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In the present work, we propose an action principle for action-dependent Lagrangians by generalizing
the Herglotz variational problem for several independent variables. This action principle enables us to
formulate Lagrangian densities for nonconservative fields. In particular, from a Lagrangian depending
linearly on the action, we obtain generalized Einstein field equations for nonconservative gravity and
analyze some consequences of their solutions for cosmology and gravitational waves. We show that the
nonconservative part of the field equations depends on a constant cosmological four-vector. Depending on
this four-vector, the theory displays damped/amplified gravitational waves and an accelerating Universe
without dark energy.

DOI: 10.1103/PhysRevD.95.101501

The action principle was introduced in its mature
formulation by Euler, Hamilton, and Lagrange and, since
then, it has become a fundamental principle for the
construction of all physical theories. In order to obtain
the dynamical equations of any theory, the Lagrangian
defining the action is constructed from the scalars of the
theory. In this case, the action itself is a scalar.
Consequently, we might ask: what would happen if the
Lagrangian itself is a function of the action? The answer to
this question can be given by the action principle proposed
by Herglotz [1–3]. The Herglotz variational calculus
consists in the problem of determining the path xðtÞ that
extremizes (minimizes or maximizes) SðbÞ, where SðtÞ is a
solution of

_SðtÞ ¼ Lðt; xðtÞ; _xðtÞ; SðtÞÞ; t ∈ ½a; b�;
SðaÞ ¼ sa; xðaÞ ¼ xa; xðbÞ ¼ xb; sa; xa; xb ∈ R: ð1Þ

It is easy to note that Eq. (1) represents a family of
differential equations since for each function xðtÞ a differ-
ent differential equation arises. Therefore, SðtÞ is a func-
tional. The problem reduces to the classical fundamental
problem of the calculus of variations if the Lagrangian
function L does not depend on SðtÞ. In this case we have
_SðtÞ ¼ Lðt; xðtÞ; _xðtÞÞ, and by integrating we obtain the
classical variational problem

SðbÞ ¼
Z

b

a

~Lðt; xðtÞ; _xðtÞÞdt → extremum; ð2Þ

where xðaÞ ¼ xa, xðbÞ ¼ xb, and

~Lðt; xðtÞ; _xðtÞÞ ¼ Lðt; xðtÞ; _xðtÞÞ þ sa
b − a

: ð3Þ

It is important to notice from Eq. (2) that for a given fixed
function xðtÞ the functional S reduces to a function of the
domain boundary a, b. Herglotz proved [1,2] that a
necessary condition for a path xðtÞ to be an extremizer
of the variational problem (1) is given by the generalized
Euler-Lagrange equation:

∂L
∂x −

d
dt

∂L
∂ _x þ ∂L

∂S
∂L
∂ _x ¼ 0: ð4Þ

In the simplest case where the dependence of the
Lagrangian function on the action is linear, the
Lagrangian describes a dissipative system and, from
Eq. (4), the resulting equation of motion includes the
well-known dissipative term proportional to _x. It should
also be noticed that in the case of the classical problem of
the calculus of variations (2) one has ∂L

∂S ¼ 0, and the
differential equation (4) reduces to the classical Euler-
Lagrange equation.
In what follows we will be interested in a more general

problem where the Lagrangian function depends on several
independent variables x1; x2;…; xd (d ¼ 1; 2; 3;…).
Besides (as we are especially interested in the problem
of gravity), we will consider a curved space with metric
gαβ ¼ gαβðx1; x2;…; xdÞ defined on a domain Ω ⊂ Rd.
Thus, the classical problem of the calculus of variations
deals with the problem of finding gαβ that extremize the
functional

SðδΩÞ ¼
Z
Ω
Lðxμ; gαβ; gαβ;μÞ ffip ddx; ð5Þ
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where gαβ;μ ¼ ∂μgαβ,
ffip ¼ ffiffiffiffiffijgjp

, δΩ is the boundary of Ω,
and gαβ satisfy the boundary condition gαβðδΩÞ ¼ gδΩαβ with
gδΩαβ ∶ δΩ → R. Unfortunately, despite the fact that the
Herglotz problem was introduced in 1930, a covariant
generalization of Eq. (1) for several independent variables
is not direct and is lacking up to now. In order to generalize
the Herglotz problem for fields, let us first note that, as in
Eq. (2), for a given fixed gαβ the functional S defined in
Eq. (5) reduces to a function of the boundary δΩ. Let us now
consider that δΩ is an orientable Jordan surface with normal
nμ. If there is a differentiable vector field sμ such that

SðδΩÞ ¼
Z
δΩ

nνsν
ffiffiffiffiffiffi
jhj

p
dd−1x; ð6Þ

where
ffiffiffiffiffiffijhjp

is the induced metric over δΩ, then we obtain

SðδΩÞ ¼
Z
δΩ

nνsν
ffiffiffiffiffiffi
jhj

p
dd−1x ¼

Z
Ω
∇νsν

ffip ddx

¼
Z
Ω
Lðxμ; gαβ; gαβ;μÞ ffip ddx; ð7Þ

wherewe used Stokes’ theorem and∇ν stands for a covariant
derivative. Consequently, we can generalize the action
principle by stating that the space-time metric gμν is that
which extremizes the action SðδΩÞ given by

∇νsν ¼ Lðxμ; gαβ; gαβ;μ; sμÞ; xμ ∈ Ω;

SðδΩÞ ¼
Z
δΩ

nνsν
ffiffiffiffiffiffi
jhj

p
dd−1x; gαβðδΩÞ ¼ gδΩαβ ; ð8Þ

where gδΩαβ is fixed. It is important to notice that our action
principle (8) [that generalizes Eq. (1) for fields] reduces to the
classical action principle if the Lagrangian is independent of
sμ. Furthermore, for the case where sν ¼ ðs0; 0; 0; 0Þ and
Ω ¼ ½ta; tb� ⊗ R3, Eq. (8) contains as a particular case the
noncovariant problem introduced in Ref. [3]. Moreover, in
this last situationEq. (8) can be easily solved for Lagrangians
linear in s0, giving a s0 expressed as a history-dependent
function of the source.
For the gravity field, the Lagrangian we propose is given

by L ¼ Lm þ Lg, where Lm is the Lagrangian for matter
and

Lgðxμ; gαβ; gαβ;μ; sμÞ ¼ R − λνsν; ð9Þ

where λν is a constant cosmological four-vector. In Eq. (9),
R ¼ ~L − L is the Ricci scalar with ~L ¼ gμνðΓσ

μσ;ν − Γσ
μν;σÞ

and L ¼ gμνðΓσ
μνΓ

ρ
σρ − Γρ

μσΓσ
νρÞ. Since the second-order

derivatives in Eq. (9) occur only linearly in the
Lagrangian, the field equations can be obtained by an
effective Lagrangian L ¼ Lm þ Lef with

Lefðxμ; gαβ; gαβ;μ; sμÞ ¼ L − λνsν; ð10Þ

instead of Eq. (9), because
R
Ω
~L ffip ddx ¼ 2

R
Ω L ffip ddxþ

constant (see Ref. [4]).
In order to obtain the generalized field equations, let us

define a family of metrics gαβ such that

gαβðxμÞ ¼ g�αβðxμÞ þ δϵðgαβÞðxμÞ; ð11Þ

where g�αβ is the metric that extremizes SðδΩÞ in Eq. (8),
ϵ ∈ R, and δϵðgαβÞ satisfies the boundary condition
δϵðgαβÞðδΩÞ ¼ 0 and limϵ→0δϵðgαβÞðxμÞ ¼ 0 (weak varia-
tions). Since SðδΩÞ attains an extremum at g�αβ, we have

lim
ϵ→0

δϵðSÞðδΩÞ
ϵ

¼ 0: ð12Þ

From Eq. (6), we get

lim
ϵ→0

δϵðSÞðδΩÞ
ϵ

¼
Z
δΩ

nνlim
ϵ→0

δϵðsνÞ
ϵ

ffiffiffiffiffiffi
jhj

p
dd−1x ¼ 0 ð13Þ

since the surface δΩ, and consequently
ffiffiffiffiffiffijhjp

, is indepen-
dent of ϵ. A sufficient condition to satisfy Eq. (13) for an
arbitrary boundary δΩ is

lim
ϵ→0

δϵðsνÞðδΩÞ
ϵ

¼ 0: ð14Þ

On the other hand, by integrating over Ω both sides of the
differential equation in Eq. (8) we obtain

SðδΩÞ ¼
Z
Ω
Lðxμ; gαβ; gαβ;μ; sμÞ ffip ddx; ð15Þ

and by taking the variation of Eq. (15) we get

δϵðSÞ ¼
Z
Ω
δϵðLðxμ; gαβ; gαβ;μ; sμÞ ffip Þddx

¼
Z
Ω
½δϵðL ffip Þ þ δϵðLm

ffip Þ − λνδϵðsν ffip Þ�ddx: ð16Þ

We also have from Eq. (7), by using ∇νð·Þ ffip ¼ ∂νð· ffip Þ,

δϵðSÞ ¼ δϵ

Z
Ω
∇νsν

ffip ddx ¼
Z
Ω
∂νδϵðsν ffip Þddx: ð17Þ

From Eqs. (16) and (17) we obtain

Z
Ω
½∂νδϵðsν ffip Þ − δϵððLþ LmÞ ffip Þ þ λνδϵðsν ffip Þ�ddx ¼ 0:

ð18Þ

Since Eq. (18) should be satisfied for any domainΩ, we have
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∂νζ
ν ¼ δϵðL ffip Þ þ δϵðLm

ffip Þ − λνζ
ν; ð19Þ

where ζν ¼ δϵðsν ffip Þ. Due to the fact that λν is a constant
four-vector, Eq. (19) implies that ζν can be written as

ζνðϵÞ ¼ Aνðxμ; gαβ; gαβ;μ; sμÞe−λγxγ ; ð20Þ

where

∂νAν ¼ ðδϵðL ffip Þ þ δϵðLm
ffip ÞÞeλγxγ : ð21Þ

From Eq. (14) we should have, since δϵðgμνÞðδΩÞ ¼ 0,

ζνð0Þ ¼ Aνjϵ¼0e
−λγxγ ¼ 0 ð22Þ

for all xμ ∈ δΩ. As a consequence,Aν is identically zero over
δΩ. In this case, we obtain from Stokes’ theorem

Z
δΩ

nν
Aν

ffip
ffiffiffiffiffiffi
jhj

p
dd−1x ¼

Z
Ω
∂νAνddx ¼ 0: ð23Þ

Thus,

Z
Ω
δϵðL ffip þ Lm

ffip Þeλγxγddx

¼
Z
Ω
½Γα

μνδϵðgμν ffip Þ;α − Γα
μαδϵðgμν ffip Þ;ν

þ ðΓβ
μαΓα

νβ − Γβ
αβΓα

μνÞδϵðgμν ffip Þ
þ 8πGTμνδϵðgμνÞ ffip �eλγxγddx

¼ −
Z
Ω
δϵðgμνÞ ffip �

Rμν −
1

2
gμνRþ Kμν

−
1

2
gμνK − 8πGTμν

�
eλγx

γ
ddx

þ
Z
Ω
½ðΓα

μνδϵðgμν ffip Þ

− Γν
μνδϵðgμα ffip ÞÞeλγxγ �;αddx ¼ 0; ð24Þ

where we define the symmetric tensor Kμν¼
λαΓα

μν−1
2
ðλνΓα

μαþλμΓα
ναÞ, and δϵðLm

ffip Þ¼8πG
c4 TμνδϵðgμνÞ ffip ,

where Tμν is the energy-momentum tensor. The last integral
in Eq. (24) is zero since δϵðgμνÞðδΩÞ ¼ 0. Thus, from the
fundamental lemma of the calculus of variations we obtain
from Eq. (24) the generalized gravitational field equation

Rμν þ Kμν −
1

2
gμνðRþ KÞ ¼ 8πG

c4
Tμν: ð25Þ

It is important to remark that the generalized gravity field
(25) depending on the cosmological four-vector λμ can be
used to describe nonconservative phenomena, since the
covariant divergence∇μðKμ

ν − 1
2
gμνKÞ is in general different

from zero for λμ ≠ 0. A notable consequence of this
nonconservation is that the space-time manifold behaves
similarly to an imperfectly elastic rubber sheet. In order to
shed light on the effects of the nonconservation on the
geometrical side of the field equation (25) when λμ ≠ 0, it is
interesting to investigate the behavior of gravitational
waves. We suppose the metric to be close to the
Minkowski one [5], i.e., gμν ¼ ημν þ hμν with jhμνj ≪ 1.
To first order in h, by choosing the modified harmonic
gauge ημνðhμρ;ν − 1

2
hμν;ρ þ λμhνρ − 1

2
λρhμνÞ ¼ 0, we obtain

from the field equations

□
2hμν þ λρhμν;ρ ¼ −

16πG
c4

Sμν; ð26Þ

where Sμν ¼ Tμν − 1
2
ημνTλ

λ. For simplicity, let us consider
only the homogeneous case Sμν ¼ 0 with
λ1 ¼ λ2 ¼ λ3 ¼ 0, and a gravitational wave traveling in
the x3 ¼ z direction. In this case hμν is a function of t and z,
and we also have h0μ ¼ h3μ ¼ 0. From the wave equa-
tion (26) we obtain three possible solutions for hμν:

hμνðt; zÞ ¼

8>>><
>>>:

hð�Þ
μν e−

λ0�λ0
2

cteikz if λ20 > 4k2;

ðhðþÞ
μν þ hð−Þμν ctÞe−

λ0
2
cteikz if λ20 ¼ 4k2;

hð�Þ
μν e−

λ0�iλ0
2

cteikz if λ20 < 4k2;

where λ0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλ20 − 4k2j

p
, and hð�Þ

μν are constant symmetric

tensors with non-null components hð�Þ
11 , hð�Þ

22 ¼ −hð�Þ
11 , and

hð�Þ
12 . When λ0 > 0 (λ0 < 0) we observe three cases of

damped (amplified) waves and, in any of these cases, the
amplitude of the gravitational waves decreases (increases)
with time. It is important to notice that both λ20 > 4k2 and
λ20 ¼ 4k2 solutions correspond to stationary waves and
occur for small spatial frequencies (k ≤ jλ0j=2). On the
other hand, the solution when λ20 < 4k2 corresponds to
traveling waves with velocity v ¼ λ0

2k c, smaller than the
speed of light c. Furthermore, the dispersion relation ω ¼
λ0
2
c relating time and space frequencies gives us an

experimental test for the existence of the cosmological
four-vector λμ.
Despite the nonconservation on the geometrical side of

the field equation (25), there are two simple possibilities for
enabling solutions where we have energy-momentum
conservation (which implies Tμ

ν;μ ¼ 0). The first is to
change how mass-energy generates curvature by consid-
ering that the gravity constantG is actually a function of xμ.
In this approach, the function G equalizes the conserved
matter side in Eq. (25) with a nonconservative geometry.
The second possibility is to introduce a cosmological
constant Λ in the theory that is actually a function of xμ.
The cosmological constant can easily be included by
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adding −2Λ to the Lagrangians (9) and (10). For simplicity,
in the present work we consider only the first case where,
by taking the covariant derivative of Eq. (25) with
∇μT

μ
ν ¼ 0, we have the conservation condition

∇μ

�
Kμ

ν −
1

2
gμνK

�
¼ 8πG;μT

μ
ν : ð27Þ

Finally, in order to investigate the cosmological conse-
quences of the constant four-vector λμ, we analyze the
dynamics of a Bianchi I universe filled with a perfect fluid.
The metric we consider is given by [6]

ds2 ¼ dt2 − a21ðtÞdx2 − a22ðtÞdy2 − a23ðtÞdz2; ð28Þ

where we set c ¼ 1 for simplicity. From the field equa-
tion (25) and from Eq. (27) we get

_a1
a1

_a2
a2

þ _a1
a1

_a3
a3

þ _a2
a2

_a3
a3

¼ 8πGρ¼−
4π

λ0
_Gρ;

äi
ai
þ äj
aj

þ _ai
ai

_aj
aj

þλ0

�
_ai
ai
þ _aj
aj

�
¼−8πGp; i≠ j; ð29Þ

where we consider λ1 ¼ λ2 ¼ λ3 ¼ 0, and Tμν ¼
ðρþ pÞUμUν − pgμν for the perfect fluid (where ρ is the
matter density, p is the pressure, and Uμ is the fluid
velocity), with the pressure p and density ρ obeying the
equation of state p ¼ γρð0 ≤ γ ≤ 1Þ [7]. From the first
equation in Eq. (29) we obtain

GðtÞ ¼ G0e−2λ0t; ð30Þ

where G0 is a constant. It is important to notice from
Eq. (30) that for λ0 < 0 (λ0 > 0) the coupling G between
geometry and matter is strengthened (weakened) as a
consequence of the nonconservation on the geometrical
side of the field equation (25). In Fig. 1 we display the
isotropic solution of the scale factor a1ðtÞ ¼ a2ðtÞ ¼
a3ðtÞ ¼ RðtÞ, in the cases where γ takes the values 0
and 1, respectively, corresponding to matter- and strong
radiation-dominated eras. In both cases, one can see that the
most important consequence of the constant cosmological
four-vector is the arising of a universe with an accelerated
expansion rate when λ0 < 0 without the necessity of
introducing dark energy. The accelerated expansion rate
is evident from the concavity inversion for RðtÞ when
λ0 < 0. For an isotropic matter-dominated era this
concavity inversion occurs at a time t� ¼ 1

jcλ0j lnð32Þ.
Consequently, from observational evidence [8] we should
have jλ0jc of order 10−10 yr−1. Despite the fact that we
consider a very simple Bianchi I cosmological model, this
result is in good agreement with observational and exper-
imental bounds on the temporal rate of variation for G [9].
Furthermore, although Fig. 1 only shows the isotropic case,

we have checked that the same behavior is obtained in the
more general anisotropic case. Actually, we expect that the
same phenomenon will be present in more realistic models
since the main mechanism behind the accelerated expan-
sion is the nonconservation on the geometrical side of the
field equation (25). Finally, from Fig. 1 it is also evident
that when λ0 > 0 the universe quickly reaches a stationary
state. Furthermore, in this case, the weakening of the
coupling (30) for λ0 > 0 results in the asymptotic decou-
pling between matter and geometry.
Finally, due to its smallness, the effects of λ0 in the Solar

System for noncosmological time scales is very small. For a
short time interval, it is easy to verify from Eq. (26) that a
spherically symmetric mass distribution reproduces
Newtonian gravity for weak fields since, in this case, we
get h00 ¼ 2ϕ

c2 , where ϕ is the Newtonian gravitational
potential. Furthermore, as the metric should be a smooth
function of time, we can estimate an upper limit of only
jΔθλ − Δθ0j≲ 10−7 seconds of arc per century for the
difference between the Mercury precession Δθλ in our
theory (with jλ0jc ≈ 10−10) and the precession of Δθ0 ¼
43.0300 per century in classical gravity [5].
In conclusion, in this work we presented a generaliza-

tion of the action principle for action-dependent
Lagrangians and considered it on a curved space with
metric gμνðxμÞ. From this action principle, we obtained a
generalized gravitational field equation, which can be
used in the description of nonconservative phenomena.
An interesting feature of this theory is that the gravita-
tional field depends on a constant cosmological four-
vector. The potential importance of this new gravitational
theory is evident when applied to the problem of gravi-
tational waves and to cosmology. Depending on the
cosmological four-vector, we have shown that gravita-
tional waves propagate with velocity smaller than the
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FIG. 1. The isotropic scale factor RðtÞ versus t (for a cosmo-
logical time scale) in a matter-dominated era (γ ¼ 0), with
G0 ¼ 1, p ¼ γρ, and where R0 is a constant. The inset shows
the strong radiation-dominated era (γ ¼ 1).
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speed of the light, and with amplitudes which decrease (or
increase) with time. Moreover, applying this generaliza-
tion to cosmology led to another remarkable result: a
universe (here considered as filled with a perfect fluid)
displaying an accelerated expansion rate with no need to
introduce dark energy. Finally, there are many directions
of investigation left to explore related to developments of
our former results. In particular, we outlined the post-
Newtonian limit for a spherically symmetric mass

distribution, enabling the investigation of the stability
of planetary orbits on cosmological time scales, and the
effects on galaxy rotations. Furthermore, although we
only considered the gravitational problem, the action
principle we propose is general and can be easily extended
to any physical field.
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