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A new model of thermal inflation is introduced, in which the mass of the thermal waterfall field is
dependent on a light spectator scalar field. Using the δN formalism, the “end of inflation” scenario is
investigated in order to ascertain whether this model is able to produce the dominant contribution to the
primordial curvature perturbation. A multitude of constraints are considered so as to explore the parameter
space, with particular emphasis on key observational signatures. For natural values of the parameters, the
model is found to yield a sharp prediction for the scalar spectral index and its running, well within the
current observational bounds.
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I. INTRODUCTION

Cosmological inflation is the leading candidate for the
solution of the three main problems of the standard big
bang cosmology: the horizon, flatness, and relic problems.
It also has the ability to seed the initial conditions required
to explain the observed large-scale structure of the Universe
[1]. In the simplest scenario, quantum fluctuations of a
scalar field are converted to classical perturbations around
the time of horizon exit, after which they become frozen.
This gives rise to the primordial curvature perturbation, ζ,
which grows under the influence of gravity to give rise to
the large-scale structure in the Universe. The simple single-
field inflationary scenario is favored by current observa-
tions [2]. However, given the richness and complexity of
the theories beyond the standard model, this simple picture
seems unlikely.
Moving away from this simplest scenario, there has been

much work done on generating the observed ζ in other
scenarios, such as the curvaton [3–14], inhomogeneous
reheating [5,10–13,15–20], “end of inflation” [9,20–26]
(also see [27]), and inhomogeneous phase transition [28]
(also see [29]).
One particular model of inflation is thermal inflation

[30–33], which is a brief period of inflation that could have
occurred after a period of prior primordial inflation.
Thermal inflation lasts too little to solve the problems of
the standard big bang cosmology that motivate primordial
inflation, but it may be rather useful to dilute any dangerous
relics that are not dealt with by primordial inflation such as
moduli fields or gravitinos. Another interesting byproduct
of thermal inflation is changing the number of e-folds
before the end of primordial inflation, which correspond to

the cosmological scales. This has an immediate effect on
inflationary observables and can assist in inflation model
building [34,35].
Thermal inflation occurs due to finite-temperature effects

arising from a coupling between a so-called thermal
waterfall scalar field ϕ and the thermal bath created from
the partial or complete reheating from primordial inflation.
Thermal field theory gives a thermal contribution g2T2ϕ2 to
the effective scalar potential, where g is the coupling
constant of the interaction between ϕ and the thermal bath
and T is the bath’s temperature. This results in a thermal
correction to the effective mass of g2T2. This thermal mass
can temporarily trap the thermal waterfall field on top of a
false vacuum, resulting in inflation. However, as time goes
by, the thermal mass of ϕ decreases such that a phase
transition sends ϕ to its vacuum expectation value (vev) and
inflation is terminated.
Despite occurring much later than primordial inflation,

thermal inflation may produce a substantial contribution to
the curvature perturbation. This is how. The mass of a given
scalar field may depend on the expectation value of another
scalar field [9,13,16–19,21–24,28,29]. More specifically,
the mass of a thermal waterfall fieldϕ that is responsible for
a bout of thermal inflation could be dependent on another
scalar field ψ . Wewill call this ψ a spectator field, because it
needs not affect the dynamics of the Universe at any
time. If ψ is light during primordial inflation, its quantum
fluctuations are converted to almost scale-invariant
classical field perturbations at around the time of horizon
exit. If ψ remains light all the way up to the end of thermal
inflation, then thermal inflationwill end at different times in
different parts of the Universe, because the value of the
spectator field determines the mass of the thermal waterfall
field ϕ, which in turn determines the end of thermal
inflation. This is the end of inflation mechanism [21] and
it can generate a contribution to the primordial curvature
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perturbation ζ. Themotivation of this work is to explore this
scenario to see if it can produce the dominant contribution to
the primordial curvature perturbation with characteristic
observational signatures, in which the inflaton’s contribu-
tion to the perturbation can be ignored.1 As such, inflation
model building is liberated from the requirements to
generate ζ, which substantially reduces fine-tuning and
renders viable many otherwise observationally excluded
inflation models [37].
It should be noted that this scenario is very similar to

that in Ref. [20]. However, in that paper the authors use a
modulated coupling constant rather than a modulated
mass. Also, the treatment that has been given to the work
in this paper is much more comprehensive. One example
of this is in the consideration of the effect that the
thermal fluctuation of the thermal waterfall field has on
the model (see Sec. IV B 6). Another example is the
requirement that the thermal waterfall field is thermalized
(see Sec. IV B 7). Also, there is no consideration given in
Ref. [20] to requiring a fast transition from thermal
inflation to thermal waterfall field oscillation (see
Sec. IV B 10), as detailed in Ref. [24], as this paper
appeared after Ref. [20].
This paper is structured as follows. In Sec. II we

introduce our new model. In Sec. III we give expressions
for key observational quantities that are predicted by the
model. In Sec. IV we explore the end of inflation scenario
and obtain in detail a multitude of constraints for our model
parameters. We conclude in Sec. V.
Throughout this work, natural units are used where

c ¼ ℏ ¼ kB ¼ 1 and Newton’s gravitational constant is
8πG ¼ M−2

P , with MP ¼ 2.436 × 1018 GeV being the
reduced Planck mass.

II. A NEW THERMAL INFLATION MODEL

The potential that we consider in our model is

Vðϕ;ψ ; TÞ ¼ V0 þ
�
g2T2 −

1

2
m2

0 þ h2
ψ2α

M2α−2
P

�
ϕ2

þ λ
ϕ2nþ4

M2n
P

þ 1

2
m2

ψψ
2; ð2:1Þ

where ϕ is the thermal waterfall scalar field, ψ is a light
spectator scalar field, T is the temperature of the thermal
bath, g, h, and λ are dimensionless coupling constants,
α ≥ 1 and n ≥ 1 are integers, V0 is a density scale
(corresponding to the scale of thermal inflation), and the
−m2

0 and m2
ψ are soft mass-squared terms coming from

supersymmetry (SUSY) breaking. A ϕ4 term is not featured
because the thermal waterfall field is a flaton, whose

potential is stabilized by the higher-order nonrenormaliz-
able term [30,31].2 The nonrenormalizable terms in
Eq. (2.1) are the dominant terms in series over α and n.
One would expect the lowest order to be dominant. Indeed,
we find that parameter space exists only if α ¼ n ¼ 1.
Thus, we chose these values in this paper.3 With this choice,
the potential in Eq. (2.1) becomes

Vðϕ;ψ ; TÞ ¼ V0 þ
�
g2T2 −

1

2
m2

0 þ h2ψ2

�
ϕ2

þ λ
ϕ6

M2
P
þ 1

2
m2

ψψ
2; ð2:2Þ

We make the following definition:

m2 ≡m2
0 − 2h2ψ2: ð2:3Þ

The variation of mðψÞ is

δm ¼ −
2h2ψ
m

δψ : ð2:4Þ

We only consider the case where the mass of ϕ is coupled
to one field. Were the mass coupled to several similar fields,
the results would be just multiplied by the number of fields.
If the multiple fields are different, then there will be only a
small number that dominate the contribution to the mass
perturbation. Therefore we consider only one for simplicity.
Using Eq. (2.3), the potential becomes

Vðϕ;ψ ; TÞ ¼ V0 þ
�
g2T2 −

1

2
m2

�
ϕ2

þ λ
ϕ6

M2
P
þ 1

2
m2

ψψ
2: ð2:5Þ

This potential is shown in Fig. 1. It would appear from the
potential that domain walls will be produced, due to the fact
that in some parts of the Universe ϕ will roll down to þhϕi
while in others parts it will roll down to −hϕi. However,
being a flaton field (i.e. a flat direction in SUSY) ϕ is a
complex field, whose potential contains only one continu-
ous vacuum expectation value.4

1This paper is based on the original research that was
conducted as part of the thesis [36]. This research has not been
published elsewhere.

2Note here, that mild tuning (A < 1 TeV) is needed for the
quartic term due to the SUSY A-term to be ignored.

3For a full study over all possible values of α and n see [36].
4A complex ϕ may result in the copious appearance of cosmic

strings after the end of thermal inflation. However, as their energy
scale is very low (it is V0), they will not have any significant
effect on the CMB observables. Moreover, depending on the
overall background theory, such cosmic strings may well be
unstable. Thus, we can safely ignore them.
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The zero temperature potential is

Vðϕ;ψ ; 0Þ ¼ V0 −
1

2
m2ϕ2 þ λ

ϕ6

M2
P
þ 1

2
m2

ψψ
2: ð2:6Þ

Hence, the vev is

hϕi ∼
�
mMPffiffiffi

λ
p

�
1=2

: ð2:7Þ

V0 is obtained by requiring VðhϕiÞ ¼ 0 along the ψ ¼ 0
direction. We find

V0 ∼
m3

0MPffiffiffi
λ

p : ð2:8Þ

Now, we use the Friedmann equation

M2
PH

2
TI ∼ V0; ð2:9Þ

to obtain the Hubble parameter during thermal inflation as

HTI ∼
�

m3
0ffiffiffi

λ
p

MP

�
1=2

: ð2:10Þ

Within this thermal inflation model there are two cases
regarding the decay rate of the inflaton field Γφ, with φ
being the inflaton, i.e. the field driving primordial inflation
prior to thermal inflation. One is the case when Γφ ≳HTI,
i.e. that reheating from primordial inflation occurs before or
around the time of the start of thermal inflation.
Alternatively, there is the case when Γφ ≪ HTI, i.e. that
reheating from primordial inflation occurs at some time
after the end of thermal inflation.
In the case of Γφ ≳HTI, thermal inflation begins at a

temperature

T1 ∼ V1=4
0 : ð2:11Þ

T1 corresponds to the temperature when the potential
energy density becomes comparable with the energy
density of the thermal bath, for which the density is
ργ ∼ T4.
In the case of Γφ ≪ HTI, thermal inflation begins at a

temperature5

T1 ∼ ðM2
PHTIΓφÞ1=4: ð2:12Þ

Initially, for T ≥ T1, the thermal waterfall field is driven to
zero ϕ → 0 as the thermally induced mass in Eq. (2.5) is
dominant. This continues even if T < T1 as long as the
mass squared of ϕ remains positive. When the tachyonic
mass term of the thermal waterfall field becomes equal to
the thermally induced mass term [cf. Eq. (2.5)], a phase
transition sends the field towards its nonzero true vev and
thermal inflation ends [30].
In both of the above cases, thermal inflation ends at a

temperature

T2 ¼
mffiffiffi
2

p
g
: ð2:13Þ

In the following, we only consider the case where
Γφ ≪ HTI, in that reheating from primordial inflation
occurs at some time after the end of thermal inflation, as
this scenario was found to yield more parameter space than
the case where Γφ ≳HTI.

III. ϕ DECAY RATE, SPECTRAL INDEX,
AND TENSOR FRACTION

A. ϕ decay rate

The decay rate of ϕ is given by

Γ ∼max

�
g2m;

m3

M2
P

�
: ð3:1Þ

The first expression is for decay into the thermal bath via
direct interactions and the second is for gravitational decay.
We will only consider the case in which the direct decay is
the dominant channel (g is not taken to be very small).
This is the case when m ≪ gMP. Therefore we have
just Γ ∼ g2m.

B. Spectral index and its running

Thermal inflation has the effect of changing the number
of e-folds before the end of primordial inflation at which
cosmological scales exit the horizon. This affects the value

FIG. 1. The potential given by Eq. (2.5).

5Before primordial reheating, the temperature is T ∼
ðM2

PHΓφÞ1=4 [38].
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of the spectral index ns of the curvature perturbation ζ (see
for example [34,35]).
We assume ζ is generated due to the perturbations of the

spectator scalar field. Then, in the case of slow-roll
inflation, the spectral index is given by [1]

ns ≃ 1 − 2ϵþ 2ηψ ; ð3:2Þ

where ϵ and ηψ are slow-roll parameters, defined as

ϵ≡M2
P

2

�
V 0ðφÞ
VðφÞ

�
2

and ηψ ≡ 1

3H2

∂2V
∂ψ2

; ð3:3Þ

where V 0ðφÞ is the derivative of the inflaton potential with
respect to the inflaton field φ. ϵ and ηψ are to be evaluated at
the point where cosmological scales exit the horizon during
primordial inflation.
Regarding the various scalar fields involved in this

model, the reason why ϵ depends only on φ is because
this slow-roll parameter captures the inflationary dynamics
of primordial inflation, which is governed only by φ in our
model [we are assuming that both ψ and ϕ have settled to a
constant value (Secs. IV B 5 and IV B 8, respectively) by
the time cosmological scales exit the horizon during
primordial inflation]. In a similar fashion, the reason
why the slow-roll parameter ηψ depends only on ψ is
because this parameter captures the dependence on the
spectral index of the field(s) whose perturbations contribute
to the observed primordial curvature perturbation ζ. In our
case, this is only the spectator field ψ .
The definition of the running of the spectral index is [1]

n0s ≡ dns
d ln k

≃ −
dns
dN

; ð3:4Þ

the second equation coming from d ln k ¼ d lnðaHÞ≃
Hdt≡ −dN, where k ¼ aH. From Eq. (3.2), we have

n0s ≃ 2
dϵ
dN

− 2
dηψ
dN

≃ 2ϵ
d ln ϵ
dN

− 2
dηψ
dN

: ð3:5Þ

Now, we have [1]

d ln ϵ
dN

≃ −4ϵþ 2η; ð3:6Þ

where η is a slow-roll parameter given by

η≡M2
P
V 00ðφÞ
VðφÞ : ð3:7Þ

Also,

dηψ
dN

¼ −
1

3H4

dðH2Þ
dN

∂2V
∂ψ2

¼ −2ηψ
d lnH
dN

; ð3:8Þ

where we used that VðψÞ does not depend on N, as we are
assuming that both ψ and ϕ have settled to a constant value
(Secs. IV B 5 and IV B 8, respectively) by the time cos-
mological scales exit the horizon during primordial
inflation.
Since [1]

d lnH
dN

≃ ϵ; ð3:9Þ

we have

dηψ
dN

≃ −2ϵηψ : ð3:10Þ

Therefore, the final result for the running of the spectral
index is

n0s ≃ −8ϵ2 þ 4ϵηþ 4ϵηψ : ð3:11Þ

From now on we assume that H has the constant value
H� by the time cosmological scales exit the horizon up
until the end of primordial inflation. In order to obtain ϵ
and η, we require the value of N�, the number of e-folds
before the end of primordial inflation at which cosmo-
logical scales exit the horizon. We consider the period
between when the pivot scale, k0 ≡ 0.002 Mpc−1, exits
the horizon during primordial inflation and when it
reenters the horizon long after the end of thermal inflation.
We have

R� ¼ H−1� and ðk0=apivÞ−1 ¼ H−1
piv; ð3:12Þ

where R� is a length scale when the pivot scale
exits the horizon during primordial inflation and the
subscript “piv” denotes the time when this scale reenters
the horizon, with a being the scale factor of the Universe.
Therefore

H−1� ¼ a�
apiv

H−1
piv: ð3:13Þ

Using the above, we now can calculate N�.
Since Γφ ≪ HTI, we have

eN� ¼ H�
k

�
Tstart;TI

Tend;inf

�
8=3

�
Treh;TI

Tend;TI

�
8=3 Tpive−NTI

Treh;TI
ð3:14Þ

where NTI is the number of e-folds of thermal inflation and
the subscripts denote the following: “end,inf” is at the end
of primordial inflation, “start,TI” is at the start of thermal
inflation, “end,TI” is at the end of thermal inflation, and
“reh,TI” is at thermal inflation reheating. For the period
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between the end of primordial/thermal inflation and pri-
mordial/thermal inflation reheating, a ∝ T−8=3.6 For all
other times, a ∝ T−1.
We need to calculate Tpiv. We consider the period

between when the pivot scale reenters the horizon and
the present. Throughout this period the Universe is matter
dominated (ignoring dark energy). Therefore we have
ρ ∝ a−3 ∝ T3. Using the Friedmann equation, 3M2

PH
2 ∝

T3 we have

H2
piv

H2
0

¼ T3
piv

T3
0

⇒ Tpiv ¼ 9.830 × 10−13 GeV ð3:15Þ

where 0 denotes the values at present. Using this, we obtain
N� as

N� ≈ ln

�ð3.2 × 1037 GeV−1ÞH�
0.002

�
þ 2

3
ln

�
Γ
H�

�

þ 1

4
ln

�
10π2ð9.8 × 10−13 GeVÞ4

9M2
PΓ2

�
− NTI; ð3:16Þ

where we have used g� ≈ 102 as the number of spin states
(effective relativistic degrees of freedom) of the particles in
the thermal bath, at the time of both primordial inflation
reheating and thermal inflation reheating.7

C. Tensor fraction r

The definition of the tensor fraction is r≡ Ph=Pζ [1],
where Ph and Pζ are the spectra of the primordial tensor
and curvature perturbations, respectively. The spectrum Ph
is given by

PhðkÞ ¼
8

M2
P

�
Hk

2π

�
2

ð3:17Þ

for a given wave number k. Using this, together with
ρ� ¼ 3M2

PH
2�, given that we are saying Hk ¼ H� for our

current case, as well as the observed value
Pζðk0Þ ¼ 2.142 × 10−9, we obtain

r ¼
�

ρ1=4�
3.25 × 1016 GeV

�4

: ð3:18Þ

IV. END-OF-INFLATION MECHANISM

In this section we investigate the end of inflation
mechanism. We aim to obtain a number of constraints

on the model parameters and the initial conditions for the
fields. Considering these constraints, we intend to deter-
mine the available parameter space. In this parameter space
we will calculate distinct observational signatures that may
test this scenario in the near future.8

A. Generating ζ

As ϕ is coupled to ψ , the end of inflation mechanism will
generate a contribution to the primordial curvature pertur-
bation ζ [21]. We use the δN formalism to calculate this
contribution as

ζ ¼ δNTI ¼
dNTI

dm
δmþ 1

2!

d2NTI

dm2
δm2 þ 1

3!

d3NTI

dm3
δm3 þ � � � :

ð4:1Þ

The number of e-folds between the start and end of thermal
inflation is given by

NTI ¼ ln
�
a2
a1

�
¼ ln

�
T1

T2

�
; ð4:2Þ

where a1 ¼ astart;TI and a2 ¼ aend;TI.
Substituting T1 and T2, Eqs. (2.12) and (2.13), respec-

tively, into Eq. (4.2) gives

NTI ≃ ln

� ffiffiffi
2

p
gðM2

PHTIΓφÞ1=4
m

�

≃ 1

8
ln

�
g8ffiffiffi
λ

p M3
PΓ2

φ

m5

�
; ð4:3Þ

where we used Eq. (2.10).
Therefore the δN formalism to third order gives

ζ ¼ δNTI ¼ −
5

8

δm
m

þ 5

16

δm2

m2
−

5

24

δm3

m3
: ð4:4Þ

By substituting our mass definition and its differential,
Eqs. (2.3) and (2.4), into Eq. (4.4) we obtain the power
spectrum of the primordial curvature perturbation,9 which
to first order is

6During this time, T ∼ ðM2
PHΓφÞ1=4 [38]. As H ∝ t−1 we have

T ∝ t−1=4. During the field oscillations, the Universe is matter
dominated and so we have a ∝ t2=3. Putting this all together we
find T ∝ t−1=4 ∝ a−3=8.

7Equation (3.16) is only valid as long as NTI > 0. Otherwise
N� is independent of Γ.

8We also investigated a modulated decay rate scenario, but
found that there was no parameter space available. For our
detailed work on this, see [36].

9It must be noted that although there will be perturbations in ψ
that are generated during thermal inflation that will become
classical due to inflation, the scales to which these correspond are
much smaller than cosmological scales, as thermal inflation lasts
for only about 10–15 e-folds. Therefore we do not consider them
here.
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ffiffiffiffiffiffi
Pζ

p ¼ 5

8π

h2H�ψ
m2

: ð4:5Þ

A required condition for the perturbative expansion in
Eq. (4.4) to be suitable is that each term is much smaller
than the preceding one. This requirement gives

h2H�ψ
m2

≪ 1; ð4:6Þ

which is readily satisfied as
ffiffiffiffiffiffi
Pζ

p
≪ 1.

B. Constraining the parameters

In this section we produce a number of constraints for
the model parameters and we describe the rationale
behind them.

1. Primordial inflation energy scale

We want the energy scale of primordial inflation to be
V1=4 ≲ 1014 GeV so that the inflaton contribution to the
curvature perturbation is negligible. Therefore, from
the Friedmann equation we require

H� ≲ 1010 GeV: ð4:7Þ

2. Thermal inflation dynamics

We will consider only the case in which the inflationary
trajectory is one-dimensional, in that only the ϕ field is
involved in determining the trajectory of thermal inflation
in field space. We do this only to work with the simplest
scenario for the trajectory. It is not a requirement on the
model itself. In order that the ψ field does not affect the
inflationary trajectory during thermal inflation, we require
from our m mass definition, Eq. (2.3), that

m0 ≳ hψ : ð4:8Þ

Therefore we have m≃m0.
From our potential, at the onset of thermal inflation,

Eq. (2.2), Eq. (4.8) gives

m2
0 < 2g2T2

1: ð4:9Þ

For Γφ ≪ HTI, substituting T1 from Eq. (2.12) into
Eq. (4.9) gives

m0 <

�
ðg4ΓφÞ2

M3
Pffiffiffi
λ

p
�
1=5

: ð4:10Þ

3. Lack of observation of ϕ particles

Given that we have not observed any ϕ particles, the
constraint on the present value of the effective mass of ϕ is
mϕ;now ≳ 1 TeV. From our potential, Eq. (2.2), we have

m2
ϕ;now ∼ −m2

0 þ 30λhϕi4=M2
P. Substituting the vev of ϕ,

Eq. (2.7), into here gives mϕ;now ∼m0 for all reasonable
values of n. Therefore, we require

m0 ≳ 1 TeV: ð4:11Þ

4. Light auxiliary field ψ

In order that ψ acquires classical perturbations during
primordial inflation, we require ψ to be light during this
time, i.e. jmψ ;eff j ≪ H�, where we are using notation such

that jmψ ;eff j≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

ψ ;eff j
q

. We have

m2
ψ ;eff ¼ m2

ψ þ 2h2ϕ2: ð4:12Þ

Therefore we need

mψ < H� and hϕ� < H�; ð4:13Þ

where ϕ� and ψ� are the values of ϕ and ψ during
primordial inflation, respectively.
We require that ψ remains at ψ�, the value during

primordial inflation, all the way up to the end of thermal
inflation. The reason for this is that if ψ started to move,
then its perturbation would decrease. This is because ψ
unfreezes when the Hubble parameter becomes less than
ψ’s mass, i.e. H < mψ . In this case, the perturbation of ψ
also unfreezes, because it has the same mass as ψ . The
density of the oscillating ψ field decreases as matter, so
m2

ψψ
2 ∝ a−3 ⇒ ψ ∝ a−3=2. The same is true for the per-

turbation, i.e. δψ ∝ a−3=2. So the whole effect of perturbing
the end of thermal inflation is diminished. Requiring that ψ
is light at all times up until the end of thermal inflation is
sufficient to ensure that the field and its perturbation remain
at ψ� and δψ�, respectively. Therefore we require

mψ < HTI ð4:14Þ

which is of course stronger than just mψ ≪ H�
in Eq. (4.13).
Similarly to ϕ, given that we have not observed any ψ

particles, the most liberal constraint on the present value of
the effective mass of ψ is

mψ ;now ≳ 1 TeV ð4:15Þ

5. The field value ψ�
Substituting the observed spectrum value Pζðk0Þ ¼

2.142 × 10−9 into Eq. (4.5) gives the constraint

ψ� ∼ 10−4
m2

0

h2H�
: ð4:16Þ
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Substituting Eq. (4.16) into Eq. (4.8), regarding the
dynamics of thermal inflation, gives

h ≳ 10−4
m0

H�
: ð4:17Þ

Rearranging this for m0 gives the constraint

m0 ≲ 104hH�: ð4:18Þ

We require the field value of ψ to be much larger than its
perturbation, i.e. ψ� ≫ δψ�, so that the perturbative
approach is valid. Therefore, with δψ� ∼H�, we obtain

ψ� ≫ H� and
δψ�
ψ�

≪ 1: ð4:19Þ

Combining the frozen value ψ�, Eq. (4.16), with the above
gives

m0 > 102hH�: ð4:20Þ

Thus, we find the following range:

102 <
m0

hH�
< 104: ð4:21Þ

6. Thermal fluctuation of ϕ

The effective mass of ϕ at the end of primordial
inflation is

m2
ϕ;end;inf ∼ g2T2

end;inf −m2
0 ∼ g2T2

end;inf ; ð4:22Þ

since gTend;inf ≫ m0 [36].
As we are dealing with the thermal fluctuation of ϕ about

ϕ ¼ 0, we have hδϕiT ¼ hϕiT . The thermal fluctuation of
ϕ is

ffiffiffiffiffiffiffiffiffiffiffi
hϕ2iT

q
∼ T ð4:23Þ

and we require [36]

g < 1; ð4:24Þ

because g is a perturbative coupling.
In order to keep mψ ;eff light, we require (cf. Sec. IV B 4),

hT1 < HTI: ð4:25Þ

During the time between the end of primordial inflation and
primordial inflation reheating, T ∝ a−3=8 and H ∝ a−3=2.
Therefore, if Eq. (4.25) is satisfied, then equivalent con-
straints for higher T and H are guaranteed to be satisfied
as well.

Considering Γφ ≪ HTI, by substituting Eqs. (2.10),
(2.12), and (4.16) into Eq. (4.25) we obtain the constraint

h <

�
λ−3=2

m9
0

M7
PΓ2

φ

�
1=8

: ð4:26Þ

Rearranging this for m0 gives

m0 > ðλ3=2h8M7
PΓ2

φÞ1=9: ð4:27Þ

7. Thermalization of ϕ

In order that ϕ interacts with the thermal bath and
therefore that we actually have the g2T2ϕ2 term in our
potential, Eq. (2.2), we require Γtherm > H, where Γtherm is
the thermalization rate of ϕ, which is given by

Γtherm ¼ nhσvi ∼ σT3; ð4:28Þ

where n ∼ T3 is the number density of particles in the
thermal bath, σ is the scattering cross section for the
interaction of ϕ and the particles in the thermal bath, v
is the relative velocity between a ϕ particle and a thermal
bath particle (which in our case is≈c ¼ 1), and hi denotes a
thermal average. The scattering cross section σ is given by

σ ∼
g4

E2
cm

; ð4:29Þ

where Ecm is the center-of-mass energy, which is Ecm ∼ T.
Substituting this into Eq. (4.29) gives

σ ∼
g4

T2
: ð4:30Þ

This scattering cross section is the total cross section for all
types of scattering (e.g. elastic) that can take place between
ϕ and the particles in the thermal bath.10 The thermalization
rate now becomes

Γtherm ∼ g4T: ð4:31Þ

As before, during the time between the end of primordial
inflation and primordial inflation reheating, T ∝ a−3=8 and
H ∝ a−3=2. Therefore, if the constraint Γtherm > H is
satisfied at the time of the end of primordial inflation,
then it is satisfied all the way up to the start of thermal
inflation. Thus, we have the constraint

Γtherm ≳H�: ð4:32Þ

10For a complete field theory derivation of the elastic scattering
cross section between ϕ and the thermal bath, see [36].
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Taking Eq. (4.31) with T ∼ ðM2
PH�ΓφÞ1=4 gives

Γφ ≳ H3�
g16M2

P
: ð4:33Þ

We also require Γtherm > H to be satisfied throughout the
whole of thermal inflation. Therefore, we have the con-
straint

g4T2 > HTI: ð4:34Þ

Substituting HTI and T2, Eqs. (2.10) and (2.13) into the
above gives

m0 < g6
ffiffiffi
λ

p
MP: ð4:35Þ

8. The field value ϕ�
We consider two possible cases for the value of the

thermal waterfall field ϕ during primordial inflation, with
mϕ;inf being the effective mass of ϕ during primordial
inflation:
(A) ϕ heavy, i.e. jmϕ;inf j ≫ H�, in which ϕ rolls down to

its vev.
(B) ϕ light, i.e. jmϕ;inf j ≪ H�, in which ϕ is at the

Bunch-Davies value (to be explained below).
Case A.—Substituting hϕi, Eq. (2.7), into Eq. (4.13)
gives

h < λ1=4
H�ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0MP

p : ð4:36Þ

Rearranging this for m0 gives

m0 <

ffiffiffi
λ

p

h2
H2�
MP

: ð4:37Þ

Case B.—We consider ϕ to be at the Bunch-Davies
value

ϕBD ∼
�
MPH2�ffiffiffi

λ
p

�
1=3

; ð4:38Þ

corresponding to the Bunch-Davies vacuum [39], which is
the unique quantum state that corresponds to the
vacuum, i.e. no particle quanta, in the infinite past in
conformal time in a de Sitter spacetime. ϕBD is of this
form as λϕ6=M2

P ∼H4�, this being because the probability
of this Bunch-Davies state is proportional to the factor
e−V=H

4

[40].

Substituting ϕBD, Eq. (4.38), into Eq. (4.13) gives

h < λ1=6
�
H�
MP

�
1=3

: ð4:39Þ

9. Energy density of ϕ

We require the energy density of ϕ to be subdominant at
all times, in order that it does not cause any inflation by
itself. During the period between the end of primordial
inflation and the start of thermal inflation, the energy
density of ϕ is

ρϕ ∼ g2T2ϕ2 ∼ g2T4; ð4:40Þ

the second equation coming from the thermal fluctuation
ϕ ∼ T. Therefore, considering the Friedmann equation, we
require

gT2
1 < MPHTI: ð4:41Þ

During the time between the end of primordial inflation and
primordial inflation reheating, T ∝ a−3=8 and H ∝ a−3=2.
Therefore, if Eq. (4.41) is satisfied, then equivalent con-
straints for higher T and H are guaranteed to be satisfied
as well.
Using that Γφ ≪ HTI, by substituting HTI and T1,

Eqs. (2.10) and (2.12) into Eq. (4.41) we obtain

m0 > ½ðg2ΓφÞ2
ffiffiffi
λ

p
MP�1=3: ð4:42Þ

ϕ� Case A.—The energy density of ϕ during primordial
inflation is

ρϕ;inf ¼
�
−
1

2
m2

0 þ h2ψ2�

�
hϕi2 þ λ

hϕi6
M2

P

∼ −
1

2
m2

0hϕi2 þ λ
hϕi6
M2

P
; ð4:43Þ

with the second equation coming from Eq. (4.8) regarding
the dynamics of thermal inflation. Therefore, with the
energy density of the Universe being ∼M2

PH
2�, we require

m0hϕi < MPH� and
ffiffiffi
λ

p
hϕi3 < M2

PH�: ð4:44Þ

Substituting hϕi, Eq. (2.7), into the above gives the
constraint

m0 < ð
ffiffiffi
λ

p
MPH2�Þ1=3: ð4:45Þ

ϕ� Case B.—The energy density of ϕ during primordial
inflation is
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ρϕ;inf ¼
�
−
1

2
m2

0 þ h2ψ2�

�
ϕ2
BD þ λ

ϕ6
BD

M2
P

∼ −
1

2
m2

0ϕ
2
BD þ λ

ϕ6
BD

M2
P
; ð4:46Þ

with the second equation coming from Eq. (4.8) regarding
the dynamics of thermal inflation. Therefore, with the
energy density of the Universe being ∼M2

PH
2�, we require

m0ϕBD < MPH� and
ffiffiffi
λ

p
ϕ3
BD < M2

PH� ð4:47Þ

Substituting ϕBD, Eq. (4.38), into the above gives

m0 < ð
ffiffiffi
λ

p
M2

PH�Þ1=3: ð4:48Þ

10. Transition from thermal inflation
to thermal waterfall field oscillation

In order for the equations of the δN formalism that are
derived within the context of the end of inflation mecha-
nism to be valid, we require the transition from thermal
inflation to thermal waterfall field oscillation to be suffi-
ciently fast [24]. More specifically, we require

Δt < δt1→2; ð4:49Þ

where Δt≡ t2 − t1 is the time taken for the transition to
occur and δt1→2 is the proper time between a uniform
energy density spacetime slice just before the transition at
t1 and one just after the transition at t2 when ϕ starts to
oscillate around its vev. Qualitatively, we require the
thickness of the transition slice to be much smaller than
its warping.
The primordial curvature perturbation that is generated

by the end of inflation mechanism is

ζ ¼ HTIδt1→2: ð4:50Þ

Therefore, from Eq. (4.49) we require

ζ > HTIΔt: ð4:51Þ

To calculate ϕ1 and ϕ2, the value of ϕ at times t1 and t2,
respectively, we use the fact that the process is so rapid that
it takes place in less than a Hubble time, so that the
Universe expansion can be ignored. Then the equation of
motion is

ϕ̈þ ∂V
∂ϕ ≃ 0: ð4:52Þ

At the end of thermal inflation, ϕ is not centred on the
origin, but has started to roll down the potential slightly. At
this time, g2T2 is much smaller thanm2

0. Therefore we have

∂V
∂ϕ ≃ −m2

0ϕ: ð4:53Þ

So we have the equation of motion ϕ̈≃m2
0ϕ whose

solution is

ϕ ∝ em0t; ð4:54Þ

where we are considering only the growing mode.
Therefore we have

ln

�
ϕ2

ϕ1

�
∼m0ðt2 − t1Þ ∼m0Δt: ð4:55Þ

We know that ϕ1 ∼ T ∼m0 and ϕ2 ∼ hϕi. Therefore we
have

ln

��
1ffiffiffi
λ

p MP

m0

�
1=2

�
∼m0Δt: ð4:56Þ

For all values of λ and m0, we have Δt ≥ m−1
0 . Therefore,

from Eq. (4.51) we have

ζ >
HTI

m0

: ð4:57Þ

Thus, given that ζ ∼ 10−5, we require

HTI < 10−5m0: ð4:58Þ

We obtain an additional constraint by substituting
Eq. (4.58) into the requirement of mψ ≪ HTI, Eq. (4.14).
This gives

mψ < 10−5m0: ð4:59Þ

A further constraint is obtained by substituting HTI ,
Eq. (2.10), into Eq. (4.58). We obtain

m0 < 10−10
ffiffiffi
λ

p
MP: ð4:60Þ

11. Energy density of the oscillating ψ

As ψ has acquired perturbations from primordial infla-
tion, we require it not to dominate the energy density of the
Universe after the end of thermal inflation when it is
oscillating, at which time the effective mass of ψ is
increased significantly due to the coupling of ψ to ϕ.
This is so as not to allow ψ to act as a curvaton, i.e. not to
allow ψ’s perturbations to generate a significant contribu-
tion to the primordial curvature perturbation when ψ
decays. The reason for this is just so that we do not have
a curvaton inflation scenario, where the perturbations
generated via the modulated mass give a negligible con-
tribution to ζ.
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The energy density of the oscillating ψ field after the end
of thermal inflation is

ρψ ;osc ¼ h2ψ2 ϕ2þ 1

2
m2

ψψ
2 ∼ h2ψ2�hϕi2 þ

1

2
m2

ψψ
2�: ð4:61Þ

For simplicity, we assume that ψ decays around the same
time as ϕ, i.e. that H does not change much between the
time when ϕ decays and the time when ψ decays.
Therefore, the energy density of the Universe at the time
when ψ decays is ∼M2

PΓ2. We therefore require

ρψ ;osc ∼ h2ψ2�hϕi2 þ
1

2
m2

ψψ
2� < M2

PΓ2; ð4:62Þ

which means

mψ <
MPΓ
ψ�

and hhϕiψ� < MPΓ: ð4:63Þ

Substituting hϕi, Γ and ψ�, Eqs. (2.7) and (4.16) and using
that Γ ∼ g2m (with g < 1) into Eq. (4.63) gives the
constraints

h > 10−4g−2λ−1=4
MP

H�

�
m0

MP

�
3=2

and

mψ < ð102ghÞ2MPH�
m0

: ð4:64Þ

C. Results

We now combine the above constraints to find out the
allowed parameter space.

1. The parameter space

From Eq. (4.24) we require g < 1. We also require the
constraint given by Eq. (4.33) to be satisfied, where g is
present as g−16. Therefore, this latter constraint will start to
become very strong very quickly as we decrease g. We find
that a value of g ¼ 0.4 yields allowed parameter space, for
reasonable values of H� and Γφ. The parameter space that
we find here, however, when all constraints are considered
together and regardless of the ϕ� case, is actually a sharp
prediction of single values for all but one of the free
parameters and the other quantities in the model, to within
an order of magnitude, rather than a range of parameter
space. The values of the free parameters are displayed in
Table I.
Within the range m0 ∼ 102–103 GeV, the mass mψ can

span many orders of magnitude, with only an upper limit of
∼10−4 − 10−2 GeV. Within the model, there is no effective
lower bound onmψ , but, of course, this cannot decrease too
much.11 Values of other quantities in the model for a mass

value of m0 ∼ 103 GeV and the parameter values of Table I
are shown in Table II. In this table we include the tensor
fraction, which for H� ∼ 108 GeV yields the negligible
value r ∼ 10−13.

2. Values of ns and n0s with quadratic chaotic inflation

We provide results for the spectral index and its running
when the period of primordial inflation is that of slow-roll
quadratic chaotic inflation, with the potential

VðφÞ ¼ 1

2
m2

φφ
2: ð4:65Þ

From Sec. III B, the spectral index ns is given by

ns ≃ 1 − 2ϵþ 2ηψ ; ð4:66Þ

with ϵ and ηψ being given by Eq. (3.3) and where both are
to be evaluated at the point where cosmological scales exit
the horizon during primordial inflation. The potential of
Eq. (4.65) gives

ϵ ¼ 2M2
P

φ2�
: ð4:67Þ

We obtain an expression for φ� in terms of N� by using the
equation

TABLE I. Values of the free parameters for which parameter
space exists.

Parameter Value

g 0.4
H� 108 GeV
Γφ 10−6 GeV
λ 10−11

h 10−9

TABLE II. Values of quantities in the model for m0 ∼ 103 GeV
and the parameter values of Table I.

Quantity Value

ψ� 1012 GeV
δψ�=ψ� 10−4

HTI 10−2 GeV
hϕi ∼ ϕBD 1013 GeV
V1=4
0

108 GeV
T1 107 GeV
T2 103 GeV
Γ 102 GeV
r 10−13

11Note that ψ is much more massive today as its mass receives
a contribution due to the coupling with hϕi.
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N� ≃ 1

M2
P

Z
φ�

φend

VðφÞ
V 0ðφÞ dφ: ð4:68Þ

We define the end of primordial inflation to be when ϵ ¼ 1.
This gives φend ¼

ffiffiffi
2

p
MP. Therefore we have

φ� ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N� þ 2

p
MP: ð4:69Þ

Substituting Eq. (4.69) into Eq. (4.67) gives

ϵ≃ 1

2N� þ 1
: ð4:70Þ

We also need to calculate ηψ . Using our potential, Eq. (2.2),
at the time cosmological scales exit the horizon, we obtain

∂2V
∂ψ2

				
�
¼ m2

ψ þ 2h2ϕ2�: ð4:71Þ

Therefore we obtain ηψ as

ηψ ¼ 1

3H2�
ðm2

ψ þ 2h2ϕ2�Þ: ð4:72Þ

Our final result for the spectral index is therefore

ns ≃ 1 −
2

2N� þ 1
þ 2

3

m2
ψ þ 2h2ϕ2�

H2�
: ð4:73Þ

From Sec. III B, the running of the spectral index n0s is
given by

n0s ≃ −8ϵ2 þ 4ϵηþ 4ϵηψ ; ð4:74Þ

with η being given by Eq. (3.7), which is to be evaluated at
the point where cosmological scales exit the horizon during
primordial inflation. The potential of Eq. (4.65) gives
η ¼ ϵ, given by Eq. (4.67). Thus,

η≃ 1

2N� þ 1
: ð4:75Þ

Our final result for the running of the spectral index is
therefore

n0s ≃ −
4

ð2N� þ 1Þ2 þ
4

6N� þ 3

m2
ψ þ 2h2ϕ2�

H2�
: ð4:76Þ

Using the values in Tables I and II, it is straight-
forward to show that, for m0 ∼ 103 GeV, we have
3ηψ ¼ ðm2

ψ þ 2h2ϕ2�Þ=H2� ∼ 10−8. Therefore, the last term
on the right-hand side of Eqs. (4.73) and (4.76) is negligible.
In order to obtain ns and n0s, we first need to obtain N�.

The values of NTI and N� in our the model are shown in
Fig. 2, respectively, with g, H�, Γφ and λ values from

Table I. The kink that is visible in the plot of N� at around
m0 ∼ 109 GeV is a result of the fact that for m0 values
larger than this, we do not have any period of thermal
inflation, as can be seen in the plot of NTI. The values
of NTI and N� for a thermal waterfall field mass of
m0 ∼ 103 GeV are shown in Table III.
The predicted values of ns and n0s of the model for a

thermal waterfall field mass of m0 ∼ 103 GeV in all cases
of ϕ� are the same to within at least four significant figures.
They are also both insensitive to the value of mψ within its
allowed range. ns and n0s are shown in Table IV, with them
both being within current observational bounds [2]. The
prediction of the model for ns and n0s and for a spectator
field mass at the upper bound of mψ ¼ 10−2 GeV are
shown in Figs. 3 and 4 with the parameter values of Table I.

N* NTI

104
10 2 10 6 10 8 1010

m0(GeV)

20

30

40

50

60

10

20

30

40

0

FIG. 2. Values of N� and NTI in our model, with Γφ ≪ HTI and
g, Γφ and λ values from Table I. [Plots of Eqs. (3.16) and (4.3),
with m ¼ m0.] The blue solid line depicts N� and the red dashed
line depicts NTI, such that N� þ NTI ¼ 52. The vertical dotted
line depicts values for m0 ¼ 103 GeV.

TABLE III. Values ofNTI andN� in our model, with Γφ ≪ HTI,
m0 ∼ 103 GeV and g, H�, Γφ, and λ values from Table I.

Parameter Value

NTI 24
N� 28

TABLE IV. Prediction for ns and n0s of the model with
primordial inflation being quadratic chaotic inflation, with
Γφ ≪ HTI, mψ ¼ 10−2 GeV, m0 ∼ 103 GeV and the parameter
values from Table I.

Quantity Value

ns 0.9645
n0s −0.001259
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V. CONCLUSIONS

We have thoroughly investigated a new model of thermal
inflation, where the thermal waterfall field is coupled to a
spectator field, which is responsible for the observed
primordial curvature perturbation through the end of
inflation mechanism. We have derived a multitude of
constraints for the model parameters. We have found that
the allowed parameter space for our model corresponds to a
sharp prediction for inflationary observables, like the
spectral index and its running. Taking quadratic chaotic
inflation as an example, we have obtained the values shown
in Table IV, which are in excellent agreement with the latest
Planck data (well within 1-σ). We also found negligible
tensors, with r ∼ 10−13.

Our model works with tachyonic mass for our thermal
waterfall field that is of order 1 TeV. This is rather natural
for a flaton field, which corresponds to a flat direction in
supersymmetry lifted by a soft mass [31–33]. The energy
scale of primordial and of thermal inflation were found to
be 1013 and 108 GeV, respectively, which are very rea-
sonable values. Notice that low-scale primordial inflation
ensures that the contribution to the curvature perturbation
of the inflaton field is negligible.
It should be stressed that the choice of model for

primordial inflation may differ from our quadratic chaotic
inflation example. We have found that, in the allowed
parameter space, the direct contribution of our spectator
field to ns and n0s is negligible as ηψ ∼ 10−8. Thus, our
expressions in Eqs. (3.2) and (3.11) become ns ≃ 1�2ϵ and
n0s ≃ 8ϵ2 þ 4ϵη. Therefore, given a particular model of
primordial inflation, it is straightforward to evaluate the
slow-roll parameters ϵ and η and find ns and n0s.
The number N� of remaining e-folds of primordial

inflation when the cosmological scales exit the horizon
is drastically reduced by the presence of a subsequent
period of thermal inflation. In the allowed parameter space,
N� ≃ 28. This determines the values of ϵ and η and in turn
the observables ns and n0s. Note that our N� is substantially
smaller than the usual 60 e-folds. Consequently, the
produced values of ns and n0s may vary substantially from
the usual numbers corresponding to the particular model of
primordial inflation considered. This can render viable
inflationary models that would be otherwise excluded by
observations.12 This effect of a period of thermal inflation
resurrecting inflationary models has been employed
in Ref. [34].
Note also that, in our case, thermal inflation can last

much longer that the typical 10-15 e-folds, because we have
considered that reheating for primordial inflation occurs
after thermal inflation. So, the above effect, i.e. modifying
the inflationary observables by changing N� due to thermal
inflation, is intensified.
All in all, we have thoroughly investigated a new model

of thermal inflation, in which the curvature perturbation is
due to a spectator field coupled to the thermal waterfall
field. For natural values of the model’s mass scales, we
have found a sharp prediction of inflationary observables
that depends on the chosen model of primordial inflation.
Considering quadratic chaotic inflation resulted in numbers
that are in excellent agreement with Planck observations.
Our paper serves to remind readers that realistic models of
inflation, in which the curvature perturbation is not gen-
erated by the inflaton field, are viable alternatives to the
simple single-field inflation paradigm.

FIG. 4. Prediction of the model for n0s with primordial inflation
being quadratic chaotic inflation, with Γφ ≪ HTI, mψ ¼
10−2 GeV and the parameter values from Table I. [A plot of
Eq. (4.76), irrespective of the value of ϕ�, with m ¼ m0 and
Γ ¼ g2m0.] The blue line is the central value of n0s as obtained by
the Planck mission [2], with the lower and upper bounds being
outside the displayed range of n0s.

FIG. 3. Prediction of the model for ns with primordial inflation
being quadratic chaotic inflation Γφ ≪ HTI,mψ ¼ 10−2 GeV and
the parameter values from Table I. [A plot of Eq. (4.73),
irrespective of the value of ϕ�, with m ¼ m0 and Γ ¼ g2m0.]
The blue and red lines are the central value and lower/upper
bounds of ns, respectively, as obtained by the Planck mission [2].

12Such reconciliation of high scale models of inflation may
also occur using nonstandard initial conditions for fluctuations
[41].
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