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The space-based Laser Interferometer Space Antenna (LISA) will be able to observe the gravitational-
wave signals from systems comprised of a massive black hole and a stellar-mass compact object. These
systems are known as extreme-mass-ratio inspirals (EMRIs) and are expected to complete ∼104–105 cycles
in band, thus allowing exquisite measurements of their parameters. In this work, we attempt to quantify the
astrophysical uncertainties affecting the predictions for the number of EMRIs detectable by LISA, and find
that competing astrophysical assumptions produce a variance of about three orders of magnitude in the
expected intrinsic EMRI rate. However, we find that irrespective of the astrophysical model, at least a few
EMRIs per year should be detectable by the LISA mission, with up to a few thousands per year under the
most optimistic astrophysical assumptions. We also investigate the precision with which LISAwill be able
to extract the parameters of these sources. We find that typical fractional statistical errors with which the
intrinsic parameters (redshifted masses, massive black hole spin and orbital eccentricity) can be recovered
are ∼10−6–10−4. Luminosity distance (which is required to infer true masses) is inferred to about 10%
precision and sky position is localized to a few square degrees, while tests of the multipolar structure of the
Kerr metric can be performed to percent-level precision or better.

DOI: 10.1103/PhysRevD.95.103012

I. INTRODUCTION

Gravitational waves (GWs) provide a means of gathering
precious information otherwise beyond the reach of tradi-
tional electromagnetic astronomy. In particular, GWs may
illuminate our understanding of the properties of black
holes (BHs). The terrestrial Advanced LIGO [1] has
recently observed GW signals from coalescing stellar-mass
binary BHs, with two clear detections [2,3] and a probable
third candidate [4,5]. These observations allowed estima-
tion of the source parameters with high accuracy [5–7],
giving new insight into their astrophysical formation [5,8]
and allowing tests of general relativity (GR) [5,9,10].
Many more stellar-mass BH binaries are expected to be
detected by LIGO (and by other terrestrial detectors such as

Advanced Virgo [11] and KAGRA [12]) in the next few
years [5,13].
In addition to stellar-mass BHs, there is believed to be a

population of massive BHs (MBHs), with masses in the
range 105–109 M⊙, each lurking at the center of a galaxy
[14–18]. Correlations between the mass of the MBH and
other characteristics of the surrounding stars, such as the
velocity dispersion σ of the spheroidal component of the
host galaxy (see, e.g., [19]) suggest a link between
evolution of the MBH and its host galaxy [20–22].
Surrounding MBHs out to distances of a few parsecs, are

nuclear star clusters of millions of stars [23]. In these
innermost galactic regions, the density of stars easily
exceeds 106 M⊙ pc−3, and relative stellar velocities range
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between ∼100–1000 km s−1. Here, mutual gravitational
deflections between stars play a crucial role in determining
dynamics [24], and their tidal disruption may contribute to
increasing the mass of the central MBH [25–28]. Unlike
stars, compact objects (COs; including stellar-mass BHs,
neutron stars and white dwarfs) can avoid tidal disruption
and approach the central MBH, radiating a significant
amount of energy in GWs at low frequencies.
One of the main experimental challenges for ground-

based detectors is seismic noise, which limits their sensi-
tivity at frequencies ≲10 Hz, making them insensitive to
GWs from MBH systems. However, space-borne interfero-
metric GW detectors, such as the Laser Interferometer
Space Antenna (LISA) [29], are free from the seismic
noise. The technology behind LISA, an ESA-led mission
expected to be launched by 2034, has been recently tested
by the LISA Pathfinder experiment with outstanding results
[30]. Previous work has investigated the scientific potential
of LISA-like detectors for (i) MBH mergers and astro-
physics [31]; (ii) stochastic backgrounds [32,33]; (iii) cos-
mography [34]; (iv) tests of general relativity [35,36]; and
(v) ringdown tests of the nature of BHs [36,37]. LISAwill
also usher in the era of multiband GW astronomy, with
stellar-mass binary BHs being detectable by LISA years to
days before they reach the sensitivity window of ground-
based detectors [38]. This would provide information on
the formation mechanism of BH binaries [39–41], improve
the precision of parameter estimation (including sky
location) [42], and yield better constraints on putative
deviations from GR [35]. In this paper we will focus on
the physics and astrophysics of extreme mass-ratio inspi-
rals (EMRIs) [43], i.e. systems comprised of stellar-mass
BHs or other comparable mass COs orbiting around a
MBH with mass M ∼ 104–107 M⊙.
As a consequence of their extreme mass ratio these

systems inspiral slowly, completing ∼104–105 cycles in
LISA’s sensitive frequency range [44,45]. Therefore
EMRIs are ideal signals to construct detailed maps of
the background spacetime of MBHs [46–50], precisely
estimate source parameters [51–53], perform tests of GR
[50,54], and possibly detect the presence of gas around the
central MBH [55–60]. Measuring the properties of a
population of EMRI signals could additionally give us
information on the mass distribution of MBHs [61] and
their host stellar environments [43].
We examine in detail the scientific potential of EMRI

observations with LISA, focusing on event rates and on
parameter-estimation precision. There have been previous
studies computing EMRI rates [62–64], but the astrophysi-
cal model employed in those calculations was a combina-
tion of simple power laws, and no attempt was made to
quantify the uncertainties in that model. EMRI parameter-
estimation studies have also been carried out [51,52], but
only for a small sample of representative cases and not for a
full astrophysical population. In this study we address both

of these shortcomings. We compute event rates for several
different astrophysical models that were selected to quan-
tify the main observational uncertainties, and we compute
estimates of the parameter-estimation precisions for all the
events in each population. Our results are computed for the
first time considering a 2.5 Gm LISA detector with six laser
links, which was proposed as the new mission baseline in
the response to the ESA call in January 2017 [29].
The plan of the paper is as follows. We begin in Sec. II by

discussing the assumed design of the LISA detector. In
Sec. III we describe our astrophysical EMRI model and the
related uncertainties. Section IV describes our EMRI
waveform models and the parameter estimation calculation.
We summarize our main results in Sec. V, and conclude by
presenting possible directions for future research.

II. LISA SENSITIVITY

The LISA baseline went through several stages of
redesign in the past five years. Following the 2011
NASA drop-out, the classic LISA design was initially
descoped to fit within the budget of an L-class
ESA mission, leading to the New Gravitational-wave
Observatory (NGO) design [65]. This new baseline was
eventually selected as strawman mission in support of The
Gravitational Universe [66], the science theme adopted by
ESA for its L3 slot, scheduled for launch in 2034.
Following the selection, in 2014 a Gravitational
Observatory Advisory Team (GOAT) was appointed by
ESA to consider a number of feasible options and issue a
recommendation for a new design. The study considered a
family of designs, featuring different choices for the arm
length L, laser power, telescope diameter, mission duration
and low-frequency noise level (see [31] for details).
Following the GOAT recommendation, the LISA

Consortium answered the ESA call for missions by
proposing the baseline outlined in [29]. The detector
features a constellation of three satellites separated by L ¼
2.5 Gm and connected by six laser links. The output power
of each laser is 2 W and their light is collected by 30 cm
telescopes. The sky-averaged detector sensitivity can be
written in analytic form as

SnðfÞ ¼
20

3

4Saccn ðfÞ þ 2Slocn þ Ssnn þ Somn
n

L2

×

�
1þ

�
2Lf
0.41c

�
2
�
; ð1Þ

where L is the arm length, and the noise contributions
Saccn ðfÞ, Slocn , Ssnn and Somn

n are due to low-frequency
acceleration, local interferometer noise, shot noise and
other measurement noise, respectively. The acceleration
noise has been fitted to the level successfully demonstrated
by the LISA Pathfinder [30] as
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Saccn ðfÞ ¼
�
9 × 10−30 þ 3.24 × 10−28

��
3 × 10−5 Hz

f

�
10

þ
�
10−4 Hz

f

�
2
���

1 Hz
2πf

�
4

m2Hz−1; ð2Þ

whereas other contributions are set to

Slocn ¼ 2.89 × 10−24 m2 Hz−1;

Ssnn ¼ 7.92 × 10−23 m2Hz−1;

Somn
n ¼ 4.00 × 10−24 m2Hz−1:

ð3Þ

Besides the instrumental noise of Eq. (1), we also include
a galactic confusion noise component, modeled by the fit

Sgal ¼ Agal

�
f

1 Hz

�
−7=3

exp

�
−
�
f
s1

�
α
�

×
1

2

�
1þ tanh

�
−
f − f0
s2

��
: ð4Þ

The overall amplitude of the background Agal ¼ 3.266 ×
10−44 Hz−1 depends on the astrophysical model for the
population of white dwarf binaries in the Galaxy. Here we
have used the same model as in [29]. The power law f−7=3

is what we expect from a population of almost mono-
chromatic binaries. The exponential factor comes from
removal of the loud signals standing above the confusion
background, while the last term takes into account that all
Galactic binaries can be resolved and removed above some
frequency f0. For the assumed two-year observation period,
the fitting parameters appearing in the above expression
for Sgal have the values: α ¼ 1.183, s1 ¼ 1.426 mHz, f0 ¼
2.412 mHz, s2 ¼ 4.835 mHz.
The LISA design is most sensitive at millihertz frequen-

cies, making it well-purposed for observing EMRIs.

III. ASTROPHYSICAL EMRI MODEL

The expected EMRI rate depends on several astrophysi-
cal ingredients:

(i) The MBH population in the accessible LISA mass
range, M ∈ ½104; 107�M⊙, the redshift evolution of
their mass function, and their spin distribution;

(ii) The fraction of MBHs hosted in dense stellar cusps,
which are the nurseries for EMRI formation;

(iii) The EMRI rate per individual MBH, and the mass
and eccentricity distribution of the inspiralling COs.

In the following subsections we consider these ingredients in
turn, presenting the astrophysically motivated prescriptions
used in this work, before combining them in Section III D.

A. MBH population

We consider here two population models that are
intended to bracket current uncertainties in the MBH mass

function at the low mass end (cf. Fig. 1). The first one is
Model popIII, as investigated in Klein et al. [31]. This is a
self-consistent model for MBH formation and cosmic
evolution developed in [67–70], and assumes light MBH
seeds from population III (popIII) stars [71], while account-
ing for the delays between MBH and galaxy mergers. The
model successfully reproduces several galaxy and MBH
mass function properties, and it is consistent with obser-
vational constraints on the MBH mass function [72,73].
The predicted MBHmass function in the relevant range can
be approximated as

dn
d logM

¼ 0.005

�
M

3 × 106 M⊙

�
−0.3

Mpc−3; ð5Þ

almost independent of redshift, as shown in Fig. 1. We label
this mass function “Barausse12”.
Following Gair et al. [61], we also consider a more

conservative model with a redshift-independent mass
function of the form

dn
d logM

¼ 0.002

�
M

3 × 106 M⊙

�
0.3

Mpc−3: ð6Þ

In this case, the MBH mass function increases with mass at
the low-mass end, and it is therefore less favorable for
EMRI events falling in the LISA band. This is a purely

FIG. 1. MBH density mass function dn=d log10 M for the self-
consistent model popIII at redshift 0 (solid), 1 (long dashed), 2
(short dashed) and 3 (dotted). The approximation provided by
Eq. (5) is shown as a thin straight black line. Also shown in brown
is the redshift-independent pessimistic mass function as given by
Eq. (6). The shaded area represent constraints from Shankar et al.
[72] (light orange) and Shankar [73] (green).
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phenomenological model, which does not come from a
self-consistent MBH evolutionary scenario, but is still
consistent with current observational constraints on the
MBH mass function. We label this mass function “Gair10.”
The EMRI rate and expected signal also depend on the

spin parameter a of the central MBH. The popIII model
self-consistently follows the spin evolution of MBHs
through accretion and mergers. We find that most MBHs
in the LISA range have near maximal spins. This is
because, although MBH seeds start with a random spin
distribution, they need to accrete enough mass to get into
the LISA band. At small masses, the MBHs always align
with the accreted material (the MBH angular momentum is
always smaller than the disk angular momentum in our
model [68]). The distribution starts to extend to lower a for
higher masses, when the MBH spin becomes larger than the
typical disk angular momentum [74]. As a result, the MBHs
do not always align with the accreting material, and
spindown is possible. However, this effect becomes appre-
ciable only at M ≈ 107 M⊙ [68,74]. We assume a maxi-
mum dimensionless MBH spin parameter a ¼ 0.998, with
a median value around a ¼ 0.98. Since most MBHs have
high spins in our default model, we label it “a98.” For the
sake of comparison, we also consider two alternative
models; one with a flat spin distribution 0 < a < 1, labeled
“aflat,” and one with nonspinning MBHs, labeled “a0.”

B. Stellar cusps surrounding MBHs

A necessary condition for EMRI formation is the
presence of a cusplike distribution of stellar objects
surrounding the MBH. It has generally been assumed that
MBHs are immersed in a Bahcall–Wolf stellar cusp with
density profile ρðrÞ ∝ r−7=4, which is the steady state
solution for a distribution of stars in the sphere of influence
of a massive object [75]. However galaxies merge, and so
do the MBHs they host. MBH binaries destroy stellar
cusps, carving a low density core [69,70,76] which is
unsuitable to the formation of EMRIs. One of the main
advantages of using a semianalytic MBH evolution model
is that we are able to track the MBH merger history
implementing a simple prescription that takes into account
in a self-consistent way cusp disruption following MBH
binary mergers.

1. Cusp erosion and regrowth

To understand the impact of a merger we must estimate
the time tcusp taken for a cusp to reform.
We assume that each MBH binary with mass M ¼

M1 þM2 is embedded in an isothermal sphere, defined by
a density profile [77]

ρðrÞ ¼ σ2

2πGr2
; ð7Þ

where σ is the one-dimensional velocity dispersion.
We further assume that the MBH binary carves a core of

constant density and size rc in the center of the stellar system.
The mass deficit due to a flat core of size rc is given by

Md ¼
4

3

σ2rc
G

: ð8Þ

Thus, rc can be estimated once Md is known. The mass
deficit must equal the mass displaced by the MBH binary
on its way to coalescence, and is estimated as [69,70]:

Md ¼ 0.7Mq0.2 þ 0.5M ln

�
rh
rGW

�
þ 5M

�
Vk

Vesc

�
1.75

: ð9Þ

Here, q ¼ M2=M1 ≤ 1 is the mass ratio of the MBH binary,
rh is the binary hardening radius, rGW is the radius at which
GW emission dominates over stellar hardening, Vk is the
GW kick and Vesc ≈ 5σ is the typical escape velocity from
the stellar bulge [78]. To make use of Eq. (9), we need an
estimate of rh=rGW. Here rh is the hardening radius, the
separation at which the specific binding energy of the
binary is equal to the average specific kinetic energy of
the surrounding stars [79,80], given by

rh ¼
GM2

4σ2
; ð10Þ

where M2 is the secondary’s mass (see e.g. [81]). The
distance rGW represents the separation at which the MBH
binary evolution switches from being stellar hardening
dominated to be GW driven. It can therefore be computed
by finding where the three-body scattering hardening
rate ðdr=dtÞ� becomes equal to the GW shrinking rate
ðdr=dtÞGW. The latter given by the standard quadrupole
formula [44], and the former can be written as [81]

�
dr
dt

�
�
¼ HGρ�

σ
r2: ð11Þ

Here H ≈ 15 is a dimensionless hardening rate and the
stellar density ρ� is evaluated at the influence radius of the
binary ri ¼ GM=σ2 [82]. For the isothermal sphere this
gives

ρ� ¼
σ6

2πG3M2
: ð12Þ

Combining everything together and assuming circular
binaries, one gets:

rh
rGW

≈ 0.178
c
σ

q4=5

ð1þ qÞ3=5 : ð13Þ

For a given MBH mass, if we know that there was a merger
with a given q, we can substitute Eq. (13) into Eq. (9), to
obtain the mass deficit, and use this in Eq. (8) to solve for rc
and obtain the extent of the core. Once rc is known, the
relaxation time for an isothermal sphere is given by [77]
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trelax ¼
5

lnΛ

�
σ

10 km s−1

��
rc
1 pc

�
2

Gyr; ð14Þ

where lnΛ ≈ 10 is the Coulomb logarithm [77]. The cusp
regrowth time is then [83]

tcusp ¼ 0.25trelax: ð15Þ
This can be expressed in terms of M and q only if we
specify anM–σ relation to eliminate the σ dependence. We
use the best fit of Gültekin et al. [18] as our default model:

M ¼ 1.53 × 106
�

σ

70 km s−1

�
4.24

M⊙: ð16Þ

Combining Eqs. (8)–(15), it is possible to approximate
tcusp ∝ M1.29 if we ignore the rh=rGW term in Eq. (9). The
dependence on the mass ratio is mild. Results for tcusp are
shown in the left panel of Fig. 2. The red curves are for
Vk ¼ 0, whereas the blue ones assume Vk ¼ 0.6Vesc. If we
ignore the Vk contribution, we can fit the cusp regrowth
time as

tcusp ≈ 6

�
M

106 M⊙

�
1.19

q0.35 Gyr: ð17Þ

The slightly weaker dependence on M than the initial
approximation is due to the rh=rGW term in Eq. (9). Typical
cusp regrowth time scales are a significant fraction of the
Hubble time for equal-mass binaries with total mass
106 M⊙, whereas they tend to become unimportant for

lower mass MBHs (generally less than 1 Gyr for a
105 M⊙ MBH).
Further core scouring following significant kicks will

make these time scales a factor of 2 longer. For typical kick
velocities of few hundred km s−1 we find that the EMRI rate
drops by a factor of ∼2 due to a combination of MBH
ejections from low mass halos and prolongation of cusp
regrowth time scales.
The adopted M–σ relation has a significant impact on

tcusp. We will therefore explore different prescriptions. As
mentioned above, our default model employs the M–σ
relation of Gültekin et al. [18] (labeled “Gultekin09”)
which gives tcusp ≈ 6 Gyr for a Milky Way-like MBH.
We also consider two alternatives; a pessimistic model from
Kormendy and Ho [19] (labeled “KormendyHo13”) which
gives tcusp ≈ 10 Gyr for a Milky Way-like MBH, and an
optimistic one [85] (labeled “GrahamScott13”) which gives
tcusp ≈ 2 Gyr for a Milky Way-like MBH.
For the sake of completeness, we also tried a model

based on Shankar et al. [86], which claims that the
observed M–σ relations are fundamentally biased and that
the intrinsic one has a lower normalization. We found this
to make little difference in practice for EMRI rates, and do
not present results based on this model.
To verify our simple model, we performed a series of

sanity checks. First, for a Milky Way-like MBH, Eq. (14)
implies trelax ≈ 1011 yr, which is consistent with Fig. 1
of [87]. Moreover, Md given by Eq. (9) is consistent with
the results of full N-body simulations by Khan et al. [84],

FIG. 2. Left panel: Cusp regrowth time tcusp as a function of the total MBH binary mass. Solid, long-dashed and short-dashed curves
are for q ¼ 1, 0.1, 0.01 respectively. Red curves assume Vk ¼ 0 whereas blue curves assume Vk=Vesc ¼ 0.6. Right panel: Mass deficit
normalized to M as a function of binary mass ratio for M ¼ 105 M⊙ (short dashed), M ¼ 106 M⊙ (long dashed), and M ¼ 107 M⊙
(solid). Blue and green dots are mass deficits computed by Khan et al. [84].
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as shown in the right panel of Fig. 2. Here, each of the red
lines shows the mass predicted by our simple model as a
function of q (different line styles refer to different MBH
masses). The blue and green dots are mass deficits
computed by Khan et al. [84] at the end of their simu-
lations. The blue dots are mass deficits within 1.5ri, where
ri is the MBH binary influence radius, whereas the green
dots are mass deficits within 3ri. The mass deficit in those
simulation saturate between 2ri and 3ri. The cores pre-
dicted by our simple model are ≈1.5ri. In the simulations,
however, the MBH binaries do not evolve all the way
through coalescence. Small q binaries, in particular, are
stopped at an earlier stage of the evolution, because the
simulations are more time consuming. This is the likely
explanation of the steeper mass-ratio dependence of the
simulation results with respect to our models. Overall, the
analytical mass deficits and the results of the simulations
agree to within a factor of 2.

2. Fraction of MBHs hosted in stellar cusps

To compute the fraction of MBHs that reside in cusps
versus those in cores, we need to convolve the MBH
number density dn=dM (ignoring the spin dependence for
the moment) with the number density of mergers per unit
mass, mass ratio and redshift d3nm=dMdzdq, and the cusp
regrowth time tcuspðM; qÞ given by Eq. (17).
First, we assume that MBHs do not grow appreciably in

mass in the redshift range of interest (mostly z < 2 for
LISA). Although this might well be a crude approximation,
it simplifies the model. From our semianalytic MBH
evolution model [67–70], we extract the distribution
d3nm=dMdzdq, which is the differential number density
(per Mpc3) of mergers with mass ratio q undergone by a
MBH of a given mass M at redshift z. The quantity of
interest is p0ðM; zÞ, the probability that a MBH of mass M

observed at redshift z had zero mergers within its cusp
regrowth time tcuspðM; qÞ, given by Eq. (17). We can define
the quantity d2Nm=dzdq as

d2Nm

dzdq
ðM; z; qÞ ¼ d3nm

dMdzdq

�
dn
dM

�
−1
: ð18Þ

This is the (mean) differential merger rate for an individual
MBH with massM, i.e. the number of mergers a MBH of a
given massM has undergone between redshift z and zþ dz
and with mass ratio in the range q and qþ dq. The integral
over q of Eq. (18) is represented in the left panel of Fig. 3;
MBHs in the mass range of interest for LISA generally
experience between 0.1 and 1 merger per unit redshift since
z ¼ 6. For each mass ratio, we can then define a critical
redshift zcuspðM; qÞ by solving the implicit equation

tcuspðM; qÞ ¼
Z

zcuspðM;qÞ

z
dz0

dt
dz0

; ð19Þ

where tcuspðM; qÞ is computed using Eq. (14) and Eq. (15);
if a MBH had suffered a merger between z and zcuspðM; qÞ,
there would be no cusp. We can then compute the mean
number of mergers NmðM; zÞ experienced by an individual
MBH of massM observed at redshift z in its cusp regrowth
time as

NmðM; zÞ ¼
Z

dq
Z

zcuspðM;qÞ

z
dz0

d2Nm

dz0dq
ðM; z; qÞ: ð20Þ

Assuming Poissonian statistics for the mergers, the prob-
ability that a MBH of massM and redshift z did not suffer a
merger within its cusp regrowth time is1

FIG. 3. Cusp regrowth effect for the popIII model. Left panel: The average differential number of mergers per unit redshift (i.e.
Eq. (18) integrated over q) dNm=dz experienced by each individual MBH of mass log10 M ¼ 4.5, 5, 5.5, 6, 6.5 from darker-thicker to
lighter-thinner. Center panel: The solid curves are the values ofNmðM; zÞ given by Eq. (20), and the dashed curves are the corresponding
probabilities of retaining a cusp given by Eq. (21). Right panel: The differential number of MBHs dN=dz across the Universe in the three
different mass bins that are potential EMRI hosts, either ignoring cusp disruption (solid lines) or taking it into account (dashed lines).

1A Poissonian probability distribution is strictly speaking valid
only for rare, statistically independent events with a constant rate
per unit time. Nevertheless, one can easily show that this equation
holds also for events with nonconstant rate.
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p0ðM; zÞ ¼ exp ½−NmðM; zÞ�: ð21Þ

We apply to each MBH a probability p0ðM; zÞ of being
hosted in a stellar cusp, therefore being a suitable candidate
for capturing an EMRI. NmðM; zÞ is shown in the central
panel of Fig. 3 for different MBH mass values. Despite the
similar number of mergers across the mass spectrum (left
panel), low mass MBHs observed at any z are extremely
unlikely to have undergone a merger within their short cusp
regrowth time scale (see left panel of Fig. 2), and their
probability of being hosted in a stellar cusp is of order
unity. The opposite is true for massive MBHs which reside
in galaxies with much longer cusp regrowth time scales,
and are likely to be hosted in a low-density stellar core.
If the distribution of MBHs in the Universe is described

by a mass function (now including spin) of the form
d3N=ðdMdzdaÞ, then we can construct an effective
MBH mass function for MBHs which could be potential
EMRI hosts:�

d3N
dMdzda

�
eff

¼ d3N
dMdzda

p0ðM; zÞ: ð22Þ

The right panel of Fig. 3 shows this distribution integrated
in spin and in different mass bins. It is clear that the number
of potential EMRI hosts is severely suppressed only
for M > 106 M⊙.

C. EMRI rate per MBH and properties of
the stellar-mass BH

Finally, we need to specify the rate R0 at which COs are
captured by the central MBH, and define the properties of
their orbits. The CO capture rate by MBHs has been
investigated extensively in the literature, taking into
account the effect of mass segregation [83], resonant
relaxation [88], relativistic corrections [89], central MBH
spins [90] and initial density profiles of the COs [91].
Our starting point is the intrinsic rate from Amaro-

Seoane and Preto [83], which accounts for the effect of
mass segregation:

R0 ¼ 300

�
M

106 M⊙

�
−0.19

Gyr−1: ð23Þ

This is useful scaling relation; however, it has been
calibrated for Milky Way-like galaxies, and care must be
taken when extrapolating to other systems. In particular,
this rate was calculated assuming a steady-state stellar
environment surrounding the (growing) MBH which often
cannot be achieved, especially for low-mass MBHs.
Moreover, Eq. (23) only describes the EMRI rate: it does
not include direct plunges. COs can be scattered onto
nearly radial orbits, directly plunging into the MBH with-
out emitting a significant GW signal. Although such
systems are lost as GW sources, they do contribute to
the growth of the MBH. The ratio of plunges to EMRI

depends mostly on the steepness of the density profile of
the CO population. Compared to EMRIs, plunges are
typically scattered into the MBH from much greater
distances, so that a flatter density profile results in a larger
plunge-to-EMRI ratio. For example, Merritt [91] consid-
ered two different CO distributions around MBHs of
106 M⊙ and 4 × 106 M⊙, and found that while the
EMRI rate varied within a factor of 2, remaining consistent
with Eq. (23), the number of plunges per EMRI, Np, went
from being less than one for the steeper density profile, to
be more than 50 for the shallower one. A recent study
including a single population of compact objects found
more than 100 plunges per EMRI [92]. A proper compu-
tation of EMRI rates in an astrophysical context would
require N-body simulations starting from realistic initial
conditions, spanning a wide range of MBH masses and of
their surrounding stellar distribution properties. This is a
challenge that goes beyond the scope of this paper, and in
the following we develop a simple model to quantify the
impact of nonstationary CO feeding rates and direct
plunges on the astrophysical EMRI rates.
The parameter Np introduced earlier can vary between

zero and ∼102. Using Eq. (23), the total mass accretion rate
for the MBH is given by

_M ¼ mR0ð1þ NpÞ

¼ 3000ð1þ NpÞ
�

m
10 M⊙

��
M

106 M⊙

�
−0.19

M⊙ Gyr−1;

ð24Þ
wherem is the characteristic mass of the CO. There are two
problems that arise from implementing Eq. (24), which are
exacerbated for low MBH masses. Consider for example
M ¼ 105 M⊙, m ¼ 10 M⊙ and Np ¼ 10. First, according
to this prescription, the MBHwould double its mass in only
2 Gyr, accreting more than five times its initial mass in a
Hubble time. Therefore, accreting COs at the rate given by
Eq. (23) would be inconsistent with the existence of
M ¼ 105 M⊙ MBHs [93]. Second, such a high accretion
rate implies an astrophysically implausible supply of
COs to the MBH. Assuming a standard Salpeter mass
function [94,95], only about 0.3% of stars have a mass
m� > 30 M⊙. Assuming those end their life as COs of
m ≈ 10 M⊙ [96,97], then we can estimate that about 3% of
the total stellar bulge is indeed composed by COs. Within
the sphere of influence of the MBH the enclosed mass in
stars isM� ¼ 2M, and therefore the mass in remnant BHs is
aboutMCO ¼ 0.06M. The CO content within the sphere of
influence of the MBHwould therefore be depleted in a time

td ¼
MCO

_M
¼ 0.06M

mR0ð1þ NpÞ

¼ 20

1þ Np
Gyr

�
m

10 M⊙

�
−1
�

M
106 M⊙

�
1.19

: ð25Þ
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This can be compared to the relaxation time defined by
Eq. (14), where we can substitute rc with the influence
radius ri ≈ 2GM=σ2 of the central MBH. By using theM–σ
relation of Gültekin et al. [18] and assuming lnΛ ¼ 10, we
can compute the ratio of the two time scales:

td
trelax

≃ 1.2
1þ Np

�
m

10 M⊙

�
−1
�

M
106 M⊙

�
0.06

: ð26Þ

Although Eq. (26) is valid for an isothermal density profile
and employed a specificM–σ relation [98], we verified that
for more sophisticated Dehnen profiles [99] and alternative
scaling relations the result holds within a factor of 2. The
ratio is roughly independent of mass (but does depend on
the adoptedM–σ relation), and most importantly, it is larger
than unity only if Np ≈ 0. In this case, the depletion time is
longer than the relaxation time and we can therefore
assume that the EMRI rate is sustainable. However, since
in general there are several plunges per EMRI, td=trelax < 1
and a steady state situation where the EMRI rate is given by
Eq. (23) cannot be sustained. We therefore define a duty
cycle

Γ ¼ min

�
td

trelax
; 1

�
; ð27Þ

and a sustainable EMRI rate is given by ΓR0.
We can now compute a MBHmass growth by combining

this rate with the amount of time a given MBH is
surrounded by a cusp, and is therefore a potential EMRI
host. We define this time as

tEMRI ¼
Z

dz
dt
dz

p0ðM; zÞ; ð28Þ

where p0ðM; zÞ is given by Eq. (21) and represents the
probability that a MBH of a particular mass is hosted in a
stellar cusp as a function of redshift. This time is plotted in
the lower panel of Fig. 4 and, as expected, is essentially the
Hubble time TH atM < 105 M⊙ and rapidly drops to 2 Gyr
at M > 106 M⊙. The mass growth is then

ΔM ¼ mΓR0tEMRI: ð29Þ
Even with the corrective factor of Eq. (27), the supply of

COs on inspiralling and plunging orbits can overgrow
MBHs. If, for example, tEMRI ¼ TH and m ¼ 10 M⊙ is the
mass of the accreted CO, then from Eq. (29) ΔM ¼
mΓR0TH ≳M for M ≈ 104 M⊙. For a practical computa-
tion of the rate we therefore introduce a damping factor to
(arbitrarily) cap the maximum allowed mass growth to be
expð−1ÞM, so that the MBH can at most grow by an e-fold
due to CO accretion in its lifetime. We pick Np and
compute Γ from Eq. (26) considering a specific M–σ
relation, and then calculate, for each MBH mass, ΔM
from Eq. (29). Using this, the damping factor is defined as

κ ¼ min

�
expð−1Þ M

ΔM
; 1

�
: ð30Þ

Incorporating this, the effective EMRI rate is given by:

R ¼ κΓR0: ð31Þ
Examples of the impact of the factors Γ and κ on the

EMRI rate R are shown in the upper panel of Fig. 4. From
Eq. (25), it is clear that the value of the Γ factor, and hence
R, depends critically on Np. We therefore explore three
different models featuring Np ¼ 0, 10, and 100. Since
Γ ≈ 1 for Np ¼ 0, Np has the obvious effect of renormaliz-
ing the EMRI rate. Equation (26) implies that R0 given by
Eq. (23) is close to the supply CO rate allowed by
relaxation; if a large fraction of those COs result in direct
plunges rather than EMRIs, the EMRI rate must drop
accordingly. Different M–σ relations alter the slope of the
rate as a function of mass because of its influence on the
relaxation time and so Γ. The κ factor affects the rates
mostly for masses below ∼105 M⊙, where overgrowth by
CO accretion is easy. This makes our EMRI estimates
conservative since it implies a rate suppression. We will see

FIG. 4. Top panel: The adjusted EMRI rate computed accord-
ing to Eq. (31). The three (central) thick lines assume Np ¼ 10
and correspond to the pessimistic (KormendyHo13, short-dashed
orange), fiducial (Gultekin09, solid turquoise) and optimistic
(GrahamScott13, long-dashed violet) M–σ relations. The two
thin turquoise lines show the rates for the fiducial model, but
assuming Np ¼ 0 (lower curve) and Np ¼ 100 (upper curve).
Lower panel: The average time tEMRI that a MBH of a given mass
is surrounded by a stellar cusp, and is therefore a potential EMRI
source, as implicitly defined by Eq. (28). The curves are for the
same three different M–σ relations in the top panel.
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later that most of LISA detections come from systems with
M > 105 M⊙, and therefore our results are not severely
impacted by the introduction of this damping factor.

1. Eccentricity and inclination

To estimate the distribution of EMRI eccentricities at the
last stable orbit (LSO), we evolved a large sample of COs
from their typical capture radius (which is of the order of
0.01 pc for a 106 M⊙ central MBH [43]) to final plunge.
We found a rather flat eccentricity distribution at plunge in
the range 0 < ep < 0.2, with a small tail of outliers with
higher ep. In the following, we therefore assume a flat
distribution in the range 0 < ep < 0.2 for simplicity.
Finally, the rates in Eq. (23) have been computed in the

nonspinning approximation. As a consequence of frame-
dragging effects, the location of the LSO of a test particle
orbiting a spinning MBH depends on the inclination of its
orbital angular momentum with respect to the MBH spin,
θinc, and on whether the orbit is prograde (0 ≤ θinc ≤ π=2)
or retrograde (π=2 ≤ θinc ≤ π). Therefore, the rate R has to
be adjusted using a spin-dependent and inclination cor-
recting factorWða; θincÞ [90]. The correction factor is based
on the ratio of the semimajor axis for the spinning case
aKerrLSO with respect to the nonspinning case aSchwLSO averaged
over the eccentricity, that is [90]:

Wða; θincÞ ¼
�
aKerrLSOðeÞ
aSchwLSO ðeÞ

	
e

: ð32Þ

In practice we use an averaged correcting factor WðaÞ
which is the result of averaging over the orbital inclination

WðaÞ ¼ hWða; θincÞiθinc : ð33Þ

In terms of this function, the event rates for EMRIs
in the spinning case are related to the nonspinning
approximation by

RKerrðaÞ ¼ RSchw½WðaÞ�−0.83; ð34Þ

assuming an old, segregated cusp of COs of mass 10 M⊙
around the MBH [83,100].

D. Putting the pieces together

In summary, the EMRI rate depends on a number of
ingredients, as we described above:

(i) The MBH mass function, for which we assume two
models: Barausse12 and Gair10.

(ii) The MBH spin distribution, for which we explore
three cases: the near-maximally spinning distribu-
tion (a98); a flat spin distribution (aflat), and non-
spinning MBHs (a0).

(iii) The M–σ relation, defining the properties of the
stellar distribution surrounding the MBH, the cusp

regrowth time following MBH binary erosion, and
the EMRI duty cycle. We consider three relations:
Gultekin09, KormendyHo13 and GrahamScott13.
We also consider an extra model assuming the
Gultekin09 relation but with no cusp erosion.

(iv) The ratio of plunges to EMRIs, assumed to be
Np ¼ 0, 10 and 100.

(v) The characteristic CO mass, for which we consider
both m ¼ 10 M⊙ and m ¼ 30 M⊙.

Our default model is based on the self-consistent semi-
analytic code for MBH formation and cosmic evolution
developed in Barausse [67]. The MBH mass function is
therefore the Barausse12, and MBHs are consistently
maximally spinning (a98). We use the M–σ relation
Gultekin09 to compute the cusp regrowth time following
MBHB mergers and the EMRI duty cycle. We assume a
moderately large number of plunges per EMRI Np ¼ 10

and a characteristic CO mass m ¼ 10 M⊙. Starting from
this default set-up, we explore the effect of each single
ingredient listed above by varying them individually
keeping all the other fixed. We further explore the most
optimistic and pessimistic models allowed by all the
combinations of the ingredients listed above.
In total, we consider 12 models that we label “Mx” with

x ¼ 1;…; 12. The default setup described above is indi-
cated as M1, and the key to read the models and their main
properties are listed in Table I.
For each model we construct the population of

EMRIs by Monte Carlo sampling from the distribution
d3N=ðdMdzdaÞ × p0ðM; zÞRðM; aÞ. This gives a catalog
of EMRIs including the two masses ðM;mÞ, redshift of the
event z, and MBH spin a. To define each individual event
and construct EMRI waveforms we need to specify 10
more parameters:

(i) Phase, sky position and orientation angles: we
assume that the sky position and spin orientation
vectors are distributed isotropically on the sphere.
The three phases at plunge corresponding to orbital
phase, phase of precession of the periapsis and phase
of precession of the orbital plane are uniformly
distributed between 0 and 2π.

(ii) Inclination and eccentricity are distributed as de-
scribed in Sec. III C 1.

(iii) Plunge times are taken to be uniform in ½0; 2� yr.
We ignore events that plunge after the end of the
mission duration, although they might be detectable
if they are close enough.

Table I illustrates the potential range in the intrinsic
EMRI rate. The last column lists the number of EMRIs
occurring in the Universe in 1 year (observed at Earth) up to
z ¼ 4.5 (for model M4 we also report the rate up to z ¼ 6.5
in parentheses).
Numbers span more than three order of magnitudes,

ranging from about 10 to 20000. The variation is mostly
due to the unknown number of plunges and to the poorly
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constrained MBH mass function at M < 106 M⊙. Cusp
erosion has a relative minor effect on the rates (a factor
of 2).2 Even smaller is the effect of spin, affecting EMRI
rates at the 10% level; there are more EMRIs when spins
are higher as the LSO is smaller (and so it is more difficult
to directly plunge [90]), but this only affects a small
portion of orbits. However, we will see that spins will
play a more important role in the detectability of these
events by LISA. Changing the M–σ relation, which sets
the relation between the MBH and its surrounding
population of COs, can introduce a variation of about
a factor of 2. More significant are the mass of the COs and
the number of plunges, as both of these directly impact
the mass accreted by the MBH and so the necessary duty
factor to preserve the population of MBHs. An increase in
eitherm or Np by a factor of X reduces the EMRI rate by a
similar factor. Since we are more uncertain of the number
of plunges, this has a greater potential impact on the
expected rate, here changing it by almost two orders of
magnitude. A drop of about one order of magnitude is
achieved by switching to the pessimistic MBH mass
distribution, as the reduction in the number of MBHs
naturally decreases the number of EMRIs.
For each of the 12 models outlined above we generate 10

Monte-Carlo realizations of the expected population of
EMRIs plunging in 1 year. We therefore construct a library
of 120 catalogs that includes all EMRI events occurring in
the Universe in 10 years for the 12 models.

IV. WAVEFORMS, SIGNAL ANALYSIS AND
PARAMETER ESTIMATION

Having generated astrophysical populations of EMRI
systems, we need to determine which of the systems will be
observed by LISA. To do this, we need a model of the GW
emission from an EMRI system. Accurate gravitational
waveforms from EMRIs can be computed using BH
perturbation theory, exploiting the large difference in
masses of the two objects to regard the smaller as a
perturbation of the spacetime of the larger and construct
an expansion in the mass ratio (see [101] for a review).
Perturbative calculations have not yet been completed to
the order necessary to accurately track the phase of an
EMRI over an entire inspiral, and these calculations are
extremely computationally expensive. Two approximate
EMRI models have therefore been developed, which
capture the main features of EMRI waveforms at much
lower computational cost and can therefore be used to
explore questions connected to the detection and scientific
exploitation of EMRI observations. Of the two models, the
numerical kludge [102,103] is the more accurate and is
based on modeling the trajectory of the smaller object as a
geodesic of the Kerr background, with inspiral imposed on
the system. With further enhancements, the numerical-
kludge model may be accurate enough for use in LISA data
analysis. However, it is still relatively computationally
expensive. The analytic kludge (AK) model [51] is com-
putationally cheaper, at the cost of less faithfulness to real
EMRI signals. The AK model approximates gravitational
wave emission by that from a Keplerian orbit [104], with
precession of the orbital perihelion, precession of the
orbital plane, and inspiral of the orbit added using post-
Newtonian prescriptions. The AK model provides only an

TABLE I. List of EMRI models considered in this work. Column 1 defines the label of each model. For each model we specify the
MBH mass function (column 2), the MBH spin model (column 3), whether we consider the effect of cusp erosion following MBH
binary mergers (column 4), theM–σ relation (column 5), the ratio of plunges to EMRIs (column 6), the mass of the COs (column 7); the
total number of EMRIs occurring in a year up to z ¼ 4.5 (column 8; for model M4 we also show the total rate per year up to z ¼ 6.5); the
detected EMRI rate per year, with AKK (column 9) and AKS (column 10) waveforms. The AKK and AKS waveforms are introduced
in Sec. IV, and bracket waveform modeling uncertainties.

Mass MBH Cusp M–σ CO EMRI rate [yr−1]

Model function spin erosion relation Np mass [M⊙] Total Detected (AKK) Detected (AKS)

M1 Barausse12 a98 yes Gultekin09 10 10 1600 294 189
M2 Barausse12 a98 yes KormendyHo13 10 10 1400 220 146
M3 Barausse12 a98 yes GrahamScott13 10 10 2770 809 440
M4 Barausse12 a98 yes Gultekin09 10 30 520 ð620Þ 260 221
M5 Gair10 a98 no Gultekin09 10 10 140 47 15
M6 Barausse12 a98 no Gultekin09 10 10 2080 479 261
M7 Barausse12 a98 yes Gultekin09 0 10 15800 2712 1765
M8 Barausse12 a98 yes Gultekin09 100 10 180 35 24
M9 Barausse12 aflat yes Gultekin09 10 10 1530 217 177
M10 Barausse12 a0 yes Gultekin09 10 10 1520 188 188
M11 Gair10 a0 no Gultekin09 100 10 13 1 1
M12 Barausse12 a98 no Gultekin09 0 10 20000 4219 2279

2This could be up to a factor of 4 if kick velocities of few
hundred km s−1 are considered in the computation of the cusp
regrowth time scale [cf. Eq. (9)].
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approximation to the true strong-field dynamics, as the
orbital frequencies do not exactly match [105], and features
such as the final plunge or transient resonances [64,106] are
neglected and cannot be readily incorporated. However, the
model is cheap to generate and it should include the most
important qualitative features of real EMRI signals. The
simplicity of the model allows it to be generated in the large
numbers required to examine EMRI science questions such
as those being explored in this paper, and so we use it here.
The AK model has been widely used for similar applica-
tions in the literature, in particular it was the EMRI model
used in the context of the Mock LISA Data Challenges
(MLDCs) [107–110].
The AK model is known to be imperfect, and so in order

to quantify inaccuracies we consider two different variants.
In the classic work by Barack and Cutler [51], the AK
model was cut off when the orbital frequency reached the
value corresponding to the Schwarzschild LSO. We denote
this form of the AK model by “AKS”, where the “S” stands
for “Schwarzschild.” Prograde inspirals into spinning MBH
can get much closer before plunge, generating many cycles
of higher frequency and amplitude. Thus, omitting those
cycles from the model is likely to significantly under-
estimate the possible signal-to-noise ratio (SNR). An
alternative is to continue the inspiral until the frequency
reaches the Kerr LSO. We denote this form of the AK
model by “AKK”, where the “K” stands for “Kerr.” The
post-Newtonian evolution equations used to construct the
AK model are increasingly inaccurate as the orbital
separation decreases, and so the additional portion of
inspiral included in the AKK model is unlikely to be
accurately represented, and most likely will lead to an
overestimate of the SNR. We will present results for both
the AKKmodel and the AKSmodel in order to quantify the
uncertainty that comes from the modeling assumptions.
SNRs can also be computed using results from BH
perturbation theory, in particular solutions to the
Teukolsky equation, which provides the first-order radia-
tive part of the perturbative evolution. Teukolsky results for
circular, equatorial inspirals into spinning BHs were
presented in Finn and Thorne [111], and we can use those
results to assess the accuracy of the AKS and AKK
prescriptions.
Finn and Thorne [111] tabulate their results in terms of

corrections relative to a Newtonian inspiral. By setting
those corrections equal to 1 we can obtain SNRs for
Newtonian inspirals, which we can terminate at the
Schwarzschild LSO or at the Kerr LSO. This provides
an approximation to the AK model, which is built on
Newtonian inspirals, albeit with precession added and
inspiral augmented by higher order corrections. Figure 5
shows the sky-averaged horizon distance for a prograde,
circular, equatorial inspiral into a black hole with spin
a ¼ 0.99, computed either using the Teukolsky fluxes, or
using Newtonian inspirals truncated at the two different

LSOs. We see that, as expected, the approximate AKS and
AKK horizons bracket the accurate Teukolsky horizon. The
AKS horizon suggests increased sensitivity to lower mass
black holes, while the AKK horizon has peak sensitivity at
the same MBH mass as the Teukolsky horizon. Although
these are just approximations to the true AKS and AKK
horizons, we expect the true horizons to have the same
shape with the AKS horizon extending to slightly higher
redshift than the Newtonian calculations indicate and the
AKK horizon to slightly lower redshift, still bracketing the
true horizon.
Given a waveform model, we represent the sensitivity of

LISA to a given EMRI by a simple SNR threshold. If the
EMRI has SNR above the specified threshold, the system
will be detected, otherwise it will not. Early work on
EMRIs assumed that an SNR of 30 would be required for
detection, to allow for the complexities of LISA data
analysis [62]. However, in the Mock LISA Data
Challenges EMRI signals with SNRs as low as ∼15 were
successfully identified, albeit under idealized conditions
[110]. Therefore, we use a more modest SNR threshold of
20. The SNR is calculated as

ϱ ¼ hhjhi1=2 ð35Þ

using the noise-weighted inner product [112]

hgjhi ¼ 2

Z
∞

0

~gðfÞ ~h�ðfÞ þ ~g�ðfÞ ~hðfÞ
SnðfÞ

df; ð36Þ

where the EMRI signal is denoted by hðt;ΘÞ, Θ represents
the parameters of the signal, a tilde indicates the Fourier

FIG. 5. The redshift at which the sky-averaged SNR of a
prograde, circular, equatorial EMRI into a MBH with spin a ¼
0.99 reaches the threshold ϱ ¼ 20. The horizon is shown as a
function of intrinsic MBH mass and for the two different choices
of the compact object mass used in these studies, m ¼ 10 M⊙
and m ¼ 30 M⊙. The horizon is computed using accurate
Teukolsky fluxes and using a Newtonian inspiral truncated either
at the Schwarzschild LSO, labeled “AKS,” or at the Kerr LSO,
labeled “AKK.” Individual sources may be detected to even larger
distances if their orientation is near optimal.
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transform of the signal, and SnðfÞ is the noise power
spectral density.
In the limit of suitably high SNR [113], the likelihood for

the parameters can be approximated as a Gaussian [114]

LðΘÞ ∝ exp

�
−
1

2

X
i;j

�
dh
dΘi





 dhdΘj

	
ΔΘiΔΘj

�
; ð37Þ

where ΔΘi represents the displacement from the peak of
the distribution (which coincides with the true value in this
approximation) for the ith parameter. The Fisher matrix has
elements

Γij ¼
�
dh
dΘi





 dhdΘj

	
; ð38Þ

and the covariance matrix (the inverse of the Fisher matrix)
gives the Cramér–Rao bound on the true width of the
distribution [113]. The variance (uncertainty squared) for
the ith parameter can be approximated by σ2i ¼ ðΓ−1Þii.

V. RESULTS

With a number of astrophysically motivated EMRI
populations and models of the EMRI waveforms in hand,
we are all set to investigate the performance of the LISA
detector. The AKS and AKK waveforms introduced in
Sec. IV are likely to respectively under- and overestimate

typical EMRI SNRs. In the absence of a more accurate,
computationally inexpensive waveform model, we present
results for both, with the understanding that they likely
bracket the true performance.

A. Detection rates

To convert from the intrinsic number of EMRIs sum-
marized in Table I to the number of LISA detections, we
must compute the SNR of the GW signal and compare to a
detection threshold, which we take to be an SNR of ϱ ¼ 20,
as mentioned earlier. The SNR calculation depends on the
waveform model; we expect the AKK waveforms to
produce larger SNRs due to the extrapolation to the Kerr
LSO, resulting in more detectable EMRIs and up to higher
redshifts. The SNR distribution of the events above
detection threshold is shown in Fig. 6. The distribution
approximately follows the characteristic dN=d log ρ ∝ ρ−3

behavior of sources uniformly distributed in (Euclidean)
volume [115], with small deviations due to cosmological
evolution. As expected AKK waveforms lead to a larger
number of detections, which is reflected in the higher
normalization of the distribution. For models predicting
several hundred sources per year (cf. Table I), we predict
few events in the tail of the distribution, extending to SNR
of a few hundred.
Figure 7 shows the number of detectable signals by using

the AKS and AKK waveform models (the rates are also
reported in the last two columns of Table I), and compares

FIG. 6. SNR distribution for detectable events with AKS and AKK waveforms for all considered models.
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these to the total intrinsic rates reported in Table I. Based on
the Teukolsky horizons shown in Fig. 5, and to save
computational time, we considered EMRI populations up
to z ¼ 4.5 for all models with CO mass of 10 M⊙, and up
to z ¼ 6.5 when the CO mass is 30 M⊙ (M4). We will see
below that these maximum redshifts are not sufficient to
capture all systems detectable using AKK waveforms. We
consider this acceptable since AKK waveform generally
overestimate EMRI SNR, and the number of missing events

amount to at most a few percent, and thus do not
significantly impact our results. As expected, the rates
calculated with the AKK model are generally larger
because they produce larger SNRs for spinning MBHs.
Models M10 and M11 predict the same detectable rates
with AKS and AKK waveforms, since they assume that the
MBH spins are zero, in which case AKS and AKK
waveforms coincide. When using the AKS model the
fraction of detectable events is about 10%, independent
on the exact features of the model, except for M4 where it
increases to around 35%. For the AKK waveform, different
spin distributions result in different detection fractions, but
these still fall between 10% and 20% in most cases. The
expected detection rate is therefore roughly proportional to
the intrinsic EMRI rate and ranges between 1 yr−1 and
2000 yr−1 due to severe uncertainties in EMRI astrophysics
and dynamics, as discussed in Sec. III.
The fraction of detected events provides clear evidence

that EMRI distributions are largely self-similar across the
different models, which is confirmed by the (source-frame)
mass and redshift distributions of the detected events shown
in Fig. 8 and Fig. 9. The sharp z ¼ 4.5 cut-off for the AKK
case is due to the maximum redshift of the generated
population and not to an intrinsic limitation in the detect-
ability of high redshift sources; the small fraction of the
number of missing sources should not significantly impact
our results. The most common MBH mass is typically
between 105 M⊙ and 106 M⊙ in all models. The results

FIG. 7. Top panel: Event rates (detected and intrinsic) as
function of the astrophysical model. Lower panel: Fraction of
detection with ρ > 20 with respect to the total number of EMRIs
featuring a central MBH with 104 M⊙ < M < 107 M⊙, consid-
ering all events at z < 4.5 (z < 6.5 for M4).

FIG. 8. MBH mass distribution for detectable events with AKS and AKK waveforms.
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based on the AKK waveforms show the detection of more
EMRIs into MBHs of larger mass (up to 107 M⊙), when
MBHs are spinning. This is because for such high mass
MBHs a prograde inspiral generates a significant number of
waveform cycles between the Schwarzschild LSO fre-
quency and the final plunge, and these cycles are at
frequencies in the most sensitive range for the LISA
detector. Thus, the AKS waveforms omit a significant
fraction of the SNR for such systems and underestimates
their detectability. This extra contribution to the SNR also
allows sources to be seen to further redshift, as illustrated
in Fig. 9.
Taken together, Figs. 8 and 9 show that EMRI observa-

tions will cover MBHs of 3 × 104 M⊙ < M < 3 × 106 M⊙
over a redshift range that is broadly peaked at 0.5 < z < 2,
thus probing a region of the MBH mass–redshift plane
that is complementary to both electromagnetic probes of
galactic nuclei and LISA observations of MBH binaries.
Conventional electromagnetic observations at these low
masses out to z ≈ 2 are extremely challenging, whereas
the bulk of LISA MBH binary observations are expected
to be at z > 5, with only few events expected at z < 2

(cf. [116]). EMRIs are a unique opportunity to obtain a large
sample of confirmed MBHs at relatively low redshift.
Figure 8 further highlights that the number of detected
EMRIs is sensitive to the minimum mass scale of nuclear
MBHs (Alexander and Bar-Or [93] recently proposed a

universal lower limit of about 2 × 105 M⊙), but in the
majority of the investigated models, we predict a few
detections at M > 106 M⊙, which is a relatively safe mass
range as it has already been explored byMBHmeasurements
in the local Universe (see, e.g., [117]).
Examples of LISA’s completeness as an EMRI survey

are given in Fig. 10, where we plot the fraction of detected
sources in the (source-frame) mass–redshift plane for
selected models. In the default M1 case, LISAwill provide
an essentially complete survey in the 105 M⊙–106 M⊙
mass range, out to z ≈ 1, and it is still 50% complete at
z ≈ 3 when AKK waveforms are considered. If inspiralling
COs are massive (M4), the survey is complete out to
z ≈ 2 and still 50% complete out beyond z ≈ 4 for AKK
waveforms.

B. Parameter estimation

Typical EMRIs spend Oð105Þ orbits in the LISA
frequency band, and key parameters of the system are
encoded in the fine details of the waveform phasing
modulation (see, e.g., [51]). The redshifted MBH mass
Mz sets the characteristic observed frequencies for the
EMRI. The rate of inspiral is controlled by the mass ratio,
and so gives constraints on the redshifted CO mass mz.
The MBH spin a also influences the orbital frequencies,
and becomes more important as the inspiral gets closer to
the MBH; the spin sets the LSO and the transition to

FIG. 9. Redshift distribution for detectable events with AKS and AKK waveforms. A maximum source redshift of 4.5 is assumed for
all models except M4, where the maximum redshift is 6.5.
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plunging.3 The orbital eccentricity e also affects the
orbital frequencies; GW emissions tends to circularize
the orbit, so eccentricity is more noticeable earlier in the
inspiral.
The large number of cycles completed during the

inspiral allow us to obtain exquisite constraints on all
the intrinsic parameters, as shown in Fig. 11.4 Even in the
conservative AKS case, the median relative error on both
redshifted masses is in the range 10−4–10−5 for essentially
all models; the spin of the central MBH and the eccen-
tricity at plunge are measured to an absolute precision of
about 10−4 and 10−5 respectively. Parameter-estimation
precisions for the intrinsic parameters are generally better
when calculated using AKK waveforms than the AKS
waveforms (except for the nonspinning models M10 and
M11, for which the AKS and AKK waveforms, and their
parameter-estimation errors, coincide). This is because of

the additional information coming from the late inspiral
near the Kerr LSO. The difference is most pronounced for
the CO mass and MBH spin (for which the measurement
improves by a factor of ≈30 on average). The difference is
less striking for the MBH mass and (especially) the
eccentricity: estimation for the latter improves on average
by less than a factor of 10 because it is mostly constrained
by the early inspiral.
Extrinsic parameters such as sky location and distance

are primarily determined through the signal amplitude and
its modulation as LISA orbits the Sun. These parameters
are not strongly dependent upon the GW phase, and hence
the large number of cycles completed by an EMRI does not
translate to high-precision measurements here. Figure 12
shows that the precision of extrinsic parameter measure-
ment is essentially insensitive to the waveform model. The
SNR of an individual source may be higher using the AKK
waveform, but the overall distribution of SNRs remains
largely the same as more quiet signals become detect-
able [115], and the typical precision in parameter deter-
mination is unaffected. On average, the luminosity distance
is measured to 5%–10% precision. The luminosity distance
is required to convert the observed redshifted masses back
to their true source values. Distance uncertainty will
therefore be the dominant source of uncertainty in mass
measurements.

FIG. 10. Fraction of the intrinsic EMRI population detectable by LISA as a function of source-frame total mass and redshift, for
models M1 and M4 and with AKS and AKK waveforms.

3The end of the waveform, when the CO plunges into the
MBH, also encodes some information which is not captured by
these Fisher-matrix estimates [118]. However, the instantaneous
SNR in an EMRI is sufficiently low that the plunge is not well
resolved, and therefore the inclusion of the plunge should make
little difference to parameter estimation.

4All uncertainties are 1σ values, except for the sky-localization
error ΔΩ, which is the area of an error ellipse for which there is a
probability expð−1Þ of the source being outside of it.
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FIG. 11. Distribution over observed EMRIs of the expected statistical errors (1σ uncertainties as computed using the Fisher matrix) in
the measurement of intrinsic parameters: central MBH redshifted mass (top left), spin (top right), CO mass (bottom left) and eccentricity
at plunge (bottom right). The dashed lines mark the first, second and third quartile of the distributions.

FIG. 12. Distribution of the statistical errors in the measurement of EMRI extrinsic parameters: luminosity distance (left panel; 1σ
uncertainty as computed using the Fisher matrix) and sky localization [right panel; the area of an ellipse with probability 1 − expð−1Þ of
containing the source]. The dashed lines mark the first, second and third quartile of the distributions. In the plot for the sky position, a
horizontal solid red line marks an error of 10 deg2.
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The sky localization is usually better than 10 deg2. This
is the typical field of view of future large optical and radio
facilities such as the Large Synoptic Survey Telescope
[119] or the Square Kilometre Array [120]. EMRIs
localized to this accuracy can therefore be covered with
a single pointing to check for the possible presence of
electromagnetic counterparts, which could be associated
with the interaction between the CO and an MBH accretion
disk [56,58–60]. Electromagnetic counterparts would be
easiest to observe from close by sources, which would also
be the loudest, and so the best localized (usually to better
than 1 deg2). Identifying a source galaxy from an electro-
magnetic counterpart would allow for an independent
redshift measurement, which would improve the precision
of the (source-frame) mass measurements.
Finally, the precise measurements provided by EMRI

observations allow us to maps the spacetime of the MBH
and check its Kerr nature. The multipolar structure of the
Kerr metric is completely determined by its mass and spin.
According the no-hair theorem, the quadrupole moment is
given by QK ¼ −a2M3 [121] (see e.g. [54] for a review of
tests of the no-hair theorem with LISA). Since EMRIs are
expected to probe the multipolar structure of the central
MBH spacetime to high accuracy [46–50], they will be
able to confirm if the quadrupole moment obeys the
expected Kerr relation [122]. In Fig. 13 we show the
precision with which possible deviations of Q away from
the Kerr quadrupole can be constrained. We plot the error
on the dimensionless quantity Q≡ ðQ −QKÞ=M3 (which
is independent of the redshifting of masses). We do not
consider any particular modified theory of gravity: the
parameter Q is just a phenomenological parametrization
of hypothetical deviations from the general-relativistic
quadrupole moment, and we are interested in determining

what level of deviation would be measurable. As expected,
Q is better constrained by using AKKwaveforms, since the
effect of a modified quadrupole become important only at
small distances from the MBH, i.e. in the late inspiral and
plunge.
Overall, for all the parameters that we considered, the

distributions of the errors are broadly consistent between
the different population models. The populations control
the number of events, and so are important for considering
how much we could learn about the population of MBHs
and their host environments, but do not have a significant
impact on our ability to extract the parameters for indi-
vidual EMRIs.

VI. CONCLUSIONS

In this paper we have performed a comprehensive
analysis of the performance of the recently proposed
LISA mission with regards to the detection and parameter
estimation of EMRIs. For the first time we have attempted
to thoroughly investigate the astrophysical uncertainties
that affect the calculations of the expected intrinsic EMRI
rate. In more detail, we have constructed competing
astrophysical models for the EMRI rate as a function of
cosmic time, accounting for: the uncertainty on the
expected MBH spin magnitude; the disruption of stellar
cusps due to mergers; the MBH growth due to EMRIs and
plunges of stellar-mass CO’s; and possible viable compet-
ing choices for the MBH mass function, the CO mass, and
the correlation between MBH masses and stellar velocity
dispersions. Although simple, our models capture the
diversity of plausible astrophysical uncertainties. Overall,
we find that these astrophysical assumptions produce a
variance of up to three orders of magnitude in the expected
intrinsic EMRI rate.
For each astrophysical model, we have computed the

number of expected detections with the LISA interferom-
eter, as well as the precision with which the source
parameters (both intrinsic and extrinsic) can be recovered.
To this purpose, because of computational-time limitations,
we have used two time-inexpensive kludge waveform
models [51] that we expect should bracket the results
that would be obtained with more sophisticated Teukolsky
or self-force based templates (cf. Fig. 5). Our main
findings are:
(1) Irrespective of the astrophysical model, at least a few

EMRIs per year should be detectable by LISA. This
number may reach a few thousands per year under
the most optimistic astrophysical assumptions.

(2) Except for the most pessimistic astrophysical mod-
els, we predict at least a few events per year should
be observable with SNR of several hundreds.

(3) The typical (source-frame) mass and redshift range
of detected EMRIs will be M ∼ 105–106 M⊙ and
z≲ 2–3, although we may have events with masses
an order of magnitude outside of this range or with

FIG. 13. Distribution of the statistical error (1σ uncertainties as
computed using the Fisher matrix) in measurement of the
deviation of the MBH’s quadrupole moment away from the Kerr
value. The dashed lines mark the first, second and third quartile of
each distribution.
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larger redshifts (up to z ∼ 4 and z ∼ 6 for COs of
10 M⊙ and 30 M⊙, respectively) in all but the most
pessimistic astrophysical models.

(4) Typical fractional statistical errors with which the
intrinsic EMRI parameters (redshifted masses, MBH
spin and orbital eccentricity) are expected to be
recovered are of the order of 10−6–10−4. Tests of the
multipolar structure of the Kerr metric, which only
depend upon these mass and spin measurements, can
be performed to percent level precision or better. To
convert the redshifted masses to the intrinsic source-
frame masses requires the luminosity distance,
which is typically inferred to 10% precision. Sky
localization is usually of the order of a few square
degrees. It is crucial to model the gravitational
waveforms in the late inspiral near the plunge to
accurately extract the intrinsic parameters, but this
has little impact on the extrinsic parameters.

These observations could have impact in three distinct
areas: astrophysics, cosmology and fundamental physics.
We have seen that LISA will provide precise measure-

ments of the parameters of individual systems, but more
information about the astrophysics of these sources will
come from studies of populations. It was shown in Gair et al.
[61] that the observation of just 10 EMRIs with the classic
5 GmLISA configuration would be sufficient to measure the
slope of the MBH mass function in the local Universe to a
precision of �0.3. This is the level to which it is currently
constrained by electromagnetic observations [61]. The pre-
cision with which LISA can measure EMRI parameters does
not depend strongly on the configuration of the instrument,
so this conclusion should carry over to the current analysis.
In all themodels except the most pessimistic ones, we expect
to see many more than 10 EMRIs, so we would expect to be
able to do a high precision measurement of the MBH mass
function. One caveat is that what we can measure is the
convolution of the MBH mass function with the rate of
EMRIs per MBH, not the mass function itself. In Gair et al.
[61] it was assumed that the latter was known, but as we have
described here there are many significant uncertainties. It is
an open question as to whether these uncertainties can be
reduced or at least quantified, or whether LISA observations
will be able to decouple them, for instance by using
information from the observed MBH mergers. In addition
to the MBH mass function, EMRI observations will provide
information on the MBH spin distribution, on the properties
of the stellar populations in the centers of galaxies and on the
relative efficiency of the mechanisms that lead to EMRI
formation.
Observations of GW sources provide measurements of

the luminosity distance that can be used to measure the
expansion history of the Universe [123]. Individual events
do not provide redshifts, but such constraints can be
determined statistically. In MacLeod and Hogan [124] it
was shown that if LISA observed ∼20 EMRI events at a

redshift z < 0.5 it would be possible to determine the
Hubble constant to better than 1% by using statistical
redshifts estimated from galaxy surveys. We find that all
but four of our models predict more than 20 EMRI events at
z < 0.5.5 However, in MacLeod and Hogan [124] it was
assumed that LISA would determine the luminosity dis-
tance and sky location of an EMRI at redshift z to
precisions ΔðlnDLÞ < 0.07z and ΔΩ < 16z2, which were
appropriate for the classic 5 Gm LISA configuration, but
are optimistic for the current configuration [29]. We find
that in the models which have 20 EMRIs at z < 0.5, there
are at least 5 that also meet the assumed error constraint. If
we used only the events at z < 0.5, and with errors smaller
than these bounds, we would therefore expect to determine
the Hubble constant to at least ∼2%. However, the events
with larger errors and events at higher redshift will also
contribute to the bound, so we are likely to do better than
this, and this should be further explored. In addition, our
results show that EMRIs could be detected to much higher
redshift than once assumed, which will provide constraints
on other cosmological parameters.
The final scientific application of EMRI observations is

to test fundamental physics. We have already discussed one
such application of EMRI observations, the measurement
of the quadrupole deviation from the Kerr metric charac-
terized by Q. Every EMRI will provide a percent or better
constraint on that parameter, which is comparable to the
expectations for the classic LISA mission configuration.
This is no surprise, as the key requirement for a test of
fundamental physics is to track the phase of an EMRI over
a full inspiral, which has to be done in order to find the
EMRI in the data using matched filtering. Thus, any EMRI
that is detected will provide a powerful test of fundamental
physics, and all of the tests previously discussed in the
literature should be possible (see Gair et al. [54] for a
review). Our ability to do this science will not be signifi-
cantly influenced by the particular astrophysical model,
although the models that predict larger rates of EMRI
events will more likely lead to the detection of a golden
EMRI which is particularly close, has high SNR and,
therefore, provides particularly strong constraints.
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