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In the present work, we propose an action principle for action-dependent Lagrangians by generalizing
the Herglotz variational problem for several independent variables. This action principle enables us to
formulate Lagrangian densities for nonconservative fields. In particular, from a Lagrangian depending
linearly on the action, we obtain generalized Einstein field equations for nonconservative gravity and
analyze some consequences of their solutions for cosmology and gravitational waves. We show that the
nonconservative part of the field equations depends on a constant cosmological four-vector. Depending on
this four-vector, the theory displays damped/amplified gravitational waves and an accelerating Universe

without dark energy.
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The action principle was introduced in its mature
formulation by Euler, Hamilton, and Lagrange and, since
then, it has become a fundamental principle for the
construction of all physical theories. In order to obtain
the dynamical equations of any theory, the Lagrangian
defining the action is constructed from the scalars of the
theory. In this case, the action itself is a scalar.
Consequently, we might ask: what would happen if the
Lagrangian itself is a function of the action? The answer to
this question can be given by the action principle proposed
by Herglotz [1-3]. The Herglotz variational calculus
consists in the problem of determining the path x() that
extremizes (minimizes or maximizes) S(b), where S(¢) is a
solution of

S(t) = L(t, x(1), x(1), S(¢)).
S(a) - sa’x(a) = xavx(b) = Xp,

t € |a, b,
SarXg, Xp €ER. (1)

It is easy to note that Eq. (1) represents a family of
differential equations since for each function x(¢) a differ-
ent differential equation arises. Therefore, S(¢) is a func-
tional. The problem reduces to the classical fundamental
problem of the calculus of variations if the Lagrangian
function L does not depend on S(). In this case we have
S(1) = L(t,x(1),x(r)), and by integrating we obtain the
classical variational problem

b
S(b) = / L(t,x(1),x(t))dt — extremum,  (2)

where x(a) = x,, x(b) = x;, and
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L(t,x(1), %(1)) = L1, x(1), x(1)) + bs_“a.

(3)

It is important to notice from Eq. (2) that for a given fixed
function x(z) the functional S reduces to a function of the
domain boundary «, b. Herglotz proved [1,2] that a
necessary condition for a path x(¢) to be an extremizer
of the variational problem (1) is given by the generalized
Euler-Lagrange equation:
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In the simplest case where the dependence of the
Lagrangian function on the action is linear, the
Lagrangian describes a dissipative system and, from
Eq. (4), the resulting equation of motion includes the
well-known dissipative term proportional to x. It should
also be noticed that in the case of the classical problem of
the calculus of variations (2) one has g—g =0, and the
differential equation (4) reduces to the classical Euler-
Lagrange equation.

In what follows we will be interested in a more general
problem where the Lagrangian function depends on several
independent  variables x',x%,....x? (d=1,2,3,...).
Besides (as we are especially interested in the problem
of gravity), we will consider a curved space with metric
Jap = Jap(x', %%, ..., x?) defined on a domain Q c R
Thus, the classical problem of the calculus of variations
deals with the problem of finding g,; that extremize the

functional

5(50) = / L gup Gup) /&, (5)
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where g5, = 0,9ap> \/ = \/H , 6Q is the boundary of Q,
and g, satisfy the boundary condition g,(6Q) = g7 with
¢+ 6Q — R. Unfortunately, despite the fact that the
Herglotz problem was introduced in 1930, a covariant
generalization of Eq. (1) for several independent variables
is not direct and is lacking up to now. In order to generalize
the Herglotz problem for fields, let us first note that, as in
Egq. (2), for a given fixed g,4 the functional S defined in
Eq. (5) reduces to a function of the boundary 6€2. Let us now
consider that 6€2 is an orientable Jordan surface with normal
n#. If there is a differentiable vector field s# such that

5(6Q) = A . n,s/|h|ld*x, (6)

where +/|h| is the induced metric over 5Q, then we obtain

S(6Q) = mnys’“\/|h|dd‘1x—Lvys”\/ddx
:/Q[’(xﬂ’gaﬁ’ga/},ﬂ)\/_ddx3 (7)

where we used Stokes’ theorem and V,, stands for a covariant
derivative. Consequently, we can generalize the action
principle by stating that the space-time metric g,, is that
which extremizes the action S(5Q) given by

Xt e Q,

9ap(0Q) = &3, (8)

VDSV = ,C(x”’ gaﬂ’ gaﬂ,/u S#)’

S(6Q) = » n,s’+/|hld " x,

where gfl% is fixed. It is important to notice that our action
principle (8) [that generalizes Eq. (1) for fields] reduces to the
classical action principle if the Lagrangian is independent of
s#. Furthermore, for the case where s* = (sO,O,O,O) and
Q = [t,.1,] ® R3, Eq. (8) contains as a particular case the
noncovariant problem introduced in Ref. [3]. Moreover, in
this last situation Eq. (8) can be easily solved for Lagrangians
linear in s°, giving a s° expressed as a history-dependent
function of the source.

For the gravity field, the Lagrangian we propose is given
by L =L, + L, where L, is the Lagrangian for matter
and

‘Cy(xﬂ’ gaﬂ’ gaﬂ,w S”) =R- Ausv’ (9)

where 4, is a constant cosmological four-vector. In Eq. (9),

R =L — L is the Ricci scalar with L = e =T s)
and L = ¢ (I'q,I0, —T,I'7,). Since the second-order
derivatives in Eq. (9) occur only linearly in the
Lagrangian, the field equations can be obtained by an

effective Lagrangian £ = L, + L,; with
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['ef<xﬂ7 YGap> gaﬂ,wsﬂ) =L —4,s5", (10)

instead of Eq. (9), because [, L,/d'x =2 [ L /d"x +
constant (see Ref. [4]).

In order to obtain the generalized field equations, let us
define a family of metrics g,z such that

gaﬂ<xﬂ) = g:;/}<xﬂ> + 5e(gaﬂ)(xﬂ)’ (11)

where g, ; is the metric that extremizes S(6€) in Eq. (8),
e €R, and 6.(gys) satisfies the boundary condition
8c(Gap) (6Q) = 0 and lim,_6.(g,s)(**) = O (weak varia-
tions). Since S(5Q) attains an extremum at g;;, we have

L 5(5)(60)
e—0 €

=0. (12)

From Eq. (6), we get

1imM:/ nynmM V]hld'x =0 (13)
5Q €

e—0 € e—0

since the surface §Q, and consequently /|A|, is indepen-
dent of e. A sufficient condition to satisfy Eq. (13) for an
arbitrary boundary 6Q2 is

i 6)0)

lim == "2 = 0, (14)

On the other hand, by integrating over Q both sides of the
differential equation in Eq. (8) we obtain

S(6Q) = /Q L. Gupr Gapye ') S d%%. (1)
and by taking the variation of Eq. (15) we get
() = [ BLLO". Gup g ) )
= [ L)+ 8Ly ) = 2l (16
We also have from Eq. (7), by using V,(-),/ = 9,(-\/).
5.(8) = 5€[2V,,s”\/ddx = Laﬁe(s”\/)ddx. (17)
From Egs. (16) and (17) we obtain
[ 100 = 6(L + L)) + 2305 =
(18)

Since Eq. (18) should be satisfied for any domain , we have
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0,8 = 0c(L\/) + 8e(Lny/) = ML, (19)

where ¥ = §,.(s",/). Due to the fact that 4, is a constant
four-vector, Eq. (19) implies that { can be written as

() = AY(X", Gups Gapu S*)e (20)

where
DAY = (8(L\/) + 8:(Lyy/ ). (21)
From Eq. (14) we should have, since 6,(g,,)(6Q) = 0,
(0) = A¥|cge™" =0 (22)

forall ¥ € 0Q. As aconsequence, A” is identically zero over
6Q. In this case, we obtain from Stokes’ theorem

/ nl,A—\/|h|dd_1x—/al,A”ddx—O. (23)
@ 4/ Q

Thus,

/5E(L\/+Em\/)elvxyddx
Q

- [2 [FZU(SG (gﬂy\/_),a - Fﬁaég (glw\/)’”

+ (FﬁaF,‘f/, - Fﬁﬁrﬁu)ée(gﬂy\/)
+ 87GT,,5,(0) /Jeh™ dix

1
= _[zée(gﬂy)\/_{Rm/ _Egm/R_‘_Km/

1 ,
- Eg/wK - SITGTW:| M dix

+ /Q (%5, (6 )
T, (g )] dix =0, (24)

where  we define the symmetric tensor K, =

/Iarzv_%(ﬂur‘ga +’1/4F10/(a)’ and 5€<£m\/_) :8:_4GT/4D56(9”U)\/_’
where T, is the energy-momentum tensor. The last integral
in Eq. (24) is zero since 6.(g,,)(6Q) = 0. Thus, from the
fundamental lemma of the calculus of variations we obtain
from Eq. (24) the generalized gravitational field equation

1 8nG
RﬂD+KﬂU_§gﬂD(R+K) ZTTW/. (25)
It is important to remark that the generalized gravity field
(25) depending on the cosmological four-vector 4, can be
used to describe nonconservative phenomena, since the
covariant divergence V(K — 1 ¢/K) is in general different
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from zero for 4, #0. A notable consequence of this
nonconservation is that the space-time manifold behaves
similarly to an imperfectly elastic rubber sheet. In order to
shed light on the effects of the nonconservation on the
geometrical side of the field equation (25) when 4, # 0, it is
interesting to investigate the behavior of gravitational
waves. We suppose the metric to be close to the
Minkowski one [5], i.e., g,, = #,, + h,, with |h,| < 1.
To first order in A, by choosing the modified harmonic
gauge n*(hy,, —+h,, , + Ah,, —%A,h,,) = 0, we obtain
from the field equations

3 162G

Phyy + ¥ hyyy = ——3—8
C

v

(26)
where S, = T, —1n,,T4. For simplicity, let us consider
only  the  homogeneous case S, =0  with
A =4 =13 =0, and a gravitational wave traveling in
the x* = z direction. In this case h,,, is a function of 7 and z,
and we also have hg, = h3, = 0. From the wave equa-
tion (26) we obtain three possible solutions for 4,,:

B o~ et ks if 23 > 4k2,
ha(1:2) = 0 () + by eneseteiif 23 = 4k,
hl(lf)e_iofl ct pikz if /1(2) < 4k2,

where /' = /|43 — 4k*|, and h,(f;) are constant symmetric

tensors with non-null components h(ljf), h%) = —hﬁ[), and

hg). When 4, > 0 (4, < 0) we observe three cases of
damped (amplified) waves and, in any of these cases, the
amplitude of the gravitational waves decreases (increases)
with time. It is important to notice that both 43 > 4k* and
43 = 4k* solutions correspond to stationary waves and
occur for small spatial frequencies (k < |1y|/2). On the
other hand, the solution when 43 < 4k> corresponds to

traveling waves with velocity v = ;—]Lc, smaller than the

speed of light c. Furthermore, the dispersion relation @ =
’%c relating time and space frequencies gives us an
experimental test for the existence of the cosmological
four-vector 4,.

Despite the nonconservation on the geometrical side of
the field equation (25), there are two simple possibilities for
enabling solutions where we have energy-momentum
conservation (which implies 7., = 0). The first is to
change how mass-energy generates curvature by consid-
ering that the gravity constant G is actually a function of x*.
In this approach, the function G equalizes the conserved
matter side in Eq. (25) with a nonconservative geometry.
The second possibility is to introduce a cosmological
constant A in the theory that is actually a function of x*.
The cosmological constant can easily be included by
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adding —2A to the Lagrangians (9) and (10). For simplicity,
in the present work we consider only the first case where,
by taking the covariant derivative of Eq. (25) with
VMTZ’ = 0, we have the conservation condition

1
v, (K’; -3 gf;K> = 812G ,T%. (27)

Finally, in order to investigate the cosmological conse-
quences of the constant four-vector 4,, we analyze the
dynamics of a Bianchi / universe filled with a perfect fluid.
The metric we consider is given by [6]

ds* = dr* — a3(1)dx* — a3(1)dy* — a3(1)dz?, (28)

where we set ¢ = 1 for simplicity. From the field equa-
tion (25) and from Eq. (27) we get
a, ap

L.ll C.l3 élz 1:13 471' .
+-1=24

aya, apas dayas /10
Pd a.a 0, a;
ﬁ+_f+ﬂ_-/+,10<&+—’>——87er, i#J, (29)
a; aj a;aj di 4j

where we consider 4, =4, =4;=0, and T, =
(p+p)U,U, — pg,, for the perfect fluid (where p is the
matter density, p is the pressure, and U, is the fluid
velocity), with the pressure p and density p obeying the
equation of state p =yp(0 <y < 1) [7]. From the first
equation in Eq. (29) we obtain

G(1) = Gye 2, (30)

where G, is a constant. It is important to notice from
Eq. (30) that for 4y < 0 (43 > 0) the coupling G between
geometry and matter is strengthened (weakened) as a
consequence of the nonconservation on the geometrical
side of the field equation (25). In Fig. 1 we display the
isotropic solution of the scale factor a,(t) = a,(1) =
as(t) = R(t), in the cases where y takes the values O
and 1, respectively, corresponding to matter- and strong
radiation-dominated eras. In both cases, one can see that the
most important consequence of the constant cosmological
four-vector is the arising of a universe with an accelerated
expansion rate when 4y <0 without the necessity of
introducing dark energy. The accelerated expansion rate
is evident from the concavity inversion for R(7) when
Ao < 0. For an isotropic matter-dominated era this
concavity inversion occurs at a time f* = |c170|1n(%)
Consequently, from observational evidence [8] we should
have |1g|c of order 107'° yr=!. Despite the fact that we
consider a very simple Bianchi 7/ cosmological model, this
result is in good agreement with observational and exper-
imental bounds on the temporal rate of variation for G [9].
Furthermore, although Fig. 1 only shows the isotropic case,
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FIG. 1. The isotropic scale factor R(¢) versus 7 (for a cosmo-
logical time scale) in a matter-dominated era (y = 0), with
Gy =1, p =yp, and where R is a constant. The inset shows
the strong radiation-dominated era (y = 1).

we have checked that the same behavior is obtained in the
more general anisotropic case. Actually, we expect that the
same phenomenon will be present in more realistic models
since the main mechanism behind the accelerated expan-
sion is the nonconservation on the geometrical side of the
field equation (25). Finally, from Fig. 1 it is also evident
that when 4, > 0 the universe quickly reaches a stationary
state. Furthermore, in this case, the weakening of the
coupling (30) for 4y > O results in the asymptotic decou-
pling between matter and geometry.

Finally, due to its smallness, the effects of 4 in the Solar
System for noncosmological time scales is very small. For a
short time interval, it is easy to verify from Eq. (26) that a
spherically symmetric mass distribution reproduces
Newtonian gravity for weak fields since, in this case, we
get hgy = i—‘f, where ¢ is the Newtonian gravitational
potential. Furthermore, as the metric should be a smooth
function of time, we can estimate an upper limit of only
|AG, — ABy| <1077 seconds of arc per century for the
difference between the Mercury precession A@; in our
theory (with |1y|c ~ 1071°) and the precession of Af, =
43.03” per century in classical gravity [5].

In conclusion, in this work we presented a generaliza-
tion of the action principle for action-dependent
Lagrangians and considered it on a curved space with
metric g, (¥*). From this action principle, we obtained a
generalized gravitational field equation, which can be
used in the description of nonconservative phenomena.
An interesting feature of this theory is that the gravita-
tional field depends on a constant cosmological four-
vector. The potential importance of this new gravitational
theory is evident when applied to the problem of gravi-
tational waves and to cosmology. Depending on the
cosmological four-vector, we have shown that gravita-
tional waves propagate with velocity smaller than the
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speed of the light, and with amplitudes which decrease (or
increase) with time. Moreover, applying this generaliza-
tion to cosmology led to another remarkable result: a
universe (here considered as filled with a perfect fluid)
displaying an accelerated expansion rate with no need to
introduce dark energy. Finally, there are many directions
of investigation left to explore related to developments of
our former results. In particular, we outlined the post-
Newtonian limit for a spherically symmetric mass
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distribution, enabling the investigation of the stability
of planetary orbits on cosmological time scales, and the
effects on galaxy rotations. Furthermore, although we
only considered the gravitational problem, the action
principle we propose is general and can be easily extended
to any physical field.
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