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We study the leptonic decay of charged pions in a compact star environment. Considering leptons as a
degeneratedFermi system, pions are tightly constrained to decay into these particles because their Fermi levels
are occupied. Thus, pion decay is only possible through thermal fluctuations. Under these circumstances, pion
lifetime is larger and hence can be considered to reach a metastable state.We explore restrictions under which
such a metastability is possible. We also study conditions under which pions and leptons already in chemical
equilibrium can reach simultaneously the thermal equilibrium, and obtain the neutrino emissivity from
metastable pions. Scenarios that favor this metastable state are protoneutron stars.
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I. INTRODUCTION

The study of pions in a condensed state has widely been
explored in different contexts and frameworks [1–17]. In
particular, compact stars may provide a natural scenario for
such a state of matter. The possibility of generating pions in
a condensed state in compact stars, however, is still matter
of discussion. For the formation of a charged-pion con-
densate in a chemically equilibrated system, it is necessary
that the electron chemical potential reaches values up to the
pion mass. Nevertheless, at high enough baryon density, the
formation of hyperons is also possible and this process
tends to reduce the electron chemical potential [18–21]. On
the other hand, at the inner core, the formation of kaon
condensate is favored in comparison with pion condensate
due to a reduction of kaon mass [22–28]. Moreover, it is
expected that a pion-nucleon s-wave repulsive interaction
increases the pion mass although the p-wave attractive
potential produces the opposite effect [21,29]. All in all,
there are many dense nuclear effects affecting the pion mass
and leptonic decay constant and thus the range of values for
these observables is broadened [30,31]. Such considera-
tions make it unclear to distinguish whether the electron
chemical potential may reach the pion mass, but definitely
it can reach values close to the condensation point.
A vast portion of the existing literature regarding

compact stars does not incorporate pions in the equation
of state (EOS) because these studies are mainly based on
mean field models. In the absence of a pion condensate,
dynamical pions do not play a significant role in such
models because they immediately decay and mostly behave
as an interaction mediating particle [19].

If a pion production mechanism exists, the pion density
number is negligible at low temperature by exponential
suppression. However, this is not the case in protoneutron
stars, where temperature reaches values higher than 1 MeV
(∼1010 K). Improvements on the study of pions in hot and
dense media in heavy ion collision experiments at moderate
energies have been conducted, showing an important
increase of the π−=πþ ratio at high baryon density
[32–34]. Thus, an increase of the electron chemical potential
is expected, particularly as density increases. So, at least in
protoneutron stars, an important asymmetric charged-pion
production is expected. However, due to the short pion decay
time, it is reasonable to ignore these pions in the EOS and
only consider them as a sudden source for neutrinos in the
cooling process.
The 99.99% of the charged pions decay into muons and

muonic neutrinos, and rarely into electrons and electronic
neutrinos as a subleading channel. Since muons and
electrons inside a compact star are degenerated, almost
all states are occupied up to Fermi levels and the only way
for a negative pion to decay into leptons is through thermal
fluctuations. In other words, there is not enough phase
space available for the byproduct of a charged-pion decay,
which makes it an extremely slow process. This observa-
tion implies that pions are in a metastable state [35].
Moreover, lepton decay rate may be induced through
thermal fluctuations by considering scattering with neu-
trinos from the thermal bath, generating as a result an
increase of the number of π− in the thermal bath. When
both the pionic and leptonic decay rates become of the
same order, both types of particles reach thermal equilib-
rium simultaneously [36–38].
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In this article we explore the issue of charged-pion
metastability and conditions under which it would be
possible. We also discuss some phenomenological conse-
quences of such a state. For this purpose, this article is
organized as follows: In Sec. II we present the initial
considerations for the system we are dealing with. In
Sec. III we calculate the pion decay rate in dense lepton
medium and explore the case when there is chemical
equilibrium between pions and leptons, and nonchemical
equilibrium with pions in rest frame. In Sec. IV we show
the conditions for metastability and we define the critical
parameters to reach such a state. We calculate the lepton
decay rate in Sec. V and the conditions in parameter space
where pion-lepton thermal equilibrium can be reached
simultaneously. The neutrino emissivity through pion
decay is calculated in Sec. VI and compared with the
URCA process emissivity. Finally we present our con-
clusions and future perspectives in Sec. VII.

II. INITIAL CONSIDERATIONS

Metastability of negative charged pions in a degenerate-
muon and -electron environment is due to Pauli blocking,
which suppresses the meson decay into leptons. This
condition is achieved by most of the existing neutron star
models. In this section we summarize the general consid-
erations adopted, the models to be used, and the notation
employed throughout the article.

(i) Charged-pion number is conserved in normal phase,
namely, μπ ≡ μπ− ¼ −μπþ , and μπ < mπ .

(ii) Charged leptons are degenerated, which means that
we consider all lepton chemical potentials bigger
than their respective masses, μl > ml, where l
stands for muon (μ) or electron (e). Masses consid-
ered here are mμ ¼ 105.6 MeV, me ¼ 0.5 MeV,
and neutrinos (ν) are considered massless.

(iii) The nuclear medium modifies hadronic parameters.
For simplicity, and because we attempt to describe
weak interaction effects only, we do not specify
particular values formπ and fπ since we do not know
a priori the influence of dense nuclear matter on these
parameters. However, we always consider mπ > ml.

Weak interactions between pions and leptons are
described by the effective Fermi model

Lπl ¼ fπGF½ψ̄νlDπþð1 − γ5Þψl þ ψ̄lDπ−ð1 − γ5Þψνl �;
ð1Þ

where the derivative

Dαπ
∓ ¼ ð∂α ∓ iμπδα0Þπ∓ ð2Þ

includes the charged-pion chemical potential. Thevalue used
for the Fermi constant is GF ¼ 1.17 × 10−5 GeV−2.
The free Lagrangians for pions, leptons, and neutrinos

are, respectively,

Lπ ¼ Dαπ
þDαπ− −m2

ππ
þπ−; ð3Þ

Ll ¼ ψ̄l½i∂ þ μlγ0 −ml�ψl; ð4Þ

Lνl ¼ ψ̄νl ½i∂ þ μνlγ0�ψνl : ð5Þ

We define the particle four-momentum as p for pions, q
for leptons and k for neutrinos. The energy of pions,
charged leptons and neutrinos is defined as

Eπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

π

q
; El¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

l

q
; Eνl ¼ jkj; ð6Þ

respectively. Also, we define the corresponding particle
number density distributions as

nπ− ¼ nBðEπ − μπÞ; ð7Þ

nl ¼ nFðEl − μlÞ; ð8Þ

nν̄l ¼ nFðEνl þ μνlÞ; ð9Þ

where nBðxÞ ¼ ðex=T − 1Þ−1 and nFðxÞ ¼ ðex=T þ 1Þ−1
represent the Bose-Einstein and Fermi-Dirac distributions,
respectively.
Our treatment includes thermal effects, which we con-

sider within the Matsubara formalism. For this purpose, we
change the four-momenta zeroth components l0 to the
respective Matsubara frequencies at a given temperature T
according to p0 ¼ i2npπT for pions, q0 ¼ ið2nq þ 1ÞπT
for leptons, and k0 ¼ ið2nk þ 1ÞπT for neutrinos, for
np; nq; nk ∈ Z. Correspondingly, the momentum integrals
change to

R
dl0 ¼ i2πT

P
n for bosons and fermions.

As wementioned, nuclear interactions affect considerably
pion dynamics. In particular, it is not well understood
whether the repulsive s wave or the attractive p wave
dominates [32], so we consider the effective pion mass
undetermined. However, it can be observed in hadronic
models that medium effects are incorporated through the
pion self-energy and the field renormalization strength
[31,39]. It is always possible to expand these quantities at
lowmomentum and the result is a freelike particle propagator
with modified mass, and pion velocity [39]. Here, for
simplicity, we consider only the pion mass modification.
In the same way, the pion decay constant can be obtained

expanding at low momentum of the axial current using
PCAC [31,39] or by adopting the Brown-Rho scaling [30].
We adopt the latter scaling for fπ as well as the nucleon
effective masses in this work.

III. IN-MEDIUM PION DECAY RATE

In order to find the conditions for metastability, let us
first examine in detail the in-medium pion decay rate,
which we derive using the optical theorem. The same
results are obtained from the Fermi golden rule.
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The charged-pion propagator must be understood as the
creation of a pion with a given charge an the annihilation of
a pion with the opposite charge. Since there is isospin
asymmetry, the propagation is different for πþ and π−. For
our purposes, we need to calculate the retarded charged-
pion propagator in momentum space,1 including self-
energy corrections generated through weak coupling with
leptons, namely,

Dret
π∓ðpÞ ¼

i
ðp0 � μπÞ2 − E2

π − Πð�pÞ
����
p0→p0þiϵ

; ð10Þ

where ΠðpÞ is the self-energy.
Neglecting the real part of the self-energy and expanding

around the physical real pole p0 ¼ Eπ − μπ, the negative-
pion propagator can be written in the nonrelativistic
Breit-Wigner form

Dret
π−ðpÞ ≈

i
ðp0 þ μπÞ2 − E2

π þ iEπΓπ−
; ð11Þ

where the momentum dependent decay rate is defined as

Γπ− ¼ −
1

Eπ
ImΠðEπ − μπ þ iϵ; pÞ: ð12Þ

At zero temperature, this quantity is just the decay width of
the pion. Nevertheless, at finite temperature, the meaning of
this quantity should be interpreted differently (see below).
We proceed to calculate the leptonic contribution to the

pion self-energy. This process is shown diagrammatically
in Fig. 1 and can be written as

−iΠðpÞ ¼ tr
Z

d4k
ð2πÞ4 VðpÞSlðqÞVðpÞSνlðkÞ; ð13Þ

where Sl and Sνl are the time-ordered lepton and neutrino
propagators, q ¼ pþ k as momentum conservation
requires, and the vertex obtained from the interaction term
in Eq. (1) is defined as

VðpÞ ¼ GFfπðpþ μπγ0Þð1 − γ5Þ: ð14Þ

Performing the traces over Dirac indices and summing over
the Matsubara frequencies using the techniques described
in [40], we set the retarded condition p0 → p0 þ iϵ and
take the imaginary part of the self-energy. The general form
for Γπ− is

Γπ− ¼
Z

d3k
ð2πÞ3

X
s;t¼�1

−2πG2
Ff

2
π

sEltEνlEπ
fm2

π½sEltEνl þ q · k�

−2½sElEπ − p · q�½tEνlEπ þ p · k�g
× ½1 − nFðsEl − μlÞ − nFðtEνl þ μνlÞ�
× δððEπ − μπÞ − ðsEl − μlÞ − ðtEνl þ μνlÞÞ: ð15Þ

A similar argument shows that

Γπþðμπ; μl; μνlÞ ¼ Γπ−ð−μπ;−μl;−μνlÞ: ð16Þ

A. Pion decay rate at chemical equilibrium

We are interested in finding a configuration where pions
and leptons are in chemical equilibrium, which is expressed
by the relation among chemical potentials

μπ ¼ μl − μνl : ð17Þ
Assuming the above relation to be valid, we can solve
exactly Eq. (15). We proceed in this form, but in Sec. V we
explain the necessary conditions for chemical equilibrium.
Summing up s and t and integrating in the neutrino
momentum solid angle, considering mπ > ml we obtain

Γπ− ¼ Γ̄πl
mπ

Eπ

1

2aljpj
Z

alðEπþjpjÞ

alðEπ−jpjÞ
dEνl ½1 − nl − nν̄l � ð18Þ

where El ¼ Eπ − Eνl by energy conservation. The con-
stant al is defined as

al ≡m2
π −m2

l

2m2
π

; ð19Þ

while

Γ̄πl ¼ 1

π
f2πG2

Fmπm2
la

2
l ð20Þ

is the well-known pion decay width in vacuum for
π− → lþ ν̄l.
Equation (18) shows explicitly the particle statistics

averaged in the allowed range of energy for the emergent
neutrinos, as well as the on-shell energy conservation. It is

FIG. 1. Feynman diagram representing the pion self-energy
from weak interactions in a thermal bath.

1A decay rate cannot be defined in the remote past; that is the
reason why the retarded propagator is used. Usually there is no
difference at all in vacuum, but at finite temperature and density,
the imaginary part of the retarded and the time-ordered self-
energy produce different results.
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usually interpreted as the probability for inserting a lepton
and an antineutrino into the system, minus the probability
of the system to produce a lepton and an antineutrino:
ð1 − nlÞð1 − nν̄lÞ − nlnν̄l ¼ 1 − nl − nν̄l . In other words,
the direct decay rate minus the recombination process
π− ↔ lþ ν̄l. So, this rate can be described in terms of the
direct rate Γd

π− ¼ R ð1 − nlÞð1 − nν̄lÞ and the inverse rate
Γi
π− ¼ R

nlnν̄l as Γπ− ¼ Γd
π− − Γi

π− .
2 These rates are related

to each other through

Γd
π−

Γi
π−

¼ eðEπ−μπÞ=T; ð21Þ

a result that can beverified fromEq. (18). This is an extension
of the same result obtained in [36,40], including now
chemical potential. From Eq. (21) it can also be obtained

Γd
π− ¼ eβðEπ−μπÞnπ−Γπ− ; ð22Þ

Γi
π− ¼ nπ−Γπ− : ð23Þ

Although this microscopic interpretation can be easily
understood (unlike the case of a fermion decaying into a
boson and fermion, as we shortly see), it is better to adopt
the macroscopic interpretation: Γπ− is the rate at which the
slightly out-of-equilibrium pion system can reach thermal
equilibrium [36,40],

fðtÞ ¼ nπ− þ cπe−tΓπ− ; ð24Þ

where fðtÞ is the nonequilibrium pion distribution function
and cπ some energy dependent function. From now onward
we refer to Γπ− as the pion equilibrium deviation decay
rate (EDDR).
Integrating Eq. (18) with respect to neutrino momentum,

we get

Γπ− ¼ Γ̄πl
mπ

Eπ

�
1þ T

2aljpj
ln

�
1þ e−ðE

þ
l −μlÞ=T

1þ e−ðE
−
l−μlÞ=T

�

þ T
2aljpj

ln

�
1þ e−ðE

þ
νl
þμνl Þ=T

1þ e−ðE
−
νl
þμνl Þ=T

��
; ð25Þ

where the energy terms are defined as

E�
l ¼ ð1 − alÞEπ � aljpj; ð26Þ

E�
νl ¼ alðEπ � jpjÞ; ð27Þ

B. Pion EDDR in the rest frame

The EDDR in the rest frame can be obtained easily even
considering the system out of chemical equilibrium. Let us
define a shifted pion mass as

~mπ ≡mπ − μπ þ μl − μνl : ð28Þ

From Eq. (15), setting p ¼ 0 and consideringml ≤ ~mπ , the
pion EDDR is

Γπ− ¼ Γ̄πl
~a2l
a2l

½1 − nFðMl − μlÞ − nFðMνl þ μνlÞ�; ð29Þ

where the mass terms

Ml ≡ jð1 − ~alÞ ~mπj; ð30Þ

Mνl ≡ j ~al ~mπj; ð31Þ

are the rest energy of the terms in Eqs. (26) and (27),
respectively, but with the pion mass shifted with the
chemical asymmetry term, and with the shifted constant

~al ≡ ~m2
π −m2

l

2 ~m2
π

: ð32Þ

We observe once again in Eq. (29) the microscopic inter-
pretation in terms of availability of phase space to allow the
resulting leptons to be created, ð1 − nlÞð1 − nν̄lÞ − nlnν̄l ¼
1 − nl − nν̄l .
The condition needed to obtain Eq. (29) in this out-of-

equilibrium system can be expressed in terms of the
neutrino chemical potential. The condition ml ≤ ~mπ

implies that μνl ≤ μcνl , where

μcνl ≡ ðmπ − μπÞ þ ðμl −mlÞ: ð33Þ

This critical quantity is positive if we consider the con-
ditions imposed in Sec. II: that charged pions are in normal
phase (μπ < mπ) and charged leptons are degenerated
(μl > ml). The condition in Eq. (33) is valid also for
negative values of the neutrino chemical potential, where
the thermal bath contains more antineutrinos than
neutrinos.

C. High neutrino density

It is interesting to see what happens if neutrino chemical
potential increases beyond μcνl .

(i) If 0 ≤ ~mπ ≤ ml, or equivalently 0 ≤ μνl − μcνl ≤ ml,
the annihilation of pions induced by scattering with
neutrinos from the thermal bath is favored:
π− þ νl ↔ l. The EDDR in this case is

Γπ− ¼ Γ̄πl
~a2l
a2l

½nFðMνl −μνlÞ−nFðMl−μlÞ�: ð34Þ

Since nνl − nl ¼ nνlð1 − nlÞ − nlð1 − nνlÞ, the
previous result can be interpreted as the probability

2Here we adopt the notation of Ref. [36]. However, the
notation where Γ> ¼ Γd and Γ< ¼ Γi is more standard [40].
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of finding a neutrino in the thermal bath from which
the pion will scatter off, minus the inverse process.

(ii) If−ml≤ ~mπ≤0, or equivalentlyml≤μνl−μ
c
νl≤2ml,

it is more favorable that pions scatter off from
antileptons generating neutrinos: π− þ l̄ ↔ ν. From
energy conservation, the EDDR is

Γπ− ¼ Γ̄πl
~a2l
a2l

½nFðMνl −μνlÞ−nFðMlþμlÞ�: ð35Þ

Notice that nl̄ − nνl ¼ nl̄ð1 − nνlÞ − nνlð1 − nl̄Þ,
which gives the probability of finding an antilepton
in the thermal bath from which the pion scatters off
leaving aneutrino,minus theprobability of the inverse
process.

(iii) Finally, if ~mπ ≤ −ml, or equivalently 2ml ≤ μνl−
μcνl , a π

− is totally annihilated by an antilepton and a
neutrino, disappearing in the thermal bath. The
opposite reaction means that the thermal bath pro-
duces those particles, π− þ l̄þ ν ↔ ðthermal bathÞ.
Thus, EDDR in this case is

Γπ− ¼ Γ̄πl
~a2l
a2l

½nFðMl þ μlÞ þ nFðMνl − μνlÞ − 1�:

ð36Þ
Writing nl̄ þ nνl − 1 ¼ nl̄nνl − ð1 − nl̄Þð1 − nνlÞ,
we interpret this rate as the probability to find an
antilepton and a neutrino in the thermal bathminus the
probability to introduce an antilepton and a neutrino
into the thermal bath. Backreactionmeans the thermal
bath can spontaneously generate a pion, an antilepton
and a neutrino.

All the above-mentioned EDDRs are positive. These
reactions are possible because we are out of chemical
equilibrium in a high neutrino density environment. The
meaning of those processes is explained in [36] at zero
chemical potentials. However, we recall that the microscopi-
cal description is not well understood, especially when
dealing with the fermion EDDR. The advantage of calculat-
ing the imaginary part of the semileptonic self-energy instead
of using the Fermi golden rule is because in the latter, thermal
probability factors must be added by hand.

IV. METASTABILITY CONDITIONS

For metastability, we understand a special situation where
the decay rate of a certain particle becomes much smaller
(a bigger lifetime) than the usual case, in analogy with what
happens in nuclear isomerism. In our case, this special
situation is produced by the environment that inhibits the
particle decay and is related to the Pauli blocking effect. Only
thermal fluctuations are capable of overcoming this situation.
In order to describe this scenario, let us separate the
direct decay rate into the zero temperature and thermal
fluctuation parts

Γd
π− ¼ Γ0 þ δΓT ð37Þ

where the first term is defined as Γ0 ≡ limT→0Γπ− and the
second term is the thermal fluctuation. The temperature for
our analysis must be higher than the pion condensation
critical temperature. With this definition we say then that the
particle is metastable if Γ0 ¼ 0.
Let us analyze the case where the system is in chemical

equilibrium. From Eq. (25), we have

Γ0 ¼ Γ̄πl
mπ

Eπ

�
1þ μl − Eþ

l

2aljpj
θðμl − Eþ

l Þ

−
μl − E−

l

2aljpj
θðμl − E−

l Þ
�
: ð38Þ

We can immediately see that if μl > Eþ
l , the zero temper-

ature part of the pion decay rate vanishes. This condition
depends on the pion energy and the lepton chemical
potential. Therefore, in order to get Γ0 ¼ 0, the pion energy
must be less than a certain critical energy

Eπ < Ec ≡ ð1þ blÞμl − blqF; ð39Þ

or, in terms of the pion momentum,

jpj < pc ≡ ð1þ blÞqF − blμl; ð40Þ

with

bl ≡m2
π −m2

l

2m2
l

; ð41Þ

and where

qF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2l −m2

l

q
ð42Þ

is the lepton Fermi momentum. From the critical values
exposed, one can see that the leptonic chemical potential is
restricted to be higher than a certain critical value

μl > μc ≡ ð1 − alÞmπ: ð43Þ

At chemical equilibrium, considering muons as the result-
ing leptons with mπ ¼ 139.5 MeV, we have the critical
value μc ≈ 109.74 MeV.
If we analyze the hypothetical system with πþ, meta-

stability can be reached if the neutrino chemical potential is
high enough so that μνμ − μμ ≥ almπ . This was noticed in
[41] but at zero temperature, where pions should condense.

V. PION-LEPTON THERMAL EQUILIBRIUM

The system we are interested in analyzing is in chemical
equilibrium, but not in thermal equilibrium, with metastable
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pions decaying slowly. The EDDR in a thermalized system
must be seen, as it is explained in Ref. [36], in terms of the
time needed for a system to reach thermal equilibrium [see
Eq. (24)]. The decay of pions and the inverse process
consider, statistically speaking, pions as real test particles
and “virtual” leptons and neutrinos from the heath bath. We
also have to consider another process involving the same
participants [37,38] if we want to explore the system as a
whole: real test leptons recombined with antineutrinos from
the heat bath increasing the pion population. The latter
process occurs very slowly since it is a purely thermal
fluctuating phenomenon. To compare how slow metastable
pions can decay, we explore under which conditions pions
and leptons reach thermal equilibrium simultaneously. This
obviously happens if both EDDR are of the same magni-
tude: Γl ∼ Γπ− .
We need then to find the lepton EDDR assuming the

system is in chemical equilibrium, i.e., μπ ¼ μl − μνl . The
dressed lepton propagator is

Sdrl ðqÞ ¼
i

Q −m − Σ
; ð44Þ

where Q ¼ ðq0 þ μl; qÞ and ΣðqÞ is the lepton self-energy
generated by weak coupling, shown in the Feynman
diagram in Fig. 2, which corresponds to

−iΣðqÞ ¼ −
Z

d4p
ð2πÞ4 VðpÞSνlðkÞVðpÞDπ−ðpÞ; ð45Þ

with p ¼ q − k by virtue of energy conservation and VðpÞ
as already defined in Eq. (14). The general structure of the
self-energy in this process is Σ ¼ Að1 − γ5Þ, where

AμðqÞ ¼ G2
Ff

2
π

Z
d4k
ð2πÞ4

P2Kμ − 2K · PPμ

ðP2 −m2
πÞK2

: ð46Þ

Here, K ¼ ðk0 þ μνl ; kÞ and P ¼ ðp0 þ μπ; pÞ. Using the
general structure of the self-energy, and considering that,
because of spatial symmetry, A ¼ q̂jAj, the dressed lepton
propagator can be written as

Sdrl ¼ ðQþm − ΣÞ
�

Pþ
Q2 −m2

l − Πþ
þ P−

Q2 −m2
l − Π−

�
;

ð47Þ

where the helicity projectors are

P� ¼ 1

2
ð1� γ0γ · q̂γ5Þ; ð48Þ

and the mass corrections are

Π�ðqÞ ¼ 2Q · A� ðQ0A · q̂ − jqjA0Þ: ð49Þ

Now the procedure is the same as in Sec. III by setting
q0 → q0 þ iϵ in the retarded propagator. The EDDR for
each lepton helicity is

Γ� ¼ −
1

El
ImΠ�ðEl − μl þ iϵ; qÞ: ð50Þ

In order to simplify the analysis, we calculate the average of
the EDDRs for the different helicities. Defining
Γl ¼ ðΓþ þ Γ−Þ=2, after Matsubara summation, the aver-
age lepton EDDR is

Γl ¼ Γ̄πl

�
mπ

2ml

�
3ml

El

1

2bljqj
Z

blðElþjqjÞ

blðEl−jqjÞ
dEνl ½nπ− þ nν̄l �

ð51Þ
where Eπ ¼ El þ Eνl by energy conservation.
The lepton EDDR is related to a direct process, where an

external lepton scatters with a thermalized antineutrino,
giving rise to a thermalized pion lþ ν̄l → π. The corre-
sponding inverse process can be thought as a thermalized
pion decaying into a thermalized antineutrino and a observ-
able lepton π → lþ ν̄. In terms of rates, Γl ¼ Γd

l þ Γi
l ¼R ðnπ− þ nν̄lÞ, where the direct rate is Γd

l ¼ R ð1þ nπ−Þnν̄l
and the inverse rate is Γi

l ¼ R
nπ−ð1 − nν̄lÞ. Here, the direct

and the inverse processes have to be added in opposition to
the case of boson decay. This is a general feature of decaying
fermions as was pointed in [36].
The direct and inverse rates are related as

Γd
l

Γi
l
¼ eðEl−μlÞ=T; ð52Þ

and also from this result, these rates can be written as

Γd
l ¼ eðEl−μlÞ=TnlΓl; ð53Þ

Γi
l ¼ nlΓl: ð54Þ

The lepton EDDR is interpreted as the rate at which the
slightly out-of-equilibrium lepton system can reach the
thermal equilibrium,

FIG. 2. Feynman diagram representing the lepton self-energy
from weak interactions in a thermal bath.
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fðtÞ ¼ nl þ cle−tΓl ð55Þ
where fðtÞ is the nonequilibrium lepton distribution func-
tion and cl some energy dependent function.
Integrating out the neutrino momentum, we obtain the

general result

Γl ¼ Γ̄πl

�
mπ

2ml

�
3ml

El

T
2bljqj

�
ln

�
1 − e−ðE

þ
π −μπÞ=T

1 − e−ðE−
π−μπÞ=T

�
;

− ln

�
1þ e−ð ~E

þ
νl
þμνl Þ=T

1þ e−ð ~E
−
νl
þμνl Þ=T

��
; ð56Þ

where

E�
π ¼ ð1þ blÞEl � bljqj; ð57Þ

~E�
νl ¼ blEπ � bljqj: ð58Þ

Now, we need to find a window in the parameter space
where pions and leptons reach thermal equilibrium satisfy-
ing Γl ∼ Γπ− . The parameters involved are the neutrino
chemical potential, the lepton chemical potential, the
temperature, the pion energy and the lepton energy. To
reduce the number of parameters we consider pions in the
rest frame, where the decay rate is given in Eq. (29), with
~mπ → mπ . In the same way, near the Fermi surface,
fluctuations of leptons in the degenerated environment
are produced. So we take the lepton energy as the Fermi
energy in the decay rate, which leads to

Γl ¼ Γ̄πl

�
mπ

2ml

�
3ml

μl

T
2blqF

× ln

�
sinh½ðblμl þ μνlÞ=T� þ sinh½blqF=T�
sinh½ðblμl þ μνlÞ=T� − sinh½blqF=T�

�
: ð59Þ

For simplicity we consider μνl ¼ 0, which means that all
real neutrinos escape from the star once created. This is a
usual approximation in neutron stars, but not necessarily
valid for protoneutron stars [22,42–44]. With such consid-
erations, the EDDRs depend only on temperature and
lepton chemical potential. The regions where Γπ− ∼ Γl
are plotted in Fig. 3, describing the temperature and lepton
chemical potential conditions for reaching thermal equi-
librium simultaneously. This is considered for pions
decaying into muons (upper panel) as well as pions
decaying into electrons (lower panel) for different values
of mπ . For decay rates such that 0.5 < Γπ−=Γl < 1.5, we
can see in Fig. 3 that there is a wide region where
simultaneous equilibrium is possible, especially at high
temperature, and always for values of the lepton chemical
potential greater than the critical chemical potential for
metastability, defined in Eq. (43). If pions are condensed
they still can decay [15]; therefore, at finite temperature,

such a kind of equilibrium analysis must be considered in
the condensed case.
Notice that in compact stars we have leptonic equilib-

rium, μμ − μνμ ¼ μe − μνe , and also beta equilibrium,
μn − μp ¼ μe − μνe . Therefore, if there is pion-lepton
equilibrium, then μn − μp ¼ μπ . The processes n ↔ pþ
π− are always present since pions strongly interact with
nuclear medium.

VI. NEUTRINO EMISSION

The cooling process in compact stars is mainly produced
by neutrino emission and provides information about the
existence of nontrivial hadronic matter states. In particular,
neutrino emission through pion decay has been studied in
different models [45–48]. The quantity that governs such a
process is the emissivity (energy loss by neutrino emission
per unit of time), the Urca process being the most efficient
one [49]. In this section we calculate the neutrino emis-
sivity due to pion decay in a pion-lepton equilibrium
regime.

FIG. 3. Chemical potential and temperature values where pion-
lepton chemical equilibrium is favorable. The band widths
correspond to a half order of magnitude difference between
the widths, 0.5 < Γπ−=Γl < 1.5. The colors and lines refer to
mπ ¼ 140 MeV (solid blue), mπ ¼ 115 MeV (dashed red) and
mπ ¼ 200 MeV (dot-dashed green).
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The neutrino emissivity generated by leptonic decay of
pions is defined as the transition probability matrix multi-
plied by: the ejected neutrino energy, the probability nπ−
of finding a pion in the thermal bath, and the probability
1 − nl of finding a hole below the Fermi level. All this
integrated in phase space. Therefore

ϵπ ¼
Z

d̄pd̄qd̄k
X
spin

jMj2k0nBðp0Þ½1 − nFðq0Þ�

× ð2πÞ4δ4ðp − q − kÞ; ð60Þ

where the phase space measure for pions is

d̄p ¼ d4p
ð2πÞ3 θðp0 þ μπÞδ4ððp0 þ μπÞ2 − E2

πÞ; ð61Þ

and an equivalent expression for the leptons. The proba-
bility amplitude for pions going into leptons and antineu-
trinos is defined as

hlν̄j
Z

d4xLπljπ−i ¼ iMð2πÞ4δ4ðp − q − kÞ: ð62Þ

At chemical equilibrium, the neutrino emissivity from
pions is then

ϵπ ¼
Γ̄πlmπT2

2π2al

Z
∞

mπ

dEπnBðEπ − μπÞ

×

�
Eπ − El

T
ln ð1þ eðEl−μlÞ=TÞ

− Li2ð−eðEl−μlÞ=TÞ
�����

Eþ
l

E−
l

; ð63Þ

where E�
l was defined in Eq. (57) and plotted in Fig. 4 as a

function of pion energy.
A comparison between the neutrino emissivity due to

pion decay and by the URCA process is shown in Fig. 5 for

pion decaying into muons (upper panel) and electrons
(lower panel).
URCA emissivity [49] is given by

ϵURCA ¼ 457π

10080
G2

FjVudj2ð1þ 3g2AÞm�
nm�

pm�
eT6Θnpe; ð64Þ

where gA ¼ 1.2 is the axial coupling, m�
n ≈m�

p ≈ 0.8 ×
940 MeV are the nucleon effective masses (in the Brown-
Rho scaling) and m�

e ≈ μe is the electron effective mass.
The function Θnpe ¼ θðpFp þ pFe − pFnÞ is the triangular
condition between the Fermi momenta of the proton,
electron, and neutron, which we consider here as satisfied.
We see that neutrino emission tends to be ∼10−2 times

lower than the URCA process at high temperature for pions
decaying into muons, and ∼10−5 in the case when pions
decay into electrons. Notice that for a small pion mass, the
muonic neutrino emissivity is similar to the URCA emis-
sivity at T ∼ 1 MeV.
At temperature much higher than 20 MeV, the star turns

to be opaque to neutrinos [43]. Neutrino total mean free
path is inversely proportional to the probability of absorp-
tion and scattering with the participants. Because the
metastable state of pions emerges by the difficulty for

FIG. 4. Integration limits of the lepton energy as a function of
pion energy. The critical chemical potential where metastability
starts is indicated, aswell as the pionenergyvalueswhereE�

l ¼ μl.

FIG. 5. Comparison between emissivities produced by the
URCA process and pion decaying into muons (upper panel) and
electrons (lower panel). In both cases we use the values
μl ¼ 0.95mπ . fπ ¼ 0.8 × 93.4 MeV and the pion masses mπ ¼
115 (dashed red), 140 (solid blue), and 200 MeV (dot-dashed
green).
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these particles to decay into degenerated leptons (lepton
Fermi levels are almost filled), one can straightforwardly
infer that neutrino absorption by pions is highly suppressed
in degenerated lepton environments (π− þ νl → l). On the
other hand, such a metastable state enlarges the amount of
pions in the environment, and thus, the possibility of pion-
neutrino scattering (π− þ νl → π− þ νl) increases. It is not
clear which effect dominates. The detailed calculation must
be done to see the overall effect.

A. Low temperature approximation

Now we explore how the emissivity behaves in the low
temperature approximation. The scale here is the pion
mass, so T ∼ 10 MeV is small enough. To expand the
exponentials in Eq. (63) we need a negative exponent. The
lepton energy integration limits E�

l ðEπÞ are plotted in
Fig. 4, where all the terms in the plot were already defined
except E0

c ¼ ð1þ blÞμl þ blqF. The procedure for the
expansion is to separate the pion energy integral in the
ranges where E�

l − μ is negative expanding the exponential
in the logarithm and the polylogarithm. In the integration
ranges where E�

l − μ is positive, the log and polylog can be
expanded after the use of the inversion formulas

lnð1þ exÞ − lnð1þ e−xÞ − x ¼ 0; ð65Þ

Li2ð−exÞ þ Li2ð−e−xÞ þ
x2

2
þ π2

6
¼ 0: ð66Þ

The Bose-Einstein term is expanded also up to the leading
order. Keeping the leading terms, the integration in pion
energy can be performed exactly frommπ to Ec or E0

c. From
Ec andE0

c to infinity, the integrands are expanded around the
lowest value due to exponential suppression. As a result, the
emissivity is quite different from the one expected in a simple
boson gas, where ϵ ∼ T3=2e−ðmπ−μπÞ=T [45–48].
When pc ≫ T, which implies that lepton chemical

potential should be bigger than the critical chemical
potential, the emissivity is proportional to T2, namely

ϵπ ≈ Γ̄πlm4
πgðμlÞ

�
T

2πmπ

�
2

e−ðEc−μπÞ=T; ð67Þ

with

gðμlÞ ¼
2qF
blmπ

þ 2almπ

pc
þ 2pc

almπ

qF − pc

qF þ pc
: ð68Þ

For pc ≪ T, which means μl ∼ μc, the emissivity is

ϵπ ≈
�
2ð1 − al − a2lÞ

�
T

2πmπ

�
2

þ al

�
T

2πmπ

�
3=2

	

× Γ̄πlm4
πe−ðEc−μπÞ=T: ð69Þ

These approximations fairly fit the full expression
and explicitly show that the neutrino emission from
chemically equilibrated pions is much smaller than it
was expected.

VII. CONCLUSIONS

In this work we have studied the effects of dense lepton
matter over the decay rate of charged pions. We use
conditions like in the neutron star environment, consisting
in degenerated lepton matter and modified hadronic param-
eters due to dense nuclear matter. We found that, at certain
values of the pion chemical potential, pions drift into a
metastable state and their decay is generated only through
thermal fluctuations. This scenario is generated by the
fact that all leptonic energy states are occupied up to
the Fermi level, so the pion has no phase space to decay.
In this way, the pion EDDR is calculated at finite
temperature and chemical potentials. The particular case
of pion EDDR at chemical equilibrium with leptons, as
well as the case out of equilibrium in rest frame, was
studied.
The pion momentum is restricted for momentum below a

certain critical momentum, and the allowed values of the
chemical potential must be lower than the pion mass and
higher than a critical chemical potential. These critical
parameters are obtained by studying the behavior of the
direct pion decay rate at zero temperature. The thermal
equilibrium was also studied in terms of equivalent pion
EDDR and lepton EDDR. The considered values of
temperature and chemical potential for rest frame pions
and leptons in the Fermi surface are reasonable. Finally, we
calculate the neutrino emissivity generated from metastable
pion decay in chemical equilibrium, and compare with the
URCA emissivity. The order of magnitude turns closer for
T ∼ 4 MeV and is considerably smaller than the usual
boson gas emissivity.
We conclude that this state of matter is more favorable in

protoneutron stars where temperature reaches values higher
than 1 MeV. This scenario therefore can have significant
repercussions only for a short time. In cold compact stars,
metastable pions can also be founded, but are much less
abundant.
The assumptions we consider can be reproduced for other

kind of particles. In particular, the case of kaons could be a
better example in compact stars since their mass reduces
considerably due to dense nuclear environment and the
possibility to get metastable kaons in cold dense matter in
principle is enhanced.
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