: ð38Þ

This equation is solved by

Gkðx0; x00Þ ¼ −
2im

Wðψk
1;ψ

k
2Þ
ðψk

1ðx00Þψk
2ðx0Þθðx0 − x00Þ

þ ψk
1ðx0Þψk

2ðx00Þθðx00 − x0ÞÞ; ð39Þ

where ψk
1 and ψk

2 are two independent solutions to the
homogeneous equation ð∂2

0 þ ω2
kÞψ ¼ 0, andWðψ1;ψ2Þ ¼

ψ1ψ
0
2 − ψ2ψ

0
1 is the natural conserved (i.e., x0-

independent) inner product, or Wronskian. The dependence
of the Feynman propagator at large positive and negative
times now determines the appropriate choices for ψk

1ðx0Þ
and ψk

2ðx0Þ: comparing Eqs. (34) and (35) with Eq. (39) we
infer that, up to irrelevant constants, ψk

1 ¼ eþiωkx0 and
ψk
2 ¼ e−iωkx0 . Inserted into Eqs. (32) and (39), these give

the usual expression for the Feynman propagator in “time-
ordered” form. This shows how, in the example of the
relativistic particle, the correct boundary conditions that
define the Feynman propagator as one particular solution of
Eq. (36) can be obtained from the asymptotic behavior of
its path-integral definition. We now proceed similarly to
define the Feynman propagator for general FRW universes.

B. FRW universes

For our cosmological model, the Feynman propagator
can be defined through a phase-space path integral, taking
into account the integration over the lapse N [21],

Gðx;mjx0; m0Þ ¼
Z

DxαDPαDmDpmDN

× exp

�
i
Z

1=2

−1=2
dt

�
_xαPα þ _mpm

− N

�
PαPα

2m
þm

2
ðκxαxα þ 1Þ

���
: ð40Þ

As in the previous example, due to the reparametrization
invariance of the theory the parameter time (specified by t)
between the initial and final configurations is arbitrary, and
we choose it to run from− 1

2
to 1

2
. In order for the path integral

to be well defined, the gauge invariance under time repar-
ametrizations generated by the Hamiltonian constraint must
be broken by fixing a specific gauge. One simple gauge
fixing, _N ¼ 0, can be obtained by introducing a new field Π
and adding the term Π _N to the action; we refer to Ref. [22]
for details. Integrating over the field Π then reduces the
integration over N to an ordinary integral over the total
conformal time between the initial and final configurations;
we make this explicit by again writing N as τ.
The remaining path integrals may be computed exactly.

Path integration over m and pm simply gives a delta
function in m, as expected since m has trivial dynamics
constraining it to be constant. One can then integrate over
Pα which yields

Gðx;mjx0;m0Þ

¼ δðm−m0Þ
Z

dτDx exp

�
i
m
2

Z
dt

�
_x2

τ
− τð1þ κx2Þ

��

ð41Þ
corresponding to M þ 1 decoupled harmonic oscillators.
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For κ ¼ 0, apart from the overall delta function, this is
exactly the expression Eq. (31). Accordingly, the path
integral over x is just that of a free relativistic particle and
the τ integral can be evaluated exactly; the result is

G0ðx;mjx0; m0Þ ¼ 1

2
δðm −m0Þð−imÞMð2πsÞ1−M2 Hð2Þ

M−1
2

ðsÞ;
ð42Þ

with s≡m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðx − x0Þ2 − iϵ

p
, where Hð2Þ

α ðxÞ is a Hankel
function of the second kind (see the appendix). The −iϵ
in its argument indicates that the expression is the boundary
value of a function which is analytic in the lower half −
ðx − x0Þ2 plane. As we have emphasized, we have derived
this definition from the path integral, and the requirement
that the integral over proper time τ converges.
In order to understand the more involved case of spatial

curvature κ ≠ 0, it is again helpful to recall how Eq. (42)
can be obtained from theWronksian method; for simplicity,
let us set M ¼ 0 and label x0 ≡ a which is our scale factor.
Then the Feynman propagator is a solution to

�
1

2m
d2

da2
þm

2

�
G0ða;mja0; m0Þ ¼ −iδðm −m0Þδða − a0Þ

ð43Þ

and can be written in the form

G0ða;mja0; m0Þ ¼ −2imδðm −m0Þ
�
ψ1ða0Þψ2ðaÞ
Wðψ1;ψ2Þ

θða − a0Þ

þ ψ1ðaÞψ2ða0Þ
Wðψ1;ψ2Þ

θða0 − aÞ
�

ð44Þ

where Wðψ1;ψ2Þ ¼ ψ1ðaÞψ 0
2ðaÞ − ψ 0

1ðaÞψ2ðaÞ is again
the (a-independent) Wronskian and ψ1ðaÞ and ψ2ðaÞ are
two appropriate independent solutions to the homogeneous
equation ð 1

2m
d2

da2 þ m
2
ÞψðaÞ ¼ 0, found by matching Eq. (44)

with the asymptotic behavior of Eq. (31) at infinity, with
σ ¼ ða − a0Þ2 (and there are no spacelike directions to be
considered). As explained below Eq. (33), (31) asymptotes
to e−ima for large positive a at fixed a0, and to eima0 for large
negative a0 at fixed a; this fixes the modes in (44) as
ψ1ðaÞ ¼ eima and ψ2ðaÞ ¼ e−ima (up to a normalization
that is irrelevant for G0). Thus, one finds

G0ða;mja0; m0Þ ¼ δðm −m0Þe−imja−a0j; ð45Þ

in agreement with Eq. (42) for M ¼ 0.
With this in mind, we can now go beyond the simplest

flat case, and consider κ ≠ 0, where the dynamics of the
Universe corresponds to those of a relativistic oscillator or
upside-down oscillator. The path integral over x in Eq. (41)

is easily calculated: the classical path which fixes the
exponent generalizes to

xðtÞ ¼ x sin ð ffiffiffi
κ

p
τðtþ 1

2
ÞÞ þ x0 sin ð ffiffiffi

κ
p

τð1
2
− tÞÞ

sinð ffiffiffi
κ

p
τÞ ; ð46Þ

which is unique for all x, x0 and τ [where we exclude special
cases for which sinð ffiffiffi

κ
p

τÞ ¼ 0], and the prefactor is given
by the usual regularized functional determinant for the
harmonic oscillator, so that

Gðx;mjx0; m0Þ

¼ iδðm −m0Þ
Z

∞

0

dτ

�
m

ffiffiffi
κ

p
2iπ sinð ffiffiffi

κ
p

τÞ
�Mþ1

2

× exp

�
i
m
2

� ffiffiffi
κ

p ðx2 þ x02Þ cosð ffiffiffi
κ

p
τÞ − 2x · x0

sinð ffiffiffi
κ

p
τÞ − τ

��
:

ð47Þ

The overall factor of i arises just as it did for the free
relativistic particle, discussed in the previous subsection.
As there, we are left with an ordinary integral over τ, and
need to establish the appropriate integration contour.
The resulting integral in Eq. (47) is difficult to do directly
but we can use its behavior at large positive a and large
negative a0 to fix the mode functions ψ1 and ψ2 appearing
in the Wronskian representation. As a consistency check,
we compare the resulting Green’s function to a numerical
evaluation of the τ integral in Eq. (47) along a suitable
contour, finding perfect agreement in all cases. In this
numerical evaluation, we choose x ¼ ðT; 0⃗Þ and x0 ¼
ð−T; 0⃗Þ, so that any classical real solution has to pass
through the singularity a ¼ 0 at least once, which is the
situation of main relevance for our study. For ease of
comparison, we plot the flat case κ ¼ 0, with M ¼ 0, i.e.,
G ¼ e−2imT , with m ¼ 7, in Fig. 4 [here and in the
following we are of course plotting the function multiply-
ing the singular part δðm −m0Þ].
Consider the saddle points in the τ integral for the

curved-space propagator, and the associated steepest
descent contour. The condition for the exponent to be
stationary with respect to τ is precisely the Hamiltonian
constraint (Friedmann equation) τ−2 _x2 þ ð1þ κx2Þ ¼ 0,
with xðtÞ given by Eq. (46). Real saddle points of the full
functional integral, when they exist, are real solutions of the
classical equations of motion, including the constraints.
Given such saddle points, one defines the associated τ
integration cycle as the complete extension of the steepest
descent contour. If this cycle can be deformed to the real τ-
axis while maintaining the convergence of the integral, then
the saddle point contribution is relevant to the final result.
We start with the case of negative κ, where, just as in the

flat case, there is always a unique classical solution: for
timelike separated x and x0, the saddle point in τ is located
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on the real axis, and the steepest descent contour is the solid
curve in Fig. 5. The singular behavior of the integrand at
τ ¼ 0 [cf. Eq. (37)] then ensures, just as in the argument
leading to Eq. (37), that Eq. (47) is a Green’s function for
the Wheeler-DeWitt equation,

�
−

□

2m
þm

2
ðκx2 þ 1Þ

�
G ¼ −iδðm −m0ÞδMþ1ðx − x0Þ:

ð48Þ

Once more we set M ¼ 0 for simplicity, and obtain the
Green’s function from the Wronskian method, with the
modes determined from their behavior at large argument.
The Wheeler-DeWitt equation, at fixed m, is

�
d2

da2
þm2ð1 − κa2Þ

�
ψðaÞ ¼ 0; ð49Þ

and is solved by parabolic cylinder functions [23], denoted
by DνðzÞ. In order to find the modes that generalize the
plane waves e�ima used in the κ ¼ 0 case, we can again
study the asymptotic limits of Eq. (47) using the saddle-
point approximation, finding that we must have (with
κ < 0)

ψ3ðaÞ ∼ jaj−1
2e−i

m
2

ffiffiffiffi
−κ

p
a2 ; a → −∞;

ψ4ðaÞ ∼ jaj−1
2e−i

m
2

ffiffiffiffi
−κ

p
a2 ; a → þ∞; ð50Þ

for the mode functions ψ3 and ψ4 appearing in the analog
of Eq. (44). This asymptotic behavior is also consistent
with the requirement that, as Eq. (47) is invariant under
x → −x and x0 → −x0, ψ3 and ψ4 must satisfy

ψ3ð−aÞ ¼ ψ4ðaÞ: ð51Þ

Two independent solutions to Eq. (49) are given by

ψðaÞ ¼ Di m
2
ffiffiffi
−κ

p −1
2
ðð1 − iÞ ffiffiffiffi

m
p ð−κÞ1=4aÞ ð52Þ

and its complex conjugate, which asymptotically become
pure negative and positive frequency modes as a → ∞ but
are a mixture as a → −∞. We therefore set

ψ4ðaÞ ¼ D−i m
2
ffiffiffi
−κ

p −1
2
ðð1þ iÞ ffiffiffiffi

m
p ð−κÞ1=4aÞ ð53Þ

and ψ3ðaÞ ¼ ψ4ð−aÞ. By computing their Wronskian we
obtain the Green’s function

Gða;mja0; m0Þ ¼
ffiffiffiffiffiffi
im

p
ffiffiffi
π

p ð−κÞ1=4 Γ
�
1

2
þ im
2

ffiffiffiffiffiffi
−κ

p
�
δðm −m0Þ

× ðψ3ða0Þψ4ðaÞθða − a0Þ þ ða ↔ a0ÞÞ:
ð54Þ

As we have said, this result can also be obtained from
numerical evaluation of Eq. (47). Again we choose x ¼
ðT; 0⃗Þ and x0 ¼ ð−T; 0⃗Þ and also fix κ ¼ −1, M ¼ 0 and
m ¼ 7. The resulting function of T is plotted in Fig. 6.
Notice that the resulting propagator resembles the flat-
space (κ ¼ 0) expression for small T, and the effects of
spatial curvature become relevant only at scales jxj ∼ 1ffiffiffiffi

jκj
p .

For positive κ, the behavior is rather different from κ ≤ 0
in that for positive κ the real, classical solutions are periodic
in τ; for given x and x0, when one classical solution exists
there will be an infinite number, and in general they should
all contribute to the propagator. Again for consistency with
the κ → 0 limit, we can choose the τ integration contour
such that it only picks out the simplest saddle point, where
the classical solution interpolating between x and x0 has no
turning points. The corresponding saddle point and steepest
descent contour, indicated by the dashed curve in Fig. 5,
goes over to the unique κ ¼ 0 saddle point and steepest
descent contour in Fig. 3 in the flat limit κ → 0.
Another issue is that for large timelike x and x0 there is

no real classical solution at all; for large timelike argu-
ments, the saddle point for τ becomes imaginary and, as
explained above, we choose the one on the negative
imaginary axis. By the same saddle-point approximation

FIG. 5. Integration contours in the complex τ plane for κ ≤ 0
(solid line) and for κ > 0 (dashed line), for the case where
x ¼ ðT; 0⃗Þ and x0 ¼ ð−T; 0⃗Þ.

0.2 0.4 0.6 0.8 1.0 1.2

1.0

0.5

0.5

1.0

FIG. 4. Feynman propagator for flat universes as a function of
T, for m ¼ 7, showing real part (blue), imaginary part (dashed)
and absolute value (black) which is constant here.
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as above, one then determines the asymptotic behavior of
the relevant mode functions ψ5 and ψ6,

ψ5ðaÞ ∼ jaj− m
2
ffiffi
κ

p −1
2eþm

2

ffiffi
κ

p
a2 ; a → −∞; ð55Þ

ψ6ðaÞ ∼ jaj− m
2
ffiffi
κ

p −1
2eþm

2

ffiffi
κ

p
a2 ; a → þ∞; ð56Þ

again consistent with ψ5ðaÞ ¼ ψ6ð−aÞ. These results, as
well as the form of the propagator, can in fact be obtained
by replacing

ffiffiffiffiffiffi
−κ

p
→ iκ in the expressions for the open

case. [The factor jaj−m=ð2 ffiffi
κ

p Þ was dropped in the expres-
sions above since it was a subleading oscillatory factor
jaj−im=ð2 ffiffiffiffi

−κ
p Þ.]

It is straightforward to obtain a complete analytic
expression for the κ > 0 propagator from parabolic cylinder
functions by solving the homogeneous equation (49). Two
independent solutions with κ > 0 are

ψ5ðaÞ ¼ D− m
2
ffiffi
κ

p −1
2
ð−i

ffiffiffiffiffiffiffi
2m

p
κ1=4aÞ;

ψ6ðaÞ ¼ D− m
2
ffiffi
κ

p −1
2
ði

ffiffiffiffiffiffiffi
2m

p
κ1=4aÞ: ð57Þ

These are again complex conjugates of each other, and here
also already satisfy ψ5ðaÞ ¼ ψ6ð−aÞ, unlike for the open
case κ < 0. On the other hand, they are not asymptotic
positive or negative frequency modes, but blow up expo-
nentially both at positive and at negative infinity. At small
a, up to corrections that vanish as κ → 0 they reduce to
plane waves e�ima. From Eq. (57), the Wronskian method
gives the Green’s function

Gða;mja0; m0Þ ¼
ffiffiffiffi
m

p
ffiffiffi
π

p
κ1=4

Γ
�
1

2
þ m
2

ffiffiffi
κ

p
�
δðm −m0Þ

× ðψ5ða0Þψ6ðaÞθða − a0Þ þ ða ↔ a0ÞÞ:
ð58Þ

As before, we have verified that this expression agrees with
the result of a numerical integration of the τ integral along

the chosen contour. With x ¼ ðT; 0⃗Þ, x0 ¼ ð−T; 0⃗Þ, as well
as κ ¼ 1, M ¼ 0 and m ¼ 7, the resulting function of T is
plotted in Fig. 7. Again, it reduces to the κ ¼ 0 expression
e−2imT for small T.
The integration contour in Fig. 5 is chosen in such a way

that its main contribution, for small enough T, comes from
the lowest positive real saddle point in τ, corresponding to
the real classical solution that takes the smallest amount of
proper time. As the arguments of the Feynman propagator
approach x ¼ ð1= ffiffiffi

κ
p

; 0⃗Þ and x0 ¼ ð−1= ffiffiffi
κ

p
; 0⃗Þ, this saddle

point moves towards τ ¼ πffiffi
κ

p where it eventually merges

with another saddle point approaching τ ¼ πffiffi
κ

p from above,

corresponding to two classical solutions that become
indistinguishable in this limit. Our choice of integration
contour then becomes ambiguous and is no longer defined
by consistency with the κ → 0 limit. As we extend the
arguments to jTj > 1, where there is no longer a real
solution, these two saddle points separate again and start
moving up and down in the imaginary direction. This is
akin to the situation for spacelike separations for the
relativistic particle, and means that our saddle point needs
to be replaced by a saddle point on the line πffiffi

κ
p − iR parallel

to the negative imaginary τ-axis. For the purposes of this
paper, we are mainly interested in studying the propagator
with arguments for which there is a classical solution, so
that a semiclassical picture of the propagator as given by
these solutions is meaningful.
The exponential blowup of the Feynman propagator for

large T follows from the asymptotic behavior of the integral
(47) for large timelike x and x0. The corresponding mode
functions increase exponentially for jTj > 1 when there are
no classical solutions, as can be verified explicitly from the
asymptotics of the parabolic cylinder functions (57). The
Feynman propagator is hence pathological for large time-
like separations, and does not define a suitable two-point
function on the entire superspace, because positive curva-
ture forces classical solutions to recollapse. An asymptotic
description in terms of well-defined states that can be used

0.2 0.4 0.6 0.8 1.0 1.2

1

0
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4

FIG. 7. Feynman propagator for closed universes as a function
of T, for m ¼ 7 and κ ¼ 1, showing real part (blue), imaginary
part (dashed) and absolute value (black). As discussed in the text,
for T ≥ 1 the semiclassical interpretation fails.
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FIG. 6. Feynman propagator for open universes as a function of
T, for m ¼ 7 and κ ¼ −1, showing real part (blue), imaginary
part (dashed) and absolute value (black).
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to formulate a quantum theory of expanding universes does
not exist for positive spatial curvature, and this case does
not consistently describe the type of quantum bounce we
are interested in. Of course, this situation could be altered
by the inclusion of a positive cosmological constant, as we
mention later.
For κ < 0, classical solutions with pure radiation are well

behaved, expanding to infinite volume in the future and
past and leading to a well-behaved Feynman propagator,
Eq. (50). However, as we mentioned in Sec. III, when
conformally coupled scalars are introduced (M ≥ 1), the
general solution

xαðtÞ ¼ xα1ffiffiffiffiffiffi
−κ

p exp

� ffiffiffiffiffiffi
−κ

p Z
t

0

dt0Nðt0Þ
�

þ xα2ffiffiffiffiffiffi
−κ

p exp

�
−

ffiffiffiffiffiffi
−κ

p Z
t

0

dt0Nðt0Þ
�
; ð59Þ

with x1 · x2 ¼ 1
4
, has both spacelike antigravity and timelike

gravity solutions: choosing spacelike x1 and x2 that satisfy
the constraint, one finds a universe that comes in from one
antigravity direction, turns around before entering gravity
and then disappears into a different (or the same) anti-
gravity direction. Such spacelike solutions are far enough
in the antigravity region that the curvature term dominates
over the positive mass in the potential, m2ð1þ κx2Þ < 0,
leading to their acceleration towards spacelike infinity.
Even though there are no real classical solutions that
connect incoming gravity solutions to these far antigravity
regions, and starting in a gravity region one is guaranteed to
asymptote into the other gravity region, quantum mechan-
ically one expects the spacelike solutions to determine the
behavior of the Feynman propagator for spacelike separa-
tions. This is indeed confirmed by finding the saddle-point
approximation to Eq. (47) for large spacelike separations,
e.g., for x2 → ∞ at fixed x0,

Gðx;mjx0; m0Þ ∼ jxj−1=2eim2 ffiffiffiffi
−κ

p
x2 : ð60Þ

The propagator becomes oscillatory at spacelike separa-
tions, so that a given initial state, e.g., a wave packet
centered around an initial state in the gravity region a < 0,
is propagated to large spacelike distances into the anti-
gravity region. In this sense, the quantum theory is even
more pathological for open than for closed universes, where
one finds, again for x2 → ∞ at fixed x0,

Gðx;mjx0; m0Þ ∼ jxj− m
2
ffiffi
κ

p −1
2e−

m
2

ffiffi
κ

p
x2 ; ð61Þ

i.e., exponential falloff for large spacelike separations. This
is because for κ > 0, both timelike and spacelike classical
solutions are bounded due to the potential, and never reach
(timelike or spacelike) infinity. Neither κ < 0 nor κ > 0 can
lead to a viable perfect bounce picture in terms of a

transition between incoming and outgoing gravity states
with a → �∞, while the κ ¼ 0 case leads directly to a
perfect bounce. We conclude that, at least for the theories
considered here, only flat FRW universes lead to a con-
sistent quantum theory, able to account for an expanding
universe. The inclusion of a positive cosmological constant
could rescue positively curved universes from this con-
clusion, provided the curvature is too small to cause a
recollapse. Nevertheless, the quantum pathology we have
identified for negatively curved FRW universes is in-
triguing, because it raises the possibility that the observed
(nearly flat) Universe lives on the corresponding critical
boundary. This would be the case, for example, if we could
identify the correct quantummeasure on the space of closed
universes, with sufficiently large cosmological constant to
prevent recollapse, and if this measure favored the flat case.
We explore this possibility in future work. For the remain-
der of this paper, however, we ignore spatial curvature.

V. ADDING ANISOTROPIES AND
FREE SCALAR FIELDS

We now extend the treatment to anisotropic cosmologies,
choosing the simplest form of anisotropies, the Bianchi I
model: we still require the metric to be spatially homo-
geneous, with an Abelian group of isometries acting on
constant time hypersurfaces, but no longer impose isotropy.
The most convenient parametrization of such a metric
employs Misner variables [24],

ds2 ¼ A2ðtÞð−N2ðtÞdt2 þ e2λ1ðtÞþ2
ffiffi
3

p
λ2ðtÞdx21

þ e2λ1ðtÞ−2
ffiffi
3

p
λ2ðtÞdx22 þ e−4λ1ðtÞdx23Þ: ð62Þ

The Ricci tensor, and hence the Einstein tensor, for this
metric are diagonal, which by the Einstein equations
forbids any anisotropy in the fluid, manifest in a velocity
ui. We hence continue to assume that the fluid moves with
the cosmological flow, Jμ ∝ δμ0.
We can then again exploit the conformal freedom to set

AðtÞ to 1. The Ricci scalar of (62) is then

R ¼ 6
_λ21 þ _λ22
N2

; ð63Þ

giving the correct canonical normalization of the anisotropy
variables λi in the symmetry-reduced action,

S ¼ V0

Z
dt

�_χ⃗2 − _ϕ2

2N
þ

_λ21 þ _λ22
2N

ðϕ2 − χ⃗2Þ − Nρ − ~φ _n

�
:

ð64Þ

In terms of the variables xα and m defined in Eq. (10), this
action reads
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S ¼
Z

dt

�
m
2

�
1

N
ð_x2 − x2ð_λ21 þ _λ22ÞÞ − N

�
− φ _m

�
: ð65Þ

As for the flat FRW universe which the Bianchi I universe
generalizes, this is the action of a free massive relativistic
particle. However, here the particle is not moving through a
flat Minkowski spacetime but through a curved superspace,
with metric

ds2 ¼ ηαβdxαdxβ − x2ðdλ21 þ dλ22Þ ð66Þ

or, if we again use the parametrization xα ¼ avαðνiÞ with
v2 ¼ −1 to separate the scale factor a, introducing coor-
dinates νi on the hyperboloid HM,

ds2 ¼ −da2 þ a2gHM þ a2ðdλ21 þ dλ22Þ ð67Þ

where gHM is a constant negative curvature metric on HM,
as in Sec. III. The geometry of superspace at fixed a
corresponds to the maximally symmetric space HM ×R2;
in the absence of anisotropies, the last term would vanish
and one would simply use Milne coordinates for flat
Minkowski spacetime.
It is well known that the dynamics of anisotropies in the

Bianchi I model are equivalent to those of minimally
coupled free scalar fields in this background. To see this,
we momentarily switch to Einstein gauge, in which the
metric is given by Eq. (62) with a general AðtÞ. The action
of a free scalar field in this background is

−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð∂τÞ2 ¼ V0

Z
dtA2

_τ2

2N
ð68Þ

(identical to the action of a free scalar in a flat FRW
universe; a homogeneous scalar field does not feel the
anisotropies). To see that this reduces to the kinetic terms
for the anisotropies λi in Eq. (64), we note that since the
scale factor (7) is Weyl invariant, one can express it both in
Weyl and Einstein gauge,

a2 ¼ 1

2ρ
ðϕ2 − χ⃗2ÞjWeyl ¼

3A2

8ρ0πG

����
Einstein

ð69Þ

with ρ ¼ ρ0A−4 in Einstein gauge (in Weyl gauge, ρ ¼ ρ0 is
constant). To change gauges, one hence has to replace

A2jEinstein →
4πG
3

ðϕ2 − χ⃗2ÞjWeyl; ð70Þ

the factor 4πG
3

can be absorbed in the normalization of the
scalar fields,

λ ≔
ffiffiffiffiffiffiffiffiffi
4πG
3

r
τ ð71Þ

(the anisotropy variables are dimensionless while a scalar
field has dimensions of mass), showing the equivalence.
Hence, we obtain a simple generalization of the theory
we have discussed by also adding an arbitrary number of
minimally coupled free scalar fields, which can represent
either physical scalar fields or anisotropy degrees of free-
dom of the Bianchi I model. One has to lift the free scalar
fields to a Weyl-invariant theory by

−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð∂τÞ2 → −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðϕ2 − χ⃗2Þð∂λÞ2

ð72Þ

where λ is again dimensionless and conformally invariant.
In Einstein gauge, the right-hand side of Eq. (72) clearly
reduces to the right-hand side of Eq. (68). Going back to
Weyl gauge, the total action is then

S ¼
Z

dt

�
m
2

�
1

N

�
_x2 − x2

XK
i¼1

_λ2i

�
− N

�
− φ _m

�
; ð73Þ

which is a simple generalization of Eq. (65). The K
variables λi, i ¼ 1;…; K, can now correspond to anisotropy
variables or minimally coupled scalar fields with the
unusual normalization (71). Equation (73) is now the
action of a particle moving in an ðM þ K þ 1Þ-dimensional
superspace with curved metric

ds2 ¼ ηαβdxαdxβ − x2
XK
i¼1

dλ2i

¼ −da2 þ a2gHM þ a2
XK
i¼1

dλ2i : ð74Þ

By an elementary generalization of the procedure described
in Sec. III A, Eq. (73) gives a Hamiltonian constraint

C ≔
1

2m
gμνðx; λÞpμpν þ

m
2
≈ 0 ð75Þ

where gμν is the inverse metric on superspace, and pμ

includes conjugate momenta for both the variables xα and
the new degrees of freedom λi; more concretely,

C ¼ 1

2m

�
−p2

a þ
1

a2
gijHMðνÞζiζj þ

1

a2
δijkikj

�
þm

2
ð76Þ

in terms of the momentum pa conjugate to a, momenta ζi
conjugate to the conformally coupled scalar field variables
νi living on HM, and momenta ki conjugate to the free
scalar fields and anisotropy variables.
When quantizing this Hamiltonian constraint in order to

obtain the Wheeler-DeWitt equation, there is now an
ambiguity, the well-known quantization ambiguity for a
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particle moving on a curved manifold [25]: if the Ricci
scalar for the superspace metric (74) is R, the general
expression for the quantum Hamiltonian is

H ¼ 1

2m
ð−□þ ξRÞ þm

2
ð77Þ

where □ is the Laplace-Beltrami operator for the curved
metric (corresponding to the operator ordering that ensures
that the Hamiltonian is independent of the choice of
coordinates on superspace) and ξ is, in general, a free
parameter. Halliwell [22] has given the following strong
argument for fixing ξ: the (classical) Hamiltonian of
minisuperspace models is really H ¼ NC (see Sec. III)
where the lapse functionN is arbitrary, and in particular can
be redefined arbitrarily, N → Ω−2 ~N, where Ωðx; λÞ is any
function on minisuperspace. Under such a redefinition, the
constraint (75) becomes

~C ≔
1

2m
~gμνðx; λÞpμpν þ

~mðx; λÞ
2

≈ 0 ð78Þ

with ~gμν ¼ Ω−2gμν and ~mðx; λÞ ¼ Ω−2m, leading by the
same argument as above to a quantum Hamiltonian

~H ¼ 1

2m
ð− ~□þ ξ ~RÞ þ ~mðx; λÞ

2
; ð79Þ

where now ~□ and ~R are the Laplace-Beltrami operator and
Ricci scalar for the conformally rescaled metric ~g on
superspace. Halliwell now asks that, since redefining the
lapse is always possible classically, the solutions Ψ and ~Ψ
to HΨ ¼ 0 and ~H ~Ψ ¼ 0 be related by a conformal trans-
formation, ~Ψ ¼ ΩγΨ for some γ, and finds that this is only
possible if one fixes ξ to be the conformal coupling,

ξ ¼ M þ K − 1

4ðM þ KÞ ð80Þ

(recall that the dimension of our superspace manifold is
M þ K þ 1; Ref. [22] gives an overall minus sign for ξ,
presumably due to a different sign convention for the Ricci
curvature). Demanding covariance under field redefinitions
of the lapse function hence fixes ξ uniquely. Special cases
are M þ K ¼ 0 where there is no conformal coupling
that can restore covariance under lapse redefinitions, and
M þ K ¼ 1 where the Laplace-Beltrami operator is con-
formally covariant and ξ ¼ 0.
The Wheeler-DeWitt equation for Ψ ¼ Ψða; ν; λ; mÞ,

corresponding to the classical constraint (76), then becomes

� ∂2

∂a2þ
MþK

a
∂
∂a−

1

a2
ΔHM×RK þξRþm2

�
Ψ¼ 0 ð81Þ

with

R ¼ Kð2M þ K − 1Þ
a2

: ð82Þ

As in Sec. III, one can simplify the Wheeler-DeWitt
equation by Fourier transforming on HM ×RK from ν
and λ to the momenta ζ and k. One then has

� ∂2

∂a2þ
MþK

a
∂
∂a−

c
a2

þm2

�
Ψða;ζ;k;mÞ¼0 ð83Þ

with

c ¼ −
1

4
ðM − 1Þ2 þ 1

4
δM;0 − ζ⃗2 − k⃗2 − ξKð2M þ K − 1Þ;

ð84Þ

where we have explicitly included the case M ¼ 0 through
the Kronecker delta. This is precisely the same functional
form as the Wheeler-DeWitt equation for FRW universes,
Eq. (27), and so the extension of our formalism from FRW
symmetry to the Bianchi I model and the inclusion of
minimally coupled scalars are completely straightforward.
The constant c now gets contributions from the eigenvalues
of the Laplacian onHM ×RK, as well as from the curvature
on superspace.
We can now obtain the general solution to Eq. (83) in the

usual way, by setting

Ψða; ζ; k; mÞ ¼ a−ðMþKÞ=2χða; ζ; k; mÞ ð85Þ

to eliminate the first derivative. χ then satisfies the differ-
ential equation

� ∂2

∂a2 −
c0

a2
þm2

�
χða; ζ; k; mÞ ¼ 0 ð86Þ

where c0 ≡ cþ 1
4
ðM þ KÞðM þ K − 2Þ, which has two

independent solutions in terms of Bessel functions of the
first and second kind,

χ1 ¼
ffiffiffi
a

p
J1

2

ffiffiffiffiffiffiffiffiffi
1þ4c0

p ðmaÞ; χ2 ¼
ffiffiffi
a

p
Y1

2

ffiffiffiffiffiffiffiffiffi
1þ4c0

p ðmaÞ: ð87Þ

A more convenient basis is given by the Hankel functions
Hð1;2Þ of the first and second kind (which are just linear
combinations of the Bessel functions), so that two linearly
independent solutions of Eq. (83), for fixed ζ, k and m, are
finally given by

ψþ;−ðaÞ ¼ a−ðMþK−1Þ=2Hð2;1Þ
1
2

ffiffiffiffiffiffiffiffiffi
1þ4c0

p ðmaÞ: ð88Þ

As indicated by the subscript þ;−, these functions re-
present positive- and negative-frequency modes for the
Wheeler-DeWitt equation. Indeed, when extended to

STEFFEN GIELEN and NEIL TUROK PHYSICAL REVIEW D 95, 103510 (2017)

103510-16



negative a through the analytic continuation (see, e.g.,

Ref. [26]) Hð2Þ
ν ð−zÞ ¼ −eiπνHð1Þ

ν ðzÞ and Hð1Þ
ν ð−zÞ ¼

−e−iπνHð2Þ
ν ðzÞ, ψþ;− have the interesting property of cor-

responding to pure positive and pure negative frequency,
respectively, both at positive and negative infinite a,

ψþðaÞ ∼ a−ðMþKÞ=2e−ima; a → �∞;

ψ−ðaÞ ∼ a−ðMþKÞ=2eþima; a → �∞: ð89Þ

That is, for theWheeler-DeWitt equation (83) one finds that
an incoming positive-frequency mode simply continues to
an outgoing positive-frequency mode, with the potential at
a ¼ 0 not even leading to a phase shift. This complete
invisibility of the 1=a2 potential is a direct consequence of
the symmetry of Eq. (83) under a → λa and m → λ−1m,
which forbids any phase shift. These special properties of a
1=x2 potential, and its invisibility in a scattering process,
are well known in quantummechanics. In the context of our
perfect bounce scenario, they imply that the Universe can
go through the singularity a ¼ 0 without any noticeable
impact on its evolution, when viewed asymptotically. This
is already true classically, where the classical solutions
bounce without any net time delay or advance: the classical
Hamiltonian is equal to the constraint (76) times a lapse
function,

H¼N

�
1

2m

�
−p2

aþ
1

a2
gijHMðνÞζiζjþ

1

a2
k⃗2

�
þm

2

�
: ð90Þ

The terms multiplying 1=a2 are again conserved and can
be replaced by a constant, −c0 with c0 < 0; classically the
effect of anisotropies and momenta in the scalar fields
always leads to an attractive potential for a, centered on
the singularity at a ¼ 0. The classical solutions to the
equations of motion including the constraint are then

a2 ¼ c0

m2
þ N2ðt − t0Þ2 ¼

c0

m2
þ ðτ − τ0Þ2 ð91Þ

in terms of proper time τ ¼ Nt. These solutions are singular
at a ¼ 0 and perform an excursion into the antigravity
region of imaginary a, just as the generic flat FRW
solutions described in Sec. III which would be of the exact
same form. The attractive potential at a ¼ 0 speeds up the
trajectory as it heads toward the singularity, but this time
advance is canceled by the additional time it takes to cross
antigravity. Indeed, both at large positive and negative awe
have simply aðτÞ ≈ ðτ − τ0Þ.
In the quantum theory, ordering ambiguities in the

Hamiltonian constraint can alter the coefficient of the
1=a2 potential, making it repulsive in some cases. Indeed,
the relevant coefficient of the potential is the one appearing
in Eq. (86),

c0 ¼ −
1

4
ðM − 1Þ2 þ 1

4
δM;0 − ζ⃗2 − k⃗2

þM2ðM − 2Þ þ KðM2 −M − 1Þ
4ðM þ KÞ ð92Þ

if we use the value (80) for ξ, that is, we fix the ordering
ambiguities by demanding coordinate covariance on super-
space and covariance under redefinitions of the lapse
function, giving a purely quantum contribution in the second
line of Eq. (92). If we ignore the trivial caseM ¼ K ¼ 0, we
can rewrite Eq. (92) as

c0 ¼

8>>>>><
>>>>>:

−ζ⃗2 − 1
4

M ≥ 1; K ¼ 0;

−k⃗2 − 1
4

K ≥ 1;M ¼ 0;

−ζ2 − k⃗2 − 1
4

K ≥ 1;M ¼ 1;

−ζ⃗2 − k⃗2 − 1
4
þ ðM−1ÞK

4ðMþKÞ K ≥ 1;M > 1:

ð93Þ

This is an intriguing result. The contributions coming
from anisotropy or scalar field momenta are both negative.
The numerical term is fixed by covariance. The first line
corresponds to the situation of Sec. III, where no anisotropies
or minimally coupled scalars are present [from Eq. (27),
removing the first derivative term changes c in Eq. (28) to c0
given here]. The similarity of the first three lines is not a
coincidence; for M ≤ 1, the superspace metric (74) is
conformally flat. As we have imposed conformal coupling
to the Ricci scalar on superspace in Eqs. (79) and (80), the
dynamics must be equivalent to the flat superspace case of
Sec. III.
The value c0 ¼ − 1

4
is well known as a critical value in

the quantum mechanics of an inverse square potential. If
c0 ≥ − 1

4
, the negative classical potential is outweighed by

the kinetic energy due to the Heisenberg uncertainty
principle, rendering the energy spectrum strictly positive.
There are various infrared regularized versions of the theory
in which the spectrum is made discrete by including a
positive harmonic potential [27], with a taken either on the
infinite line, the half-line a > 0, or by imposing periodicity
in a, in which case the model becomes the Calogero-
Sutherland model (see, e.g., Ref. [28]). These are well-
defined, exactly solvable models which exhibit, among
other interesting phenomena, anomalous dimensions in the
operator product expansion [27].
If, however, c0 < − 1

4
, any finite energy wave function

has an infinite number of oscillations on the way to a ¼ 0.
In quantum mechanics, standard arguments then imply an
infinite number of lower energy states, and hence a
spectrum which is unbounded below. It has been claimed
that the theory is nevertheless renormalizable, although the
renormalization group displays a limit cycle [29]. (There is
a large literature on inverse square potentials in quantum
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mechanics, and even some experimental tests. See, e.g.,
Ref. [30] for a recent discussion and further references.)
At the minisuperspace level discussed here, negative

energy states are irrelevant because we are only interested
in solutions of the Wheeler-DeWitt equation with positive
energy, defined by m2. However, when we include inter-
actions with other modes, such as the inhomogeneous
modes of gravitons or scalars, then for c0 < − 1

4
it is possible

that the negative energy states for the scale factor a would
become excited, potentially signifying strong backreaction
as the Universe passes through the quantum bounce. The
problem may be avoided in two ways. ForM ¼ 0 orM ¼ 1
one can restrict consideration to background cosmologies
for which the zero-mode momenta of the anisotropy and
scalar fields are strictly 0, in which case the quantum
mechanics for a lies on the critical boundary where it (just)
makes sense. Or, one can include additional conformally
coupled scalars, taking M > 1 so that, from the last line
of Eq. (93), the quantum mechanics of a is well defined for
a range of classical anisotropy and scalar field momenta.
ForK ¼ 2 (i.e., only anisotropies but no minimally coupled
scalars) andM > 4, the numerical contribution can be large
enough to make the potential repulsive at small momenta.
If we consider classical solutions with this (order ℏ
squared) potential, an isotropic universe with no scalar
momenta would bounce off the repulsive potential and
avoid the singularity altogether. Quantum mechanically,
however, if we extend the range of a to negative values,
then a tunnels through the barrier in a process which may
be described with complex classical solutions, as we
explained in Ref. [1].
The conclusion is that when anisotropy and scalar field

degrees of freedom are included, then for small numbers
of conformal scalars, the isotropic cosmology with no
scalar momenta is a special case, poised on the edge of a
qualitatively different (and perhaps ill-defined) phase. On
the positive side, this finding may turn out to be a selection
principle, telling us that anisotropic or kinetic-dominated
singularities should be excluded from the theory whereas
isotropic universes with zero scalar momenta are allowed.
If so, this would imply that black hole singularities, which
locally resemble strongly anisotropic cosmological singu-
larities, do not correspond to a bounce (contradicting the
interpretation given by Ref. [4], for example); there would
be no “born again” universe on the other side of the black
hole singularity. On the negative side, one may wonder
whether the inclusion of inhomogeneities could lead to
problems even for the isotropic, nonkinetic cosmological
bounce. We emphasize that, for M ¼ 0 or M ¼ 1, any
amount of classical momentum in the zero modes of the
anisotropy or scalar degrees of freedom takes the quantum
mechanics of a into the subcritical regime. Perhaps it is
essential to work at M > 1 for the theory to make sense.
Clearly, we have only scratched the surface with this
discussion, and there is a great deal to explore further.

For the remainder of the paper, we assume that the
quantum mechanics for a makes sense. As explained in
Ref. [1], this allows us to calculate the propagation of the
Universe, and all inhomogeneous modes in it, by solving
the theory on complex trajectories which bypass a ¼ 0 in
the complex a plane. Remarkably, as was also explained in
Ref. [1], due to its scale-invariant property, the inverse
square potential, if present, is actually invisible in our final
results for “in-out” amplitudes.

A. Feynman propagator

Having defined positive- and negative-frequency modes
by their asymptotics, given in Eq. (89) (and without using
any boundary condition at a ¼ 0), it is easy to obtain the
Feynman propagator for the anisotropic case as a Green’s
function for the Wheeler-DeWitt equation, by using the
Wronskian method as before.
With the quantum Hamiltonian given by Eq. (77), the

Feynman propagator satisfies

ð−□þ ξRþm2ÞGðx; λ; mjx0; λ0; m0Þ
¼ −2imð−gÞ−1

2δMþ1ðx − x0ÞδKðλ − λ0Þδðm −m0Þ ð94Þ

where we must introduce a factor ð−gÞ−1
2 for the nontrivial

metric determinant on superspace. Again switching to the
scale factor coordinate a, Eq. (94) is equivalent to

� ∂2

∂a2 þ
M þ K

a
∂
∂a −

1

a2
ΔHM×RK þ ξRþm2

�
G

¼ −2im
δða − a0Þ
aMþK

δMþKðν − ν0; λ − λ0Þffiffiffiffiffiffiffiffi
gHM

p δðm −m0Þ

with G≡Gða; ν; λ; mja0; ν0; λ0; m0Þ, and the metric deter-
minant on superspace is now made explicit. Again, we can
now go to Fourier space onHM ×RK introducing momenta
ζi and ki; the Feynman propagator in Fourier space satisfies

� ∂2

∂a2 þ
M þ K

a
∂
∂a −

c
a2

þm2

�
Gða; ζ; k; mja0; ζ; k; m0Þ

¼ −2ima−ðMþKÞδða − a0Þδðm −m0Þ ð95Þ

with c as in Eq. (84). Since we have already identified
the positive- and negative-frequency solutions (88) of the
corresponding homogeneous equation, it is immediate to
write down the solution to Eq. (95) with the correct
boundary conditions,

Gða;mja0; m0Þ ¼ −2ima−ðMþKÞδðm −m0Þ
×Wðψ−;ψþÞ−1ðψ−ða0ÞψþðaÞθða − a0Þ
þ ψ−ðaÞψþða0Þθða0 − aÞÞ; ð96Þ

where the Wronskian is
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Wðψ−;ψþÞ ¼
4a−ðMþKÞ

iπ
ð97Þ

and no longer constant in a, as is consistent with the
appearance of a first derivative in Eq. (83). The Wronskian
takes care of the factors of a appearing in the elimination of
the first derivative, Eq. (85), and cancels the determinant
factor a−ðMþKÞ. The final result is

Gða;mja0; m0Þ
¼ πm

2
δðm −m0Þðaa0Þ−ðMþK−1Þ=2

× ðHð1Þ
ν ðma0ÞHð2Þ

ν ðmaÞθða − a0Þ þ ða ↔ a0ÞÞ ð98Þ

with ν≡ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c0

p
, which is consistent with the results of

Ref. [1] (with K ≡D − 2 as only the D − 2 anisotropy
degrees of freedom of a D-dimensional universe were
considered there). One can check that in the absence
of anisotropies or minimally coupled scalar fields,
K ¼ 0, this result reduces to the expression obtained in
Sec. III, i.e., the propagator for a free massive particle
in (M þ 1)-dimensional Minkowski spacetime. By our
remarks below Eq. (93) the same should be true for
M ¼ 0 or M ¼ 1 and general K, where the superspace
metric is conformally flat.

VI. PERTURBATIONS

In this section, we extend our analysis to inhomogeneous
cosmology, treated perturbatively at both linear and non-
linear order. We aim to solve the following problem: given
an incoming state at large negative a consisting of a flat,
FRW, radiation-dominated classical background universe
with perturbations in their local adiabatic vacuum state,
what is the outgoing quantum state at large positive a, as
defined by our analytic continuation prescription? This
question can be answered, in the semiclassical limit, by
using complex solutions of the classical Einstein-matter
field equations. If one sends in any combination of
linearized positive- (negative-) frequency modes then, even
after including the effects of nonlinearities in the field
equations, it turns out that one finds only positive-
(negative-) frequency linearized modes coming out. As
we now explain, this is sufficient to show, semiclassically,
that the outgoing quantum state is also the local adiabatic
vacuum. Hence, at a semiclassical level, there is no particle
production across the bounce.
Let us see this in detail. Consider a classical time-

dependent background solution of the Einstein-matter
equations. If the matter is a perfect fluid, the only
propagating degrees of freedom are scalar density pertur-
bations and tensor gravitational wave modes. At the
linearized level, we can decouple the modes by exploiting
the homogeneity and isotropy of the background: for a
flat background, every mode is a sum of plane waves

vðη; x⃗Þ ¼ P
kvkðηÞeik·x, with v−kðηÞ ¼ vkðηÞ�, with the

coefficients decomposed into irreducible representations
of the little group of rotations about k. Now consider the
action for the perturbations. At leading order, it is quadratic
and it is diagonalized by the above mode decomposition.
After a suitable time-dependent rescaling of the perturba-
tions, the kinetic terms can always be brought to canonical
form in which the action reads [see, e.g., Ref. [31], page
269, Eq. (10.59)]

Sð2Þ ¼
X
k;a

Z
dηðj _vakj2 − w2;a

k ðηÞjvakj2Þ; ð99Þ

where the index a labels the independent modes (here,
scalar and tensor), and

w2;a
k ðηÞ ¼ ðkcas Þ2 þm2;a

eff ðηÞ ð100Þ

where cas is the speed of sound, 1=
ffiffiffi
3

p
for the scalar

acoustic modes and unity for the tensor modes. In general,
the time-dependent “effective mass” introduces a nontrivial
η-dependence. However, in our chosen background, the
effective mass vanishes for both the scalar and tensor
modes so wa

k ¼ kcas in both cases.
We now make the assumption that the perturbations are

well described by linear theory for wide intervals of
conformal time η well before and well after the bounce.
As we see later, we cannot actually take the limit of infinite
positive and negative conformal time because of the effect
of nonlinearities in the fluid. Nevertheless, in the semi-
classical approximation, and for modes whose wavelength
is longer than the thermal wavelength of the fluid, the
periods of incoming and outgoing conformal time during
which linear theory remains valid are very large. We define
our incoming and outgoing states during these intervals.
When linear theory is valid, and when the frequencies

wa
kðηÞ change adiabatically, ðdwa

k=dηÞ=ðwa
kÞ2 ≪ 1, the

quantum states of the system are well described by those
of a set of decoupled harmonic oscillators. Let us denote
the corresponding real coordinates, i.e., the real and
imaginary parts of the vak, by the coordinates qm, where
the single index m runs over all of the real, independent
modes. Each of the coordinates qm contributes an action
Sm ¼ 1

2

R
dηð _q2m − ωmðηÞ2q2mÞ, and the adiabatic vacuum

state is just the product of the corresponding harmonic
oscillator ground states,

Ψ0ðη; qÞ ¼
Y
m

ðωm=ℏπÞ1=4e−ωmq2m=ð2ℏÞ: ð101Þ

This state is uniquely defined by amΨ0 ¼ 0 for all m, for
the annihilation operator
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am ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ωmℏ

p
�
ℏ

d
dqm

þ ωmqm

�
: ð102Þ

Let us assume that the incoming state of the pertur-
bations is Ψinðη0; qÞ ¼ Ψ0ðη0; qÞ at some large negative
η0, for which linear theory is valid. The quantum
fluctuations in the fluid density may be shown to be
small compared to the background density provided the
wavelength of the modes is longer than the thermal
wavelength, a condition which is in any case required in
order for the fluid description to hold. The outgoing
quantum state, at some large positive time η, is then
given by propagating the incoming vacuum Ψ0 to large
positive times η, for which linear theory is once again
valid, using the path integral,

Ψoutðη; qÞ ≈N
Z

Dqe
i
ℏSðq;η;q0;η0Þ

Y
m

dq0mΨ0ðη0; q0Þ; ð103Þ

where Sðq; η; q0; η0Þ is the full, nonlinear Einstein-matter
action taken with boundary conditions qðηÞ ¼ q,
qðη0Þ ¼ q0; Dq indicates the complete path-integral
measure and N is a normalization constant. We com-
pute Eq. (103) in the semiclassical approximation, by
finding the appropriate complex classical solution qcmð~ηÞ,
η0 < ~η < η, which is a stationary point of the combined
exponent. Substituting Eq. (101) for Ψin and varying the
exponent with respect to q0m yields, using the Hamilton-
Jacobi relation, the initial condition for the classical
solution qc,

ðipc
m þ ωmqcmÞðη0Þ ¼ 0; ð104Þ

where pc
m ¼ _qcm is the canonical momentum. The initial

condition (104) specifies that qcm is pure negative
frequency at η0, a large negative time. The final
boundary condition is just qcmðηÞ ¼ qm, where η is a

large positive time. We solve the classical Einstein-
matter equations with these two boundary conditions
in linear perturbation theory. At linear order, the
solution satisfying the boundary conditions is qcmð~ηÞ ¼
qmeikcsð~η−ηÞ. Below, we give the complete solution for
generic perturbation modes at linear and nonlinear order.
We find that the solution is well described by linear
perturbation theory at large negative and large positive
times, with small nonlinear corrections, and that an
incoming positive (negative) frequency mode evolves to
an outgoing positive (negative) frequency mode which
directly implies that the outgoing quantum state is the
local adiabatic vacuum. To verify this, we need only
apply the annihilation operators am ∝ ipm þ ωmqm ¼
ℏ d

dqm
þ ωmqm to Ψoutðη; qmÞ as given in Eq. (103).

Using the Hamilton-Jacobi equation, the result is pro-
portional to ðipc

m þ ωmqcmÞðηÞ, which vanishes if the
solution is pure negative frequency. Hence the incoming
adiabatic vacuum evolves to the outgoing adiabatic
vacuum, and there is no particle production across
the bounce.

A. Basic setup and conventions

We study perturbations about a flat (κ ¼ 0) radiation-
dominated FRW universe in a perturbation expansion.
We go to nonlinear order but, for simplicity, restrict
consideration to planar symmetry so that the metric
depends only on conformal time η and one spatial
coordinate x, with two orthogonal spatial directions
ðy; zÞ. To keep the calculations manageable, we do
not introduce conformally or minimally coupled scalar
fields, so M ¼ K ¼ 0. We work in Einstein gauge, i.e.,
in the usual formulation of general relativity coupled to
a radiation fluid.
The general form of the metric compatible with our

assumed symmetry is

ds2 ¼ a2ðηÞ

0
BBB@

−1þ ϵgηηðη; xÞ ϵgηxðη; xÞ
ϵgηxðη; xÞ 1þ ϵgxxðη; xÞ

1þ ϵgyyðη; xÞ ϵgyzðη; xÞ
ϵgyzðη; xÞ 1þ ϵgzzðη; xÞ

1
CCCA: ð105Þ

We can still apply coordinate transformations that leave this form of the metric invariant. A coordinate transformation
η ¼ ~ηþ ϵgðx; ~ηÞ changes the metric coefficients as

δgηη ¼ −2
�
_a
a
gþ _g

�
; δgηx ¼ −2g0; δgxx ¼ δgyy ¼ δgzz ¼ 2

_a
a
g ð106Þ

where here and in the remainder of this section : is derivative with respect to η and 0 denotes derivative with respect
to x. We use this freedom to eliminate gηx and introduce a different notation for the metric perturbation functions
(note that in this section ψ denotes a scalar metric perturbation, not a solution to the Wheeler-DeWitt equation as in
earlier sections),
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ds2 ¼ a2ðηÞ
�
ð−1þ 2ϵϕðη; xÞÞdη2

þ ð1þ 2ϵðψðη; xÞ þ γðη; xÞÞÞdx2 þ ϵh×ðη; xÞdydz

þ
�
1þ ϵ

�
2ψðη; xÞ þ hTðη; xÞ

2

��
dy2

þ
�
1þ ϵ

�
2ψðη; xÞ − hTðη; xÞ

2

��
dz2

�
: ð107Þ

The form (107) is still left invariant by a transformation
of the form

η ¼ ~ηþ ϵ

�
Gð~ηÞ þ

Z
~x
dX _fðX; ~ηÞ

�
;

x ¼ ~xþ ϵfð~x; ~ηÞ; ð108Þ

which we use to simplify the matter variables. The
energy-momentum tensor for radiation is

Tμν ¼
4

3
ρuμuν þ

1

3
ρgμν; uμuμ ¼ −1: ð109Þ

The density ρðη; xÞ and four-velocity uμðη; xÞ can also
be written in terms of background and perturbation as

ρðη; xÞ ¼ ρ0ðηÞð1þ ϵδrðη; xÞÞ;

uμðη; xÞ ¼ 1

aðηÞ ðv
0ðη; xÞ; ϵvðη; xÞ; 0; 0Þ: ð110Þ

The constraint uμuμ ¼ −1 can be solved for v0ðη; xÞ.
Under a coordinate transformation (108), we have
δv ¼ − _f, so that we can set v ¼ 0 everywhere, i.e.,
adopt a coordinate system in which the radiation is at
rest everywhere (comoving gauge). The remaining
gauge freedom is then under transformations

η ¼ ~ηþ ϵGð~ηÞ; x ¼ ~xþ ϵfð~xÞ;
y ¼ ~yþ ϵðι1 ~yþ ι2 ~zþ ι3Þ; z ¼ ~zþ ϵðι4 ~zþ ι5 ~yþ ι6Þ

ð111Þ

where the ιi are arbitrary constants and G and f are
free functions. Under such a transformation, δϕ ¼
− _a

aG − _G, δψ ¼ _a
aG, δγ ¼ f0, δhT ¼ 2ða − bÞ and

δh× ¼ 2ðcþ dÞ, and so functions of this form in the
perturbations are to be considered pure gauge. We
solve the Einstein equations in Fourier space, where
the gauge freedom for the functions ϕ, ψ , hT and h×

is somewhat hidden as it only becomes apparent for
k ¼ 0.
We are left with five free functions for the metric

(ϕ;ψ ; γ; hT; h×) and the density perturbation δr. As we

see, there are also six nontrivial Einstein equations relating
these. To proceed, we assume that all of the perturbation
functions can further be expanded as a power series in ϵ,

ϕðη; xÞ ¼
X
n≥1

ϵn−1ϕnðη; xÞ; etc: ð112Þ

The idea is now to solve the Einstein equations Gμν ¼
8πGTμν order by order in ϵ; the Einstein equations also
imply energy-momentum conservation ∇μTμ

ν ¼ 0 for the
fluid. First, for the background (at order ϵ0) we have the
equations

_ρ0 þ 4
_a
a
ρ0 ¼ 0;

�
_a
a2

�
2

¼ 8πG
3

ρ: ð113Þ

The first one tells us that ρ0 ∝ a−4 for some constant
M; the Friedmann equation then gives the solution
aðηÞ ∝ η, the simplest example of a perfect bounce that
we have already discussed in the introduction to this
paper. It follows that _a

a ¼ 1
η, and that analytic continu-

ation in the scale factor a (as we have discussed in
previous sections) is equivalent to analytic continuation
in the conformal time coordinate η, which we use in
this section.
At order ϵn in the perturbation expansion, the six

nontrivial Einstein equations are

3

η2
δr;n −

6

η2
ϕn þ 2ψ 00

n −
2

η
_γn −

6

η
_ψn ¼ J1;n; ð114Þ

1

η
ϕ0
n þ _ψ 0

n ¼ J2;n; ð115Þ

1

η2
δr;n −

2

η2
ϕn þ

2

η
_ϕn þ

4

η
_ψn þ 2ψ̈n ¼ J3;n; ð116Þ

ḧTn þ 2

η
_hTn − ðhTnÞ00 ¼ J4;n; ð117Þ

ḧ×n þ 2

η
_h×n − ðh×n Þ00 ¼ J5;n; ð118Þ

−
1

η2
δr;n þ

2

η2
ϕn þ ψ 00

n − ϕ00
n −

2

η
_γn −

2

η
_ϕn

−
4

η
_ψn − ̈γn − 2ψ̈n ¼ J6;n ð119Þ

for some “source terms” Ji;n that are nonlinear combina-
tions of the lower order perturbations.
We first note that Eqs. (117) and (118) that govern the

tensor modes hTn and h×n are already decoupled from the
others. For the scalars, Eqs. (114) and (115) can be solved
for δr and ϕ directly. From Eq. (115) we get
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ϕnðη; xÞ ¼ −η _ψnðη; xÞ þ FnðηÞ þ η

Z
x
dx0J2;nðη; x0Þ

ð120Þ

where FnðηÞ is a free function; then Eq. (114) implies that

δr;nðη; xÞ ¼ −
2

3
η2ψ 00

n þ
2

3
η_γn þ 2Fn þ

η2

3
J1;n

þ 2η

Z
x
dx0J2;n: ð121Þ

Substituting these relations into Eqs. (116) and (119) and
taking linear combinations one obtains

_γn ¼ ηψ 00
n − 6 _ψn − 3 _Fn −

η

2
J1;n − 3

Z
x
dx0J2;n

− 3η

Z
x
dx0 _J2;n þ

3η

2
J3;n ð122Þ

and

ψ̈n þ
2

η
_ψn −

1

3
ψ 00
n ¼ −

_Fn

η
−
F̈n

2
−
J1;n
4

− η
_J1;n
12

þ η

6
J02;n þ

11

12
J3;n þ

η

4
_J3;n þ

J6;n
6

−
Z

x
dx0

�
J2;n
η

þ 2_J2;n þ
η

2
J̈2;n

�
:

ð123Þ

Equation (123) can now be solved for ψn using Green’s
functions; Eq. (122) then gives γ by a single integration
over η, and from Eq. (120) and Eq. (121) one can obtain
explicit expressions for δr;n and ϕn at each order. At each
order in ϵ, this provides an explicit algorithm for solving
the system of Einstein equations (114)–(119).

B. Tensor perturbations

Equations (117) and (118) are easily solved. First,
consider the homogeneous equation solved by the first-
order perturbation,

ḧT1 þ 2

η
_hT1 − ðhT1 Þ00 ¼ 0: ð124Þ

We can easily find the general solution in Fourier space, for
k ≠ 0,

hT1 ðη; xÞ ¼
Z

dk
2π

eikxhT1 ðη; kÞ;

hT1 ðη; kÞ ¼ b1ðkÞ
e−ikη

kη
þ b2ðkÞ

eikη

kη
: ð125Þ

For k ¼ 0, the two independent solutions are hT ¼ constant
and hT ∼ 1=η. We can write the general solution as

hT1 ¼ d1 þ
d2
k0η

þ
Z

dk
2π

eikx
�
b1ðkÞ

e−ikη

kη
þ b2ðkÞ

eikη

kη

�

ð126Þ

where k0 is an arbitrary momentum scale to make d2
dimensionless. h×1 satisfies the same differential equation;
its general solution is

h×1 ¼ e1 þ
e2
k0η

þ
Z

dk
2π

eikx
�
c1ðkÞ

e−ikη

kη
þ c2ðkÞ

eikη

kη

�
:

ð127Þ

For a real solution we need b1ðkÞ ¼ −b�1ð−kÞ, b2ðkÞ ¼
−b�2ð−kÞ and similar for c1ðkÞ and c2ðkÞ.
We recognize d1 and e1 as gauge modes corresponding

to coordinate transformations (111), whereas d2 and e2 are
physical k ¼ 0 modes. The free functions b1ðkÞ; b2ðkÞ;
c1ðkÞ and c2ðkÞ are the physical gravitational degrees of
freedom.
Now consider the general inhomogeneous equation,

ḧTn þ 2

η
_hTn − ðhTnÞ00 ¼ J4;n: ð128Þ

Again, we go to Fourier space and first consider k ≠ 0. We
use the Wronskian method to determine a suitable Green’s
function; in contrast to the Green’s function that appeared
as a Feynman propagator in earlier sections, here the
boundary conditions are that the higher order perturbations
are set to 0 at some conformal time η0 in the far past, so
that only a linear (purely positive- or purely negative-
frequency) mode is present. Given two independent sol-
utions hT1 and ~hT1 to the homogeneous equation (124), the
Green’s function for these boundary conditions is

Gðη; η0Þ ¼ hT1 ðη0Þ ~hT1 ðηÞ − hT1 ðηÞ ~hT1 ðη0Þ
Wðη0Þ ð129Þ

for η > η0 > η0 where η0 is the initial time at which only
a linear perturbation is assumed to be present, and 0
otherwise. The Wronskian is Wðη0Þ≡ hT1 ð ~hT1 Þ0 − ðhT1 Þ0 ~hT1
as before. Using this Green’s function, we find that one
particular solution to Eq. (128) is

hTnðη; kÞ ¼
1

kη

Z
η
dη0η0 sinðkðη − η0ÞÞJ4;nðη0; kÞ; ð130Þ

while for k ¼ 0 we find

hTnðη; 0Þ ¼
1

η

Z
η
dη0η0ðη − η0ÞJ4;nðη0; 0Þ; ð131Þ
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which is just the limit k → 0 of Eq. (130). Expressions for
h×n are analogous. In the integrals in Eqs. (130) and (131) as
well as in the following, the initial time η0 that should
appear as the lower limit of integration is suppressed for
simplicity; we neglect the η0-dependent contributions as we
are only interested in a particular solution.
Clearly, at each order ϵn one can also add a solution of

the homogeneous equation to this solution for hTn. This can
however be absorbed into the linear perturbation hT1 . We
hence set these arbitrary solutions to the homogeneous
equations to 0 for n ≥ 2.

C. Scalar perturbations

For the scalar perturbation functions ϕ;ψ ; γ and δr, we
proceed analogously. For clarity, we first derive the general
solutions for the first-order perturbations, for which there
are no sources and the general solution is obtained
straightforwardly. The equation for ψ1 is Eq. (123) with
the sources set to 0, i.e.,

ψ̈1 þ
2

η
_ψ1 −

1

3
ψ 00
1 ¼ −

_F1

η
−
F̈1

2
ð132Þ

where F1 is a free function of η. Going into Fourier
space, the general solution for k ≠ 0, where F1 does not
contribute, is

ψ1ðη; xÞ ¼
Z

dk
2π

eikxψ1ðη; kÞ;

ψ1ðη; kÞ ¼ a1ðkÞ
e−

iffiffi
3

p kη

kη
þ a2ðkÞ

e
iffiffi
3

p kη

kη
: ð133Þ

The Fourier mode k ¼ 0 is a gauge mode [see the
discussion below Eq. (111)], with general solution

ψ1ðη; 0Þ ¼ −
c1
k0η

þ c2 −
F1ðηÞ
2

; ð134Þ

since F1 is arbitrary, we can set c1 ¼ c2 ¼ 0 with no loss of
generality. Putting this together, we have

ψ1ðη; xÞ ¼
Z

dk
2π

eikx
�
a1ðkÞ

e−
iffiffi
3

p kη

kη
þ a2ðkÞ

e
iffiffi
3

p kη

kη

�

−
F1ðηÞ
2

; ð135Þ

where for a real solution we need a1ðkÞ ¼ −a�1ð−kÞ and
a2ðkÞ ¼ −a�2ð−kÞ.
As said, from this expression we can determine the other

scalar functions γ, ϕ and δr. We find

γ1ðη; xÞ ¼ a3ðxÞ þ
Z

dk
2π

eikx
�
a1ðkÞe−

ikηffiffi
3

p
�
−

6

kη
− i

ffiffiffi
3

p �

þ a2ðkÞe
ikηffiffi
3

p
�
−

6

kη
þ i

ffiffiffi
3

p ��
; ð136Þ

ϕ1ðη; xÞ ¼ F1ðηÞ þ
η

2
_F1ðηÞ þ

Z
dk
2π

eikx
�
a1ðkÞe−

ikηffiffi
3

p

×

�
1

kη
þ iffiffiffi

3
p

�
þ a2ðkÞe

ikηffiffi
3

p
�
1

kη
−

iffiffiffi
3

p
��

;

ð137Þ

δr;1ðη; xÞ ¼ 2F1ðηÞ þ
Z

dk
2π

eikx
�
a1ðkÞe−

ikηffiffi
3

p
�
4

kη
þ 4iffiffiffi

3
p

�

þ a2ðkÞe
ikηffiffi
3

p
�
4

kη
−

4iffiffiffi
3

p
��

; ð138Þ

where we recognize a3ðxÞ and F1ðηÞ as encoding the
remaining gauge freedom in comoving gauge (111). a1ðkÞ
and a2ðkÞ correspond to the scalar degrees of freedom of
the radiation fluid.
In order to obtain the solutions for higher order

perturbations, we derive the Green’s function for the ψ
equation (123), which has the general form

ψ̈n þ
2

η
_ψn −

1

3
ψ 00
n ¼ Jn: ð139Þ

Again, the boundary condition for the Green’s function is
to set the higher order perturbations to 0 at some initial
conformal time η0. We find, for k ≠ 0,

ψnðη; kÞ ¼
ffiffiffi
3

p

kη

Z
η
dη0η0 sin

�
kðη − η0Þffiffiffi

3
p

�
Jnðη0; kÞ; ð140Þ

and for k ¼ 0 the same as for the tensors,

ψnðη; 0Þ ¼
1

η

Z
η
dη0η0ðη − η0ÞJnðη0; 0Þ: ð141Þ

Again, once the solution for ψn is found, the other
perturbation functions γn, ϕn and δr;n can be obtained
easily.
From these expressions, we can now work out the

nonlinear solution for all metric perturbation functions
and the density perturbation order by order in ϵ; all we need
to do is to expand Einstein equations up to any given order
to find the sources Ji;n and then compute the integrals
(130), (131), (140) and (141) to find the perturbations at the
next order.

D. Nonlinear positive-frequency modes

We are now specifically interested in the nonlinear
extension of linear positive-frequency modes at a given
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wave number k0. (The following calculations and discus-
sion can be extended to the case of an incoming negative-
frequency mode by simply taking the complex conjugate
of all expressions below, and replacing the lower- by the
upper-half complex plane etc.) We choose the linear
positive-frequency modes to be

ψ1ðη; xÞ ¼ A cosðk0xÞ
e−ik0η=

ffiffi
3

p

k0η
;

hT1 ðη; xÞ ¼ B cosðk0xÞ
e−ik0η

k0η
: ð142Þ

As seen before, the expression for ψ1 then determines γ1,
ϕ1 and δr;1. These scalar quantities are all gauge dependent
but one may compute the gauge-invariant Newtonian
potentials first introduced by Bardeen [32] and given by
(in Fourier space for k ≠ 0)

Φ ¼ −ϕþ ̈γ
k2

þ _γ

k2η
;

Ψ ¼ −ψ −
_γ

k2η
: ð143Þ

We find that for the linear perturbations Φ and Ψ are equal
and fall off as 1=k20η

2 at large jηj,

Φ1ðη; k0Þ ¼ Ψ1ðη; k0Þ ¼ −
2πAe−

iffiffi
3

p k0ηð3þ ffiffiffi
3

p
ik0ηÞ

k30η
3

:

ð144Þ

The explicit form of the sources at order ϵ2 is, in terms of
the linear perturbations,

J1;2 ¼
12

η2
ϕ2 þ 3

16
ððhTÞ0Þ2 þ 3

16
ððh×Þ0Þ2 þ 2γ0ψ 0 þ 3ðψ 0Þ2 þ 1

4
hTðhTÞ00 þ 1

4
h×ðh×Þ00 þ 4γψ 00 þ 8ψψ 00 −

4

η
γ _γ

þ 4

η
ϕ_γ −

4

η
ψ _γ −

1

2η
hT _hT −

1

16
ð _hTÞ2 − 1

2η
h× _h× −

1

16
ð _h×Þ2 − 4

η
γ _ψ þ 12

η
ϕ _ψ −

12

η
ψ _ψ þ 2_γ _ψ þ3 _ψ2; ð145Þ

J2;2 ¼
2

η
γϕ0 −

2

η
ϕϕ0 þ 2

η
ψϕ0 þ ψ 0 _γ þ 1

16
ðhTÞ0 _hT þ 1

16
ðh×Þ0 _h× − ϕ0 _ψ þ 2ψ 0 _ψ þ 1

8
hTð _hTÞ0 þ 1

8
h×ð _h×Þ0 þ 2γ _ψ 0 þ 4ψ _ψ 0;

ð146Þ

J3;2 ¼
4

η2
ϕ2 −

1

16
ððhTÞ0Þ2 − 1

16
ððh×Þ0Þ2 − 2ϕ0ψ 0 þ ðψ 0Þ2 þ 1

2η
hT _hT þ 3

16
ð _hTÞ2 þ 1

2η
h× _h× þ 3

16
ð _h×Þ2 − 8

η
ϕ _ϕ −

8

η
ϕ _ψ

þ 8

η
ψ _ψ − 2 _ϕ _ψ þ _ψ2 þ 1

4
hTḧT þ 1

4
h×ḧ× − 4ϕψ̈ þ 4ψψ̈ ; ð147Þ

J4;2 ¼ −γ0ðhTÞ0 − ðhTÞ0ϕ0 − 3ðhTÞ0ψ 0 − 2γðhTÞ00 − 4ψðhTÞ00 − 2hTψ 00 −
4

η
ϕ _hT þ 4

η
ψ _hT − _γ _hT − _hT _ϕþ 4

η
hT _ψ þ _hT _ψ

− 2ϕḧT þ 2ψ ḧT þ 2hT ψ̈ ; ð148Þ

J5;2 ¼ −γ0ðh×Þ0 − ðh×Þ0ϕ0 − 3ðh×Þ0ψ 0 − 2γðh×Þ00 − 4ψðh×Þ00 − 2h×ψ 00 −
4

η
ϕ _h× þ 4

η
ψ _h× − _γ _h× − _h× _ϕþ 4

η
h× _ψ þ _h× _ψ

− 2ϕḧ× þ 2ψ ḧ× þ 2h×ψ̈ ; ð149Þ

J6;2 ¼ −
4

η2
ϕ2 þ 1

16
ððhTÞ0Þ2 þ 1

16
ððh×Þ0Þ2 − γ0ϕ0 þ ðϕ0Þ2 þ γ0ψ 0 þ 2ðψ 0Þ2 þ 1

8
hTðhTÞ00 þ 1

8
h×ðh×Þ00 − 2γϕ00 þ 2ϕϕ00

− 2ψϕ00 þ 2γψ 00 þ 4ψψ 00 −
4

η
γ _γ þ 4

η
ϕ_γ −

4

η
ψ _γ − _γ2 −

1

4η
hT _hT −

1

16
ð _hTÞ2 − 1

4η
h× _h× −

1

16
ð _h×Þ2 þ 8

η
ϕ _ϕþ _γ _ϕ

−
4

η
γ _ψ þ 8

η
ϕ _ψ −

8

η
ψ _ψ − _γ _ψ þ2 _ϕ _ψ − _ψ2 − 2γγ̈ þ 2ϕ ̈γ − 2ψ ̈γ −

1

8
hTḧT −

1

8
h×ḧ× − 2γψ̈ þ 4ϕψ̈ − 4ψψ̈ ; ð150Þ

where we omit the subscripts 1 on the first-order perturbations on the right-hand side of these equations. For simplicity, we
also set the second tensor mode h× to 0 from now on (its dynamics are analogous to those of hT).
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We now compute the second-order perturbations from
Eqs. (130), (131), (140) and (141), using the sources
computed from the chosen linear perturbations. For hT2 ,
we find

hT2 ¼ AB

�
3e−ið1þ

1ffiffi
3

p Þk0η

2k20η
2

ð1þ cosð2k0xÞ
�

−
ið1þ ffiffiffi

3
p Þe−ið1þ 1ffiffi

3
p Þk0η

2k0η
cosð2k0xÞ

þ ið3þ ffiffiffi
3

p Þe−ið1þ 1ffiffi
3

p Þk0η

6k0η
þ 2

3
Γ
�
0; i

�
1þ 1ffiffiffi

3
p

�
k0η

�

þ
13ie−2ik0ηΓð0; ið−1þ 1ffiffi

3
p Þk0ηÞ

6k0η
cosð2k0xÞ

−
13ie2ik0ηΓð0; ið3þ 1ffiffi

3
p Þk0ηÞ

6k0η
cosð2k0xÞ

�
: ð151Þ

Here Γð0; zÞ are incomplete gamma functions. Their
asymptotic expansion for large arguments is

Γð0; zÞ ∼ e−z
�
1

z
−

1

z2
þO

�
1

z3

��
: ð152Þ

Using this expansion, we see that as k0η → �∞, hT2 has the
asymptotic behavior

hT2 ∼ABe−ið1þ
1ffiffi
3

p Þk0η
�
i
6þ 5

ffiffiffi
3

p
− ð27þ 16

ffiffiffi
3

p Þ cosð2k0xÞ
ð21þ 11

ffiffiffi
3

p Þk0η

þ 23þ 4
ffiffiffi
3

p
− ð37þ 20

ffiffiffi
3

p Þ cosð2k0xÞ
2ð5þ 2

ffiffiffi
3

p Þk20η2
þO

�
1

k30η
3

��
:

The asymptotic expansion shows in particular that all the

terms in Eq. (151) oscillate as e−ið1þ
1ffiffi
3

p Þk0η for large k0jηj,
and decay exponentially for large negative imaginary η.
We can obtain expressions for the scalar perturbations

in exactly the same way. The expressions are similar to
those for hT2 but involve more terms (15 in total), as
there can be contributions of order A2 and B2, corre-
sponding to two tensor modes or two scalar modes
combining to give a scalar. Just as the second-order
tensors, they contain incomplete gamma functions, but
there is also a term involving a logarithm,

−A2e−
2ffiffi
3

p ik0η i
ffiffiffi
3

p
logðk0ηÞ cosð2k0xÞ

2k0η
: ð153Þ

These terms are potentially problematic when the
perturbation functions are extended to the complex η
plane as the logarithms and incomplete gamma func-
tions have branch cuts. However, all we require for

positive-frequency modes is analyticity in the lower-half
η plane, where these modes extend to Euclidean,
asymptotically decaying modes. This can be achieved
by defining all the branch cuts to be along the positive
imaginary axis. The analytic continuation of these
modes that avoids the singularity at η ¼ 0 is then
defined by choosing any contour that remains in the
lower-half complex η plane.
Asymptotically, we find that at large k0jηj,

ψ2 ∼ −e−2ik0η
7iB2

128k0η
þ e−

2ffiffi
3

p ik0ηA2

�
1

12
þ 1

6
cosð2k0xÞ

− i
2þ cosð2k0xÞð1þ 12 logðk0ηÞÞ

8
ffiffiffi
3

p
k0η

�
þO

�
1

k20η
2

�
;

and one can check that all terms, including all subleading
ones, oscillate at positive frequencies asymptotically (either
at ω ¼ 2k0 or at ω ¼ 2ffiffi

3
p k0). The nonlinear modes again

decay exponentially as k0η → −i∞, and indeed define
nonlinear positive-frequency modes. From the general
structure of the equations (114)–(119), one can see that
the same property should hold to all higher nonlinear
orders: the source terms, being nonlinear in lower order
perturbations, always decay exponentially sufficiently
fast in imaginary time that integration with a Green’s
function that has an exponentially growing and an expo-
nentially decaying part, as in Eq. (140), gives again an
exponentially decaying next-order perturbation. The
method we have described then allows a general defi-
nition of positive-frequency modes in the complex η
plane, to all orders in perturbation theory.
The other perturbations are determined by Eqs. (120)–

(122). For completeness, we give their asymptotic expres-
sions for large k0jηj,

γ2 ∼ A2e−
2ffiffi
3

p ik0η
�
−
i cosð2k0xÞk0ηffiffiffi

3
p

− 1 − cosð2k0xÞ
�
5

4
þ 3 logðk0ηÞ

��
þO

�
1

k0η

�
;

ð154Þ

δr;2 ∼
1

3
A2e−

2ffiffi
3

p ik0η
�
4i cosð2k0xÞk0ηffiffiffi

3
p

− 7 − cosð2k0xÞð7 − 12 logðk0ηÞÞ
�
þO

�
1

k0η

�
;

ϕ2 ∼ e−2ik0η
7B2

64
þ A2e−

2ffiffi
3

p ik0η
�
ik0ηð1þ 2 cosð2k0xÞÞ

6
ffiffiffi
3

p

þ 1

3
− cosð2k0xÞ

�
1

12
− logðk0ηÞ

��
þO

�
1

k0η

�
:

ð155Þ
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To verify the validity of our solution method, we have
checked explicitly that the second-order perturbations solve
Einstein’s equations up to order ϵ2.
We see that none of the scalar perturbation functions

decay at real infinity k0jηj → ∞, and some even blow up,
indicating a breakdown of perturbation theory at large
times. Again, to get gauge-invariant statements about this
behavior, we can compute the Newtonian potentials, and
find that they fall off as 1=k0η,

Φ2ðη; 2k0Þ ∼ −e−
2ffiffi
3

p ik0η iπ
ffiffiffi
3

p
a2

4k0η
þO

�
1

k20η
2

�
ð156Þ

with similar behavior for Ψ. This compares with Φ1 ∼
Oð1=k20η2Þ in Eq. (144), which still indicates that the
perturbation expansion breaks down when ϵk0jηj ∼ 1.
This physical behavior is due to the nonlinear evolution
in the fluid, as shown by analytical and numerical studies
in Ref. [13]. When we go down the imaginary axis, i.e. for
η ¼ −iτ with τ → ∞, all perturbation functions fall off
exponentially, with exponential terms of the form e−ωτ

dominating any polynomially growing terms. As we have
argued, this behavior persists for higher orders in the ϵ
expansion, and defines these modes by regularity for large
negative imaginary η; the blowup of scalar perturbations
along the real axis due to nonlinearities in the fluid does not
prevent us from defining nonlinear asymptotic positive-
frequency modes.

E. Summary

We have given an algorithm for solving the Einstein-
matter equations order by order in perturbation theory,
and exhibited explicit results at second order that show in
detail how the positive-frequency incoming modes match
only to positive-frequency outgoing modes, and similarly
for negative-frequency modes (where our results trivially
extend by taking complex conjugates). We have argued that
this behavior should extend to all orders in perturbation
theory, as the nonlinear extension of linear positive-
frequency modes leads to perturbation functions that
decay exponentially for large negative imaginary times,
and branch cuts can be restricted to the positive half-plane
for positive-frequency solutions, so that the nonlinear
metric perturbation satisfies a nonlinear notion of positive
frequency. We identified some subtleties, namely that the
perturbation expansion fails at late times k0jηj ∼ 1

ϵ, where ϵ
is the perturbation amplitude, meaning that one has to
restrict attention to an annulus in the complex plane,
ϵ < k0jηj < 1

ϵ, in which the ϵ expansion can be trusted
and nonlinearities are not yet dominant [1].

VII. CONCLUSIONS

This paper represents a detailed study of a very simple
cosmological model, based on the principle of conformal

symmetry for matter and gravity and the observed fact that
the early Universe was dominated by radiation. Classical
cosmological solutions of this model describe a bounce,
with a big bang/big crunch singularity, but the singularity
can be avoided by going into the complex plane. While this
“singularity avoidance” seems ad hoc in classical gravity,
we have shown its meaning in the quantum theory where,
similar to quantum tunneling, the complexified solutions
represent legitimate saddle points to the path integral. The
picture that emerges for quantum cosmology is based on
modes that are asymptotically purely positive frequency at
early and late times when the Universe is large and
classical, corresponding to a positive expansion rate of
the Universe, as we observe. We have shown that the
addition of a positive radiation density makes a crucial
difference, as it leads to classical solutions which connect
asymptotic contracting and expanding Lorentzian regions,
and which are represented by the positive-frequency modes
defined by the Feynman propagator. We do not impose any
boundary conditions for the wave function at a ¼ 0, and
accept that some modes may even diverge there: all that is
required is a consistent evolution from an asymptotic
contracting to an asymptotic expanding universe, through
or around the bounce, as this allows a calculation of
transition amplitudes and hence, ultimately, predictions
for the transition of a given state in the contracting phase to
a state in the expanding phase. This formalism appears
much more natural than an imposition of a boundary
condition at a ¼ 0, where quantum effects are large and
where classical notions of singularity avoidance may cease
to have any relevance. In practical terms, the fact that our
wave functions and propagators admit a semiclassical
WKB description in which high-curvature regions near
a ¼ 0 can be avoided gives hope that a semiclassical
approach to the quantum cosmology of bouncing scenarios
can be used for predictions, even in the absence of a
complete theory of quantum gravity.
Some features we are exploiting are clearly restricted to

homogeneous cosmological models such as the FRW and
Bianchi I universes we have studied explicitly. It is there-
fore vital to check that the formalism can be extended
consistently to generic perturbations around homogeneity,
and ultimately to fully nonlinear solutions of GR. We have
developed a systematic perturbative treatment that shows
how this question can be attacked, at linear and nonlinear
order, and given evidence for a consistent nonlinear
extension of positive-frequency modes to the complex a
plane. Again, one is interested in the transition of incoming
asymptotic positive-frequency modes to outgoing modes
which are, in general, a mixture of positive and negative
frequency and which signal particle production (and
potential divergencies) at the bounce. We have shown that
an incoming positive-frequency mode can be continued
around the singularity, and unambiguously matches to an
outgoing positive-frequency solution. So the incoming
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adiabatic vacuum state is stable across the bounce and no
divergencies arise. Our calculations have been limited to
pure radiation and planar symmetry, and one focus of future
work will be to extend these results to more general cases.
The present results already indicate that a consistent
semiclassical picture exists for nonlinear perturbations
of cosmological models, and that this picture can be used
for calculations of the cosmological phenomenology of
bounce scenarios of the type we consider.
Thus, our results show how classical singularities do

not necessarily prevent a consistent quantum description
of bouncing cosmologies. The inclusion of quantum
effects into the big bounce seems a natural and simple
alternative to the development of more complicated bounce
scenarios [8–10,33].
There are many avenues for further exploration. In

Sec. V, we began to explore the quantum theory on the
real a-axis around a ¼ 0. In some cases, it may be that the
attractive inverse square potential in the Wheeler-DeWitt
operator may lead the quantum theory to fail when further
(inhomogeneous) degrees of freedom are included, but
in others the quantum theory seems to be healthy. The
quantum dynamics of more general Bianchi models also
deserve to be understood; for these, the invisibility of the
singularity that we have observed for Bianchi I will
presumably be replaced by a nontrivial scattering matrix
between in and out asymptotic states. The pathologies
we have identified in the Feynman propagator for curved
FRW universes should be revisited with the inclusion of a
positive cosmological constant. More basic conceptual
questions concerning the interpretation of the propagator
and the determination of probabilities need to be inves-
tigated. Ultimately, we need to find a compelling measure
on the space of quantum universes. There are hints that the
present flat, isotropic universe lies on a critical boundary in
the quantum theory, and these may point to novel reso-
lutions of the classic flatness and isotropy puzzles.
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APPENDIX: MASSIVE RELATIVISTIC
PROPAGATOR

In this appendix, we calculate the massive relativistic
propagator given in Eq. (31) exactly. First, we note that

Gðxjx0Þ ¼ i
Z

∞

0

dτ

�
m
2πiτ

�Mþ1
2

e−i
m
2
ðστþτÞ;

is a convergent integral when σ ¼ −ðx − x0Þ2 is positive.
The τ integral may be taken along the positive real axis
0 < τ < ∞. Next, we set τ ¼ ffiffiffi

σ
p

eu, with−∞ < u < ∞, so
that

Gðxjx0Þ ¼ i
Z

∞

−∞
duð ffiffiffi

σ
p Þ1−M2

�
m
2πi

�Mþ1
2

e−im
ffiffi
σ

p
coshu−M−1

2
u

¼ 1

2
ð−imÞMð2πm ffiffiffi

σ
p Þ1−M2 Hð2Þ

M−1
2

ðm ffiffiffi
σ

p Þ; ðA1Þ

where we have used the standard integral representation of
the Hankel function of the second kind,

Hð2Þ
ν ðzÞ ¼ iνþ1

π

Z
∞

−∞
due−iz coshu−νu; ðA2Þ

and for positive real argument the function is defined as the
boundary value of a function in the lower-half complex z
plane where the integral converges.
Following the discussion given in Sec. IV, the result is

then continued to negative values of σ by analytic con-
tinuation through the lower-half complex σ plane.
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