
Dynamical analysis of an interacting dark energy model in the framework
of a particle creation mechanism

Sujay Kr. Biswas,1,2,* Wompherdeiki Khyllep,3,† Jibitesh Dutta,4,‡ and Subenoy Chakraborty2,§
1Department of Mathematics, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata,

700 118 West Bengal, India
2Department of Mathematics, Jadavpur University, Jadavpur, Kolkata, 700032 West Bengal, India

3Department of Mathematics, St. Anthony’s College, Shillong, 793001 Meghalaya, India
4Mathematics Division, Department of Basic Sciences and Social Sciences, North Eastern Hill University,

NEHU Campus, Shillong, 793022 Meghalaya, India
(Received 21 April 2016; revised manuscript received 5 April 2017; published 30 May 2017)

In this work we present the cosmological dynamics of interacting dark energy models in the framework
of the particle-creation mechanism. The particle-creation mechanism presented here describes the true
nonequilibrium thermodynamics of the Universe. In the spatially flat Friedmann-Lemaître-Robertson-
Walker universe considered here, the dissipative bulk viscous pressure is due to the nonconservation of
particle number. For simplicity, we assume that the creation of perfect-fluid particles is isentropic
(adiabatic) and consequently the viscous pressure obeys a linear relationship with the particle-creation rate.
Due to the complicated nature of Einstein’s field equations, dynamical systems analysis is performed to
understand the cosmological dynamics. We find some interesting cosmological scenarios, like a late-time
evolution of the universe dominated by dark energy which could mimic quintessence, a cosmological
constant, and a phantom field through a dark-matter-dominated era. We also find a possibility of crossing
the phantom divide line which is favored by observations.
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I. INTRODUCTION

Various observations suggest that our Universe is cur-
rently undergoing a phase of accelerated expansion [1–5].
This is a challenging issue in standard cosmology which
shows a new imbalance in the governing Friedmann
equations. People have addressed such imbalances either
by introducing new sources or by altering the governing
equations. In the frame of standard cosmology, the first one
is called dark energy with a huge negative pressure, and the
second one involves the introduction of some modifications
to the gravity sector commonly known as modified gravity
theories. The simplest dark energy (DE) candidate is the
cosmological constant Λ, which together with cold dark
matter provides the simplest cosmological model known as
the Λ cold dark matter model (ΛCDM), which according to
a large number of observations is the best cosmological
model at present. However, ΛCDM suffers from severe
problems at the interface of cosmology and particle
physics, such as the cosmological constant problem [6–8]
and the cosmic coincidence problem [9].
In order to address these issues related to Λ cosmology,

extensive analyses have been performed, ranging from
various DE models to modified gravity theories [10,11].
Among them, the cosmological models where dark matter

(DM) and DE interact with each other have gained
significant attention with the growing amount of observa-
tional data. Although the latest observations indicate a
nonvanishing interaction in the dark sector [12–14], this
interaction is very compatible with zero within the 1σ
confidence region. In any case, the interaction between DE
and DM could be a major issue in studying the physics of
DE. However, since the nature of these two dark compo-
nents (DE and DM) remains unknown, the precise form of
the interaction is unknown as well, and as such there is no
fundamental theory for choosing a specific coupling. So,
the choice of coupling is purely phenomenological.
Further, in the framework of field theory, it is natural to
consider the inevitable interaction between the dark com-
ponents. Interacting dark sector models have been exten-
sively studied in several works [15–27]. In fact, an
appropriate interaction between DE and DM can provide
a mechanism to alleviate the coincidence problem [28] and
cosmic age problem. Furthermore, it also provides a
possibility of crossing the phantom divide line [29,30]
and explains the transient nature of the deceleration
parameter. It should be noted that there are other options
apart from the above-mentioned choices for explaining the
cosmic coincidence and other cosmological conundrums.
In particular, there are the ΛXCDM-type of models (for
detailed studies, see Refs. [31,32]), where there exists an
interaction between the vacuum energy and another DE
component (X). In this case, matter can be conserved and
the ratio between DE and DM remains bounded throughout
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the entire cosmic history. Further, in this context one can
find effective quintessence and phantom-like behaviors in
Refs. [33–35].
Therefore, interacting DE models provide richer cosmo-

logical dynamics than noninteracting ones by allowing
energy exchange between dark sectors. This might provide
a similar energy density in dark sectors which can be
achieved by the accelerated scaling attractor solution
[20,36,37] with

ΩDE

ΩDM
≈Oð1Þ and ωeff < −

1

3
: ð1Þ

Thus, the proper choice of parameters without fine-tuning
of the initial conditions is required in order to match the
ratio of the energy densities of the dark sectors with
observations.
Present observations [4,5,38–41] also favor the possibil-

ity that our Universe is entering the phantom era with an
effective equation of state ωeff < −1. To obtain this
scenario, a scalar field with a negative kinetic term is
usually introduced [42]. However, this leads to some
instabilities at both classical and quantum levels [43,44],
and also induces some other theoretical problems [45–47].
Another choice to explain this present acceleration is the

particle-creation mechanism. This model can successfully
mimic the ΛCDM cosmology [48–52]. Historically, in
1939 Schrodinger [53] introduced a microscopic descrip-
tion of particle production in an expanding universe where
gravity plays a crucial role. Following his idea, Parker et al.
[54] and Zel’dovich et al. [55] started investigating the
possible physical scenarios arising from the production of
particles. Since the evolution of the Universe can be
understood from Einstein’s field equations, Prigogine et al.
[56] studied the evolution of the Universe after introducing
the particle-creation mechanism in Einstein’s field equa-
tions by changing the usual balance equation for the
number density of particles.
In cosmological dynamics, the only dissipative

phenomenon in the homogeneous and isotropic flat
Friedmann-Lemaître-Robertson-Walker (FLRW) model
may be in the form of bulk viscous pressure either due
to the coupling of different components of the cosmic
substratum [57–61] or the nonconservation of (quantum)
particle number. Thus, for an open thermodynamical
system where the number of fluid particles is not preserved
(Nμ

;μ ≠ 0) [62–64], the particle conservation equation gets
modified as

Nμ
;μ ≡ n;μuμ þ Θn ¼ nΓ ⇔ N;μuμ ¼ ΓN;

i:e:; _N ¼ ΓN: ð2Þ

This equation is also known as the balance equation for
the particle flux. Also, the implied relation states that the
rate of change of total particle number is proportional to the

total number of particles. Here, Γ stands for the rate of
change of particle number in a comoving volume V
containing N particles, Nμ ¼ nuμ, the particle flow vector
uμ is the four-velocity vector, n ¼ N=V is the particle
number density, and Θ ¼ uμ;μ is the fluid expansion. The
quantity Γ is unknown in nature, but the validity of the
second law of thermodynamics implies the positivity of Γ.
In the present work, a dissipative effect due to the second
alternative is chosen. However, for simplicity, adiabatic
(i.e., isentropic) production [56,65] of perfect fluid particles
is considered and as a result viscous pressure obeys a linear
relationship with the particle production rate.
The particle creation scenario can successfully describe

the accelerated expansion model of the Universe without
introducing DE. Also, many interesting results with this
mechanism (such as the possibility of future deceleration)
have been proposed in Refs. [66,67]; consequently, the
existence of an emergent universe was proposed in
Refs. [68,69] and the complete cosmic scenario was
subsequently studied in Ref. [70]. Further, in the frame-
work of the particle creation mechanism, the evolution of
the Universe from the big bang scenario to a late-time de
Sitter phase was studied in Ref. [71] and the accelerated
expansion of the Universe at early and present times were
studied in Ref. [72]. Furthermore, the possibility of a
phantom universe without invoking any phantom fields has
recently been realized in a similar context [73,74]. So it is
worth studying interacting DE models using the particle
creation mechanism.
In the present work, considering our Universe as an open

thermodynamical system in the framework of flat FLRW
spacetime, an interacting dynamics between dark energy
and dark matter is proposed where the dark matter particles
are assumed to be created from the gravitational field. This
is achieved by rewriting the Friedmann equation and
Raychaudhuri equation in the context of the matter-creation
mechanism, and assuming that the particle production rate
is proportional to the Hubble parameter and uniform
throughout the Universe. The main scope of this work is
to analyze the cosmological dynamics of interacting DE
models in the framework of adiabatic particle creation
using dynamical system techniques. Dynamical system
tools have been extensively used to study the asymptotic
behavior of various cosmological models where exact
solutions of evolution equations cannot be obtained (see,
e.g., Refs. [75–82]). We obtain some interesting critical
points which describe many interesting results from the
phase-space analysis of linear interactions. These include
the early matter-dominated Universe, and late-time DE-
dominated attractors in some parameter region, where DE
is associated with quintessence, a cosmological constant, or
a phantom field, respectively.
The organization of the paper is as follows. In Sec. II, we

present the basic equations of the present particle creation
model, and the evolution equations are transformed to an
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autonomous system by suitable transformation of the
dynamical variables. In Sec. III, critical points are shown
for various choices for the interaction term and the
cosmological parameters are evaluated. Section IV shows
the phase-space analysis and stability criteria for the critical
points. In Sec. V, the cosmological implications of critical
points for several interaction models are given. The paper
ends with a short discussion in Sec. VI.

II. THE BASIC EQUATIONS OF PARTICLE
CREATION AND AUTONOMOUS SYSTEMS

In accordance with inflation and the cosmic microwave
background radiation, the Universe is well described by the
spatially flat FLRW spacetime,

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2Þ; ð3Þ

where aðtÞ is the scale factor of the Universe and the
spherical line element dΩ2 ¼ dθ2 þ sin2θdϕ2 is the metric
on the unit 2-sphere. For a comoving observer, uμ ¼ δμt is
the velocity vector so that uμuμ ¼ −1. With the line
element (3) the fluid expansion Θ will become Θ ¼ 3H,
where H is the Hubble parameter. Hence, the particle
conservation Eq. (2) is reduced to

Nμ
;μ ≡ n;μuμ þ 3Hn ¼ nΓ ð4Þ

for the present open thermodynamical model. Further,
using the above conservation Eq. (4), Gibb’s relation
[56,83,84]

Tds ¼ d

�
ρ

n

�
þ pd

�
1

n

�
ð5Þ

gives the variation of the entropy per particle as [56,71]

nT _s ¼ _ρþ 3H

�
1 −

Γ
3H

�
ðρþ pÞ; ð6Þ

where T represents the fluid temperature, s is the entropy
per particle, i.e., the specific entropy (the specific entropy
of a system is the entropy of the unit mass of the system), ρ
is the total energy density, and p denotes the total
thermodynamic pressure. We consider our thermodynam-
ical system to be an ideal one—i.e., isentropic (or adiabatic)
(see, for instance, Refs. [65,85])—and consequently we
have the production of perfect fluid particles with a
constant entropy (i.e., _s ¼ 0). However, there is entropy
production due to the enlargement of the phase space of the
system since the number of perfect fluid particles increases.
Hence, from Eq. (6) one can obtain the conservation
equation as

_ρþ 3Hðρþ pÞ ¼ Γðρþ pÞ; ð7Þ

which, however, can also be written as [72]

_ρþ 3Hðρþ pþ pcÞ ¼ 0. ð8Þ

So, comparing Eqs. (7) and (8), one can easily obtain the
creation pressure as follows [70,71,86–88]:

pc ¼ −
Γ
3H

ðρþ pÞ; ð9Þ

where pc is called the creation pressure, and Γ is the
particle production rate (number of particles created per
unit time), which is assumed to be uniform throughout the
Universe. Now, we assume that the main constituents
of our Universe are DM in the form of dust with energy
density ρm and the dark energy fluid with an equation
state ωd ¼ pd=ρd (where ρd and pd are the energy density
and thermodynamic pressure of the cosmic fluid, respec-
tively). The Friedmann and Raychaudhuri equations
(8πG ¼ c ¼ 1) can now be written as

H2 ¼ 1

3
ðρm þ ρdÞ; ðFriedmann’s equationÞ ð10Þ

_H ¼ −
1

2
ðρm þ ρd þ pd þ pcÞ;

ðRaychaudhuri’s equationÞ ð11Þ

where H ¼ _a=a is the Hubble parameter and an overdot
represents differentiation with respect to cosmic time “t.” If
we assume that the created particles are pressure-less DM
in the thermodynamically open model of the Universe
under the adiabatic condition, then the creation pressure pc
in Eq. (9) becomes [73]

pc ¼ −
Γ
3H

ðρmÞ:

In standard cosmology, the dynamic interactions
between the homogeneously distributed DE in the
Universe and the DM component (clumping around the
ordinary particles) are extremely weak or even negligible.
As a result, the energy conservation equations for the two
matter components are

_ρm þ 3Hðρm þ pcÞ ¼ 0 ð12Þ

or, using the above expression for pc,

_ρm þ 3Hρm ¼ Γρm; ð13Þ

and

_ρd þ 3Hðρd þ pdÞ ¼ 0: ð14Þ

In order to alleviate the cosmological coincidence
problem, it has been found that a nongravitational

DYNAMICAL ANALYSIS OF AN INTERACTING DARK … PHYSICAL REVIEW D 95, 103009 (2017)

103009-3



interaction between these dark sectors could be a viable
alternative. So the interacting DM and DE models of the
Universe are becoming of great interest and are widely used
in the literature [23]. Thus the above energy conservation
equations are modified as

_ρm þ 3Hρm

�
1 −

Γ
3H

�
¼ −Q; ð15Þ

_ρd þ 3Hðρd þ pdÞ ¼ Q; ð16Þ

where Q indicates the rate of energy exchange between the
dark sectors.
In particular, Q > 0 indicates the conversion of DM into

DE, whileQ < 0 represents the opposite. A complete study
of the interaction of dynamical vacuum energy with matter
can be found in Refs. [89,90] (for an extension, see
Refs. [91,92]). Further, it should be noted that the running
vacuum models [93,94] give an overall fit to the observa-
tional data that is better than ΛCDM. These studies were
based on the general expectations of the effective action of
quantum field theory in curved spacetime and provide an
interaction of the dynamical vacuum and matter [95].
In the present work, we describe the background

dynamics using several different interactions: (i) Q ∝ Hρm
[20,22], (ii) Q ∝ Hρd [96,97], (iii) Q ∝ Hðρm þ ρdÞ
[16,98], (iv) Q ∝ ρmρd

H [30], and (v) Q ∝ ρm [20].
One may note that in the above interactions, the

dimensionless parameters (proportionality constants)
should not be chosen in an ad hoc manner. These
parameters can actually be fitted to the overall observa-
tional data and one finds that they are typically of the order
of 10−3 to 10−2 [92–94,99] depending on the normalization
of the parameters involved. Further, in these references the
justifications for such small values of these parameters
were shown from two perspectives: theoretically, these
coefficients represent the beta function of the running
vacuum energy [94,99] and hence are expected to be very
small; experimentally, the fitted values of these coefficients
to the recent SNIaþ BAOþ LSSþ BBNþ CMB data (in
whichWMAP9 and Planck-13 and -15 data were taken into
account) [5] were found to be of the same order as the
theoretically expected values. Further, if we compare our
Eq. (15) with Eq. (4) of the Qm model in Ref. [99] and
choose Γ ¼ Γ0H (where Γ0 is a constant), we see that the
effective interaction term will be ðΓ0 − αmÞHρm in the first
case. Thus, comparing with Eq. (7) of Ref. [99], we have

Γ0 − αm ¼ 3νdm: ð17Þ

Moreover, recent observationally estimated values of the
parameters νdm and νΛ [in Eqs. (7) and (8) of Ref. [99]]
similar to our interaction models 1 and 2 are given by (see
Table II of Ref. [99])

νdm ¼ 0.00618� 0.00159;

νΛ ¼ 0.01890� 0.00744:

Thus, Γ0 and αm are not arbitrary: their difference has an
observational estimate. Note that because νdm is positive,
from Eq. (17) Γ0 is always greater than αm and the effective
interaction term has the same sign convention as in
Ref. [99].
Due to the complicated nonlinear forms on the evolution

Eqs. (10), (11), (15), and (16), we convert these evolution
equations to an autonomous system of first-order differ-
ential equations. To do this we consider the dimensionless
variables [17]

x ¼ ρd
3H2

; y ¼ pd

3H2
; ð18Þ

which are normalized over the Hubble scale.
Then, the autonomous system of ordinary differential

equations is

dx
dN

¼ Q
3H3

− ð1 − xÞð3yþ Γ0xÞ; ð19Þ

dy
dN

¼ Qy
3xH3

− ð1 − xÞ
�
3y2

x
þ Γ0y

�
: ð20Þ

Here, the independent variable is chosen as the lapse time
N ¼ ln a (which is called the e-folding number), and the
particle production rate Γ is a function of the Hubble
parameter [66,70] [Γ has dimensions ðtimeÞ−1] and is
chosen as above: Γ ¼ Γ0H (Γ0 is a constant). The value
of the parameter Γ0 is assumed to be non-negative as only
the creation of particles is considered in this study.
Now, in terms of the new dimensionless quantities, the

cosmological parameters can be written as follows: the
energy density parameter for dark matter is

Ωm ¼ 1 − x; ð21Þ

and the energy density parameter for the dark energy is

Ωd ¼ x: ð22Þ

It may be noted that in the case of noninteracting DE
models, the energy density is usually considered to be non-
negative. However, in this case of interacting DE models,
the energy density can be taken to be negative [100]. This
would imply that there is no constrain for dimensionless
variables, making the phase space that is analyzed here to
be not compact.
So, there might be a possibility of critical points at

infinity. In general, the analysis of fixed points at infinity is
done by compactifying the phase space using Poincaré
compactification. However, from a phenomenological
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point of view, in the present work we shall only determine
the dynamics in the neighborhood of finite fixed points.
This is enough, since our aim is to find physically viable
solutions, namely, trajectories connecting DM to DE
domination.
Also, the equation of state parameter for the DE can be

expressed as

ωd ¼
pd

ρd
¼ y

x
; ð23Þ

and the effective equation of state parameter will be of the
form

ωeff ¼ y −
Γ0

3
ð1 − xÞ: ð24Þ

Moreover, we have the evolution equation of the Hubble
function as

1

H
dH
dN

¼ −
3

2

�
1þ y −

Γ0

3
ð1 − xÞ

�
: ð25Þ

We now determine the critical points of the above
autonomous system for different choices of Q, and then
we perturb the equations up to first order about the critical
points in order to determine their stability.

III. CRITICAL POINTS OF THE AUTONOMOUS
SYSTEM (19)–(20) FOR VARIOUS CHOICES

OF THE INTERACTION TERM AND
COSMOLOGICAL PARAMETERS

In this section, we discuss the existence of the critical
points and the corresponding physical parameters for
various interaction models. These are presented in detail
in tabular form.

A. Interaction model 1

First, we choose the interaction as

Q ¼ αmHρm; ð26Þ

where the coupling parameter αm is a dimensionless
constant. The indefiniteness in the sign of αm indicates
that the energy transfer takes place in either direction: DE
or DM. This interaction is well motivated due to math-
ematical simplicity as the dimensions of the autonomous
system (19)–(20) remain the same because H can be
eliminated from the equations. Now, using this interaction
in the system (19)–(20), the autonomous system for this
interaction model will be

dx
dN

¼ ð−1þ xÞðΓ0x − αm þ 3yÞ; ð27Þ

dy
dN

¼ y
x
ð−1þ xÞðΓ0x − αm þ 3yÞ: ð28Þ

The critical points for the system (27)–(28) are as
follows.

(i) Set of critical points: A1 ¼ ð1; ycÞ, where yc takes
any real value.

(ii) Critical point: B1 ¼ ðαmΓ0
; 0Þ.

(iii) Critical point: C1 ¼ ð1; 0Þ.
(iv) Critical point: D1 ¼ ð1;−1Þ.
(v) Set of critical points: E1 ¼ ðxc; αm3 − Γ0xc

3
Þ.

The existence of critical points and their cosmological
parameters are displayed in Table I. It is observed that point
B1 is a point in the set E1, and points C1 and D1 are points
in the set A1. So, in the next section we shall analyze only
the stability of sets A1 and E1. However, the critical points
B1, C1, and D1 show some interesting cosmological
features, which we shall discuss in Sec. V.

B. Interaction model 2

We consider another choice of interaction as

Q ¼ αdHρd; ð29Þ

where αd is the coupling parameter. Using this interaction
in the system (19)–(20), we have the following autonomous
system:

dx
dN

¼ ðΓ0xþ 3yÞðx − 1Þ þ αdx; ð30Þ

dy
dN

¼ y
x
ððΓ0xþ 3yÞðx − 1Þ þ αdxÞ: ð31Þ

The autonomous system (30)–(31) admits the following
critical points.
(1) Critical point: A2 ¼ ðΓ0−αd

Γ0
; 0Þ.

(2) Set of critical points: B2 ¼ ðxc; xcðΓ0xc−Γ0þαdÞ
3ð1−xcÞ Þ.

The existence criteria and the cosmological parameter
related to the critical points are shown in Table II. It is again
noted that point A2 is a point in a set B2. So, in the next
section we shall analyze only the stability of set B2.
However, depending on the choice of the coupling

TABLE I. The existence of critical points and the correspond-
ing physical parameters for the interaction model Q1 ¼ αmHρm.

Critical Points Existence ωd ωeff Ωm Ωd

A1∶ð1; ycÞ Always yc yc 0 1
B1∶ðαmΓ0

; 0Þ Γ0 ≠ 0 0 − Γ0

3
ð1 − αm

Γ0
Þ 1 − αm

Γ0

αm
Γ0

C1∶ð1; 0Þ Always 0 0 0 1
D1∶ð1;−1Þ Always −1 −1 0 1
E1∶ðxc; αm3 − Γ0xc

3
Þ Always αm−Γ0xc

3xc
αm
3
− Γ0

3
1 − xc xc
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parameter αd, the critical point A2 shows some interesting
cosmological features, which we shall discuss in Sec. V.

C. Interaction model 3

Now, we consider the linear interaction as

Q ¼ αHðρm þ ρdÞ: ð32Þ

For this interaction model, the system (19)–(20) will take
the form

dx
dN

¼ αþ ðΓ0xþ 3yÞðx − 1Þ; ð33Þ

dy
dN

¼ y
x
ðαþ ðΓ0xþ 3yÞðx − 1ÞÞ: ð34Þ

The critical points are as follows:

(1) Critical point: A3∶ð12
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �
; 0Þ, where

Γ0 ≥ 4α.

(2) Critical point: B3∶ð12
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �
; 0Þ, where

Γ0 ≥ 4α.

(3) Set of critical points: C3∶ðxc; Γ0x2c−Γ0xcþα
3ð1−xcÞ Þ.

The cosmological parameters related to the critical points
are shown in Table III. It is again noted that points A3 and
B3 are points in the set C3. So, in the next section we shall
analyze only the stability of set C3.

D. Interaction model 4

Considering the nonlinear interaction

Q ¼ β

H
ρmρd ð35Þ

in Eqs. (19)–(20), the autonomous system will be of the
form

dx
dN

¼ ðx − 1ÞðΓ0x − 3βxþ 3yÞ; ð36Þ

dy
dN

¼ y
x
ðx − 1ÞðΓ0x − 3βxþ 3yÞ: ð37Þ

The critical points for this case are as follows.
(1) Set of critical points: A4 ¼ ð1; ycÞ.
(2) Critical point: B4 ¼ ð1; 0Þ.
(3) Critical point: C4 ¼ ð1;−1Þ.
(4) Set of critical points: D4 ¼ ðxc; βxc − Γ0xc

3
Þ.

The condition for the existence of critical points and the
corresponding physical parameters are presented in
Table IV. It is again noted that points B4 and C4 are points
in the set A4. So, in the next section we shall analyze only
the stability of sets A4 and D4.

E. Interaction model 5

We are now going to discuss another type of interaction
in the dark sectors which is completely based on the local
properties of the Universe, and hence it is different from
the other interaction models discussed in the previous
subsections. Here, we replace the nonlocal transfer rate
(discussed in the previous subsections) by the local rate η,
and the interaction [20] has the following form:

Q ¼ ηρm; ð38Þ

TABLE II. The existence of critical points and the corresponding physical parameters for the interaction model Q2 ¼ αdHρd.

Critical Points Existence ωd ωeff Ωm Ωd

A2∶
�
Γ0−αd
Γ0

; 0
�

Γ0 ≠ 0 0 − αd
3

αd
Γ0

1 − αd
Γ0

B2∶
�
xc;

xcðΓ0xc−Γ0þαdÞ
3ð1−xcÞ

�
xc ≠ 1 ðΓ0xc−Γ0þαdÞ

3ð1−xcÞ
ðΓ0xc−Γ0þαdxcÞ

3ð1−xcÞ
1 − xc xc

TABLE III. The existence of critical points and the corresponding physical parameters for the interaction model Q3 ¼ αHðρm þ ρdÞ.
Critical Points Existence ωd ωeff Ωm Ωd

A3∶
�
1
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �
; 0
�

α
Γ0
< 1

4
0 Γ0

6

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �
1
2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �
1
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �

B3∶
�
1
2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �
; 0
�

α
Γ0
< 1

4
0 − Γ0

6

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �
1
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �
1
2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �

C3∶
�
xc;

Γ0x2c−Γ0xcþα
3ð1−xcÞ

�
xc ≠ 1 Γ0x2c−Γ0xcþα

3xcð1−xcÞ
Γ0xc−Γ0þα
3ð1−xcÞ

1 − xc xc

TABLE IV. The existence of critical points and the correspond-
ing physical parameters for the interaction model Q4 ¼ β

H ρmρd.

Critical Points Existence ωd ωeff Ωm Ωd

A4∶ð1; ycÞ Always yc yc 0 1
B4∶ð1; 0Þ Always 0 0 0 1
C4∶ð1;−1Þ Always −1 −1 0 1
D4∶ðxc; βxc − Γ0xc

3
Þ Always β − Γ0

3
βxc −

Γ0

3
1 − xc xc
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where the coefficient η related to the local rate is assumed to
be constant. When η > 0 (i.e., Q > 0), the energy decays
from DM to DE which reveals the possibility of a vanishing
DE field in the primordial Universe, so that DE condenses
as a result of the slow decay of DM. This interaction was
studied in Ref. [22] describing the phase space analysis
when the dark energy equation of state has the phantom
behavior. Moreover, for η > 0 the interaction is used to
describe the decay of DM into radiation [101], the decay of
a curvaton field into radiation [102], and the decay of
superheavy DM particles into a quintessence scalar field
[103]. On the other hand, for η < 0 the energy is transferred
in the opposite way. Further, in order to close the dynamical
system (19)–(20), one has to introduce the new variable v
given by

v ¼ H0

H þH0

; ð39Þ

where H0 is constant and hence 0 ≤ v ≤ 1. Introducing a
dimensionless coupling constant

γ ¼ η

H0

; ð40Þ

the autonomous system of equations can be written as

dx
dN

¼ ð−1þ xÞ
ð−1þ vÞ ððΓ0xþ 3yÞðv − 1Þ þ γvÞ; ð41Þ

dy
dN

¼ yð−1þ xÞ
xð−1þ vÞ ððΓ0xþ 3yÞðv − 1Þ þ γvÞ; ð42Þ

dv
dN

¼ 1

2
vðv − 1Þð3þ 3y − Γ0ð1 − xÞÞ: ð43Þ

The critical points for this system are as follows.
(1) Set of critical points: A5 ¼ ð1; yc; 0Þ.
(2) Set of critical points: B5 ¼ ð1;−1; vÞ.
(3) Set of critical points: C5¼ðxc;−Γ0xc

3
;0Þ.

(4) Set of critical points: D5 ¼ ðxc;−1þ Γ0

3
ð1 − xcÞ;

−3þΓ0

−3þΓ0þγÞ.
The set of critical points and the corresponding cosmo-

logical parameters are presented in Table V. We note here
that sets A5 and B5 have the common point ð1;−1; 0Þ.

IV. PHASE-SPACE ANALYSIS AND STABILITY
CRITERIA OF CRITICAL POINTS

We shall now discuss the phase-space analysis of critical
points and their stability by analyzing the eigenvalues of
the linearized Jacobian matrix evaluated at the critical
points presented in Tables VI and VII. It can be seen from

TABLE V. The existence of critical points and the corresponding physical parameters for the interaction model Q5 ¼ ηρm.

Critical Points Existence ωd ωeff Ωm Ωd

A5∶ð1; yc; 0Þ Always yc yc 0 1
B5∶ð1;−1; vÞ 0 ≤ v ≤ 1 −1 −1 0 1
C5∶ðxc;− Γ0xc

3
; 0Þ Always − Γ0

3
− Γ0

3
1 − xc xc

D5∶
�
xc;−1þ Γ0

3
ð1 − xcÞ; −3þΓ0

−3þΓ0þγ

�
Γ0 þ γ ≠ 3 − 1

3xc
ð3 − Γ0 þ Γ0xcÞ −1 1 − xc xc

TABLE VI. The eigenvalues of the critical points for different interaction models.

Interaction Critical points λ1 λ2

1. Q ¼ αmHρm A1∶ð1; ycÞ 0 3yc þ Γ0 − αm
,, B1∶ðαmΓ0

; 0Þ 0 −Γ0 þ αm
,, C1∶ð1; 0Þ 0 Γ0 − αm
,, D1∶ð1;−1Þ 0 −3þ Γ0 − αm
,, E1∶ðxc; αm3 − Γ0xc

3
Þ 0 αmð−1þxcÞ

xc
2. Q ¼ αdHρd A2∶

�
Γ0−αd
Γ0

; 0
�

0 Γ0 − αd

,, B2∶
�
xc;

xcðΓ0xc−Γ0þαdÞ
3ð1−xcÞ

�
0 αdxc

1−xc

3. Q ¼ αHðρm þ ρdÞ A3∶ð12
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �
; 0
� 0 Γ0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q

,, B3∶
�
1
2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q �
; 0
�

0 −Γ0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

Γ0

q
,, C3∶ðxc; Γ0x2c−Γ0xcþα

3ð1−xcÞ Þ 0 αð2xc−1Þ
xcð1−xcÞ

4. Q ¼ β
H ρmρd A4∶ð1; ycÞ 0 3yc þ Γ0 − 3β

,, B4∶ð1; 0Þ 0 Γ0 − 3β
,, C4∶ð1;−1Þ 0 −3þ Γ0 − 3β
,, D4∶ðxc; βxc − Γ0xc

3
Þ 0 0
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Tables VI and VII that all critical points are actually a
nonisolated set of critical points. It is also noted that
Eq. (20) is y

x times Eq. (19), but this does not imply that
Eq. (20) is obtained from Eq. (19) as the equation-of-state
parameter (ωd ¼ y

x) is not a constant. As a result, all critical
points obtained are nonisolated sets. By definition, a
nonisolated set contains at least one vanishing eigenvalue,
so it is nonhyperbolic in nature [104]. The type of non-
isolated set with exactly one vanishing eigenvalue is called
a normally hyperbolic set. Its stability condition is similar
to the linear stability analysis and can be determined simply
by looking for the signature of the remaining nonvanishing
eigenvalues [104]. In this work, all sets of points are
normally hyperbolic except sets B5, C5, and D4 (see
Tables VI and VII).

A. Interaction 1

The system (27)–(28) admits two sets of critical points:
A1 and E1. As mentioned earlier, point B1 is in the set E1,
whereas points C1 andD1 are in the set A1. In what follows,
we therefore analyze the stability of sets A1 and E1 only.

(i) The solution associated with the set of critical points
A1ð1; ycÞ (where yc takes any real value) always
exists. They are completely DE-dominated solutions
(Ωd ¼ 1), where DE corresponds to an exotic-type
fluid with equation of state ωd ¼ yc. For this case,

DE can describe quintessence, a cosmological con-
stant, or a phantom field, or any other perfect fluid
according to the choice of yc. So, the critical points
may have different features in their cosmic evolu-
tions. Points in this set correspond to an accelerating
universe (i.e., ωeff < − 1

3
) for yc < − 1

3
(see Table I),

and there exists an expanding universe if the
evolution of the Hubble function satisfies ωeff < −1
[see Eq. (25)] (i.e., the Hubble parameter increases
gradually) for yc < −1, i.e., in the phantom region.
This set is normally hyperbolic and hence corre-
sponds to a late-time attractor for yc <

αm−Γ0

3
(see

Table VI). This is also confirmed numerically in
Fig. 1(a). The one-dimensional center subspace
spanned by the eigenvector

�
0

1

�

(which corresponds to a vanishing eigenvalue)
identifies the direction of the set A1. The one-
dimensional stable subspace near this set is spanned
by the eigenvector

�
1=yc
1

�
;

TABLE VII. The eigenvalues of the critical points for interaction model 5, Q ¼ γH0ρm.

Critical points λ1 λ2 λ3

A5∶ð1; yc; 0Þ 0 3
2
ð1þ ycÞ 3yc þ Γ0

B5∶ð1;−1; vÞ 0 0 −3þ Γ0 −
γv
1−v

C5∶
�
xc;−

Γ0xc
3

; 0
�

0 0 1
2
ð3 − Γ0Þ

D5∶
�
xc;−1þ Γ0

3
ð1 − xcÞ; −3þΓ0

−3þΓ0þγ

�
0 ðxc−1þ

ffiffiffiffiffiffiffiffi
1−x2c

p
Þð−3þΓ0Þ

2xc

− ð−xcþ1þ
ffiffiffiffiffiffiffiffi
1−x2c

p
Þð−3þΓ0Þ

2xc

E1

(a) (b)

FIG. 1. The vector field of the autonomous system (27)–(28) for the interaction model 1 with the parameter values αm ¼ −0.01 and
Γ0 ¼ 0.5. In panel (a), the colored line represents the line A1, and the black line is the stable portion of set A1. In panel (b), the colored
line represents the line E1, and the black line is the stable portion of set E1.
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which corresponds to a nonvanishing eigenvalue
with yc <

αm−Γ0

3
. Since there is no unstable subspace

near A1 when yc <
αm−Γ0

3
, trajectories will approach

some points in set A1. While the set of critical points
A1 represents a stable attractor in the quintessence
region for yc < min fαm−Γ0

3
;− 1

3
g, they are stable

solutions with cosmological-constant behavior
for Γ0 < 3þ αm. On the other hand, stable solutions
are obtained in the phantom region for
yc < minf−1; αm−Γ0

3
g. Hence, the set of critical

points represents the solutions of an accelerated
stable attractor in some parameter region where DE
behaves as quintessence, a cosmological constant, or
a phantom field. This is one of the important results
in this context of interacting DE since in this
scenario DE can mimic three distinct phases of
the cosmic evolution. It should be noted that in
Fig. 1 the origin (0,0) of the phase space acts as a
critical point. As the dynamical system is singular at
this point, its stability cannot be determined directly;
only numerical investigation can infer its behavior.
So, we can say that (0,0) acts as a (nonlinear) critical
point of the system.

(ii) The set E1 exists for all model parameters. It
represents a scaling solution where DM and DE
scale as Ωm=Ωd ¼ ð1 − xcÞ=xc. The DE describes
any perfect fluid with equation-of-state parameter
ωd ¼ αm−Γ0xc

3xc
. This set is normally hyperbolic, and

hence it is stable when 0 < xc < 1, αm > 0; xc < 0,
αm < 0; xc > 1, αm < 0. This is confirmed numeri-
cally in Fig. 1(b). The one-dimensional stable sub-
space near this set is spanned by the eigenvector

� 3x
αm−Γ0x

1

�
;

with xc and αm satisfying the above stability con-
dition. The eigenvector

�− 3
Γ0

1

�

(which corresponds to a vanishing eigenvalue)
determines the direction of the set. This set describes
an accelerated quintessence behavior for 1 < Γ0 −
αm < 3 (−1 < ωeff < − 1

3
), while it represents a

cosmological-constant behavior for Γ0 ¼ 3þ αm
(ωeff ¼ −1), and phantom behavior for Γ0 > 3þ
αm (ωeff < −1; see Table I). This set is interesting
from the cosmological point of view as it describes a
late-time attractor in quintessence, the cosmological
constant or, the phantom region for certain choices
of αm and xc. Interestingly, from Fig. 1 the origin

(0,0) behaves as a (nonlinear) critical point of the
system. However, at this point the system is singular
and hence its stability cannot be determined ana-
lytically, but numerically the system behaves as if
the origin is not stable.

B. Interaction 2

(i) The autonomous system (30)–(31) only has one set of
critical points: B2. As mentioned earlier, it is to be noted
that point A2 is in the set B2. So, we shall analyze the
stability of set B2 only. Set B2 corresponds to a scaling
solution and it always exists, except at xc ¼ 1. For this
solution, DM and DE scale in a constant fraction as
Ωm=Ωd ¼ ð1 − xcÞ=xc, where DE behaves as a perfect
fluid with the barotropic equation of state ωd ¼ Γ0xc−Γ0þαd

3ð1−xcÞ
(see Table II). This set corresponds to an accelerated
universe if αdxc

1−xc
< Γ0 − 1. This set is normally hyperbolic

and hence it is stable if αd < 0, 0 < xc < 1; xc < 0,
αd > 0; xc > 1, αd > 0. This is confirmed numerically
from Fig. 2. The eigenvector

�
− 3ðxc−1Þ2

Γ0ðx−1Þ2−αd
1

�

(which corresponds to a vanishing eigenvalue) determines
the direction of the tangent at each point of the set. The one-
dimensional stable subspace near this set is spanned by the
eigenvector

� 3ð1−xÞ
Γ0ðx−1Þþαd

1

�
;

with αd and xc satisfying the above stability condition. So,
depending on the choice of αd and xc this set can explain
the late-time behavior of our Universe.

FIG. 2. The vector field of the autonomous system (30)–(31) for
the interaction model 2 with the parameter values αd ¼ −0.01
and Γ0 ¼ 0.5. The colored curve represents the set B2, and the
black curve is the stable portion of set B2.

DYNAMICAL ANALYSIS OF AN INTERACTING DARK … PHYSICAL REVIEW D 95, 103009 (2017)

103009-9



C. Interaction 3

(i) The system (33)–(34) admits only one critical set of
points C3. As mentioned earlier, we see that the points A3

and B3 are points in the set C3. So, we shall analyze the
stability of set C3 only. One interesting point for this
solution C3 is that it is a combination of DM and DE with
the ratio Ωm

Ωd
¼ 1−xc

xc
, and will exist for all model parameters

except xc ¼ 1. An accelerating universe is predicted by the
set when α

1−xc
< Γ0 − 1. This set is normally hyperbolic and

it is stable if 0 < xc < 1
2
, α > 0; 1

2
< xc < 1, α < 0; xc < 0,

α < 0; xc > 1, α > 0. Hence, this set provides some
interesting features for both positive and negative couplings
of the interaction. Its stability is confirmed numerically in
Fig. 3. The one-dimensional stable subspace near this set is
spanned by the eigenvector

� 3xcð1−xcÞ
Γ0xcðxc−1Þþα

1

�

(which corresponds to a nonvanishing eigenvalue), with α
and xc satisfying the above stability condition. The direc-
tion of the tangent at each point on the set is along the
eigenvector

� 3ðxc−1Þ2
α−Γ0ðxc−1Þ2

1

�
;

corresponding to a vanishing eigenvalue. So, depending
on the choice of parameters and fine-tuning of initial
conditions, trajectories near this set approach points of
this set. Hence, some critical points on this set correspond
to a late-time accelerated universe.

D. Interaction 4

There are two sets of critical points arising from the
interaction model 4 (A4 and D4). As mentioned earlier,

points B4 and C4 are points in the set A4. So, in what
follows we shall analyze the stability of sets A4 and
D4 only.

(i) The set of critical points A4 exists for all model
parameters involved. It represents a DE-dominated
solution (Ωd ¼ 1). This DE-dominated solution
describes the late-time acceleration of the Universe
when DE behaves as quintessence, a cosmological
constant, or a phantom or any other exotic fluid for
yc < − 1

3
. This set is again normally hyperbolic and it

is stable when yc <
αm−Γ0

3
. The stability of A4 is

confirmed numerically in Fig. 4. The one-dimen-
sional stable subspace near this set is spanned by the
eigenvector

�
1=yc
1

�
;

where yc <
αm−Γ0

3
. The eigenvector

�
0

1

�

corresponds to a vanishing eigenvalue and deter-
mines the direction of the set. There is no unstable
subspace near this set for yc <

αm−Γ0

3
. This means

that depending on the choice of αm, Γ0, and yc
trajectories approach some points on this set.

(ii) The solution represented by the point D4 is a
combination of both DE and DM with the constant
ratio Ωm

Ωd
¼ 1−xc

xc
, where DE describes any perfect fluid

with equation of state ωd ¼ β − Γ0

3
. The set exists for

all model parameters. Depending on some parameter
restrictions, an acceleration will occur for the set, but
since both eigenvalues vanish we do not obtain any

FIG. 3. The vector field of the autonomous system (33)–(34) for
the interaction model 3 with the parameter values α ¼ −0.01 and
Γ0 ¼ 0.5. The colored curve represents the set C3, and the black
curve is the stable portion of set C3.

FIG. 4. The vector field of the autonomous system (36)–(37) for
the interaction model 4 with the parameter values β ¼ −0.01 and
Γ0 ¼ 0.5. The colored lines represent A4 and D4, and the black
curve is the stable portion of set A4.
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information regarding the stability ofD4 (see Fig. 4).
It behaves as a neutral line.

E. Interaction 5

(i) From the local interaction model 5, we get four sets
of critical points presented in Table V. The set A5

(similarly to A1 and A4) is a completely DE-
dominated solution. It corresponds to a phantom
universe for yc < −1, and it corresponds to a
quintessence-dominated phase for −1 < yc < − 1

3
.

The DE associated with this set can mimic any kind
of fluid for different choices of yc. It is a normally
hyperbolic set and hence it is stable if (a) Γ0 ≤ 3 and
yc < −1, or (b) Γ0 > 3 and yc < − Γ0

3
. This means

that the set will be stable only in the phantom
regime. Furthermore, in this region the set becomes
physically relevant, describing the late-time
accelerated expansion of the Universe. The two-
dimensional stable subspace is spanned by the
eigenvectors

0
B@

1=yc
1

0

1
CA and

0
B@

0

0

1

1
CA

(corresponding to two nonvanishing eigenvalues),
where yc satisfies the above stability condition. The
one-dimensional center subspace is spanned by the
eigenvector

0
B@

0

1

0

1
CA

(corresponding to a vanishing eigenvalue) and de-
termines the direction of set A5. Hence, this set can
describe the late-time behavior of our Universe.

(ii) The set of points B5 exists for all values of model
parameters. This solution is completely DE domi-
nated, where DE behaves as a cosmological con-
stant. There always exists an accelerating universe
(ωeff ¼ −1; see Table V). It is a nonisolated set of
critical points where all points are nonhyperbolic,
but it is not a normally hyperbolic set since it
contains two vanishing eigenvalues. A numerical
projection plot of the system (41)–(43) shows that
this set cannot be stable. It can be seen that in ðx; vÞ
phase space, trajectories are attracted to the set B5

[see Fig. 5(a)]; however, trajectories in ðy; vÞ phase
space are not attracted to the set B5 [see Fig. 5(b)].
We have checked that this actually happens for
different choices of model parameters. This implies
that points of this set are saddle points.

(iii) The set of critical points C5 exists for all values of
model parameters. The set corresponds to a solution
with both DE and DM in the phase space where DE
behaves as any perfect fluid model with an equation-
of-state parameter ωd ¼ −Γ0=3. Hence, it is clear
that the DE may have different features during its
evolution, such as quintessence in the parameter
region 1 < Γ0 < 3, a cosmological constant for
Γ0 ¼ 3, and the phantom regime for Γ0 > 3. Now
the expansion of the Universe is accelerated for
Γ0 > 1 (ωeff < − 1

3
). This set is again nonhyperbolic

but not normally hyperbolic. Numerically, by plot-
ting the projection of trajectories in the ðx; yÞ plane
(see Fig. 6), we observe that points in this set are
saddle points.

(iv) The set of points D5 is the combination of both DE
and DM. This set behaves as a cosmological con-
stant (i.e., ωeff ¼ −1; see Table V), and hence there
is always an accelerating universe near this set. Also,
the set of critical points under consideration is a
normally hyperbolic set. Hence, it is a stable spiral if
Γ0 < 3, xc > 1 or Γ0 < 3, xc < −1, and it is a stable
node if −1 < xc < 0, Γ0 < 3 or 0 < xc < 1, Γ0 > 3.

(a) (b)

FIG. 5. The vector field projection in (a) xv phase plane and (b) yv phase plane of the autonomous system (41)–(43) for the interaction
model 5 with the parameter values γ ¼ 0.5 and Γ0 ¼ 0.001.
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V. COSMOLOGICAL IMPLICATIONS

In this section, we shall describe the main cosmological
features extracted from the interacting dark energy models
in the presence of gravitational particle production. In the
following subsections, we shall describe the physics of the
critical points for each interacting model in this framework
along with their viability to describe different cosmic
phases. An interesting feature is that in all of the interaction
models, the evolutions of Ωm, Ωd, and ωeff (see Fig. 7)
are similar and so we have not plotted them for each
interaction model.

A. Interaction model 1

In this model we obtained two set of critical points: A1

and E1. Set A1 represents a de Sitter universe for yc ¼ −1

(point D1), it represents a stiff matter-dominated universe
for yc ¼ 1 and for yc ¼ 0 (i.e., point B1); we actually get a
DE-dominated universe (Ωd ¼ 1), but it appears as if it is a
matter-dominated solution (ωeff ¼ 0). We also note that the
critical point B1 is a special case of set E1 and it
corresponds to a matter-dominated universe for αm ¼ 0
when no interaction between DE and DM is considered.
Moreover, set E1 also represents a matter-dominated
universe for xc ¼ 0 [i.e., the point ð0; αm

3
Þ]. From the

analysis performed in Sec. IV, we see that—depending
on the choice of model parameters and the fine-tuning of
the initial conditions—the Universe evolves from a matter-
dominated phase (set E1) to a DE-dominated phase (set A1),
for either a quintessence regime for −1 < yc < − 1

3
, a

cosmological constant for yc ¼ −1, or a phantom regime
for yc < −1 (see, e.g., Fig. 7). Hence, we observe that the
background dynamics of this model can possibly mimic the
ΛCDM model [see Fig. 7(a)]. Moreover, there is a
possibility of crossing the phantom barrier [ωeff ¼ −1;
see Fig. 7(b)], which is slightly favored by observations and
cannot be achieved in the case of noninteracting DE
models. Hence, this model can well describe the late-time
transition from a DM- to a DE-dominated phase of the
Universe.

B. Interaction model 2

In this model, there is only one set of critical points: B2.
This set represents a DM-dominated universe when xc ¼ 0,
i.e., when we consider the origin (0,0) as a critical point.
Unfortunately, we do not obtain any information regarding
the stability of the point (0,0) as both eigenvalues vanish for
this particular point. However, from Fig. 2 it looks like the
point (0,0) is not stable. The critical point A2 is a special
case of set B2, and it represents a DE-dominated but
decelerated universe (Ωd ¼ 1, ωeff ¼ 0) for αd ¼ 0 when

(a) (b)

FIG. 7. The evolution of the DE energy density parameterΩd, the DM energy density parameterΩm, and the effective equation of state
ωeff of the system (27)–(28) for the interaction model 1 with the parameter values αm ¼ −0.001 and Γ0 ¼ 0.05 with different choices of
initial conditions. Panel (a) shows the cosmological constant as a late-time attractor, and panel (b) shows the phantom regime as a late-
time attractor.

FIG. 6. The vector field projection in xy phase plane of the
autonomous system (41)–(43) for the interaction model 5 with the
parameter values γ ¼ 1 and Γ0 ¼ 6. It may be noted that we take
Γ0 to be very large for this particular plot simply to check its
instability, since for Γ0 < 3, the eigenvalue λ3 > 0 and it will
surely be unstable.
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there is no coupling between DE and DM. Set B2 can
represent a late-time accelerated scaling solution for αd < 0
and 0 < xc < 1. However, viable trajectories are attracted
to B2 near the limit xc ¼ 1, i.e., it is a DE-dominated
universe (see Fig. 2). So, for this model the Universe
evolves from a matter-dominated solution (set B2 for
xc ¼ 0) towards a DE-dominated solution (set B2 for limit
xc → 1) (a similar scenario is obtained for this model as
in Fig. 7).

C. Interaction model 3

The background cosmological behavior of this model is
similar to interaction model 2. In this model, there is only
one set of critical points: C3. This set represents a DM-
dominated universe when xc ¼ 0 for which no information
is obtained regarding its stability, as both eigenvalues
vanish for this particular case. However, numerically it
can be seen from Fig. 3 that this set is not stable. The
critical points A3 and B3 are special cases of set C3 and
correspond to scaling solutions. The point A3 corresponds
to a DE-dominated but decelerated universe (Ωd ¼ 1,
ωeff ¼ 0) for α ¼ 0. So, when no interaction is considered
this point corresponds to a DE-dominated universe, but the
universe expands as if it was matter dominated. The point
B3 corresponds to a DM-dominated universe for α ¼ 0.
Set C3 can represent a late-time accelerated scaling solution
for some choices of α and xc. It corresponds to a DM-
dominated universe for xc ¼ 0. Moreover, viable trajecto-
ries are attracted to C3 near the limit xc ¼ 1 (see Fig. 3). So,
for this model the Universe evolves from a matter-domi-
nated solution (set C3 for xc ¼ 0) towards a DE-dominated
solution (set C3 for xc → 1).

D. Interaction model 4

In this model we obtained two sets of critical points: A4

and D4. Set A4 represents a stiff matter-dominated uni-
verse for yc ¼ 1. It also represents a de Sitter universe for
yc ¼ −1 (i.e., the point C4). For yc ¼ 0 (i.e., the point B4),
this set corresponds to a DE-dominated universe
(Ωd ¼ 1), but the universe appears as if it was matter
dominated (ωeff ¼ 0). The set of critical points D4

behaves as a neutral line, but its stability cannot be
determined as all of its eigenvalues vanish. However,
for xc ¼ 0 [i.e., the point (0,0)] it corresponds to a matter-
dominated universe. Even though its stability cannot be
determined analytically, numerically we can see that the
origin is not stable (see Fig. 4). Hence, we see that
depending on the choice of model parameters and the fine-
tuning of the initial conditions, the Universe evolves from
a matter -dominated phase (set D4) to a DE-dominated
phase (set A4), for either a quintessence regime for
−1 < yc < − 1

3
, a cosmological constant for yc ¼ −1, or

a phantom regime for yc < −1.

E. Interaction model 5

In this model we obtained four sets of critical points: A5,
B5, C5, and D5. Set A5 corresponds to a late-time attractor
where DE dominates only in the phantom regime. The
critical points in sets B5 and C5 behave as saddle points,
and interestingly set C5 corresponds to a matter-dominated
universe for xc ¼ 0. Set D5 also corresponds to a late-time
accelerated solution for some choices of model parameters.
Hence, depending on the initial conditions and the choices
for the model parameters, we see that the universe can
evolve from a matter-dominated phase (set B5 or C5) to a
DE-dominated phase (set D5). Physically, this means that
there is a transition from DM to DE domination in the late
universe.

VI. SHORT DISCUSSION

In the present work, we have performed a dynamical
system analysis for the scenarios of interacting dark matter
and dark energy, where additionally gravitational particle
production is also allowed. The particle-creation mecha-
nism describes many interesting results, such as the
possibility of a phantom universe without invoking any
phantom field, the formation of an emergent universe, a
complete cosmic scenario, etc. Here, we have considered
the dark matter fluid as dust and the dark energy as a perfect
fluid with equation of state ωd. Moreover, the particles
created by the gravitational field have been considered to be
dark matter particles (equivalently, dust particles) in agree-
ment with the local gravity constraints, and the production
rate was taken to be varying linearly with the Hubble
function (i.e., Γ ∝ H). We have considered five interacting
models which correspond to five distinct forms of inter-
action Q. The objective for choosing such a complex
system was to examine whether there is any model
(interacting) which could explain the overall evolution of
the universe. In particular, a complete description of
evolution at late times can be obtained in quintessence,
ΛCDM, or the phantom era connected through a DM-
dominated era. Critical points, their existence, and their
corresponding cosmological parameters are shown in
Tables I–V for the respective models. Additionally, we
have presented the eigenvalues for different interaction
models in Tables VI and VII. A detailed stability analysis
was carried out in Sec. IV. It was also noted that all sets of
points except D4, B5, and C5 are normally hyperbolic,
where stability is confirmed by the signature of the
remaining nonvanishing eigenvalues.
We found that the sets of critical points A1, A4, and A5

correspond to a DE-dominated universe where DE could
mimic a quintessence era, a cosmological constant, a
phantom phase, sometimes dust, or even any other exotic
fluid. However, it was found that some of the critical points
in the above set of critical points representing the above
cosmic phases (i.e., quintessence, cosmological constant,
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or phantom phase) could describe the late-time expansion
of the universe but they cannot alleviate the coincidence
problem. On the other hand, some sets of critical points (E1,
B2, C3, D5) can possibly represent scaling solutions for
0 < xc < 1 with an accelerated expansion of the universe.
However, we observed that trajectories are attracted to a
portion of sets where xc ≈ 1 and hence the critical points of
these sets cannot alleviate the coincidence problem (since
Ωd ≈ 1). Moreover, critical points in the sets E1, B2, C3,
and D5 with xc ¼ 0 represent a DM-dominated universe.
Our stability analysis (in Sec. IV) showed that for some
choices of model parameters and fine-tuning of initial
conditions, one can connect these DM-dominated solutions
to DE-dominated solutions (A1, A4, A5 or B2, C3 for the
limit xc → 1) which can possibly mimic quintessence, a
cosmological constant, or a phantom phase. It may be noted
that phenomenologically interesting solutions depend on
the strong fine-tuning of the initial conditions, since all the
critical points lie in different nonisolated sets and only a
few points describe the correct observed cosmological
dynamics.
Thus, in summary, one may conclude that the present

interacting DE model in the framework of the particle-
creation mechanism may describe different evolutionary
phases of the universe. These interacting models can

possibly allow the crossing of the phantom divide line
[see Fig. 7(b) which shows the clear cosmic evolution of the
physical quantities ωeff , Ωd, Ωm], which is not possible in
the case of uncoupled standard cosmology. The present
particle-creation mechanism describes the true nonequili-
brium thermodynamics of the universe compared to other
standard DE models. As a result, the present model shows
stable critical points representing various cosmological
scenarios. Moreover, the background dynamics of these
interacting models can possibly mimic the ΛCDM model
but only for yc ¼ −1, so there might be some differences at
the level of perturbations. However, cosmological pertur-
bation analysis lies beyond the scope of our present study.
This can be left for future works.
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