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As an extension of recent work on two-dimensional light-front ϕ4 theory, we implement Fock-sector
dependence for the bare mass. Such dependence should have important consequences for the convergence
of nonperturbative calculations with respect to the level of Fock-space truncation. The truncation forces the
self-energy corrections to be sector dependent; in particular, the highest sector has no self-energy
correction. Thus, the bare mass can be considered sector dependent as well. We find that, although higher
Fock sectors have a larger probability, the mass of the lightest state and the value of the critical coupling are
not significantly affected. This implies that coherent states or the light-front coupled-cluster method may be
required to properly represent critical behavior.
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I. INTRODUCTION

In a recent calculation [1], two-dimensional ϕ4 theory
was solved for the lowest mass eigenstates of the light-front
Hamiltonian. The eigenstates were represented by trun-
cated Fock-state expansions, with momentum-space wave
functions as the coefficients. This work included estimation
of the critical coupling, where the ϕ → −ϕ symmetry of the
theory is broken [2]. At this critical coupling, one would
expect that the probabilities for the higher Fock sectors,
computed as integrals of the squares of the Fock wave
functions, would increase dramatically. In particular, the
probability for the one-particle sector of the lowest massive
state should go to zero. This was not observed.
The expectation that the one-particle probability would go

to zero is important for the calculation of the connection
between equal-time [3–8] and light-front estimates [1,9] of
the critical coupling. This is determined by the relationship
between the different mass renormalizations in the two
quantizations [10], which is fixed by tadpole contributions
computed from the vacuum expectation value of ϕ2. The
behavior of this vacuum expectation value is dominated by
the product of the one-particle probability times the logarithm
of themass [1]. Themass goes to zero at the critical coupling,
making zero probability a necessity for a finite result.
In the previous work, the explanation proposed for this

apparent paradox was that the calculation did not use
sector-dependent bare masses. This meant that the highest
Fock sector kept in the calculation used a fixed bare mass
even as the eigenstate mass approached zero. Excitation of
such Fock states is then very unlikely.
The use of sector-dependent bare parameters, or “sector-

dependent renormalization” as it is usually called, has a long
history [11–13]. A Fock-space truncation forces self-energy
corrections and vertex corrections to be different in different
Fock sectors. This makes sector-dependent counterterms a
natural choice. In addition, the truncation causes divergences
that would have been canceled by contributions from higher

Fock states that are now absent. Sector-dependent counter-
terms can take these divergences into account. However, in at
least some theories, the sector-dependent bare couplings can
lead to inconsistencies in the interpretation ofwave functions
and Fock-sector probabilities [14]. Thus, use of sector-
dependent bare masses can be a compromise. Of course,
for two-dimensionalϕ4 theory, divergences are not the issue,
and it is only near the critical coupling where sector-
dependent masses could be a useful approximation, as
already indicated by some preliminary work [15].
The use of light-front quantization [16] is important for its

simple vacuum and well-defined Fock state expansions as
well as for the separation of relative and external momenta.
We define light-front coordinates [17] as x� ¼ t� z, where
xþ is the light-front time. The light-front energy is then
p−¼E−pz, and the light-front momentum is pþ¼Eþpz.
In what follows, we will drop the superscript from pþ to
simplify the notation. The inner product betweenmomentum
and position is p · x ¼ 1

2
ðp−xþ þ px−Þ, and the mass-shell

condition isp− ¼ m2=p. The light-front Hamiltonian eigen-
value problem is thenP−jψðPÞi ¼ M2

P jψðPÞi, where jψðPÞi
is the eigenstate with massM and light-front momentum P.
The eigenstate is expanded in a set of Fock states, which
converts the formal eigenvalue problem into a system of
equations for the Fock-state wave functions. Numerical
approximations then transform this system into a matrix
eigenvalue problem. Our chosen numerical approximation is
an expansion of the wave functions in terms of symmetric
multivariate polynomials [18].
The content of the remainder of the paper is as follows.

Section II provides a brief introduction to ϕ4 theory and
formulates the system of equations for the Fock-state wave
functions. These equations are modified in Sec. III to
accommodate a sector-dependent bare mass; the results
from their solution are presented and discussed. The work
is summarized briefly in Sec. IV. Details of the numerical
methods are left to an Appendix.
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II. LIGHT-FRONT ϕ4
2 THEORY

The Lagrangian for ϕ4 theory is

L ¼ 1

2
ð∂μϕÞ2 −

1

2
μ2ϕ2 −

λ

4!
ϕ4

¼ 1

2
∂−ϕ∂þϕ −

1

2
ð∂⃗⊥ϕÞ2 −

1

2
μ2ϕ2 −

λ

4!
ϕ4; ð2:1Þ

where ∂� ≡ ∂
∂x� and μ is the bare mass. The conjugate

momentum is π ≡ δL=δð∂þϕÞ ¼ 1
2
∂−ϕ. Therefore, the

Hamiltonian density for translations in light-front time
xþ is

H≡ π∂þϕ − L ¼ 1

2
ð∂⃗⊥ϕÞ2 þ

1

2
μ2ϕ2 þ λ

4!
ϕ4: ð2:2Þ

When restricted to two dimensions, there are no transverse
degrees of freedom, and the Hamiltonian density reduces to

H ¼ 1

2
μ2ϕ2 þ λ

4!
ϕ4: ð2:3Þ

The field ϕ is expanded in terms of creation and
annihilation operators a†ðpÞ and aðpÞ as

ϕðxþ ¼ 0; x−Þ ¼
Z

dpffiffiffiffiffiffiffiffiffi
4πp

p faðpÞe−ipx−=2 þ a†ðpÞeipx−=2g:

ð2:4Þ
The operators obey the commutation relation

½aðpÞ; a†ðp0Þ� ¼ δðp − p0Þ: ð2:5Þ
Substitution of the mode expansion and integration of

the Hamiltonian density with respect to x− yields the light-
front Hamiltonian P− ¼ P−

11 þ P−
22 þ P−

13 þ P−
31, with

P−
11 ¼

Z
dp

μ2

p
a†ðpÞaðpÞ; ð2:6Þ

P−
22 ¼

λ

4

Z
dp1dp2

4π
ffiffiffiffiffiffiffiffiffiffi
p1p2

p
Z

dp0
1dp

0
2ffiffiffiffiffiffiffiffiffiffi

p0
1p

0
2

p
× δðp1 þ p2 − p0

1 − p0
2Þa†ðp1Þa†ðp2Þaðp0

1Þaðp0
2Þ;
ð2:7Þ

P−
13 ¼

λ

6

Z
dp1dp2dp3

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3ðp1 þ p2 þ p3Þ

p
× a†ðp1 þ p2 þ p3Þaðp1Þaðp2Þaðp3Þ; ð2:8Þ

P−
31 ¼

λ

6

Z
dp1dp2dp3

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3ðp1 þ p2 þ p3Þ

p
× a†ðp1Þa†ðp2Þa†ðp3Þaðp1 þ p2 þ p3Þ: ð2:9Þ

The eigenstate of P−, with eigenvalue M2=P, can be
expressed as an expansion

jψðPÞi ¼
X
m

P
m−1
2

Z Ym
i

dyiδ

�
1−

Xm
i

yi

�
ψmðyiÞjyi;P;mi

ð2:10Þ

in terms of Fock states

jyi;P;mi ¼ 1ffiffiffiffiffiffi
m!

p
Ym
i¼1

a†ðyiPÞj0i; ð2:11Þ

where the coefficient ψm is the wave function for the Fock
sector with m constituents. The wave function depends on
the momentum fractions yi ≡ pi=P, which are boost
invariant, unlike the individual momenta pi. The leading
factor of P

m−1
2 allows the normalization of the wave

functions to be independent of P; we require
hψðP0ÞjψðPÞi ¼ δðP − P0Þ, which yields

1 ¼
X
m

Z Ym
i

dyiδ

�
1 −

Xm
i

yi

�
jψmðy1;…; ymÞj2:

ð2:12Þ
The probability of the mth Fock sector is then justR Q

m
i dyiδð1 −

P
m
i yiÞjψmðy1;…; ymÞj2. Because the

Hamiltonian changes particle number by zero or two,
never an odd number, the sum over Fock sectors is either
even or odd, depending on which state is chosen as the
lowest Fock state.1 We will focus on the odd case.
The eigenvalue problem becomes a coupled system of

equations for the wave functions:

�Xm
i

μ2

yi

�
ψmðy1;…; ymÞ þ

λ

4π

mðm − 1Þ
4

ffiffiffiffiffiffiffiffiffi
y1y2

p
Z

dx1dx2ffiffiffiffiffiffiffiffiffi
x1x2

p δðy1 þ y2 − x1 − x2Þψmðx1; x2; y3;…; ymÞ

þ λ

4π

m
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 2Þðmþ 1Þ

p Z
dx1dx2dx3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1x1x2x3

p δðy1 − x1 − x2 − x3Þψmþ2ðx1; x2; x3; y2;…; ymÞ

þ λ

4π

m − 2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm − 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2y3ðy1 þ y2 þ y3Þ

p ψm−2ðy1 þ y2 þ y3; y4;…; ymÞ ¼ M2ψmðy1;…; ymÞ: ð2:13Þ

1This is, of course, a consequence of the fundamental ϕ → −ϕ symmetry of the original Lagrangian.
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This is an infinite system and requires some form of
truncation before a numerical solution can be attempted.
The standard truncation is a Fock-space truncation to some
maximum number of constituents Nmax. However, as
discussed in the Introduction, this causes self-energy
contributions to become sector dependent. For the sector
with m ¼ Nmax, there is no self-energy because no loop
corrections are allowed; any intermediate states would have
more than Nmax constituents. Therefore, the bare mass
in the top sector is reasonably equal to the physical mass
M of the lowest state. As we step down from the top sector,
the complexity of the self-energy contributions
steadily increases, and the bare mass can be adjusted to
compensate.

III. SECTOR-DEPENDENT MASS

To implement a sector-dependent bare mass, we replace
μ in the first term of Eq. (2.13) by μm and compute the
μm for a given eigenmass M by steadily increasing Nmax.
For Nmax ¼ 1, we have immediately that μ1 ¼ M and
jψðPÞi ¼ a†ðPÞj0i. For Nmax ¼ 3, we set μ3 ¼ M and
solve the following two equations for μ1 and ψ3=ψ1:

μ21ψ1þ
λ

4π

1ffiffiffi
6

p
Z

dx1dx2dx3ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p δð1−x1−x2−x3Þψ3ðx1;x2;x3Þ

¼M2ψ1; ð3:1Þ
�X3

i

M2

yi

�
ψ3ðy1; y2; y3Þ

þ λ

4π

3

2
ffiffiffiffiffiffiffiffiffi
y1y2

p
Z

dx1dx2ffiffiffiffiffiffiffiffiffi
x1x2

p δðy1þ y2− x1− x2Þψ3ðx1;x2; y3Þ

þ λ

4π

1ffiffiffi
6

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2y3

p ψ1 ¼M2ψ3ðy1; y2;y3Þ: ð3:2Þ

For Nmax ¼ 5, we set μ3 to the value of μ1 obtained for
Nmax ¼ 3, set μ5 ¼ M, and solve a system of three
equations for μ1, ψ3=ψ1, and ψ5=ψ1. We continue in this
manner until μ1 has converged with respect to the Fock-
space truncation fixed by Nmax.
As described in the Appendix, the equations are solved

numerically, with the wave functions expanded in a
polynomial basis [18]. The principal result of the calcu-
lation is a set of eigenvalues and coupling strengths for
different Fock-space truncations, listed in Tables I–IV and
plotted in Fig. 1. These values are extrapolated in the
polynomial basis size for each Fock sector, and the Fock-
space truncation is varied from Nmax ¼ 3 to 9. With respect
to the Fock-space truncations, the results converge, in an
oscillatory fashion, to within the numerical error at a given
truncation.
These results are consistent with those from the standard

parametrization, with no sector dependence in the bare
mass, as reported in Ref. [1]. This can be seen in Fig. 2,

where the previous results are added to the plot from Fig. 1.
The numerical values are listed in Table V. The critical
coupling, as indicated by the point where M2 reaches zero,
is again estimated to be 2.1. The sector-dependent results

FIG. 1. Lowest mass eigenvalue for odd numbers of constitu-
ents for different Fock-space truncations to three (circles), five
(triangles), seven (diamonds), and nine (hexagons) constituents.
The values of M2=μ2 and g≡ λ=ð4πμ2Þ are obtained as extrap-
olations in the orders of basis polynomials, and the error bars
estimate the range of fits for the extrapolations. For weak
coupling, the results for different truncations are essentially
the same; for stronger coupling, approaching the critical value,
the results indicate convergence, to within errors. The conver-
gence is oscillatory, with the nine-constituent results between the
five- and seven-constituent results.

TABLE I. Mass eigenvalues M and the associated dimension-
less couplings g for a chosen set of ~M values and for a Fock-space
truncation to a maximum of Nmax ¼ 3 constituents. As described
in the Appendix, calculations with sector-dependent constituent
masses are done at fixed ~M ≡M

ffiffiffiffiffiffiffiffiffiffi
4π=λ

p
with the one-

body constituent mass μ1 ¼ ~μ1
ffiffiffiffiffiffiffiffiffiffi
λ=4π

p
computed in a recursive

process. The error estimates are made based on extrapolations in
the size of the polynomial basis sets used in the numerical
calculations.

~M2 ~μ21 g M2=μ2

10.00 10.0375 0.0996 0.9963
5.00 5.0689 0.1973 0.9864
2.50 2.6183 0.3819 0.9548
1.25 1.4349� 0.0001 0.6969 0.8711
1.00 1.2085� 0.0001 0.8275� 0.0001 0.8275� 0.0001
0.90 1.1198� 0.0001 0.8930� 0.0001 0.8037� 0.0001
0.80 1.0323� 0.0001 0.9687� 0.0001 0.7749� 0.0001
0.70 0.9465� 0.0001 1.0566� 0.0001 0.7396� 0.0001
0.60 0.8624� 0.0001 1.1595� 0.0002 0.6957� 0.0001
0.50 0.7807� 0.0002 1.2808� 0.0003 0.6404� 0.0001
0.40 0.7019� 0.0002 1.4247� 0.0004 0.5699� 0.0002
0.30 0.6268� 0.0003 1.5955� 0.0006 0.4786� 0.0002
0.20 0.5567� 0.0004 1.7965� 0.0011 0.3593� 0.0002
0.10 0.4942� 0.0006 2.0236� 0.0025 0.2024� 0.0003
0.05 0.4687� 0.0010 2.1338� 0.0046 0.1067� 0.0002
0.02 0.4595� 0.0016 2.1762� 0.0076 0.0435� 0.0002
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do converge more slowly; they require Nmax ¼ 9 compared
to the Nmax ¼ 5 required for the standard parametrization.
This is to be expected, even desired, because we expect that
higher Fock states should become more important as the
critical coupling is approached.
To understand what might be happening in the structure

of the eigenstate, we plot the relative Fock-sector
probabilities in Fig. 3. These are computed asR Q

m
i dyiδð1 −

P
m
i yiÞjψmðy1;…; ymÞj2=jψ1j2, for both

the sector-dependent and standard parametrizations. In
the former case, Nmax ¼ 9 and in the latter, Nmax ¼ 7.
For the sector-dependent calculations, results do not extend
beyond the critical coupling, because negative M2 is ill
defined for sector-dependent renormalization; the bare

mass in the highest Fock sector would then be imaginary.
The relative probabilities are essentially the same in the
three-body Fock sector, indicating full convergence with
respect to the Fock-space truncation. In Fock sectors with
five and seven constituents, the relative probability for
the sector-dependent case rises above the probability in
the standard case as the critical coupling is approached. The
greater probability is expected; however, the full expect-
ation was that these probabilities would have a much more
striking increase. In fact, as relative probabilities, they will

TABLE II. Same as Table I but for Nmax ¼ 5.

~M2 ~μ21 g M2=μ2

10.00 10.0374 0.0996 0.9963
5.00 5.0692� 0.0001 0.1973 0.9863
2.50 2.6214� 0.0002 0.3815 0.9537� 0.0001
1.25 1.4466� 0.0009 0.6913� 0.0004 0.8641� 0.0006
1.00 1.2248� 0.0013 0.8165� 0.0009 0.8165� 0.0009
0.90 1.1384� 0.0016 0.8784� 0.0012 0.7906� 0.0011
0.80 1.0539� 0.0019 0.9488� 0.0017 0.7591� 0.0013
0.70 0.9716� 0.0022 1.0293� 0.0023 0.7205� 0.0016
0.60 0.8919� 0.0027 1.1212� 0.0034 0.6727� 0.0020
0.50 0.8155� 0.0033 1.2262� 0.0049 0.6131� 0.0024
0.40 0.7433� 0.0040 1.3453� 0.0072 0.5381� 0.0029
0.30 0.6765� 0.0050 1.4782� 0.0109 0.4435� 0.0033
0.20 0.6166� 0.0062 1.6218� 0.0164 0.3244� 0.0033
0.10 0.5659� 0.0078 1.7671� 0.0242 0.1767� 0.0024
0.05 0.5438� 0.0085 1.8390� 0.0288 0.0920� 0.0014
0.02 0.5300� 0.0088 1.8868� 0.0314 0.0377� 0.0006

TABLE III. Same as Table I but for Nmax ¼ 7.

~M2 ~μ21 g M2=μ2

10.00 10.0374 0.0996 0.9963
5.00 5.0693� 0.0001 0.1973 0.9863
2.50 2.6216� 0.0002 0.3815 0.9536� 0.0001
1.25 1.4461� 0.0009 0.6915� 0.0004 0.8644� 0.0005
1.00 1.2236� 0.0012 0.8173� 0.0008 0.8173� 0.0008
0.90 1.1177� 0.0557 0.8947� 0.0446 0.8053� 0.0402
0.80 1.0517� 0.0011 0.9508� 0.0010 0.7607� 0.0008
0.70 0.9682� 0.0013 1.0329� 0.0014 0.7230� 0.0010
0.60 0.8868� 0.0015 1.1277� 0.0019 0.6766� 0.0012
0.50 0.8077� 0.0017 1.2381� 0.0027 0.6191� 0.0013
0.40 0.7311� 0.0020 1.3677� 0.0037 0.5471� 0.0015
0.30 0.6573� 0.0023 1.5215� 0.0053 0.4564� 0.0016
0.20 0.5857� 0.0027 1.7073� 0.0078 0.3415� 0.0016
0.10 0.5154� 0.0032 1.9403� 0.0121 0.1940� 0.0012
0.05 0.4800� 0.0037 2.0834� 0.0158 0.1042� 0.0008
0.02 0.4588� 0.0040 2.1796� 0.0191 0.0436� 0.0004

TABLE IV. Same as Table I but for Nmax ¼ 9.

~M2 ~μ21 g M2=μ2

10.00 10.0369� 0.0003 0.0996 0.9963
5.00 5.0688� 0.0002 0.1973 0.9864
2.50 2.6177� 0.0192 0.3820� 0.0028 0.9550� 0.0070
1.25 1.4450� 0.0021 0.6920� 0.0010 0.8650� 0.0013
1.00 1.2221� 0.0030 0.8183� 0.0020 0.8183� 0.0020
0.90 1.1351� 0.0034 0.8810� 0.0027 0.7929� 0.0024
0.80 1.0497� 0.0040 0.9527� 0.0037 0.7621� 0.0029
0.70 0.9661� 0.0048 1.0351� 0.0051 0.7246� 0.0036
0.60 0.8847� 0.0057 1.1303� 0.0073 0.6782� 0.0044
0.50 0.8053� 0.0072 1.2418� 0.0111 0.6209� 0.0056
0.40 0.7307� 0.0084 1.3686� 0.0157 0.5474� 0.0064
0.30 0.6683� 0.0073 1.4963� 0.0164 0.4489� 0.0049
0.20 0.5858� 0.0166 1.7070� 0.0482 0.3414� 0.0097
0.10 0.5248� 0.0207 1.9054� 0.0751 0.1905� 0.0075
0.05 0.4970� 0.0236 2.0122� 0.0953 0.1006� 0.0048
0.02 0.4815� 0.0255 2.0767� 0.1098 0.0415� 0.0022

FIG. 2. Same as Fig. 1, but with the standard parametrization
results (filled circles, triangles, and diamonds) of Ref. [1], which
include up to seven constituents, and the light-front coupled
cluster results (filled hexagons) of Ref. [15] added for compari-
son. Without sector-dependent masses, the Fock-state expansion
converges more quickly, and the five- and seven-constituent
results are nearly identical, between themselves and with the
nine-constituent sector-dependent results. Thus, the converged
results are consistent between the two parametrizations, and the
sector-dependent parametrization does not change the estimate of
the critical coupling.
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tend to infinity as the one-body probability jψ1j2 goes to
zero, and obviously this is not happening, and the original
hypothesis, that sector-dependent bare masses would
resolve the paradox, must be incorrect.
The finite one-body probability also prevents any

improvement in the calculation of the difference in mass
renormalization between equal-time and light-front quan-
tization, as attempted in Ref. [1]. Therefore, no new
calculation is attempted here.

IV. SUMMARY

Contrary to expectations, we have found that a sector-
dependent bare mass does not provide any significant
improvement in the solution of ϕ4

2 theory. In particular,
the incorrect behavior of a finite one-body contribution at
critical coupling remains, and the vacuum expectation value
of ϕ2 is not finite there. The sector dependence does allow
higher Fock states to have a larger contribution, but the
contribution to the lowest massive state is not large in an
absolute sense, and the one-body contribution remains

TABLE V. Mass eigenvalues M as computed for various dimensionless couplings g without sector-dependent
constituent masses [1]. The value of Nmax sets the Fock-space truncation at a maximum of Nmax constituents. The
errors are estimated based on extrapolations in the size of the polynomial basis used for the numerical calculations.
The last column includes results from a lowest-order LFCC calculation [15].

M2=μ2

g Nmax ¼ 3 Nmax ¼ 5 Nmax ¼ 7 LFCC

0.2 0.9862 0.9856� 0.0001 0.9858 0.9861
0.4 0.9528 0.9478� 0.0007 0.9489� 0.0001 0.9502
0.6 0.9069 0.8914� 0.0012 0.8934� 0.0002 0.8963
0.8 0.8526� 0.0001 0.8168� 0.0030 0.8214� 0.0006 0.8252
1.0 0.7925� 0.0001 0.7311� 0.0043 0.7343� 0.0010 0.7347
1.2 0.7280� 0.0001 0.6281� 0.0075 0.6328� 0.0018 0.6183
1.4 0.6601� 0.0002 0.5060� 0.0155 0.5181� 0.0030 0.4503
1.6 0.5897� 0.0002 0.3826� 0.0180 0.3906� 0.0045
1.8 0.5172� 0.0003 0.2407� 0.0258 0.2506� 0.0065
2.0 0.4431� 0.0003 0.1081� 0.0275 0.0986� 0.0088
2.2 0.3675� 0.0004 −0.0580� 0.0386 −0.0653� 0.0121
2.4 0.2908� 0.0005 −0.2205� 0.0423 −0.2409� 0.0158
2.6 0.2131� 0.0005 −0.3920� 0.0498 −0.4287� 0.0205
2.8 0.1346� 0.0006 −0.5776� 0.0595 −0.6284� 0.0261
3.0 0.0553� 0.0007 −0.7676� 0.0700 −0.8408� 0.0328

FIG. 3. Relative Fock-sector probabilities for three, five, seven,
and nine constituents with sector-dependent masses when the
truncation is Nmax ¼ 9 (filled circles, triangles, diamonds, and
hexagons, respectively) and for three, five, and seven constituents
without sector dependent masses when the truncation isNmax ¼ 7
(open symbols).

FIG. 4. Plot of the scaled bare mass ~μ21 ¼ 4πμ21=λ versus the
Fock-space truncation at Nmax constituents, for three values of
~M2: 1.0 (circles), 0.5 (triangles), and 0.05 (diamonds). The error
bars represent uncertainties in extrapolations.
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dominant, even at the critical coupling. Convergence of the
bare mass in the lowest sectors, as the Fock-space trunca-
tion is relaxed, is quite rapid, as can be seen in Fig. 4.
There is, however, a hint as to what might be needed in

earlier work [15] that explored the light-front coupled-
cluster (LFCC) method [19]. In this method, all of the
higher Fock states are kept. To keep the calculation finite in
size, the relationship between Fock wave functions is
truncated, so that wave functions of the higher Fock states
are related to those of the lower states in a simple way. The
wave functions are then determined by a nonlinear equation
that sums over contributions from all Fock states. In this
calculation, a relative probability shows a rapid increase, in
Fig. 5 of Ref. [15], although at an unexpected value of the
coupling.2 The hint is that coherent effects across all of
Fock space are important, something that ordinary Fock-
space truncation would not be able to reproduce. That this
would happen at the phase transition to broken symmetry is
actually not surprising.
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APPENDIX: NUMERICAL METHODS

The coupled system (2.13), modified to use sector-
dependent masses, is solved numerically, with each wave
function expanded in a basis of symmetric multivariate

polynomials [18] PðmÞ
ki ðy1;…; ymÞ. Here k is the order and

m is the number of momentum fractions; the index i
differentiates between linearly independent polynomials of
the same order. The expansion for a wave function is

ψmðy1;…; ymÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2 � � � ym

p X
ni

cðmÞ
ni PðmÞ

ni ðy1;…; ymÞ:

ðA1Þ

Projection of the system of equations onto the basis
functions then yields a system of matrix equations

~μ2m
X
n0i0

½TðmÞ
ni;n0i0 þ Vðm;mÞ

ni;n0i0 �cðmÞ
n0i0 þ

X
n0i0

Vðm;mþ2Þ
ni;n0i0 cðmþ2Þ

n0i0

þ
X
n0i0

Vðm;m−2Þ
ni;n0i0 cðm−2Þ

n0i0 ¼ ~M2
X
n0i0

BðmÞ
ni;n0i0c

ðmÞ
n0i0 ; ðA2Þ

with ~μm ≡ μm
ffiffiffiffiffiffiffiffiffiffi
4π=λ

p
, ~M≡M

ffiffiffiffiffiffiffiffiffiffi
4π=λ

p
, and matrices

defined as given in the Appendix of Ref. [1].

The matrices BðmÞ come from the overlap between basis
functions in each Fock sector. If the basis was orthonormal,
BðmÞ would be the identity matrix; however, due to round-
off errors that would be associated with the construction
and use of orthonormal combinations, the basis functions
are not chosen to be orthonormal.3 Instead, we implicitly
orthonormalize the basis by using a singular-value decom-
position BðmÞ ¼ UðmÞDðmÞUðmÞT . The columns of the
matrix UðmÞ are the eigenvectors of BðmÞ. The matrix
DðmÞ is a diagonal matrix of the eigenvalues of BðmÞ. We
then define new vectors of coefficients c⃗ ðmÞ0 ¼ D1=2UTc⃗ ðmÞ

and new matrices, such as TðmÞ0 ¼ D−1=2UTTðmÞUD−1=2,
with the V matrices defined analogously. The equations
now become

~μ2m
X
n0i0

½TðmÞ0
ni;n0i0 þ Vðm;mÞ0

ni;n0i0 �cðmÞ0
n0i0 þ

X
n0i0

Vðm;mþ2Þ0
ni;n0i0 cðmþ2Þ0

n0i0

þ
X
n0i0

Vðm;m−2Þ0
ni;n0i0 cðm−2Þ0

n0i0 ¼ ~M2cðmÞ0
ni : ðA3Þ

In exact arithmetic, this transformation is well defined.
The overlap matrix BðmÞ is a symmetric positive-definite
matrix, and the eigenvalues must be positive, making D1=2

real. In practice, though, round-off error can produce small
negative eigenvalues. Also, at high orders, some of the
original polynomials are nearly linearly dependent, which
is signaled by small positive eigenvalues. In some sense,
the basis is too large and not fully independent. A robust
linear independence is restored by reducing the basis size,
keeping in UðmÞ only those columns associated with
eigenvalues above some positive threshold [20]. The trans-
formation is then implicitly a projection onto a smaller
basis. For the results presented here, the threshold was
10−15, because the need was driven by round-off errors in
double-precision arithmetic.
In order to solve for ~μ1, we define a set of matrices GðmÞ

recursively, from m ¼ Nmax down to 3, as

GðmÞ ¼ ½ ~μ2mTðmÞ0 þ Vðm;mÞ0 − ~M2IðmÞ

− Vðm;mþ2Þ0Gðmþ2ÞVðmþ2;mÞ0�−1; ðA4Þ

with the initial form given by

GðNmaxÞ ¼ ½ ~M2TðNmaxÞ0 þ VðNmax;NmaxÞ0 − ~M2IðNmaxÞ�−1 ðA5Þ

and IðmÞ is the identity matrix in the mth sector. The bare
mass in the lowest sector is then simply

2The unexpected value of g≃ 1.5 may be due to the simplicity
of the particular LFCC approximation; a higher-order LFCC
approximation should be investigated.

3For low orders, orthonormal combinations become practical
because they can be constructed and used analytically, avoiding
the round-off errors associated with a numerical process.
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~μ21 ¼
1

Tð1Þ ½ ~M2 − Vð1;1Þ − Vð1;3Þ0Gð3ÞVð3;1Þ0�; ðA6Þ

where Tð1Þ is a 1 × 1 matrix and therefore just a number.
The coefficients for the wave-function expansions are
constructed recursively from m ¼ 3 up to Nmax by

c⃗ðmÞ0=cð1Þ ¼ GðmÞVðm;m−2Þ0c⃗ðm−2Þ0=cð1Þ; ðA7Þ

with the value of cð1Þ set last by the normalization (2.12),
which becomes

1 ¼
X
m¼1

c⃗ðmÞ†BðmÞc⃗ðmÞ ¼ jcð1Þj2 þ
X
m¼3

jc⃗ðmÞ0j2: ðA8Þ

Thevalues of intermediate ~μm are set by values of ~μ1 obtained
in calculations with smaller Nmax, again recursively.
As Nmax is increased, the ~μm converge to the dimension-

less bare mass ~μ≡ μ
ffiffiffiffiffiffiffiffiffiffi
4π=λ

p
obtained in the standard

parametrization, where the bare mass is not sector depen-
dent. This is just the reciprocal of the dimensionless
coupling g≡ λ=ð4πμ2Þ used in Ref. [1]. This allows us
to estimate g as 1= ~μ21. The ratio M2=μ2 is then obtained
as g ~M2 ¼ ~M2=~μ21.
The convergence of μ1 is illustrated in Fig. 4 for

representative values of the mass scale ~M2. At
Nmax ¼ 1, the points correspond to ~μ1 ¼ ~M; most of the
change as self-energy contributions become active occurs
immediately at Nmax ¼ 3.
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