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Observations of cosmic infrared background (CIB) radiation exhibit significant fluctuations on small
angular scales. A number of explanations have been put forth, but there is currently no consensus on the
origin of these large fluctuations. We consider the possibility that small-scale fluctuations in matter-
antimatter asymmetry could lead to variations in star formation rates which are responsible for the CIB
fluctuations. We show that the recently proposed Higgs relaxation leptogenesis mechanism can produce
such small-scale baryonic isocurvature perturbations which can explain the observed excess in the CIB
fluctuations.
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I. INTRODUCTION

Observations of near-infrared cosmic infrared back-
ground (CIB) radiation by the AKARI and Spitzer space
telescopes both have a consistent excess at the subdegree
scale [1–5]. In particular, the integrated CIB fluctuation at
5 arcminutes, between 2 and 5 μm, is δF2−5μmð50Þ≃
0.09 nWm−2 sr−1 [6,7]. This measurement of the aniso-
tropic CIB entails that the power in the fluctuations is
FCIB ≈ δFCIB=Δ50 ∼ 1 nWm−2 sr−1. The origin of this
excess has not been clearly identified, but one plausible
source is the first (population III) stars, which form at
redshifts z≳ 10 [6,7]. While the AKARI observations can
be explained by faint galaxies, the Spitzer observations are
not consistent with this explanation [8]. (The Spitzer space
telescope is able to resolve fainter point sources and does
not observe a sufficiently large faint galaxy population to
explain the excess [8].) Zodiacal light is unable to account
for the excess [9].
The star formation rate depends on the distribution of

halos, seeded by cosmological density perturbations. It was
recently pointed out that, if primordial black holes account
for dark matter, then isocurvature density perturbations
arising from fluctuations in the distribution of black holes
can explain the CIB measurements [6,7,10,11]. In this
scenario, the increase in the power of dark matter density
perturbations on the small scales leads to a larger fraction of
collapsed halos at redshift z > 10. This results in a higher
FCIB, which can explain the CIB observations [11].
We here explore a different possibility. Depending on its

origin, the baryonic asymmetry of the universe can exhibit
small-scale fluctuations. These fluctuations can have the

same effect on the CIB as the fluctuations produced by the
black holes; namely, they can also increase the number of
collapsed halos. Models of ingomogeneous baryogenesis
have been considered [12,13]. In particular, the recently
proposed Higgs relaxation leptogenesis models [14–16] are
expected to produce small-scale baryonic isocurvature
perturbations. A similar scenario can be constructed with
other scalar fields, such as axions, or in models with an
extended Higgs sector [17–19].
This leptogenesis model is motivated by the observation

that the Higgs field will generically undergo a postinfla-
tionary relaxation epoch [20]. Higgs relaxation leptogen-
esis uses an effective dimension 6 operator in the scalar
sector to produce an effective chemical potential during the
Higgs relaxation epoch, which distinguishes matter from
antimatter. In the presence of a lepton-number-violating or
baryon-number-violating interaction, the system relaxes
toward its equilibrium state with nonzero asymmetry.
In the Higgs relaxation leptogenesis scenario, the final

baryon asymmetry depends on the magnitude of the post-
inflationary, prerelaxation vacuum expectation value
(VEV) of the Higgs field. This can be produced by
quantum fluctuations during inflation [14,16]. Therefore
this initial VEV, and consequently the produced asymme-
try, will generically vary spatially. In this work, we
illustrate how these variations give rise to matter isocurva-
ture perturbations. Isocurvature perturbations are not
affected by Silk or Landau damping, and baryonic iso-
curvature perturbations cannot be converted into adiabatic
perturbations prior to the decoupling of baryons and
photons [21]. Therefore, such perturbations can cause
massive regions to reach the nonlinear regime earlier,
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enhancing star-formation at z≃ 10. This provides an
elegant resolution to the problem of excess CIB radiation.
This paper is organized as follows: In Sec. II, we review

the relevant features of the Higgs relaxation model and
illustrate how it generates matter isocurvature perturba-
tions. Subsequently, in Sec. III, we calculate the spectrum
of these baryonic isocurvature perturbations; we then
consider how these modes evolve in Sec. IV. The main
results of this work are contained in Sec. V, in which we
show that these isocurvature modes cause sufficiently many
halos large enough to support star formation to collapse
around z ¼ 10 to explain the CIB observations. Finally, we
present the parameter space in which Higgs relaxation
leptogenesis can both account for the observed matter-
antimatter asymmetry of the universe and explain the CIB
observations in Sec. VI.

II. THE HIGGS RELAXATION LEPTOGENESIS
MODEL AS A SOURCE OF ISOCURVATURE

PERTURBATIONS

In this section, we review the Higgs relaxation
leptogenesis model, following the discussion in [14,16],
and then explain how it generates baryonic isocurvature
perturbations.
During inflation, any scalar field ϕ, including the Higgs

field, with mass mϕ < HI will develop a vacuum expect-

ation value (VEV)
ffiffiffiffiffiffiffiffiffi
hϕ2i

p
through quantum fluctuations

[22–24]. Due to Hubble friction, the field is unable to
efficiently relax to its equilibrium value. The average VEV
can be computed via a stochastic approach, which we
discuss in detail below. At the end of inflation, the Hubble
parameter decreases, and the scalar field will relax to its
equilibrium value.
For successful Higgs relaxation leptogenesis, we addi-

tionally assume that the Higgs field is coupled to the
(Bþ L) fermion current, jμBþL, through an operator of the
form

O6 ¼ −
1

Λ2
n
ð∂μjϕj2ÞjμBþL; ð1Þ

which can be arranged by coupling ϕ2 to −g2Wa
μν

~Wμν
a þ

g02Bμν
~Bμν and using the electroweak anomaly equation,

among other possibilities [14–16]. As the VEVof ϕ evolves
in time, this operator acts as an effective chemical potential,

μeff ¼
1

Λ2
n
∂tjϕj2; ð2Þ

for the fermion current jμBþL. In the presence of a B or
L-violating interaction (such as those mediated by heavy
right-handed neutrinos), the system will acquire a nonzero
Bþ L charge. The available parameter space was described
in Ref. [16]; here we simply emphasize that this included

regions of parameter space in which the right-handed
neutrino is too heavy to thermalize, thus suppressing
thermal leptogenesis. The final lepton-number-to-entropy
ratio is in general determined by the initial VEV ϕ0 at the
end of inflation, Y ∝ ϕ2

0, as explained in Appendix A.
We emphasize that since the effective chemical potential

∝ ∂tjϕj2, it is independent of the phase of hϕi, and
therefore, the same sign asymmetry is generated in all
Hubble patches. Consequently, it is not necessary for the
observable universe to be contained within one Hubble
patch. Due to quantum fluctuations, these different regions
of the universe will generically have different initial VEVs
ϕ0 right after the inflation. Since the asymmetry is propor-
tional to the initial VEV, different patches in the universe
will end up with different baryon asymmetries after the
above-described leptogenesis mechanism is completed. As
time progresses, different scales will reenter the horizon; as
baryons become nonrelativistic, these baryonic density
fluctuations will evolve, and some may collapse. The
observable universe today consists of many Hubble
patches, and therefore we expect enhanced baryonic
fluctuations in the Higgs relaxation leptogenesis model.
Since the Higgs field ϕ is not the inflaton, and we ensure

that it does not dominate the energy density of the universe,
the baryonic fluctuations generated in this manner are
isocurvature (entropy) perturbations. They are independent
from the adiabatic (curvature) perturbations produced
during reheating by the decay of the inflaton.
This production of baryonic isocurvature perturbations

in Higgs relaxation leptogenesis was noted in Refs. [14,16],
where it was observed that these perturbations have the
potential to exceed observational bounds from the cosmic
microwave background radiation (CMB) [25]. Therefore,
these isocurvature perturbations must be suppressed at
scales probed by the CMB. This led to the construction
of the “IC-2” initial condition in those references, in which
the Higgs field ϕ is massive (mϕ > HI) at the beginning of
the inflation, due to a coupling to inflaton via one or several
operators of the form

LϕI ¼ c
ðϕ†ϕÞm=2ðI†IÞn=2

Mmþn−4
pl

: ð3Þ

While the inflaton VEV hIi is large, these operators provide
a large effective mass to the scalar field ϕ, suppressing the
growth of its VEV due to quantum fluctuation. As inflation
proceeds and hIi decreases, the Higgs field ϕ becomes
effectively massless (mϕ < HI), and the vacuum expect-
ation value starts to grow. As we discuss below, the initial
VEV, and therefore the resulting asymmetry, depends on
Nlast, the number of e-folds (measured from the end of
inflation) that the Higgs VEV developed during. In
Refs. [14,16,18], we set Nlast ∼ 8 out of an abundance of
caution; next, we discuss more precisely the exact obser-
vational constraint.
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III. SPECTRUM OF PRIMORDIAL BARYONIC
ISOCURVATURE PERTURBATIONS

Having explained how the Higgs relaxation leptogenesis
model produces baryonic isocurvature perturbations, we
now proceed in this section to determine the spectrum of
these primordial baryonic isocurvature perturbations. We
will also apply observational constraints to the spectrum,
and we will determine how this constrainsNlast, the number
of e-folds the Higgs VEV grows during.
We will first need to calculate the spectrum of the

fluctuations in the Higgs vacuum expectation value, since
this sources the fluctuations in the baryon density. As
mentioned above, in Higgs relaxation leptogenesis models,
the Higgs field is coupled to the inflaton in such a way that
the vacuum expectation value grows during only the last
Nlast e-folds of inflation. If the effective mass turns off
sufficiently fast, then the average VEV of ϕ at the end of
inflation in a completely flat potential is

ϕ0 ≡
ffiffiffiffiffiffiffiffiffi
hϕ2i

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
HI

HIe−Nlast

dk
k

�
HI

2π

�
2

s
¼

ffiffiffiffiffiffiffiffiffi
Nlast

p HI

2π
: ð4Þ

This ignores curvature in the potential; a more accurate
determination of the VEV is found by first solving the
Fokker-Planck equation [26]

∂Pðϕ; tÞ
∂t ¼ ∂2

∂ϕ2

�
H3

IPðϕ; tÞ
8π2

�
þ ∂
∂ϕ

�
Pðϕ; tÞ
3HI

dVðϕÞ
dϕ

�
; ð5Þ

for Pðϕ; tÞ, the probability distribution function of observ-
ing the VEVequal to ϕ at time t. [VðϕÞ is the potential for
the scalar ϕ; in this case, our scalar is the Higgs boson.] The
time evolution of the average VEV of ϕ can then be
computed through

hϕ2ðtÞi ¼
Z

dϕϕ2Pðϕ; tÞ; ð6Þ

with the initial condition Pðϕ; t ¼ 0Þ ¼ δðϕÞ. In our
analysis, we make use of the Higgs potential at one loop,
with running couplings where the RG equations are
calculated at two loops, following [27]. We use the same
potential, with thermal corrections, to evaluate the post-
inflationary relaxation of this vacuum expectation value, as
in [14–16]. ϕ0 denotes the vacuum expectation value at the
end of inflation, which is the initial VEV for the Higgs
relaxation epoch.
This vacuum expectation value is produced by quantum

fluctuations, and therefore it is not constant in space, as was
mentioned above. Perturbations are produced on all physi-
cal spatial scales inside the horizon l≲H−1

I , where the
Hubble parameter is evaluated when the VEV begins to
grow (that is, Nlast e-folds before the end of inflation).
Therefore, perturbations exists in all of the subhorizon

modes which have physical momentum p ¼ k=a > HI . As
the modes exit the horizon (p ¼ k=a≲HI), these pertur-
bations become classical and are frozen with the amplitude

δϕk ≡ Δϕ ≈
HI

2π
ð7Þ

per unit interval in lnp=HI [28]. The isocurvature pertur-
bations are approximately conserved in the superhorizon
regime because the Higgs field does not contribute sig-
nificantly to the energy density.
We define ks ¼ aðNlastÞps ∼ aðNlastÞHI , the comoving

wave number corresponding to the mode which leaves the
horizon as the fluctuations in the Higgs field are first
produced. The power spectrum of ϕ is then approximately

PϕðkÞ ≈
(
0 for k < ks;�
HI
2π

�
2

for k ≥ ks:
ð8Þ

In principle, one can further determine the details of the
power spectrum from the transition from the Higgs field
from an effectively massive field to an effectively massless
field, which depends on the specific form of the operators
(3) which couple the Higgs to the inflaton, generating the
large effective mass during the early stages of inflation.
As discussed in Sec. II, these perturbations in the Higgs

VEV ϕ generate isocurvature perturbations in the baryon
asymmetry YB. These perturbations have a spectrum

δYB

YB

				
k
¼ δðϕ2Þk

hϕ2i ≈
2ln1=2ðk=ksÞ

Nlast
θðk − ksÞ; ð9Þ

up to a large scale cutoff; see Appendix B. This makes use
of the improved analytical estimates in Ref. [18]; see the
discussion in Appendix A. We note here that the CIB signal
will be dominated by k ≈ 1.4ks, as we will discuss in
Sec. V. As the universe cools, this induces a baryon energy
density perturbation with the same spectrum

δBðkÞ≡ δρB
ρB

				
k
¼ δYB

YB

				
k
: ð10Þ

Having determined the spectrum, we now consider
observational constraints. For scales k≲ 0.1 Mpc−1, mea-
surements of the cosmic microwave background radiation
(CMB) from the Planck and WMAP collaborations con-
strain the baryonic isocurvature perturbation [25]. The
measured upper bound on the completely uncorrelated
isocurvature fraction is given by

βiso ¼
PSSðk�pÞ

PSSðk�pÞ þ PRRðk�pÞ
ð11Þ

where PRR is the power spectrum of the adiabatic
fluctuation, PSS is the power spectrum of the isocurvature
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fluctuation, and k�p is the pivot scale used by the Planck
collaboration. Planck reports bounds evaluated at three
momentum scales for a variety of models (see Table 15 of
Ref. [29]). To constrain our model, we use the most
conservative bound from the CDI general model, making
use of TT, TE, EE, low P, and WP data:

βisoðk�p ¼ 0.002 Mpc−1Þ≲ 0.021;

βisoðk�p ¼ 0.050 Mpc−1Þ≲ 0.034;

βisoðk�p ¼ 0.100 Mpc−1Þ≲ 0.031: ð12Þ
Since we are interested specifically in the baryonic iso-
curvature perturbation, we rescale the power spectrum by a
factor of ðΩb=ΩDMÞ2. Thus the requisite bound is				 δYB

YB

				≲ ΩDM

Ωb
ðβisoPRRÞ1=2; ð13Þ

where P1=2
RR ≈ 2.2 × 10−9 [29]. This gives constraints of

jδYB=YBj≲ 3.4 × 10−5 at k�p ¼ 0.002 Mpc−1, 4.3 × 10−5

at k�p ¼ 0.050 Mpc−1, and 4.1 × 10−5 at k�p ¼
0.100 Mpc−1. However, these constraints may be evaded
by taking ks > 0.100 Mpc−1, which corresponds to pro-
ducing isocurvature perturbations on scales smaller than
those probed by Planck. Observations of the primordial
spectrum in the CMB data at these scales are limited by the
Silk (photon diffusion) damping.
At smaller scales, 0.2 Mpc−1 ≲ k≲ 10 Mpc−1, the

Lyman-α forest provides information on the matter power
spectrum, which strongly restricts isocurvature perturba-
tions [30]. Again, we will evade this bound by taking
ks ≳ 10 Mpc−1. We note that despite the large comoving
momentum, these isocurvature perturbations remain cos-
mologically relevant as isocurvature perturbations are not
affected by Silk damping [21].
Next, we connect ks to Nlast, the number of e-folds

during which the Higgs VEV grows. The results given
below are exact in the limit that the curvature of the
potential is negligible. In our parameter space plots in
Sec. VI, we use similar reasoning with the exact calculation
of the initial Higgs VEV in a curved potential, using
Eq. (6).
The mode that is exiting the horizon Nlast e-folds before

the end of inflation (that is, the mode that corresponds to ks)
grows to a size of lEOI ≃ eNlastH−1

I at the end of inflation
(EOI). Subsequently during reheating, the scale factor a
grows by a factor of

aRH
aEOI

¼
�

ΛI

TRH

�
4=3

; ð14Þ

where ΛI is the energy scale of inflation and TRH ≈
ð3=π3Þ1=4g−1=4� ðTRHÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
mplΓI

p
is the reheat temperature.

After reheating, the entropy of the universe is conserved,

S ¼ a3s ¼ 2π2g�sðTÞa3T3=45; ð15Þ

which allows us to relate the current scale factor to the scale
factor at the end of reheating,

anow
aRH

¼ g1=3�S ðTRHÞ
g1=3�S ðTnowÞ

TRH

Tnow
; ð16Þ

where Tnow ¼ 2.73 K, the effective number of relativistic
species is g�SðTRHÞ ¼ 106.75 for T > 300 GeV, and
g�SðTnowÞ ¼ 43=11 for T ¼ Tnow (in the standard model).
Combining these relations, the mode that exits the horizon
Nlast e-folds before the end of inflation corresponds to a
perturbation mode with the comoving momentum

k≃ 2πe−NlastHI

�
TRH

ΛI

�
4=3 g1=3�S ðTnowÞ

g1=3�S ðTRHÞ
Tnow

TRH
; ð17Þ

where we have set the scale anow ¼ 1, so that the comoving
wave number coincides with the physical wave number
now; thus k ¼ 2π=lnow.
Therefore, the requirement that isocurvature perturba-

tions are generated at scales ks ≳ k� ¼ 10 Mpc−1, which
corresponds to a limit on Nlast of

Nlast ≲ 48.2 − ln

�
k�

10 Mpc−1

�
þ 2

3
ln

�
ΛI

1016 GeV

�

þ 1

3
ln

�
TRH

1012 GeV

�
þ 1

3
ln

�
g�S;now
3.91

�

−
1

3
ln

�
g�S;RH
106.75

�
þ ln

�
Tnow

2.73K

�
; ð18Þ

which is not very stringent. The allowed parameter space
for baryonic isocurvature perturbations is illustrated in
Fig. 1. The restrictions on ks from the CMB and
Lyman-α forest discussed above can be converted into
limits on Nlast through the use of (17); these are also shown
in Fig. 1.
We note that the Lyman-α forest constraints apply to the

total contribution from both adiabatic and isocurvature
perturbations. We recall that adiabatic perturbations have
R ¼ ffiffiffiffiffiffi

AS
p

≅ 4.7 × 10−5 if one assumes a flat spectrum.
Nlast ≈ 40 ∼ 50 corresponds to an initial baryonic density
contrast of δB;0 ≈ 0.02 ∼ 0.03 at k ¼ 1.4ks, using Eqs. (9)
and (10). This entails that the baryonic isocurvature
perturbations generally dominate the adiabatic perturba-
tions in the range where both are present. Therefore,
as Fig. 1 shows, it is indeed necessary to impose that
ks ≳ 10 Mpc−1.
In fact, we will see in Sec. V that we best explain the CIB

with ks ≈ 65 Mpc−1. We note here that this corresponds to
the perturbations beginning to grow around 46.5 e-folds
before the end of inflation with ΛI ¼ 1016 GeV and
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TRH ¼ 1012 GeV. From Eqs. (9) and (10), this corresponds
to an initial baryonic density contrast of δB;0 ≈ 0.025 at
k ¼ 1.4ks. However, the second equality in Eq. (9), which
was used with (10), holds in the limit of a flat potential.
Accounting for the curvature in the potential, using (6),
decreases ϕ0, and so consequently increases δYB=YB

slightly. In Fig. 2, we have fixed ks ¼ 65 Mpc−1 and used

Eq. (17) to solve for the appropriate Nlast and ϕ0 at each
point in parameter space. We then calculated δB;0 at k ¼
1.4ks at each point. (We recall that, as mentioned above,
this will be the scale most relevant to explaining the CIB
excess.) As expected, δB;0 is slightly enhanced as compared
to the flat potential case; this becomes more pronounced as
ΛI decreases.

1

To summarize the results of this section, the Higgs
relaxation model generates baryonic isocurvature pertur-
bations with a spectrum given by Eq. (10). The single free
parameter in the spectrum, ks, can equivalently (for fixed
ΛI and ΓI) be taken to beNlast, the number of e-folds before
the end of inflation during which the Higgs VEV grows.
(However, since Nlast affects the VEV ϕ0, this then
influences the final asymmetry produced by Higgs relax-
ation leptogenesis.) By taking ks > 10 Mpc−1, or (approx-
imately) equivalently, Nlast ≲ 48, the isocurvature
perturbations evade all current observational bounds.

IV. EVOLUTION OF THE BARYONIC
ISOCURVATURE PERTURBATIONS

In the previous sections, we explained how the Higgs
relaxation model produces isocurvature perturbations, and
we found the spectrum of these isocurvature perturbations.
Next, we consider the evolution of the isocurvature
perturbations during the subsequent evolution of the uni-
verse. We note that due to the tight coupling between
photons and baryons, the amplitude of the isocurvature
baryonic perturbations δB does not evolve before photon
decoupling at z ≈ 1100. (In fact, this was implicitly used
above when we imposed constraints from the observations
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FIG. 1. The solid lines show ks as a function of Nlast, using Eq. (17), for various values of the inflationary scale ΛI and reheat
temperature TRH . The orange (red) region indicates the constraints on ks from the CMB (Lyman-α forest) observations.
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FIG. 2. The variation of δB;0ðk ¼ 1.4ksÞ in parameter space,
with ks ¼ 65 Mpc−1. In the green region on the upper left, the
Nlast given by Eq. (17) is large enough that the Higgs VEV probes
the minimum of the Higgs potential at large VEVs. (Details on
the parameters used in the calculation the potential can be found
in [16].) In the red region on the lower right, ΓI > 3HI so
inflation does not happen. As in Refs. [16,18] we set the neutrino
Yukawa coupling such that right handed neutrino mass, inferred
from the seesaw mechanism, is large enough that thermal
leptogenesis is insufficient to explain the observed baryon
asymmetry; in the upper right-hand corner (light blue region),
this would lead to a nonperturbative coupling. We see that there is
a slight variation in δB;0 over the available parameter space.

1As noted, in the green region at the top left, the Higgs VEV
probes the global minimum at large VEV values (see [20]). As
this region is approached, the Higgs VEV explores the “hilltop”
that divides the two minima, where the potential becomes flat.
Therefore, increasing ΛI leads to a larger increase in ϕ0, and
consequently, the denominator of δB grows at a faster rate. It
grows faster than the numerator, which scales as HI . This
accounts for the decrease in δB in the top left of the figure.
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of the cosmic microwave background radiation and the
Lyman-α forest.)
To study the late-time spectrum of the baryonic iso-

curvature perturbation, we calculate the evolution of the
perturbations using the linearized Einstein equations and
the linearized equation from conservation of the energy-
momentum tensor. We work in the conformal Newtonian
gauge, in which the scalar metric perturbation is para-
metrized as

ds2 ¼ a2ðτÞ½ð1þ 2ΦÞdτ2 − ð1 − 2ΦÞdx2�: ð19Þ

In our analysis, we consider the following components:
radiation (denoted by i ¼ r), dark matter (i ¼ DM), and
baryons (i ¼ B). The equations of state are parametrized by
wr ¼ 1=3 for radiation and wDM ¼ wB ¼ 0 for baryons and
dark matter (that is, we consider cold dark matter). We
assume that dark matter does not support sound waves,
u2s;DM ¼ 0, and we make the tight coupling limit that
baryons and photons share the same velocity potential vB ¼
vr ≡ vBr before decoupling. Therefore the effective speed
of sound squared for the baryon and radiation fluids is
u2s;Br ¼ 1=3ð1þ RBÞ, where RB ¼ 3ρB=4ρr. However, we
do not impose 4δB ¼ 3δr, which is appropriate only for
adiabatic modes.
Therefore, the complete system of equations describing

the evolution of the perturbations prior to recombination
is [31]

k2Φþ 3HΦ0 þ 3H2Φ ¼ −
a2

2M2
pl

X
i

ρiδi; ð20Þ

δ0DM − k2vDM ¼ 3Φ0; ð21Þ

δ0B − k2vBr ¼ 3Φ0; ð22Þ

δ0r −
4

3
k2vBr ¼ 4Φ0; ð23Þ

v0DM þHvDM ¼ −Φ; ð24Þ

v0Br þH
RB

1þ RB
vBr þ

3

4
u2s;Brδr ¼ −Φ; ð25Þ

where H≡ a0=a and a prime denotes the derivative
with respect to the conformal time defined via dτ ¼
dt=aðtÞ. The Hubble parameter in cosmic time, t, and in
conformal time, τ, are related by HðtÞ ¼ HðτÞ=a, and the
Hubble parameter can be well described by H ¼
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=a3 þΩr=a4 þ ΩΛ

p
with a ¼ 1=ð1þ zÞ after the

universe enters radiation domination. The density pertur-
bation spectra δi generically have both isocurvature and
adiabatic contributions.

After recombination at z ≈ 1100, photons and baryons
decouple and so vB and vr evolve separately. The pertur-
bation equations for baryons and radiation are then
replaced by

δ0B − k2vB ¼ 3Φ0; ð26Þ

δ0r −
4

3
k2vr ¼ 4Φ0; ð27Þ

v0B þHvB ¼ −Φ; ð28Þ

v0r þ
1

4
δr ¼ −Φ: ð29Þ

For large scales k < ks, we assume the initial density
perturbation spectra δi satisfy the adiabatic conditions

δDM;0 ¼ δB;0 ¼
3

4
δr;0 ¼ −

3

2
Φ0 ¼ R; ð30Þ

with a scale invariant spectrum. The Planck 2015 data
set gives AS ¼ e3.08910−10 at k ¼ 0.05 Mpc−1 [29], which
corresponds to the initial amplitudeR ¼ ffiffiffiffiffiffi

AS
p

≅ 4.7 × 10−5.
For small scales k > ks, we include the baryonic iso-

curvature perturbations in addition to the adiabatic pertur-
bations. For the parameters of interest, the isocurvature
contribution to δB;0 will generally dominate over the
adiabatic contribution, and therefore δB;0ðkÞ is given by
Eq. (10). For the other components, we take δDM;0 ¼
3
4
δr;0 ¼ − 3

2
Φ0 ¼ R for k > kS, since these have only the

adiabatic contribution.
An example of the evolution of a single mode is shown in

Fig. 3. We take ks ¼ 65 Mpc−1, and consider the mode at
k ¼ 1.4ks ¼ 91 Mpc−1. The baryon density contrast given

FIG. 3. The evolution of baryon (blue), dark matter (orange),
and total matter (green) perturbations at k ¼ 1.4ks ¼ 91 Mpc−1

with δB;0 determined by: (1) (dashed lines) R ¼ 4.7 × 10−5,
appropriate for a scenario with only primordial adiabatic pertur-
bation, and (2) (solid lines) Including isocurvature perturbations;
following Eq. (10), δB ¼ 0.025 for the k ¼ 91 Mpc−1 mode if
ks ¼ 65 Mpc−1. This scenario is appropriate to the Higgs
relaxation scenario considered in this work.
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by Eq. (10) is then 0.025. The evolution of the baryon, dark
matter, and total matter perturbations are shown with solid
lines. For completeness, we have also shown the evolution
without the isocurvature modes in dashed lines (without
accounting for Silk damping). We see that as expected the
isocurvature perturbation does not evolve until decoupling;
afterwards, it grows. Prior to decoupling, it enhances
perturbations in dark matter and total matter.
In Fig. 4, we present the total matter power spectrum,

which is given by

Pðk; zÞ ¼ 2π2

k3
Pmðk; zÞ ¼

2π2

k3
δ2mðk; zÞ: ð31Þ

By varying δB;0, we have found that for δB;0 ∼ 0.025, the
total matter perturbation δm ¼ ðΩBδB þΩDMδDMÞ=Ωm
reaches the nonlinear regime (δm ≳ 1) much earlier than
it would if only the adiabatic fluctuation were present.
Thus, in the Higgs leptogenesis model, structure formation
begins earlier, which allows for earlier star formation. In the
next section, we will use this modified history of structure
formation to explain the cosmic infrared radiation excess.

V. ISOCURVATURE PERTURBATIONS
AND THE COSMIC INFRARED
BACKGROUND OBSERVATIONS

In the above sections, we demonstrated that the Higgs
relaxation leptogenesis scenario generates baryonic iso-
curvature perturbations and studied their evolution in the
early universe. Now, we proceed to connect the above
results to the observed CIB radiation. The isotropic flux (or
absolute intensity) of the CIB is difficult to determine
precisely due to the large uncertainty associated with the
removal of the foreground signal, galactic components, and
zodiacal light. Therefore, recent measurements concern the

anisotropies (spatial fluctuation) of the CIB [6]. From these
measurements, one can infer the isotropic flux from the
power in the fluctuations of the CIB.
In Sec. I, we mentioned the currently unexplained excess

in observations of anisotropies in the near-infrared cosmic
radiation spectrum, δF2−5μmð50Þ≃ 0.09 nWm−2 sr−1 at
5 arcmin between 2 and 5 μm [7]. This relative fluctuation
entails that the amplitude of the power in the fluctuations is
FCIB ≈ δFCIB=Δ50 ∼ 1 nWm−2 sr−1; one is then led to
consider what sources could produce this radiation. One
possibility is faint galaxies; such an explanation is con-
sistent with AKARI observations but not the Spitzer
observations, due to the fact that Spitzer is able to resolve
fainter point sources [8]. As discussed in Refs. [6,7], one
possible source is early (population III) stars, at z ≈ 10.
Such stars, if they exist, will contribute significantly to the
CIB and live only for a short cosmological time. In this
case, the power in the fluctuations is equivalent to the
isotropic flux due to the early stars [8].
However, Refs. [7,32,33] show that in the typical model

of structure formation, with only adiabatic perturbations,
one requires either an abnormally large stellar formation
efficiency and/or an abnormally large radiation efficiency
to produce the requisite amount of CIB radiation. We now
demonstrate that the presence of isocurvature perturbations
alters this conclusion. In our model, the isocurvature
perturbations produced by Higgs relaxation leptogenesis
cause a larger percentage of the mass in the early universe
to be in collapsed halos which evolve nonlinearly and can
support early star formation. Therefore, the comparably
large isotropic CIB flux (that is, the power in the fluctua-
tions) can be produced with a reasonable values for the
stellar formation efficiency and radiation efficiency.
As the above discussion outlines, we are interested in the

isotropic CIB flux due to early stars. The contribution from
the first stars forming inside collapsed halos can be
estimated by [7]

FFS ≃ c
4π

ϵρBc2fHalof�z−1eff

¼ 9.1 × 105ϵfHalof�

�
ΩBh2

0.0227

��
10

zeff

�
nWm−2 sr−1;

ð32Þ

where fHalo is the mass-fraction of the universe inside
halos, f� is the star formation efficiency, ϵ is the radiation
efficiency, and zeff is the effective redshift. One then finds
that the halo fraction at z ¼ 10 is given by

fHalo ¼ 0.16

�
0.007
ϵ

��
10−3

f�

��
FFS

FCIB

�
: ð33Þ

In order to have FFS ¼ FCIB ¼ 1 nWm−2 sr−1 (the value
implied by the assumption that early stars explain the
observed CIB anisotropy) for reasonable values of the
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FIG. 4. Total matter power spectra at z ¼ 0, 10 and 20 for the
cases that the primordial perturbations are produced by (1) only
inflaton (dashed line), and (2) inflaton plus relaxation lepto-
genesis with ks ¼ 65 Mpc−1 and Nlast ¼ 46.5. Adiabatic pertur-
bations to the right of the first dashed line are affected by Silk
damping, although isocurvature contributions are not. The power
spectrum to the left of the second dashed line are constrained by
the Lyman-α constraints. The bump on the right edge of the plot
describes the contribution on the isocurvature perturbations.
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parameters are ϵ ≈ 0.007 and f� ≲ 10−3, one must have
fHalo ≳ 0.16. [The value of ϵ comes from the hydrogen
burning phase of early stars, which are fully convective and
radiate close to the Eddington limit (see Ref. [11]); our
preferred value of f� comes from the same reference.] We
fix ϵ and f� at their upper bounds and show that with
isocurvature perturbations one can have fHalo ≈ 0.16,
which one cannot accomplish with only adiabatic
perturbations.
To compute the fraction of matter in collapsed halos, we

adopt the Press-Schechter formalism [34]. An overdense
region which in the linear theory would have present size R
has in fact collapsed and formed structure by the time when
the average density contrast δRðx; tÞ exceeds δc ≅ 1.686, as
calculated in the linearized theory defined by Eqs. (25)
above. The average matter density contrast is computed by
smoothing the spectrum

δRðx; tÞ ¼
Z

d3yδmðxþ y; tÞWRðyÞ; ð34Þ

where a window function WRðyÞ is used to smooth the
matter density so that one attains an average; we use the
top-hat function

WRðyÞ ¼
3

4πR3
θðR − jyjÞ: ð35Þ

which has the Fourier transform WRðkÞ ¼ 3j1ðkRÞ=kR.
Using this window function, the mass contained in a sphere
of radius R is approximately

MðRÞ ¼ 4

3
πR3ρm;0; ð36Þ

where ρm;0 is the present average matter density of the
universe. The smoothed matter density contrast δRðx; tÞ
computed in this way is itself a Gaussian random field,
whose variance σRðtÞ is given by

σ2RðtÞ≡ hδ2Rðx; tÞi ¼
Z

∞

0

dk
k
Pmðk; tÞjWRðkÞj2; ð37Þ

Using Eq. (36), one can solve for radius R in terms
of M, the total mass contained inside. Substituting this
into σRðtÞ gives the variance σMðtÞ ¼ σMðRÞðtÞ as a function
of enclosed mass M.
The integrand of Eq. (37) is shown in Fig. 5, where we

have fixed the radius to correspond to a mass of 106 M⊙.
This figure shows that for multiple redshifts, the integrand
is peaked at k ≅ 1.4ks. This justifies the claim that our
signal is dominated by the contribution in this region,
which was mentioned above and which motivated our
choice of k=ks ¼ 1.4 as a reference point for characteriz-
ing δB.

Figure 6 shows this σMðRÞ at various mass scales and
redshifts. On both plots, the dashed lines show σMðRÞ
including only adiabatic perturbations, while the solid
and dotted lines includes the isocurvature perturbations
generated by the Higgs relaxation mechanism, which we
emphasize only exist for k ≥ ks. The plot of the left shows
the results for ks ¼ 65 Mpc−1 (solid) and ks ¼ 100 Mpc−1

(dotted); on the right, we show the results for
ks ¼ 30 Mpc−1. As expected, we see that ks ¼
65 Mpc−1 leads to a larger deviation from the adiabatic-
only model than ks ¼ 100 Mpc−1. (We have used the initial
value of δB;0 and R given in the sections above.) On both
plots, the black dash-dotted horizontal line corresponds to
the critical variance; above this, a significant portion of the
halos of a particular mass evolve nonlinearly.
Focusing on the ks ¼ 65 Mpc−1 solid lines (left), we see

that halos of mass 105 M⊙ would collapse around z ¼ 20

while those of mass 106 M⊙ would collapse around z ¼ 10
in the Higgs relaxation model; this contrasts to the standard
picture, in which such halos would form later. At any given
z, there are more halos with mass M ≲ 107 M⊙ in the
Higgs relaxation scenario than in the typical scenario which
has only adiabatic perturbations. Because the density
contrast at mass scales M ≳ 107 M⊙ is unaffected, the
observed large scale structure is unchanged.
For the ks ¼ 100 Mpc−1 (dotted) lines, the formation of

small halos is still enhanced with respect to the adiabatic-
perturbations only scenario; however, these halos form
later. We focus on 106 M⊙ because such halos are near the
lower bound of halos that can efficiently support star
formation through molecular hydrogen cooling [35–39].
Production of these 106 M⊙ halos is not significantly
enhanced for ks ¼ 100 Mpc−1, which means that we
require ks ≲ 100 Mpc−1 to explain the CIB. The plot on
the right shows the situation with ks ¼ 30 Mpc−1; we see
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FIG. 5. The integrand for σ2M as a function of k=ks for various
redshifts z. The dashed lines are for the power spectrum with only
adiabatic modes. The solid lines are for the power spectrum with
isocurvature perturbation turned on at ks ¼ 65 Mpc−1. We see
that the integrand is dominated by k=ks ≅ 1.4 for the isocurvature
case, neglecting the peak near zero which is present near for both
the scenario with and without the isocurvature contribution.
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that halos of mass 106 M⊙ form earlier, around z ¼ 20. We
see that increasing ks would bring us into conflict with
optical depth measurements. Therefore, to explain the CIB
excess, we require ks ≈ 65 Mpc−1.
We now show that we make sufficiently many collapsed

halos. Using the variance σM in the matter density contrast,
we calculate the probability that a region with mass MðRÞ
has an average density contrast δR exceeding δc at redshift z
[34], which is

fHaloðM; zÞ ¼ PðδRðMÞ > δcÞ ¼
1

2

�
1 − erf

�
δcffiffiffi

2
p

σMðzÞ

��
:

ð38Þ

This is equivalent to the fraction of mass which is collapsed
halos of mass M, as smaller structures form earlier.
The results of this calculation are presented in Fig. 7 for

M ¼ 106 M⊙ (solid lines) and M ¼ 108 M⊙ (dashed
lines), first with only adiabatic modes (red lines) and then
including the isocurvature modes (blue, yellow, and green
lines). The Higgs relaxation scenario, with the isocurvature
modes, is more efficient in halo formation; however, as
expected from Fig. 6, the gain in efficiency is more
pronounced for smaller halos. The vertical dashed line
denotes z ¼ 10; early stars at this time contribute signifi-
cantly to the CIB. Therefore, we desire that halos large
enough to support star formation (≳106 M⊙) have formed
by this redshift.
As explained above, we will have sufficient stars to

produce the inferred CIB excess for reasonable values of
the radiation efficiency ϵ and star formation efficiency f� if
fhalo ≈ 0.16 for halos large enough to support star for-
mation. Therefore, we have included a horizontal black dot-
dashed line at fhalo ¼ 0.16. In the scenario calculated with
the Higgs relaxation isocurvature perturbations, the
106 M⊙ line indeed passes near fhalo ¼ 0.16 at z ¼ 10 if
we take ks ¼ 65 Mpc−1 (yellow). As expected from the
above discussion, ks ¼ 30 Mpc−1 (blue) results in a larger
percentage of the mass in collapsed halos and ks ¼
100 Mpc−1 (green) a smaller percentage. In the scenario
which includes only adiabatic perturbations, the fHalo line
for 106 M⊙ is significantly suppressed; this is the source of
the claim that unreasonably large radiation efficiency or star
formation efficiency is required in the standard picture. We
see that for ks ≈ 65 Mpc−1 a sufficiently large percentage
of the mass is in halos ∼106 M⊙ to account for the inferred
contribution from early stars to the isotropic CIB flux.
Finally, we note that the isotropic CIB flux from early

stars is inferred from the anisotropic flux measured at scales
of 5 arcminutes, corresponding to k ∼ 0.45 Mpc−1, which
is much smaller than ks ¼ 65 Mpc−1. Therefore, only
adiabatic modes contribute at this scale; the density contrast
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FIG. 6. The variance σM of the smoothed density contrast at various redshifts and mass scales. Left: the dashed lines show the results
with only adiabatic modes (R ¼ ffiffiffiffiffiffi

AS
p

≅ 4.7 × 10−5), while the solid (dotted) lines also includes isocurvature perturbations for k ≥
65 Mpc−1 (100 Mpc−1), with δB;0 ¼ 0.025 at k ¼ 1.4ks. Right: The solid lines correspond to ks ¼ 30 Mpc−1. The black dash-dotted
horizontal lines denotes the value σM ¼ δc; structure formation occurs above this line.
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is shown in Fig. 8. We see that at k ∼ 0.45 Mpc−1 the
density contrast is ∼10%, consistent with the calculations
in [7] and for similar reasons, consistent with the obser-
vational anisotropic data. (Note that although there is a
difference between two-dimensional and three-dimensional
power spectra, the difference should be order 1.) Therefore,
the isocurvature perturbations considered here explain the
inferred contribution of the early stars to the isotropic CIB
excess without overproducing an anisotropic contribution.
To summarize, in our model, structure is generated by

adiabatic perturbations at the large scale and the isocurva-
ture perturbations at smaller scales. The isocurvature
perturbations are responsible for causing more halos
(106 M⊙) to evolve nonlinearly, and hence, we make a
sufficient number of stars to explain the isotropic CIB
radiation inferred from the anisotropic measurements with-
out a large stellar formation efficiency. However, these
halos are distributed in accordance with the larger-scale
adiabatic perturbations, and the scale of the CIB anisotropy
is accounted for by this larger-scale structure. This provides
an elegant solution as to the source of the observed CIB
radiation fluctuations.
We also remark that in general, the early creation of

population III stars is constrained by the optical depth
measurements of the CMB. We note that recent analyses of
the Planck 2015 optical depth data in fact prefers early star
formation, particularly if one includes self-regulated pop-
ulation III stars [40]. If star formation occurred much earlier
than z ¼ 10, as for ks ≲ 30 Mpc−1, then this scenario
would conflict with optical depth measurements.
However, as noted, for ks ¼ 65 Mpc−1 the star formation
occurs around z ¼ 10.

VI. AVAILABLE PARAMETER SPACE

In this section, we present plots of the parameter space in
which Higgs relaxation leptogenesis can both explain
the observed matter-antimatter asymmetry of the universe
and the observations of the cosmic infrared background

radiation. We note that Higgs relaxation leptogenesis is
only one potential source of baryonic isocurvature pertur-
bations; other sources include curvaton models (proposed
in [41–43]; see also [44–47]) and warm inflation (e.g.,
[48,49]). In general, any model which produces baryonic
isocurvature perturbations similar to those discussed above
can account for the observed CIB excess.
In these plots, we choose Nlast, ΛI , and ΓI such that

ks ¼ 65 Mpc−1; then we determine the initial vacuum
expectation value of the Higgs field using Eq. (6), which
includes the curvature of the Higgs potential. As discussed
in Sec. III, and shown explicitly in Fig. 2, this leads to
δBðk=ks ¼ 1.4Þ ≈ 0.025 throughout parameter space, suf-
ficient to explain the CIB observations. (Regions where the
requisite initial VEV probes the second vacuum in the
Higgs potential are denoted on the plots.) We note that we
include one-loop corrections to the Higgs potential and
two-loop corrections to the running couplings; for details
regarding the potential (including the specific values for the
Higgs mass and top quark mass used), please see the Higgs
relaxation leptogenesis analysis in [16].
As discussed in [14–16], there are several different

mechanisms of generating the O6 operator; one can use
thermal loops, leading the scaleΛn ∼ T, or one can introduce
heavy fermions, leading to a scale Λn ∼Mn, a constant.
The parameter space for these two options was explored
extensively in Ref. [16], with the result that when the initial
Higgs vacuum expectation value was set by quantum
fluctuations, the largest lepton-asymmetry-to-entropy ratio
that was possible with Λn ∼ T was Y ∼ 10−12 (Fig. 12 of
Ref. [16]), while for Λn ∼Mn, parameter space was avail-
able, but in the regime in which the use of effective field
theory to describe the O6 operator was questionable.
We mentioned above that in Refs. [14,16,18], we took

Nlast ¼ 8 out of an abundance of caution to avoid baryonic
isocurvature constraints, but the actual limit is much
weaker. Here, Nlast is set by (18), which is generally larger
(Nlast ∼ 40 typically). As explained in Appendix A, the
final asymmetry is proportional to ϕ2

0, which grows as Nlast

in the limit of a flat potential. [However, in our numerical
analysis, we use Eq. (6) which accounts for the curvature of
the potential.] Therefore, we expect the asymmetry to be
enhanced as compared to our previous analysis, although
not significantly.
This is illustrated for the Λn ¼ T case in Fig. 9. This

figure shows contours of the lepton asymmetry to entropy
ratio Y; regions with Y ≳ 10−9 can account for the observed
baryonic matter-antimatter asymmetry of the universe. (We
note that the original lepton asymmetry is redistributed
between leptons and baryons by sphalerons.) As compared
to Fig. 12 of Ref. [16], the asymmetry is enhanced by about
a little less than an order of magnitude; however, this is not
sufficient to ensure a region of parameter space in which
both a sufficiently large asymmetry is generated and the
CIB excess is explained.
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FIG. 8. The density contrast at scales k ¼ 0.40 Mpc−1 to
k ¼ 0.50 Mpc−1, for which only the adiabatic perturbations
contribute. The lines show the baryonic, dark matter, and total
matter perturbations. k ∼ 0.45 Mpc−1 corresponds to the 5 arc-
minute scale probed observationally.
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Therefore, we turn our attention to Fig. 10, which instead
has Λn ¼ Mn, a constant. We see that a sufficiently large
asymmetry is generated for a wide range of inflaton
couplings ΓI provided that the scale Mn is small enough;
the upper bound on Mn becomes stronger as the inflation
scale ΛI decreases. Decreasing ΛI decreases the asymme-
try, if Mn and ΓI are held constant.
The red and gray lines illustrate where Mn, the scale in

the Oð6Þ effective operator, becomes less than ϕ0 and Tmax
respectively. Below these lines, the use of effective field
theory for Oð6Þ is somewhat questionable. This is not
surprising as the same remark applied to the parameter
space plots presented in [16,18]. As discussed in [16],
although the effective field theory description is question-
able, we use it as an approximation as what would be found
if an exact calculation in some UV-complete theory were
done. It was also shown in Ref. [18] that this can be avoided
in models with an extended scalar sector.
Subject to this caveat regarding the effective theory, we

conclude that Higgs relaxation leptogenesis can success-
fully generate the observed matter-antimatter asymmetry
while also generating isocurvature perturbations which
enhance early star formation, explaining the observed
CIB excess. Thus, Higgs relaxation leptogenesis is a
promising source for the desired baryonic isocurvature
perturbations.

VII. CONCLUSION

In this work, we have demonstrated that baryonic
isocurvature perturbations at very small scales can cause
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halos of mass 106 M⊙ to collapse earlier than they would in
the typical model of structure formation, which includes
only adiabatic perturbations from inflation. Since these
halos can support the formation of population III stars, this
leads to enhanced star formation in the early universe.
Therefore, the power in the fluctuations of the cosmic
infrared background radiation measured by the Spitzer and
AKARI space telescopes can be explained without invok-
ing unreasonably large stellar formation efficiency or
radiation efficiency.
As a source for these perturbations, we have used the

Higgs relaxation leptogenesis model, in which the
matter-antimatter asymmetry is produced via lepton-
number-violating interactions in a plasma influenced by
a time-dependent chemical potential produced by the
relaxing Higgs vacuum expectation value. If the initial
vacuum expectation value of the Higgs field is set by
quantum fluctuations, it will vary in different Hubble
volumes, giving rise to slightly different baryon asymme-
tries. These are the desired isocurvature perturbations. The
scale of these perturbations is set by number of e-folds the
Higgs VEV grows through; we determined that we can
explain the CIB observations if isocurvature perturbations
exist for k≳ 65 Mpc−1. Finally, we illustrated the param-
eter space in which the Higgs relaxation model gives both
successful leptogenesis and explains the CIB observations.
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APPENDIX A: RELATIONSHIP BETWEEN
LEPTON NUMBER DENSITY AND INITIAL

HIGGS VEV

Within the Higgs relaxation leptogenesis paradigm,
the generation of the asymmetry can occur through several
mechanisms, even when the lepton-number-violating
operator appears in the neutrino sector due to heavy
right-handed Majorana states. The asymmetry can be
generated through particle production from the condensate
as described by the Bogoliubov transformations [15],
or via lepton-number-violating scatterings occurring in
the plasma, e.g., [14,16]. In this work, we are interested

in the latter scenario, which requires a rapid production of
plasma, perhaps even via some preheating mechanism. This
in turn entails that the thermal corrections to the Higgs
potential, ∼T2ϕ2, tend to be large.
In this case, the Higgs VEV relaxes rather rapidly,

and throughout all of the parameter space shown in
Figs. 9 and 10, the relaxation time scale is faster than
the reheat time scale, determined by the decay rate of the
inflaton. This raises the concern that relaxation may
proceed faster than the thermalization of the plasma, and
therefore, that the finite temperature corrections to the
Higgs potential are unreliable during relaxation.
According to Ref. [50], the thermalization time scale is

tth ≈ α−16=5
m4=5

I

M3=5
Pl Γ

6=5
I

; ðA1Þ

where mI is the mass of the inflaton field, which is thus far
undetermined in the Higgs relaxation scenario. We note
that for successful reheating, the inflaton must have
available decay channels, despite the relatively large
Higgs VEV ϕ0. However, even at values mI ∼ 10−5ϕ0

the inflaton is able to efficiently decay into electrons. We
have verified that in this limit, the thermalization time scale
is faster than the relaxation time scale (using α ≈ 1=40 for
the coupling, which accounts for its running at high scales).
Thus, it is consistent to consider the regime in which the
relaxation time scale is less than the reheat time scale,
trlx < tRH, and also that the Higgs potential during relax-
ation is dominated by the T2ϕ2 thermal correction.2

Therefore, we here consider only the case that the
effective potential of the scalar field is dominated by the
thermal mass term

Vðϕ; TÞ ¼ 1

2
α2TT

2ϕ2: ðA2Þ

For the standard model Higgs field, the coefficient is αT ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ 9

4
g2 þ 3

4
g02 þ 3h2Þ=12

q
≈ 0.33 at the energy scale

μ ≈ 1013 GeV. During the epoch of coherent oscillations of
the inflaton, the energy density of the radiation as a
function of time can be described by

ρrðtÞ ¼
m2

plΓI

10πðtþ toscÞ
�
1 −

�
tosc

tþ tosc

�
5=3

�
; ðA3Þ

where tosc ¼ 2
3

ffiffiffiffi
3
8π

q
mpl=Λ2

I and ΓI is the decay rate of the

inflaton. At all times we use an effective temperature for the

2We note that for ϕ0 ≫ mI, the Higgs bosons that participate in
the scattering h0ν ↔ h0ν̄ are produced via the thermalization of
the plasma. We also emphasize that we ensure that throughout the
relaxation period, the energy density in the inflaton and produced
radiation is greater than the energy density in the Higgs
condensate.
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plasma given by ρr ¼ π2g�T4=30; as discussed, this is valid
for t > tth.
For tosc < t < tRH, we approximate the temperature of

the plasma by

TðtÞ≃ TRH

�
tRH
t

�
1=4

; ðA4Þ

where the reheat temperature is TRH ≈
ð3=π3Þ1=4g−1=4�S ðTRHÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
mplΓI

p
and tRH ¼ 1=ΓI is the time

when reheating is complete. For times between tosc and tRH,
the equation of motion for the scalar field is then

ϕ̈ðtÞ þ 2

t
_ϕðtÞ þ α2T

T2
RH

ffiffiffiffiffiffiffi
tRH

pffiffi
t

p ϕðtÞ ¼ 0 ðA5Þ

if the thermal corrections dominate the effective potential,
and we have taken HðtÞ ≈ 2=3t since during the epoch in
which the inflaton undergoes coherent oscillation the
universe evolves as if it were matter dominated. We can
rescale ϕðt ¼ xtRHÞ ¼ ϕ0yðxÞ and t ¼ xtRH to rewrite
Eq. (A5) as

y00ðxÞ þ 2

x
y0ðxÞ þ α2Tβ

2ffiffiffi
x

p yðxÞ ¼ 0; ðA6Þ

where β ¼ TRHtRH ¼ 6.06 × 104ð108 GeV
ΓI

Þ1=2. The indepen-
dent solutions for Eq. (A6) are

y1ðxÞ ¼
�
3

2

�
2=3

Γ
�
5

3

�
J2=3

�
4αTβ

3
x3=4

�
1

ðαTβÞ2=3
ffiffiffi
x

p ;

ðA7Þ

y2ðxÞ ¼
�
3

2

�
2=3

Γ
�
1

3

�
J−2=3

�
4αTβ

3
x3=4

�
1

ðαTβÞ2=3
ffiffiffi
x

p ;

ðA8Þ

where JnðzÞ is the Bessel function of the first kind. Since
y2ð0Þ diverges, and y1ð0Þ ¼ 1 and y01ð0Þ ¼ 0, we should
take only y1 as the physical solution, subject to the
boundary condition that ϕðt ¼ 0Þ ¼ ϕ0 (where we shift
our zero of time by tosc). Both the analytical solution given
by Eq. (A7) with this boundary condition and the actual
numerical solution are shown in Fig. 11.
As discussed in [16], one must be concerned with

washout due to the subsequent oscillations of the Higgs
VEV. This is avoided when the scattering processes are not
too efficient in the early universe (which gives the result
that a large chemical potential is needed to generate the
asymmetry). Washout can be avoided either by having
these interactions turn off rapidly, or by considering
parameters such that there is significant damping of the
Higgs oscillations, such as those in Fig. 11. Regardless of

the balance of factors, the end of the asymmetry produc-
tion, trlx, occurs around the time when the Higgs VEV
passes zero. This can be approximated analytically by
noting that the Bessel function with n ¼ 2=3 has a first zero
at z0 ¼ 3.376. The relaxation time of the scalar field can
then be approximated using the first crossing at

z0 ¼
4αTβ

3
x3=4rlx ; ðA9Þ

which gives

trlx ¼ tRHxrlx ≈ tRH

�
3z0

4αTTRHtRH

�
4=3

: ðA10Þ

Note that since Eq. (A5) is linear in ϕ, the relaxation time is
independent of the initial ϕ0. Hence fluctuations in ϕ0 does
not affect the relaxation time, in the regime considered
here: where the potential of the scalar field is dominated by
the thermal mass and trlx < tRH. In fact, as long as the
potential is dominated by the thermal mass term (quadratic
in ϕ), the relaxation time is always independent of ϕ0.
The final lepton-to-entropy ratio can be estimated by

Y ≈
45

2π2g�S

2ϕ2
0

π2Λ2
n

T2
rlxtrlxΓ2

I

T3
R

min

�
1;

2

π2
σRT3

rlxtrlx

�

× exp

�
−
8þ ffiffiffiffiffi

15
p

π2
σRT3

RH

ΓI

�
; ðA11Þ

which can be found in [18] and improves on the estimates
in [14,16] by Oð1Þ factors. In this expression, σR is the
thermally averaged cross section for the lepton-number-
violating interaction, h0ν̄ ↔ h0ν, and a thermal distribution
has been assumed for participating particles. Using the
above expressions, we have

Y ≈
90σR
π6g�S

�
ϕ0

Λn

�
2 3z0TRH

4αTtRH
exp

�
−
8þ ffiffiffiffiffi

15
p

π2
σRT3

RHtRH

�
:

ðA12Þ
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FIG. 11. Higgs evolution with ΛI ¼ 1.5 × 1016 GeV,
ΓI ¼ 108 GeV, and ϕ0 ¼ 6 × 1013 GeV. First crossing times
are 6.28 × 10−14 GeV−1 (numerical) and 6.39 × 10−14 GeV−1

(analytical approximation).
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Since TRH and tRH are independent of ϕ0, Eq. (A12) entails
that Y ∝ ϕ2

0. Note that since trlx and therefore Trlx are
independent of ϕ0, this is true whether the scale Λn in the
Oð6Þ operator (1) is a constant or whether it is the
temperature of the plasma.

APPENDIX B: POWER SPECTRUM
OF THE LEPTON ASYMMETRY

In the case that a scalar field ϕðxÞ has a nonzero
homogeneous part, hϕðxÞi ≠ 0, the fluctuation in any
quantity that scales as X ∝ ϕ2 is simply δX ∝
2jhϕðxÞijδϕ for small δϕ, which gives

δX
hXi ≈ 2

δϕ

jhϕðxÞij : ðB1Þ

However, this is not applicable to the baryonic asym-
metry in the relaxation leptogenesis model because the
homogeneous part of ϕ is zero, hϕðxÞi ¼ 0, due to the
symmetry of the potential. We note that it is ϕ0 ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕ2ðxÞi

p
which is nonzero, and as we have explained

in the Appendix A, the lepton asymmetry depends on the
initial value of ϕ via Y ∝ ϕ2

0. In this Appendix, we now
proceed to calculate the primordial power spectrum of the
lepton asymmetry taking into account the fact that it isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕ2ðxÞi

p
, not hϕðxÞi, which is nonzero.

In the following analysis, we adopt the following
conventions for the Fourier transform:

ϕðxÞ ¼
Z

d3k
ð2πÞ3 e

ik⃗·x⃗ϕk⃗; ðB2Þ

ϕk⃗ ¼
Z

d3xe−ik⃗·x⃗ϕðxÞ: ðB3Þ

The power spectrum of ϕ, PϕðkÞ, is defined through the
two-point correlation function of ϕk⃗

hϕk⃗ϕk⃗0 i ¼ ð2πÞ3δ3ðk⃗þ k⃗0Þ 2π
2

k3
PϕðkÞ: ðB4Þ

As we mentioned in Eq. (8), we approximate the power
spectrum of ϕ by

PϕðkÞ ¼
�
HI

2π

�
2

θðk − ksÞθðkseNlast − kÞ: ðB5Þ

We remind the reader that ks is the comoving scale which
leaves the horizon when the Higgs VEV begins growing,
Nlast e-folds before the end of inflation. Our results are
insensitive to very large values of k; however, for com-
pleteness, we have included a high-scale cutoff imposed by
the fact that ϕ grows until the end of inflation. The
comoving scale k that leaves the scale at the end of

inflation is the highest scale on which isocurvature modes
are produced; this scale is kseNlast . Again, though, such high
k values are not relevant to our results, which means that we
are insensitive to the end of inflation.
We now look at the fluctuation of fðxÞ≡ ϕ2ðxÞ with

respect to its expectation value,

δfðxÞ ¼ ϕ2ðxÞ − hϕ2ðxÞi ¼
Z

d3k
ð2πÞ3 e

ik⃗·x⃗fk⃗: ðB6Þ

The power spectrum of δfðxÞ can be computed from the
two-point function of the Fourier transform of δf

hfk⃗fk⃗0 i ¼ ð2πÞ3δ3ðk⃗þ k⃗0Þ 2π
2

k3
PδfðkÞ; ðB7Þ

which is

hfk⃗fk⃗0 i ¼
Z

d3xd3ye−ik⃗·x⃗−ik⃗
0·y⃗hδfðxÞδfðyÞi ðB8Þ

¼
Z

d3xd3ye−ik⃗·x⃗−ik⃗
0·y⃗½hϕ2ðxÞϕ2ðyÞi − hϕ2ðxÞihϕ2ðyÞi�

ðB9Þ

¼
Z

d3xd3ye−ik⃗·x⃗−ik⃗
0·y⃗
Z

d3k1d3k2d3k3d3k4
ð2πÞ12

× eiðk⃗1þk⃗2Þ·x⃗eiðk⃗3þk⃗4Þ·y⃗ðhϕk⃗1
ϕk⃗2

ϕk⃗3
ϕk⃗4

i
− hϕk⃗1

ϕk⃗2
ihϕk⃗3

ϕk⃗4
iÞ: ðB10Þ

Using Wick’s theorem, one can express the 4-point
function in terms of 2-point functions as

hϕk⃗1
ϕk⃗2

ϕk⃗3
ϕk⃗4

i ¼ hϕk⃗1
ϕk⃗2

ihϕk⃗3
ϕk⃗4

i þ hϕk⃗1
ϕk⃗3

ihϕk⃗2
ϕk⃗4

i
þ hϕk⃗1

ϕk⃗4
ihϕk⃗2

ϕk⃗3
i: ðB11Þ

Integrating over x⃗ and y⃗, and making use of Eq. (B4), we
have

hfk⃗fk⃗0 i ¼ 2

Z
d3k1d3k2d3k3d3k4δ3ðk⃗ − k⃗1 − k⃗2Þ

× δ3ðk⃗0 − k⃗3 − k⃗4Þδ3ðk⃗1 þ k⃗3Þδ3ðk⃗2 þ k⃗4Þ

×
2π2

k31

2π2

k32
Pϕðk1ÞPϕðk2Þ ðB12Þ

¼ 2

Z
d3k1d3k2δ3ðk⃗ − k⃗1 − k⃗2Þδ3ðk⃗0 þ k⃗1 þ k⃗2Þ

×
4π4

k31k
3
2

Pϕðk1ÞPϕðk2Þ: ðB13Þ
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¼ 2δ3ðk⃗þ k⃗0Þ
Z

d3k1
4π4

k31jk⃗1 − k⃗j3
Pϕðk1ÞPϕðjk⃗1 − k⃗jÞ:

ðB14Þ

Thus, the power spectrum of δf is

PδfðkÞ ¼
k3

2π

Z
d3k1

1

k31jk⃗1 − k⃗j3
Pϕðk1ÞPϕðjk⃗1 − k⃗jÞ:

ðB15Þ

For the power spectrum of ϕ given by Eq. (B5), this
gives

PδfðkÞ ¼
k3

2π

�
HI

2π

�
4
Z

d3k1
1

k31jk⃗1 − k⃗j3

× θðk1 − ksÞθðkseNlast − k1Þθðjk⃗1 − k⃗j − ksÞ
× θðkseNlast − jk⃗1 − k⃗jÞ: ðB16Þ

For k ≪ ks, the power spectrum is suppressed as

PδfðkÞ ≈
k3

2π

�
HI

2π

�
4
Z

∞

ks

4πdk1
k41

¼ 2

3

�
HI

2π

�
4
�
k
ks

�
3

:

ðB17Þ

For ks < k < kseNlast , integral is dominated by k⃗1 ∼ k⃗s and
k⃗1 ∼ k⃗ − k⃗s, so one can approximate (see also Appendix A
of [51])

PδfðkÞ ≈
k3

2π

�
HI

2π

�
4

2

Z
k

ks

4πk21dk1
k31k

3
ðB18Þ

¼ 4

�
HI

2π

�
4

ln

�
k
ks

�
: ðB19Þ

The power spectrum reaches a maximum ∼4NlastðHI=2πÞ4
before being suppressed severely beyond k ¼ kseNlast .
However, as mentioned, this large scale cutoff does not
affect our CIB signal, which is dominated by k ≈ 1.4ks. The
behavior of Eqs. (B16), (B17), and (B19) are shown in
Figs. 12 and 13.
Since the fluctuation of δf is suppressed for k < ks,

we take

PδfðkÞ ≈ 4

�
HI

2π

�
4

ln

�
k
ks

�
θðk − ksÞ ðB20Þ

for k ≪ kseNlast. The average fluctuation of f per ln k
interval is then given by δfk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PδfðkÞ

p
. Therefore, the

spectrum of the fluctuation of YB is

δYB

YB

				
k
¼ δfk

hfi ≈
2ln1=2ðk=ksÞ

Nlast
θðk − ksÞ; ðB21Þ

as used in Eq. (9).

FIG. 12. Power spectrum of the fluctuation of f ¼ ϕ2 with
respect to its expectation value, hϕ2i. The yellow solid line
denotes the numerical integration result of Eq. (B16). The blue
dashed curve shows the approximation (B19) for k > ks. The
green dash-dotted line shows the ðk=ksÞ3 suppression as
described by Eq. (B17), for k < ks.

FIG. 13. Same plot as Fig. 12 with Nlast ¼ 5 as an example; this
enables us to see the large scale cutoff. The yellow solid line
denotes the numerical result. The blue dashed curve shows the
approximation (B19). The deviation between them appears at the
scale k ∼ kseNlast . The power spectrum reaches an upper limit
around 4NlastðHI=2πÞ4. Since our calculation of the CIB is
dominated by k ≈ 1.4ks, the large scale cutoff is irrelevant to
our signal.
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