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We study the real-time evolution of an electron influenced by intense electromagnetic fields using the
time-dependent basis light-front quantization (tBLFQ) framework. We focus on demonstrating the
nonperturbative feature of the tBLFQ approach through a realistic application of the strong coupling
QED problem, in which the electromagnetic fields are generated by an ultrarelativistic nucleus. We
calculate transitions of an electron influenced by such electromagnetic fields and we show agreement with
light-front perturbation theory when the atomic number of the nucleus is small. We compare tBLFQ
simulations with perturbative calculations for nuclei with different atomic numbers, and obtain the
significant higher-order contributions for heavy nuclei. The simulated real-time evolution of the
momentum distribution of an electron evolving inside the strong electromagnetic fields exhibits significant
nonperturbative corrections compared to light-front perturbation theory calculations. The formalism used
in this investigation can be extended to QCD problems in heavy ion collisions and electron ion collisions.
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I. INTRODUCTION

Real-time quantum field theory (QFT) in the nonper-
turbative regime is pivotal for understanding recent exper-
imental discoveries in modern high energy nuclear
colliding facilities, e.g., the Large Hadron Collider
(LHC) and the Relativistic Heavy Ion Collider (RHIC).
For instance, thorough understanding of jet quenching and
heavy quarkonium suppression in heavy ion collisions
requires detailed knowledge of how quarks and gluons
interact with the evolving hot medium created by the
colliding nuclei [1,2]. Other examples of time-dependent
nonperturbative problems are QED in ultraintense laser
fields [3,4], QCD in strong magnetic fields [5,6], and
nonequilibrium quantum fields [7].
Stationary state QFT problems in the nonperturbative

regime are themselves challenging, and basis light-
front quantization (BLFQ) has emerged as a promising
framework to solve nonperturbative QFT eigenstates
from first principles [8–10]. By employing the light-front
Hamiltonian formalism, BLFQ enjoys advantages of light-
front dynamics and of nonperturbative quantum many-
body theory at the same time. It shares many advantageous
features with discretized light-front quantization [11] and
ab initio nuclear structure calculations, e.g., the no-core
shell model [12–14]. Additionally, the basis approach
explicitly retains kinematic symmetries of the system
and could lead to significant reduction of numerical
efforts. In addition to providing the mass eigenstates,

the light-front Hamiltonian formalism generates the asso-
ciated light-front amplitudes which can then be applied to
determine spin structures, electromagnetic (e.m.) form
factors and generalized parton distributions (GPDs) of
hadrons and other observables. BLFQ has been successfully
applied to QED problems, e.g., the electron anomalous
magnetic moment [9,15], the positronium system [16] and
GPDs of the electron and strong coupling positronium
[17,18]. Recently, BLFQ was applied to the heavy quarko-
nium system with a confinement potential inspired from
anti–de Sitter/conformal field theory (AdS/CFT) along
with the one-gluon exchange interaction from the QCD
Hamiltonian [19,20]. The spectroscopy and decay constants
obtained from the BLFQ approach are comparable to
experimental measurements and other established methods.
Distinct from the Lagrangian formulations, the

Hamiltonian approach permits access to the real-time
evolution of quantum states. Therefore, time-dependent
basis light-front quantization (tBLFQ) is a natural exten-
sion of the BLFQ formalism. The tBLFQ formalism has
been successfully applied to nonlinear Compton scattering
by employing a simple ansatz for the time-dependent and
intense laser field as a classical background field. Zhao
et al. have illustrated that tBLFQ enables real-time acces-
sibility to intermediate quantum states of the electron by
showing the evolution of the invariant mass of the electron
and photon Fock state, which agrees with a perturbative
calculation in the small coupling limit [21,22]. The tBLFQ
formalism can be extended to other applications. For
instance, deuteron Coulomb excitation in low energy
nuclear scattering was investigated in a similar framework
recently [23].
In order to place our work in context, it is helpful

to recall some leading examples of nonperturbative
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approaches for real-time QFT problems, especially those
closely related to particle distribution in intense fields. We
note that a semiclassical formalism based on numerical
solutions of kinetic equations was used to investigate the
particle creation and backreaction in the presence of slowly
varying external fields [24–27]. Also in a semiclassical
approach, the relation between particle distribution func-
tions and time-dependent Bogoliubov coefficients has been
studied in depth recently [28]. Traditionally, investigations
of real-time dynamics are severely restricted by the sign
problem in lattice gauge theories in the Euclidean space.
However, several new methods were proposed to compute
real-time quantities on the lattice using the tensor networks
algorithms [29] and Schwinger-Keldysh formalism [30].
The tBLFQ formalism distinguishes itself from other
approaches in several aspects: it incorporates quantum
interference by evolving the system at the amplitude level,
and it allows access to intermediate quantum states that
could help guide other approaches that address nonpertur-
bative QFT problems.
It is well known that a classical description can capture the

most substantial physics of the system when the occupation
number is large in quantum phase space. One example is
laser physics [31]. Another renowned example is the color
glass condensate (CGC) [32–35], a classical effective theory
of QCD, where the small-x partons are treated as classical
fields generated by large-x partons.Quantumeffects are then
treated as higher-order corrections to the classical calcu-
lations. The universal description of saturated gluons in
hadrons based on CGC effective theory is able to explain a
wide range of phenomena in deep-inelastic scattering and
hadron-hadron collision experiments at high energies. For a
recent review on this topic, see Ref. [36].We foresee tBLFQ
to be a very useful tool to study high energy heavy ion
collisions and electron ion collisions in conjunction with
CGC effective theory.
As a first realistic application of the tBLFQ framework to

high energy heavy ion collisions, we investigate QED
effects in which the role of strong e.m. field is yet to be
understood quantitatively [6,37,38]. To be more specific,
we study features of realistic electromagnetic fields gen-
erated by an ultrarelativistic heavy ion using the tBLFQ
formalism. We solve the time evolution of the quantized
field of an electron inside such classical fields. The
coupling between the electron and the strong e.m. field
is at order Zαem with Z being the atomic number of the
nucleus and αem being the electromagnetic coupling con-
stant. A nonperturbative approach is preferred for the
strong coupling QED problem when Z is large. For
instance, the coupling between the electron and e.m. field
generated by the gold nucleus is around 0.6. We focus on
demonstrating the nonperturbative features of the tBLFQ
framework. This investigation also serves as a stepping
stone for future applications of tBLFQ to QCD problems in
high energy nuclear collisions.

The paper is organized as follows. In Sec. II, we provide
a brief review on the background of this investigation. Then
in Sec. III we compare the tBLFQ simulation to light-front
perturbation theory (LFPT). Effects on physical observ-
ables of high energy nuclear experiments are shown in
Sec. IV. In Sec. V, we summarize our results and discuss
additional applications of the tBLFQ framework in heavy
ion collisions and electron ion collisions.

II. BACKGROUND

First we briefly review the key features of BLFQ and
tBLFQ, and the components of the QED Hamiltonian with
classical background fields. We refer readers to Ref. [22]
for details. We close this section by discussing some
general properties of the intense electromagnetic fields
generated by an ultrarelativistic heavy ion.

A. Basis light-front quantization

Obtaining the invariant mass eigenstates in a light-front
Hamiltonian matrix approach has shown significant prom-
ise [10,16,19,39]. The primary advantage of BLFQ is that,
by adopting a basis with the same symmetries of the system
under investigation, we can reduce the numerical efforts
required for an accurate representation of the Hamiltonian.
The choice of basis is arbitrary as long as it is orthogonal

and complete. One of the many choices is the two-
dimensional harmonic oscillator (2D-HO) basis in the
transverse direction and the discretized plane-wave basis
in the longitudinal direction. Each single-particle basis
state can be identified using four quantum numbers,
ᾱ ¼ fk; n;m; λg. The longitudinal momentum of the par-
ticle is characterized by the first quantum number k. In the
longitudinal direction x−, we constrain the system to a box
of length 2L, and impose (anti) periodic boundary con-
ditions on (fermions) bosons. As a result, the longitudinal
momentum pþ ¼ 2πk=L is discretized, where the dimen-
sionless quantity k ¼ 1; 2; 3;… for bosons and k ¼
1
2
; 3
2
; 5
2
;… for fermions. We have neglected zero modes

for bosons. The length parameter L should be chosen to
cover the longitudinal extent of the system; we discuss it in
Sec. II D. The next two quantum numbers, n and m, depict
radial excitation and angular momentum projection, respec-
tively, of the particle within the 2D-HO basis in the
transverse direction. The 2D-HO basis may be defined
by two parameters, mass M and frequency Ω. However,
we adopt a single HO parameter b ≔

ffiffiffiffiffiffiffiffi
MΩ

p
, since our

transverse modes depend only on b rather than on M
and Ω individually. The state carrying quantum number n
and m has HO eigenenergy En;m ¼ ð2nþ jmj þ 1ÞΩ; see
Appendix A for details.
The many-particle basis states jαi in each Fock sector are

direct products of single-particle states. Such a basis was
initially designed for the QCD bound state problem and
was supported by AdS/CFT correspondence with QCD.
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It has been shown that such a choice of basis allows
one to encode the following three symmetries of QED
Hamiltonian: First, translational symmetry in the x− direc-
tion, i.e., conservation of longitudinal momentum Pþ;
second, rotational symmetry in the transverse plane, i.e.,
the longitudinal projection of angular momentum J3 ¼
J3orbital þ J3spin is conserved; finally, lepton number conser-
vation, i.e., net fermion number is conserved and so is the
total charge. Therefore the eigenspace of QED can be
grouped into segments with definite eigenvalues K;Mj; Nf

for the operators Pþ; J3; Q, respectively.
The physical QED eigenstates, written as jβi, are

represented as the superposition of the basis states,

jβi ¼
X
α

jαihαjβi; ð1Þ

with eigenstates and basis states belonging to the same
segment. Coefficients hβjαi are obtained by diagonalizing
P−
QED in the basis representation. To this end, we require a

finite dimension representation of the QED Hamiltonian
that is achieved through the following basis reduction
procedures.
First, by taking into account the conserved quantities and

selection rules, one determines which subset of basis states
contributes to a desired observable. For this observable, one
needs to work in a finite number of segments of QED
eigenspace without any information loss. Second, because
of the fact that even a single segment has an infinite number
of degrees of freedom, we need to truncate the basis which
inevitably introduces loss of precision in our calculated
observables. We implement two levels of the truncation
scheme as follows.

(i) Fock-sector truncation. Take the physical electron
state as an example. Schematically, a physical
state with Nf ¼ 1 has the following Fock-sector
expansion,

jephysi ¼ ajei þ bjeγi þ cjeγγi þ djeeēi þ � � � ;
ð2Þ

containing the bare electron jei and its dressed states
jeγi, jeγγi, jeeēi etc. We explicitly assume that
higher Fock sectors give insignificant contributions
to the low-lying eigenstates in which we are mostly
interested, with an appropriate renormalization pro-
cedure implemented. Such an assumption is moti-
vated by the success of perturbation calculations in
QFT. Furthermore, the dominance of contributions
to physical observables from lower Fock sectors has
been shown in the scalar Yukawa model even in the
nonperturbative regime [40], which indirectly jus-
tifies our Fock-sector truncation scheme in QED. In
the following calculations we make the simplest

truncation, by keeping only the single electron Fock
sector in Eq. (2), since the interactions between the
fermion and the photon are suppressed by 1=Z
comparing to the interaction between the fermion
and the classical field generated by the nucleus,
where Z is the atomic number of the nucleus. We
leave the corrections from higher Fock sectors to a
future study.

(ii) Truncation within Fock sectors. Within each Fock
sector, further truncations are still needed to reduce
the basis to a finite dimension. As mentioned, we
impose (anti) periodic boundary conditions on
(fermions) bosons in a longitudinal box with length
2L. Consequently, the longitudinal momentum pþ
of single particles can only take discrete values. We
then introduce a truncation parameter K on the
longitudinal direction such that

P
lkl ≤ K, where

kl is the longitudinal momentum quantum number of
lth particle in the basis state. Note that systems with
larger K have simultaneously higher ultraviolet and
lower infrared cutoffs in the longitudinal direction.
In the transverse direction, we require the total
transverse quantum number Nα¼

P
lð2nlþjmljþ1Þ

for multiparticle basis state jαi satisfying
Nα ≤ Nmax, where Nmax is a chosen truncation
parameter.

We thus attain a finite-dimensional representation of the
QED Hamiltonian in the BLFQ basis. The continuum limit
can be achieved by extending K and Nmax to infinity. The
dependence on the parameter L should be weak as long as it
covers the longitudinal extent of the system.

B. Time-dependent basis light-front quantization

The state of a quantum system at a later time is related to
its state at an earlier time by the Schrödinger equation,
which takes the following form,

i
∂

∂xþ jψ ; xþi ¼ 1

2
P−ðxþÞjψ ; xþi; ð3Þ

in light-front dynamics. The Schrödinger equation can be
solved in either the interaction picture or the Schrödinger
picture. Physical observables should not depend on the
pictures we employed for the time evolution. However,
for a particular problem, one picture may be numerically
advantageous over another. For instance, if the Hamiltonian
has a nontrivial time dependence, working in the
Schrödinger picture may be more numerically efficient
since the interaction picture would require calculating the
Hamiltonian in the physical eigenstates at every time step.
On the other hand, if the interaction is much smaller than
the kinetic Hamiltonian, then a finer time step is required
in the Schrödinger picture to produce the same precision as
in the interaction picture. Of course the choice also depends
on the physical observable of interest, e.g., the interaction
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picture could be more capable in describing bound states.
In a word, the time evolution picture should be chosen
according to the problem itself. In this investigation, since
we are interested in the effects of external fields, we work in
the interaction picture for time evolution. Its formal
solution is

jψ ; xþiI ¼ T þ exp

�
−
i
2

Z
xþ

0

VIðxþÞ
�
jψ ; 0iI; ð4Þ

where T þ is the light-front time ordering operator and VI is
the interaction Hamiltonian in the interaction picture, with
the subscript I indicating the interaction picture. We can
expand the initial state in the BLFQ basis,

jψ ; 0iI ¼
X
α

jαicαð0Þ; ð5Þ

where cαð0Þ≡ hαjψ ; 0iI . The coefficients of the state at
later times can be expanded as

jψ ; xþiI ≔
X
α

cαðxþÞjαi; ð6Þ

in the BLFQ basis. Its coefficients are solved through

cðxþÞ ¼ T þ exp

�
−
i
2

Z
xþ

0

M
�
cð0Þ; ð7Þ

where M is a finite-dimensional representation of the
Hamiltonian operator in the BLFQ basis, Mαα0 ¼
hαjVIjα0i. The time-evolution operator then is decomposed
into small steps in light-front time xþ, with step size δxþ,

T þ exp
�
−
i
2

Z
xþ

0

M
�
→ T þ

Y
n

�
1−

i
2
Mðxþn Þδxþ

�
: ð8Þ

A higher-order difference scheme [41,42] is implemented
to ensure numerical stability and precision; refer to
Appendix B for details. The continuum limit corresponds
to the limit taking step size δxþ → 0.

C. The light-front QED Hamiltonian

Starting from the QED Lagrangian with an additional
background field,

L ¼ −
1

4
FμνFμν þ Ψ̄ðiγμDμ −meÞΨ; ð9Þ

where Dμ ≡ ∂μ þ ieCμ and Cμ ¼ Aμ þ Aμ is the sum of
the background and quantum gauge fields, respectively. In
this paper, Aμ is the electromagnetic field generated by the
nucleus with atomic number Z. Note that Fμν is calculated
from Aμ alone. Working in the light-front gauge, the full
Hamiltonian is then derived as [22,39]

P−¼
Z

d2x⊥dx−1
2
Ψ̄γþ

m2
eþði∂⊥Þ2
i∂þ Ψ

þ1

2
Ajði∂⊥Þ2AjþejμAμþ

e2

2
jþ

1

ði∂þÞ2 j
þ

þe2

2
Ψ̄γμAμ

γþ

i∂þ γ
νAνΨþejμAμþ

e2

2
Ψ̄γμAμ

γþ

i∂þ γ
νAνΨ

þe2

2
Ψ̄γμAμ

γþ

i∂þ γ
νAνΨþe2

2
Ψ̄γμAμ

γþ

i∂þ γ
νAνΨ: ð10Þ

The first three lines are the QED light-front Hamiltonian,
P−
QED. In order, each of the first five terms in Eq. (10)

represents the fermion kinetic energy Tf, photon kinetic
energy Tγ, vertex interaction W1, instantaneous-photon
interaction W2 and instantaneous-fermion interaction W3

respectively. The last two lines contain the four new
interactions generated by the classical background field
A; we label them as W1, W2, W3 and W4 respectively.
Since we only keep the leading Fock sector which contains
one single fermion, only Tf, W1 and W2 enter our
calculation. In the following, we only keep the relevant
terms in the QED Hamiltonian,

P− ¼ P−
QED þ VðxþÞ; ð11Þ

where P−
QED ¼ Tf and VðxþÞ ¼ W1ðxþÞ þW2ðxþÞ

throughout our discussion here. Note that W1 is first order
in Zαem andW2 is second order in Zαem, with αem ∼ 1=137
being the electromagnetic coupling constant.
Our particular truncation of the Fock sector also sim-

plifies the problem as we can take physical values for the
electron mass and charge. If one works with higher Fock
sectors with both the electron and photon, proper renorm-
alization is required. One feasible choice is the sector
dependent scheme [43–45], which has been applied to the
QEDHamiltonian when calculating the electron anomalous
magnetic moment, for which the result agrees with the
Schwinger value within 1% [15].

D. Electromagnetic fields generated by
the relativistic heavy ion

The charge densities and current densities of one ion
with atomic number Z moving along the z axis with
velocity v are

ρðz; t; x⊥Þ ¼ Zjejδðz − vtÞδðx⊥Þ;
jðz; t; x⊥Þ ¼ Zjejvẑδðz − vtÞδðx⊥Þ: ð12Þ

The four vector potential of the fields obeys

ð∇2 − ∂2
t ÞA0 ¼ −ρ;

ð∇2 − ∂2
t ÞA ¼ −j; ð13Þ
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where we omit the vacuum permittivity and permeability in
natural units. In the light-cone gauge, in terms of
kþ; k⊥; xþ, the solutions of the above equations are

A− ¼ 2Ze
e−2y

ðe−2yðkþÞ2 þ k2⊥Þ
e

i
2
e−2ykþxþ ;

Ai ¼ −Ze
ki

kþ
1

ðe−2yðkþÞ2 þ k2⊥Þ
e

i
2
e−2ykþxþ ; ð14Þ

where y ¼ 1
2
lnðPþ=P−Þ is the rapidity of the heavy ion,

with Pμ being the momentum four vector of the heavy ion.
Let us discuss the spatial distribution of the potential

before we proceed with our calculation. In modern high
energy collision facilities, particles are accelerated to the
ultrarelativistic regime. For example, at the RHIC, the
center of mass energy of the collisions reaches 200 GeV per
nucleon; the rapidity of the colliding nuclei is y ≈ 5.3. The
energy is even higher at the LHC, e.g., the rapidity of the
colliding particles is y ∼ 9.5 at center of mass energy
1.4 TeV. Thus e−2y is a small (large) number when the
heavy ion is moving along the positive (negative) z axis.
Apparently, the potential generated by a heavy ion moving
along the positive z axis is almost stationary with a period
2πe2jyj=kþ in xþ, and it has a very narrow extent in the
longitudinal direction; see Fig. 1. Contrarily, the potential
generated by a heavy ion moving along the negative z axis
is oscillating rapidly with a period 2πe−2jyj=kþ in xþ, while
it has a very wide extent in the longitudinal direction;
see Fig. 1.
Although the potential profiles for a heavy ion moving

along the positive and negative directions are very different
from a first look, physical observables for the same process
must be independent of such mathematical treatment. In
tBLFQ, to achieve an accurate description of the same
process, a larger coverage in xþ (x−) is necessary for a
heavy ion moving in the positive (negative) z-direction and

their continuum limits should be equivalent. In the follow-
ing discussion, we assume the heavy ion is moving along
the positive z axis. First, it is easier to handle the time
evolution of a quasistationary potential. Second, the
potential is concentrated in a smaller region in x−.
Consequently a moderate truncation parameter L is suffi-
cient to enclose the potential and cover a wide region in
longitudinal momentum at the same time.
We are now ready to discuss the truncation parameter L

introduced in Sec. II A. The guidelines are that the potential
outside the box only makes inconsequential corrections to
the process we are interested in, while at the same time a
smaller L provides larger longitudinal momentum coverage
for the same truncation parameter K. Equation (14) clearly
suggests that the longitudinal extent of the potential in x−

depends on the transverse momentum we are interested in.
We specify our choice of L for each calculation we perform
in the following.

III. COMPARISON TO LIGHT-FRONT
PERTURBATION THEORY

The equivalence of the LFPT and the covariant pertur-
bation theory was established decades ago [46].
Furthermore, QED in the perturbative regime has been
verified up to very high precision by various experiments
[47]. Thus we can check the validity of our formalism
using LFPT in the perturbative regime and study the
numerical error introduced by the truncations and time-
step discretization. In addition, we can study higher-order
contributions by comparing tBLFQ simulations to LFPT
calculations.

A. Comparison to momentum basis

The Hamiltonian matrix elements hα0jVjαi for the
potential in Eq. (14) in the BLFQ basis can be calculated
algebraically and the detailed expressions are presented in
Appendix C. The first check would be that the transition
amplitudes induced by the interaction V between particular
initial and final states are consistent in the BLFQ basis and
momentum basis, with sufficiently large Nmax. We compare
the leading order (LO) in the coupling between electron and
background field α≡ Zαem so that only W1 is relevant. In
the longitudinal direction we adopt the discretized momen-
tum basis, with which we approach the continuum longi-
tudinal momentum limit when K increases. For simplicity
in the HO basis, we adopt a wave packet which is a
Gaussian in the transverse direction. The Gaussian packet
is centered at p⊥0 and the width of the Gaussian wave packet
σ0 can be chosen independent of the 2D-HO parameter in
the BLFQ basis. When σ0 → 0 the initial state becomes a
representation of the transverse momentum eigenstate. In
the longitudinal direction we use its momentum eigenstate.
Thus, the initial state is labeled by the following quantum
numbers,

FIG. 1. A typical x− distribution of the − component of the
potential,A−, produced by a heavy ion moving along the positive
(left) and the negative (right) z axis in rapidity y ¼ �5.3 at
xþ ¼ 0, for the modes with transverse momentum k⊥ ¼ 1 GeV.
The potential as a function of x− can be obtained through a
Fourier transformation of Eq. (14). The width of such a
distribution increases as the transverse momentum decreases.
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jϕ0i ¼ jpþ
0 ; Gðσ0; p⊥0 Þ; λ0i: ð15Þ

Its normalized wave function in the transverse direction is

ϕ⊥
0 ðp⊥Þ ¼ hp⊥jGðσ0; p⊥0 Þi ¼

1ffiffiffi
π

p
σ0

e
−
ðp⊥−p⊥

0
Þ2

2σ2
0 : ð16Þ

The transition amplitude hϕfjW1jϕii to a momentum
eigenstate,

jϕfi ¼ jpþ
f ; p

⊥
f ; λfi; ð17Þ

can be calculated by integrating over the initial transverse
momentum distribution,Z

d2p⊥hpþ
f ; p

⊥
f ; λfjW1jpþ

0 ; p
⊥; λ0iϕ⊥

0 ðp⊥Þ: ð18Þ

It can also be calculated in the BLFQ basis as follows,X
α;α0

hpþ
f ; p

⊥
f ; λfjα0ihα0jW1jαihαjpþ

0 ; Gðσ0; p⊥0 Þ; λ0i; ð19Þ

where hαjpþ
0 ; Gðσ0; p⊥0 Þ; λ0i can be calculated analytically.

In principle, Eqs. (18) and (19) are identical if we sum over
all α states. In practice, we can only perform calculations
using the truncation scheme explained in Sec. II A. It is
then necessary to check the behavior of the numerical
uncertainty as we increase our truncation parameters.
We study the transition amplitude of an electron influ-

enced by the field generated by a gold nucleus moving
along the positive z axis with rapidity y ¼ 5.3. We study
transition amplitudes calculated in the BLFQ basis and the
momentum basis from various initial states and final states;
the comparisons show similar convergence behavior. As an

example, we consider the initial state jϕ0i at xþ ¼ 0 with
pþ
0 ¼ 3π=10 GeV, λ0 ¼ 1=2, and a Gaussian wave packet

centered at p⊥0 ¼ ðb=2; 0Þ with width σ0 ¼ b=2. We
set the HO parameter in the BLFQ basis to
b ¼ 1000me ¼ 0.511 GeV. We calculate the amplitude
to the final state jϕfi, which has the following quantum
number, pþ

f ¼ 7π=10 GeV, λf ¼ 1=2, p⊥f ¼ ðpx
f; 0Þ in the

BLFQ basis with truncation Nmax and compare it to a
momentum basis calculation. Figure 2 shows the compari-
son between the BLFQ basis results with differentNmax and
the momentum basis calculation. The difference between
those two bases decreases as we increase Nmax. However,
even for Nmax ¼ 50, we find that their discrepancy is not
negligible. On the other hand, if we average results of two
BLFQ basis calculations with consecutive even Nmax, the
results show excellent agreement with the momentum basis
calculation at Nmax ¼ 50. This indicates that averaging
over Nmax can effectively enhance the convergence to the
momentum basis calculation.
Mathematically, the challenge in comparing the HO

basis and momentum basis calculation is rooted in the fact
that HO functions are square integrable while plane waves
are not. Intuitively, the averaging procedure we adopted
above can be illuminated by the following example. It is
well known that a 2D delta function has its 2D-HO wave
function representation,

X
n;m

~Φ�
nmðp⊥Þ ~Φnmðq⊥Þ ¼ ð2πÞ2δð2Þðp⊥ − q⊥Þ; ð20Þ

the equality is exact if n and m are summed over all
possible values. However if we constrain the domain of n
and m by requiring Ntotal ¼ 2nþ jmj þ 1 ≤ Nmax, the
following integral,

FIG. 2. Comparison of transition amplitude hϕfjW1jϕ0i in momentum basis and BLFQ basis as a function of px
f in units of the HO

length scale b. Initial state ϕ0 has longitudinal momentum pþ
0 ¼ 3π=10 GeV, and helicity λ0 ¼ 1=2; in transverse direction, it is a

Gaussian wave packet centered at p⊥0 ¼ ðb=2; 0Þ with width σ0 ¼ b=2. Final state ϕf has longitudinal momentum pþ
f ¼ 7π=10 GeV,

λf ¼ 1=2 and py
f ¼ 0. HO parameter b ¼ 1000me. Left: Comparison with the momentum basis transition amplitude using the BLFQ

basis calculation at different Nmax. Right: Comparison with the momentum basis transition amplitude using the BLFQ basis calculation
averaged over two Nmax.
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Z
d2p⊥
ð2πÞ2

X
n;m

~Φ�
nmðp⊥Þ ~Φnmð0Þ; ð21Þ

is oscillating between the discrete results 0 and 2 as Nmax
increases. Such a behavior provides an argument for
averaging over consecutive Nmax results when comparing
HO basis calculations to momentum basis calculations.
We have shown that when Nmax and K are sufficiently

large, the BLFQ basis results exhibit good agreement with
the momentum basis results. At this stage, we can now
concentrate on the behavior of the discretized numerical
time evolution scheme where all calculations are performed
in the BLFQ basis.

B. Transition rate

Perturbation theory provides contributions from the
interaction through a power series in the coupling constant
α, which is expected to converge for sufficiently small α.
Applying the perturbation theory to the S-matrix, we have

S ¼ 1 −
i
2
lim
T→∞

Z
T

0

dxþP−
intðxþÞ þ � � � ; ð22Þ

where we have only kept the LO contribution in α. Contrary
to the infinite time limit in perturbation theory, we can only
evolve for a finite time using the discretized numerical time
evolution scheme described in Eq. (7). Extrapolation to the
infinite time limit requires infinite energy resolution which
can be achieved only in the limit with Nmax and K
approaching infinity. With finite Nmax and K we make a
compromise by comparing to the perturbative calculation
without taking the infinite time limit.
The most important physical observable measured in

scattering experiments is the cross section, which is related
to the transition rate by a flux factor. The transition rate is
defined as the transition probability from state jii to jfi
divided by the time T during which the interaction is active,

ΓTði → fÞ ¼ PTði → fÞ
T

; ð23Þ

where PTði → fÞ ¼ jhfjSjiij2. The scattering matrix can
be calculated using either LFPT or the tBLFQ formalism.
One advantage of the tBLFQ approach is that it does not
rely on any expansion in the coupling constant of the
interaction; thus it is a legitimate approach for both weak
and strong interactions. The applicability of tBLFQ for
time-dependent nonperturbative problems is rooted in the
numerical schemes we adopted for basis construction and
time evolution. We have discussed extensively the non-
perturbative feature of the BLFQ approach in Sec. II A.
Therefore, we now focus on how nonperturbative effects
are incorporated by our discretized time-evolution scheme.
Conceptually, all numerical time-evolution schemes are

implemented by decomposing the time-evolution operator

into many small steps with step size (δxþ) in light-front
time xþ,

T þe
−i
2

R
xþ
0

P−
→ T þ

Y
n

�
1 −

i
2
P−ðxþn Þδxþ

�
: ð24Þ

Contributions from up to nth order in α are preserved,
with n being the total number of time steps. The
resummation up to all orders in α is achieved by taking
the limit δxþ → 0.
As a demonstration of the nonperturbative feature of the

tBLFQ approach, we consider the transition of an electron
between two physical QED eigenstates jβi, as defined in
Eq. (1), in the fields generated by different nuclei. We
construct the BLFQ basis states as follows. We require the
electron to be in the segments with definite eigenvalues
m ¼ 0 and λ ¼ 1=2. We can make such a choice for the
following two reasons. First, the potential is azimuthally
symmetric; thus the total angular momentum projection
Mj ¼ mþ λ of the evolving electron is conserved. Second,
the spin projection of the electron λ is approximately
conserved, since the helicity flip processes are suppressed
by mf=p⊥ compared to the helicity nonflip processes,
where mf is the mass of the fermion and p⊥ is its typical
transverse momentum; see Table I for details. We set
the longitudinal box length to be L ¼ 10 GeV−1 ≈ 2 fm.
As discussed above, this is sufficient for the potential
in our application. We set the HO parameter to be
b ¼ 1000me ¼ 0.511 GeV, which is chosen as a repre-
sentative of the typical transverse momentum of particles
observed in heavy ion collisions. The BLFQ basis is
constructed using Nmax ¼ 32, K ¼ 32. The physical
QED eigenstates are then obtained by diagonalizing the
fermion kinetic energy in this BLFQ basis.
We take each nucleus to be moving along the positive z

axis with y ¼ 5.3. Since the nucleus is moving almost
along xþ, we approximate the generated potential as a static
potential during the time interval our calculation is per-
formed. We then assume an electron enters such fields at
time xþ ¼ 0 in a physical QED jβii of P−

QED, with energy
P−
β;i ¼ 0.455 GeV, which belongs to the segment of BLFQ

basis states with k ¼ 43=2. We calculate the transition rate
of the electron to the final state jβfi with energy
P−
β;f ¼ 0.955 GeV, which belongs to the segment of

BLFQ basis states with k ¼ 45=2. We have only considered
the transition induced by the W1 term of the Hamiltonian.
In Fig. 3, we show the transition rate from the initial
eigenstate jβii with energy P−

β;i ¼ 0.455 GeV to the final
state jβfi with energy P−

β;f ¼ 0.955 GeV, for nuclei with
atomic number Z ¼ 1, 28, 56, 79 as a function of exposure
time T.
We make the following observations. First, in the small

coupling regime, the tBLFQ calculation agrees with the
next-to-leading order (NLO) LFPT calculation, and both of
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them are only slightly different from the LO LFPT
calculation; see the case with α ¼ 1=137 in Fig. 3. Such
an agreement confirms the equivalence of the tBLFQ
approach and the LFPT calculation in the small coupling
regime. Second, in the strong coupling regime, both the
tBLFQ and the NLO LFPT calculations dramatically differ
from the LO LFPT calculation; see the case with α ¼
79=137 in Fig. 3. Note that the period of the transition rate
as a function of exposure time has changed due to higher-
order effects. The tBLFQ calculation should be regarded as
a good approximation of the all order resummation results.
Thus our comparison at strong coupling indicates that
higher-order effects are significant for the interaction
between the charged fermion and the electromagnetic field
generated by an ultrarelativistic heavy ion. The plots in
Fig. 3 also display the anticipated growth of higher-order
effects with increasing atomic number of the nucleus.

IV. PHYSICAL OBSERVABLES

The electromagnetic field strength immediately after an
ultrarelativistic heavy ion collision is proportional to the
collision energy and reaches m2

π at the RHIC and 10m2
π at

the LHC. In addition, the field in the quark gluon plasma
medium could last up to a few fm/c. Such strong fields

could lead to major modifications of physical observables,
i.e., the flow of the quark gluon plasma, particle production,
heavy quarkonium dissociation and so on; see Ref. [6] for a
review. In principle, such modifications are within reach
using the tBLFQ framework. However, as discussed in
Sec. II D, the fields generated by two colliding heavy ions
moving in opposite directions have different dependence on
light-front coordinates; thus it is a numerical challenge to
study them simultaneously at this stage. In this paper, we
study the real-time evolution of the momentum distribution
of a fermion evolving inside the strong electromagnetic
fields generated by one relativistic heavy ion as a demon-
stration of the tBLFQ formalism. We employ the LFPT
calculation as a reference. However, comparison to other
nonperturbative approaches, such as the kinetic equations
approach [27], is desirable and will be investigated in a
future publication.
The momentum distributions of produced particles carry

rich information about the collision process. In heavy ion
collisions, the momentum distributions of various probes
provide tomographic properties of the hot and dense
medium created. Compared to hadronic observables,
electromagnetic probes, such as direct photons and dilep-
tons, are valued for their greatly reduced final-state inter-
actions. However, the strong magnetic field generated by

FIG. 3. Transition rate as a function of exposure time T for an electron between a specific initial and a specific final state induced by
the potential which is generated by nuclei with atomic number Z ¼ 1, 28, 56, 79, the coupling between electron and background field
α≡ Zαem with αem ¼ 1=137. The nucleus is moving along the positive z axis with y ¼ 5.3. The initial and final states are kinetic energy
eigenstates with energies P−

β;i ¼ 0.455 GeV and P−
β;f ¼ 0.955 GeV. The calculation is performed using Nmax ¼ 32, K ¼ 32, L ¼

10 GeV−1 and b ¼ 1000me; see the text for details.
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the relativistic heavy ion [5] could significantly modify the
configurations of charged particles, especially if they are
produced immediately after the collision when the mag-
netic field is still strong [6]. In this section we demonstrate
real-time evolution of the momentum distribution for an
electron evolving inside the strong electromagnetic field
generated by an ultrarelativistic heavy nucleus using the
tBLFQ formalism.
Consider the case in which a gold nucleus is moving

along the positive z axis with rapidity y ¼ 5.3. We perform
our calculation starting at time xþ ¼ 0, at which the
electron is in the BLFQ basis state jα0i with the following
quantum number, k ¼ 17

2
, n ¼ 0, m ¼ 0, λ ¼ 1

2
. As a result

the initial longitudinal momentum of the electron is
pþ ¼ 17π=L, and the initial transverse momentum distri-
bution of the electron is

f0ðp⊥Þ ¼ p⊥
2π

j ~Φb
00ðp⊥Þj2; ð25Þ

where p⊥ ≡ jp⊥j and the transverse distribution is normal-
ized as

R
dp⊥f0ðp⊥Þ ¼ 1. The longitudinal length was

chosen to be L ¼ 10 GeV−1, such that the longitudinal
extent of the potential is limited. The HO parameter is set to
be b ¼ 1000me ¼ 0.511 GeV in light of the fact that, in
heavy ion collisions, the transverse momentum of the e.m.
probes could reach a few GeV.
Using the tBLFQ formalism, we have access to the

real-time evolution of the configuration of particles at the
amplitude level. In this section, we illustrate this by
showing the momentum probability distribution of the
electron in both transverse and longitudinal directions as
a function of time. We have considered the transition
induced by both W1 and W2 terms of the Hamiltonian.
We show snapshots of the transverse momentum proba-
bility distribution integrated over longitudinal momentum
in Fig. 4 and the longitudinal momentum probability
distribution in Fig. 6, simulated in tBLFQ and compared
to the LO and NLO LFPT calculations using truncation
parameters Nmax ¼ 32 and K ¼ 32. We have checked that
the momentum distribution is not sensitive to the truncation
parameters Nmax and K. To be more specific, we observe
that the calculation using Nmax ¼ 32 and K ¼ 32 provides
similar results compared to calculation using Nmax ¼ 24

and K ¼ 24 up to xþ ¼ 50 GeV−1. The numerical scheme
adopted in the tBLFQ simulation is the MSD6 scheme; see
Appendix B for details.
We show the transverse momentum distribution of the

electron at xþ ¼ 20, 30, 40 and 50 GeV−1 from top to
bottom in Fig. 4. The solid black curve is the initial
transverse momentum distribution, which peaks around
0.7b with the peak value approximately equal to 1.7. The
tBLFQ simulation predicts that the transverse momentum
distribution follows the LFPT predictions at first
(xþ ≲ 20 GeV−1). After being exposed to the intense field

for a longer time, e.g., xþ ≳ 30 GeV−1, the peak value
increases according to the tBLFQ simulation while both the
LO and NLO LFPT predict that the value of the peak
should decrease. Moreover, the tBLFQ simulation predicts

FIG. 4. Snapshots in time xþ of the transverse momentum
distribution of an electron inside the e.m. field generated by a
gold nucleus moving along the positive z axis with rapidity
y ¼ 5.3. The initial state of the electron is the BLFQ basis state
with k ¼ 17

2
, n ¼ 0, m ¼ 0 and λ ¼ 1

2
at xþ ¼ 0. Note that the

chosen initial state is not an eigenstate of the pure BLFQ
Hamiltonian. The calculation is performed using Nmax ¼ 32,
K ¼ 32, L ¼ 10 GeV−1 and b ¼ 1000me.

PARTICLE DISTRIBUTION IN INTENSE FIELDS IN A … PHYSICAL REVIEW D 95, 096012 (2017)

096012-9



that the position of the peak would be at a lower momentum
compared to the LFPT calculations, but with a smaller
width. The different predictions by the tBLFQ simulation
and the LFPT calculation could potentially be used as a
quantitative observable for the higher-order effects in this
process. In Fig. 5, we show a snapshot of the transverse
momentum distribution for b < p⊥ < 4b on a semilog
scale for the same process in Fig. 4 at xþ ¼ 50 GeV−1. It
shows that the probability to find the electron with larger
transverse momentum is significantly higher compared to
the initial distribution, if the electron has been exposed to
the intense field for a sufficient amount of time. It is
apparent because the electron has been excited to higher
radial states from the initial n ¼ 0 state.
We show the longitudinal momentum distribution of the

electron at xþ ¼ 20, 30, 40 and 50 GeV−1 from top to
bottom in Fig. 6. We show the probability distribution of
the electron as a function of longitudinal momentum in a
semilogarithmic scale in order to emphasize the higher-
order effects. Initially, the longitudinal momentum of the
electron is pþ ¼ 17π=L. Since the strong e.m. field
generated by the heavy ion has a nontrivial longitudinal
momentum distribution, the evolving amplitude for the
electron receives contributions showing that it is both
accelerated as well as decelerated in the longitudinal
direction. We discuss the time evolution of states with
longitudinal momentum adjacent to the initial momentum
in detail since those are the states undergoing the largest
changes. Consider the results of the tBLFQ simulation first.
After being exposed to the strong field for 20 GeV−1, the
probability to find the electron in the initial longitudinal
configuration has decreased to about 88%, and it is most
likely to be found in states with longitudinal momentum
adjacent to the initial momentum; e.g., the probabilities to
find the electron with pþ ¼ 19π=L and pþ ¼ 15π=L are
about 7% and 1.5%, respectively. The transition rate to the
pþ ¼ 19π=L state is larger, because the kinetic energy
difference between the pþ ¼ 17π=L state and the pþ ¼
19π=L state is smaller compared to the kinetic energy
difference between the pþ ¼ 17π=L state and the

pþ ¼ 15π=L state for the same transverse momentum
distribution, owing to the fact that the kinetic energy of
the electron is inversely proportional to the longitudinal
momentum. This also explains why Fig. 6 shows an
asymmetry about the initial state. The probability to find
the electron in the initial longitudinal configuration con-
tinues decreasing with increasing exposure time in the
intense field. At xþ ¼ 50 GeV−1, the probability to find the
electron in the initial longitudinal configuration has
decreased to about 75%. The probabilities to find the

FIG. 5. Snapshot of transverse momentum distribution on a
semilog scale for the same process in Fig. 4 at xþ ¼ 50 GeV−1.

FIG. 6. Snapshots of the longitudinal momentum distribution
for the same process in Fig. 4. Horizontal bars indicate the
momentum bin width for the discretized plane waves in the
longitudinal direction.
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electron in states with pþ ¼ 13π=L and pþ ¼ 21π=L are
about 1% and 2%, respectively, which are not negligible.
The probabilities to find the electron with pþ ¼ 19π=L and
pþ ¼ 15π=L have increased to 14% and 4%, respectively.
The probabilities to find the electron in other longitudinal
momentum states are also building up over time.
Compared to the tBLFQ simulation, the LO LFPT

calculation underestimates the depletion of the initial
longitudinal momentum state. At xþ ¼ 50 GeV−1, the
probabilities to find the electron in the initial longitudinal
configuration, and the states with pþ ¼ 19π=L and pþ ¼
15π=L are about 83%, 6%, and 6%, respectively. On the
other hand, the NLO LFPT calculation predicts slightly
higher transition probability to other longitudinal momen-
tum states. At xþ ¼ 50 GeV−1, the probabilities to find the
electron in the initial longitudinal state, and the states with
pþ ¼ 19π=L and pþ ¼ 15π=L are about 71%, 16% and
4%, respectively.

V. CONCLUSIONS AND OUTLOOK

In this paper we use the recently formulated time-
dependent basis light-front quantization formalism to study
the influence of an electromagnetic field generated by an
ultrarelativistic nucleus on a charged fermion field. We
show that the information of the system is accessible at any
intermediate time at the amplitude level using the tBLFQ
approach. We show that the BLFQ basis calculation is
compatible with the momentum basis calculation with
sufficiently large truncation parameters. Further, we calcu-
late the transition of an electron influenced by the field
generated by an ultrarelativistic nucleus and it shows
agreement with light-front perturbation theory when the
atomic number of the ultrarelativistic nucleus is small. We
find that higher-order contributions are significant for nuclei
with a large atomic number. We then demonstrate that the
real-time evolution of the momentum distribution of an
electron evolving inside the strong electromagnetic field can
be calculated nonperturbatively using the tBLFQ approach.
Next, we plan to apply tBLFQ to QCD processes in high

energy nuclear collisions, following the same procedures
we presented in this investigation. For example, we can
take the semianalytic solution of the quasiclassical early
time gluon field created in high energy nuclear collisions
as background fields [48,49], and study the evolution of
quarks and gluons in this field. Thus we could calculate
high energy jet and heavy quark modification by the early
time gluon field which could lead to improved under-
standing of jet quenching and heavy quark physics in
heavy ion collisions [1,2]. We also plan to apply the
tBLFQ formalism to electron-ion collisions [50], to study
the evolution of quarks and gluons in classical color fields.
For example, we could study diffractive processes in
electron-ion collisions using the dipole picture along with
the classical description of a high energy nucleus from
CGC, such that the dipole cross section and vector meson

light-front wave function are obtained in a unified
formalism [51]. The advantages of the tBLFQ framework
are distinctive: it is a nonperturbative, first-principles
numerical scheme; the calculation is at the amplitude level
thereby incorporating quantum interference effects; and
we can naturally extend our calculation to higher Fock
sectors as well as go beyond the Eikonal approximation.
Further improvement of tBLFQ relies on the develop-

ment of BLFQ itself. For example, progress on implement-
ing a sector-dependent renormalization scheme within the
BLFQ framework [52] allows inclusion of higher Fock
sectors in our calculation; and what is more important, a
proper renormalization scheme enables us to study various
processes involving particle production and annihilation.
For instance, we are enabled to apply tBLFQ to the lepton
pair and quarkonium production processes in ultraperiph-
eral heavy ion collision [53–55]. As computing technology
advances, we envision that tBLFQ formalism will become a
tool with increasing utility.
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APPENDIX A: CONVENTIONS

The conventions we use in this paper are summarized in
this section. Light-front coordinates are related to covariant
coordinates ðx0; x1; x2; x3Þ as follows,

x� ¼ x0 � x3; x⊥ ¼ ðx1; x2Þ; ðA1Þ

with xþ regarded as light-front time, and x− being the
longitudinal coordinate. x⊥ ¼ ðx1; x2Þ are the transverse
coordinates. Nonvanishing elements of the metric tensor
are gþ− ¼ g−þ ¼ 2 and g11 ¼ g22 ¼ −1.
The basis states in the transverse direction are the

eigenstates of the following 2D-HO Hamiltonian,

H2d
HO ¼ p2⊥

2M
þ 1

2
MΩ2x2⊥; ðA2Þ

in which M and Ω are the mass and frequency of the
oscillator. The characteristic scale of the 2D-HO depends
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only on a combination of these two parameters which we
denote as b ¼ ffiffiffiffiffiffiffiffi

MΩ
p

. The eigenstates of Eq. (A2) have two
quantum numbers, the radial excitation n, and angular
momentum projection m. The eigenenergy of a state with
quantum number n and m is En;m ¼ ð2nþ jmj þ 1ÞΩ.
The basis wave functions in polar coordinates ðρ;ϕÞ,

with x1 ¼ ρ cosϕ and x2 ¼ ρ sinϕ, are

Φb
nmðρ;ϕÞ ¼ ð−1ÞnijmjfnmðρÞχmðϕÞ; ðA3Þ

where the radial part fnmðρÞ is expressed by generalized

Laguerre polynomials, Ljmj
n ðb2ρ2Þ, as

fbnmðρÞ ¼ b
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
ðnþ jmjÞ!

s
e−b

2ρ2=2ðbρÞjmjLjmj
n ðb2ρ2Þ;

ðA4Þ
and the angular part is

χmðϕÞ ¼
1ffiffiffiffiffiffi
2π

p eimϕ: ðA5Þ

A Fourier transform of the HO coordinate space wave
functions immediately gives HOwave functions in momen-
tum space,

~Φb
nmðp⊥Þ ¼ ð2πÞ ~fbnmðpÞ~χmðϕÞ; ðA6Þ

with

~fbnmðpÞ ¼
ffiffiffi
2

p

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþ jmjÞ!

s
e−p

2=ð2b2Þ
�
p
b

�jmj
Ljmj
n

�
p2

b2

�
;

ðA7Þ
and

~χmðϕÞ ¼
1ffiffiffiffiffiffi
2π

p eimϕ: ðA8Þ

The coordinate and momentum space wave functions
Eqs. (A3) and (A6) differ only in an overall coefficient
if expressed as dimensionless parameters bρ and p=b.
The mode expansion of the fermion field operators in the

BLFQ basis is

ΨðxÞ ¼
X
ᾱ

1ffiffiffiffiffiffi
2L

p
Z

d2p⊥
ð2πÞ2 ½bᾱ

~Φnmðp⊥Þuðp; λÞe−ip·x

þ d†ᾱ ~Φ
�
nmðp⊥Þvðp; λÞeip·x�; ðA9Þ

where p · x ¼ 1
2
pþx− − p⊥ · x⊥ is the 3-product for the

spatial components of pμ and xμ. The creation operators b†ᾱ
and d†ᾱ create electrons and positrons respectively with
quantum numbers ᾱ ¼ fk; n;m; λg. They obey the anti-
commutation relations

fbᾱ; b†ᾱ0 g ¼ fdᾱ; d†ᾱ0 g ¼ δᾱᾱ0 : ðA10Þ

We use the following (chiral) spinor representation, with
helicity λ ¼ �1=2,

u

�
p;

1

2

�
¼

0
BBBBB@

1

0
ime
pþ

ðip1−p2Þ
pþ

1
CCCCCA; u

�
p;−

1

2

�
¼

0
BBBBB@

0

1
ð−ip1−p2Þ

pþ

ime
pþ

1
CCCCCA;

v

�
p;

1

2

�
¼

0
BBBBB@

0

1
ð−ip1−p2Þ

pþ

−ime
pþ

1
CCCCCA; v

�
p;−

1

2

�
¼

0
BBBBB@

1

0
−ime
pþ

ðip1−p2Þ
pþ

1
CCCCCA:

ðA11Þ

APPENDIX B: MULTISTEP
DIFFERENCING SCHEME

Various schemes have been proposed for solving Eq. (4)
numerically, for example, the Crank-Nicholson scheme,
which is unconditionally stable and accurate up to
ðP−δxþÞ2. However it is an implicit scheme which requires
matrix inversion, a nondesirable feature demanding tremen-
dous computation efforts. There is also theChebyshev scheme
which approximates the exponential function by aChebyshev
polynomial expansion, which is stable and accurate; however
the intermediate wave functions are not available.
The multistep differencing scheme is an extension of the

Euler scheme, which is stable and accurate while providing
intermediate wave functions. The second order differencing
scheme (MSD2) [41] relates the state at xþ þ δxþ to those
at xþ and xþ − δxþ via

jψ ; xþ þ δxþi ¼ jψ ; xþ − δxþi − iP−ðxþÞδxþjψ ; xþi
þOððP−δxþÞ3Þ: ðB1Þ

It is conditionally stable if jP−
maxjδxþ < 1, where P−

max is
the largest (by magnitude) eigenvalue of P− when P− is
time independent [42].
It has been shown that the higher-order multistep

differencing scheme can provide much higher accuracy
with some increase of computation efforts [42]. The fourth
order scheme MSD4,

jψ ; xþ þ 2δxþi
≈ jψ ; xþ − 2δxþi − 2iP−ðxþÞδxþ

×

�
−
1

3
jψ ; xþi þ 2

3
ðjψ ; xþ þ δxþi þ jψ ; xþ − δxþiÞ

�
þOððP−ðxþÞδxþÞ5Þ; ðB2Þ
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is accurate up to ðP−δxþÞ4 and stable if jP−
maxjδxþ < 0.4.

The sixth order scheme MSD6,

jψ ;xþ þ 3δxþi≈ jψ ;xþ− 3δxþi− 3iP−ðxþÞδxþ
�
13

10
jψ ;xþi

−
7

10
ðjψ ;xþ þ δxþiþ jψ ;xþ − δxþiÞ

þ 11

20
ðjψ ;xþ þ 2δxþiþ jψ ;xþ− 2δxþiÞ

�
þOððP−ðxþÞδxþÞ7Þ; ðB3Þ

is accurate up to ðP−δxþÞ6 and stable when
jP−

maxjδxþ < 0.1.
The accuracy of the MSD6 scheme for the calculation

performed in Sec. III can be checked by comparing the
evolution of eigenstates jBi of the Hamiltonian in Eq. (11),
i.e., P−jBi ¼ P−

BjBi, which is just a phase factor
expðiP−

BΔxþÞ. Note that we use jBi to avoid confusion
with eigenstate jβi of P−

QED. The calculations in the BLFQ
basis are tested to be accurate up to four significant figures
at xþ ¼ 50 GeV−1 by successively halving the time
increment.

APPENDIX C: QED HAMILTONIAN
IN THE BLFQ BASIS

The Hamiltonian relevant to the calculation we perform
is summarized in Eq. (11). They are fermion kinetic energy
Tf, vertex interaction between (anti) fermion and back-
ground fields W1, and instantaneous-fermion interaction
between (anti) fermion and background fields W2. Tf in
the BLFQ basis has been discussed in [22]. Here we outline
how to expressW1 andW2 algebraically in the BLFQ basis
following the convention in Appendix A.
The vertex interaction between fermion and background

fields Aμ as in Eq. (14) is

W1 ¼ e
Z

L

−L
dx−

Z
d2x⊥Ψ̄γμΨAμ

¼ e
ð2πÞ4L

X
ᾱ1;ᾱ2;kþ

Z
d2ðp⊥1 ; p⊥2 ; k⊥Þ

× ~Φ�
n2m2

ðp⊥2 Þ ~Φn1m1
ðp⊥1 Þ

× ūðp2; λ2Þγμuðp1; λ1ÞAμðxþ; kÞ
× δð2Þðp⊥2 − p⊥1 − k⊥Þδðpþ

2 jpþ
1 þ kþÞb†ᾱ2bᾱ1 ; ðC1Þ

where ᾱ1; ᾱ2 are the quantum numbers associated with the
field operators Ψ and Ψ̄ respectively. k ¼ ðkþ; k⊥Þ is the
momentum 3-vector of the background fields. We have in
the transverse direction the 2D Dirac delta function and the
Kronecker delta for the discretized longitudinal momen-
tum. The instantaneous-fermion interaction between fer-
mion and background fields Aμ as in Eq. (14) is

W2 ¼
e2

2

Z
L

−L
dx−

Z
d2x⊥Ψ̄γiAi

γþ

i∂þ γjAjΨ

¼ e2

2ð2πÞ8L2

X
ᾱ1;ᾱ2;k

þ
1
;kþ

2
;ni;mi

Z
d2ðp⊥1 ; p⊥2 ; k⊥1 ; k⊥2 Þ

× ~Φ�
n2m2

ðp⊥2 Þ ~Φnimi
ðp⊥2 − k⊥2 Þ

× ~Φ�
nimi

ðp⊥1 þ k⊥1 Þ ~Φn1m1
ðp⊥1 Þ

×
ūðp2; λ2Þγiγþγjuðp1; λ1Þ

pþ
1 þ kþ1

Aiðxþ; k2ÞAjðxþ; k1Þ

× δðpþ
2 jpþ

1 þ kþ1 þ kþ2 Þb†ᾱ2bᾱ1 ; ðC2Þ

and we have used the HO wave function representation of
the Dirac delta function in the transverse direction,

ð2πÞ2δð2Þðp⊥2 − p⊥1 Þ ¼
X
ni;mi

~Φni;mi
ðp⊥2 Þ ~Φ�

ni;mi
ðp⊥

1 Þ; ðC3Þ

so the integration with respect to p⊥1 ; p⊥2 ; k⊥1 ; k⊥2 can be
factorized. The delta function is exact only if ni and mi are
summed over all possible values. However in LFPT, W2

has a singularity and it is canceled by the second order
vertex interaction. This implies that we should regard ni
andmi as quantum numbers of an intermediate fermion line
that should be subjected to the same Nmax truncation
constraint.
We list the spinor background potential contraction for

different fermion helicities in Table I. Note that the
exponential phase factors in Eq. (14) are suppressed in
the table.

TABLE I. Spinor background field potential vector contraction
for different helicity configurations of the incoming electron
(“1”) and the outgoing electron (“2”). We define the complex
momentum as p̄ ¼ px þ ipy.

(λ2; λ1) ūðp2; λ2Þγμuðp1; λ1ÞAμðkÞ
↑↑ Zjej

ϵðe−2yðkþÞ2þk2⊥Þ
�
2e−2y þ p̄1k̄�

pþ
1
kþ þ

p̄�
1
k̄

pþ
2
kþ

�
↑↓ Zjej

ϵðe−2yðkþÞ2þk2⊥Þ
mek̄�
kþ

�
1
pþ
1

− 1
pþ
2

�
↓↑ Zjej

ϵðe−2yðkþÞ2þk2⊥Þ
mek̄
kþ

�
1
pþ
2

− 1
pþ
1

�
↓↓ Zjej

ϵðe−2yðkþÞ2þk2⊥Þ
�
2e−2y þ p̄�

1
k̄

pþ
1
kþ þ p̄1 k̄�

pþ
2
kþ

�
(λ2; λ1) ūðp2; λ2Þγiγþγjuðp1; λ1ÞAiðk2ÞAjðk1Þ
↑↑ ðZjejϵ Þ2 2k̄�

1
k̄2

ðe−2yðkþ
1
Þ2þk⊥

1
2Þðe−2yðkþ

2
Þ2þk⊥

2
2Þ

↑↓ 0

↓↑ 0

↓↓
�
Zjej
ϵ

�
2 2k̄�

1
k̄2

ðe−2yðkþ
1
Þ2þk⊥

1
2Þðe−2yðkþ

2
Þ2þk⊥

2
2Þ
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Integration over the product of more than one highly
oscillatory, 2D-HO wave function, as in Eqs. (C1) and (C2)
can be simplified by applying the Talmi-Moshinsky trans-
formation to the 2D-HO wave functions [56]. Eventually
we are dealing with integration,

Z
d2p⊥ ~Φnmðp⊥Þ 1

p⊥2 þ e−2yðpþÞ2 ; ðC4Þ

which can be calculated as a finite-term summation using a
series expansion of the Laguerre polynomials.
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