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We study the transport properties of strongly interacting matter in the context of ultrarelativistic heavy
ion collision experiments. We calculate the transport coefficients viz. shear viscosity (η) and electrical
conductivity (σel) of the quark gluon plasma phase in the presence of momentum anisotropy arising from
different expansion rates of the medium in longitudinal and transverse direction. We solve the relativistic
Boltzmann kinetic equation in relaxation time approximation to calculate the shear viscosity and electrical
conductivity. The calculation are performed within the quasiparticle model to estimate these transport
coefficients and discuss the connection between them. We also compare the electrical conductivity results
calculated from the quasiparticle model with the ideal case. We compare our results with the corresponding
results obtained in different lattice as well as model calculations.
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I. INTRODUCTION

Relativistic heavy ion collisions at the RHIC and LHC
have produced a very hot and dense pocket of nuclear
matter, known as quark gluon plasma (QGP) [1]. Many
experimental studies have been done in order to character-
ize the important properties of such matter produced under
extreme conditions of temperature and density. The trans-
port coefficients for strongly interacting matter are essential
theoretical inputs for hydrodynamic evolution that are
critical tools to analyze the heavy ion collision data
[2–4]. In relativistic hydrodynamic simulations the shear
and bulk viscosity coefficients influence various observ-
ables like the flow coefficients, the transverse momentum
distribution of produced particles. Indeed, a finite but very
small shear viscosity to entropy ratio (η=s) was necessary to
explain elliptic flow data that stimulated extensive theo-
retical studies of this ratio for strongly interacting matter.
The transport coefficient viz. shear viscosity (η), in

principle, can be estimated directly using the Kubo formu-
lation [5]. However, given that QCD is strongly coupled for
energies accessible in heavy ion collision experiments, this
task is complicated. Further, lattice simulations at finite
chemical potentials have been challenging and are limited
only to small baryon chemical potential. This has lead to
attempts to estimate shear viscosity in various effective
models [6–12] involving different approximation schemes.
These include relaxation time approximations to the
Boltzmann equation [13–18], Kubo formalism of evaluating

equilibrium correlation functions [19–25], transport simu-
lation of Boltzmann equation [6,26–28], the perturbative
QCD methods [29–36], as well as lattice methods [37,38].
Another key transport coefficient is the electrical con-

ductivity (σel) of the strongly interacting matter. This enters
in the hydrodynamic evolution of quark gluon matter where
charge relaxation also plays an important role. It is also
observed that the electrical conductivity of QGP influences
significantly the soft photon production through a realistic
hydrodynamic simulation [39] as well as in low mass
dilepton enhancement [40]. Further, it also suggested that
the electrical conductivity can be extracted from charge
dependent flow parameters from asymmetric heavy ion
collisions [41]. The longitudinal static electric conductivity
σel represents the linear response of the electrically charged
particle diffusion current density J to an applied external
electric field E, i.e., J ¼ σelE. After evaluating the induced
electric current one can calculate the proportionality
coefficient σel. Electrical conductivity can be derived from
the Green-Kubo formula and is related to the correlation
function for a system in thermal equilibrium, i.e., σel ¼
βVhJ⃗ðt ¼ 0Þ · J⃗ðt ¼ 0Þi · τ [5,42]. Experimentally, it has
been observed that very strong electric and magnetic field is
created in noncentral heavy ion collision at the RHIC and
LHC in the early stage (1–2 fm=c) of the collision [41,43].
The produced large electrical field affects the medium and
its effect depends on the σel of the medium. Electrical
conductivity is responsible for the production of electric
current in the early stage of the collision. It is of
fundamental importance for the strength of chiral magnetic
effect [44], a signature of CP violation of the strong
interaction. Recently, electric conductivity has been studied
by different groups [30,31,45–57]. It is related to the
soft dilepton production rate [58] and the magnetic field
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diffusion in the medium [59,60]. σel helps us to compare
the effective cross sections of a medium’s constituents
among several theories, including lattice gauge theory
[45–51,61,62], transport models [52,53], and Dyson-
Schwinger calculations [63]. It can also be computed on
the lattice from the correlation function. Thus, the study of
transport coefficients is of great interest to measure the
properties of strongly interacting matter.
One of the important observations of HICs is that the

parton system generated at the early stage of the collisions
has a strong anisotropy in momentum space due to the
different expanding rate of the longitudinal and transverse
directions [64]. In HICs the longitudinal expansion is much
faster than the transverse expansion, which causes the
medium to become much colder in the longitudinal
direction than the transverse direction, i.e., k⊥≫kz∼1=τ
and a local momentum anisotropy appears [65]. Anisotropy
causes the parton system produced to be unstable with
respect to the chromomagnetic plasma modes [64] that
facilitate one to isotropize the system [66,67].
In recent years the study of anisotropic plasma has

received much interest due to the fact that the QGP, which
has a local momentum-space anisotropy, is subject to the
chromo-Weibel instability [64,66,68–86]. The effects of
these instabilities are not very clear, but they are very
important for the QGP evolution at the RHIC or LHC. In
recent years, the effect of anisotropy has also been studied
to investigate the properties of quarkonium states [87–93].
It will be interesting to study its effects on the properties
of the QGP system. Thus, it is important to include the
momentum-space anisotropic effects in the calculation of
transport coefficients.
In this context the ratio ðη=sÞ=ðσel=TÞ has gained

attention recently in the heavy ion phenomenology [54].
It is quite natural to expect that QGP is a good conductor
due to deconfinement of the color charges. But a small
value of the ratio η=s indicates large scattering rates that can
largely damp the conductivity especially due to chargeless
gluons. Our main purpose in this work is to estimate the
ratio ðη=sÞ=ðσel=TÞ for the isotropic as well as anisotropic
QGP phase by solving a Boltzmann kinetic equation in
relaxation time approximation (RTA). We use the quasi-
particle model [94–97], which provides a reasonable trans-
port and thermodynamical behavior of the QGP phase.
We organize the paper as follows. In Sec. II, we calculate

the shear viscosity and entropy density in anisotropic
medium using the relativistic kinetic theory. In Sec. III,
we calculate the electrical conductivity in the anisotropic
QGP medium using the Boltzmann equation in RTA. In
Sec. IV, we discuss the distribution function in the quasi-
particle as well as in the ideal case. Finally, in Sec. V we
discuss our results regarding shear viscosity, entropy
density, and electrical conductivity. We compare our results
with the lattice as well as other phenomenological calcu-
lations and give the conclusion drawn from our work.

II. SHEAR VISCOSITY AND ENTROPY DENSITY

The relativistic Boltzmann transport (RBT) equation
has been used to calculate the shear viscosity and entropy
density. The Boltzmann transport equation for a single
particle distribution function fðx; kÞ can be written as [98]

kμ∂μfðx; kÞ ¼ C½f�; ð1Þ

where C½f� is a collision term. Shear viscosity, η, is
admissible when the equilibrium distribution f0 varies in
space and the velocity gradient is nonzero (∂iui ≠ 0). The
stress energy tensor (Tμν) is shifted by a small amount that
is proportional to this velocity gradient.

ΔTμν ¼ Tμν − Tμν
ð0Þ; ð2Þ

where Tμν
ð0Þ is the energy-momentum tensor for the system

in local equilibrium [99].

Tμν
ð0Þ ¼

Z
d3k

ð2πÞ3Ek
μkνfgff0ðx;kÞþgff̄0ðx;kÞþgbb0ðx;kÞg;

ð3Þ

and Tμν is

Tμν ¼
Z

d3k
ð2πÞ3Ekμkνfgffðx; kÞ þ gff̄ðx; kÞ þ gbbðx; kÞg;

ð4Þ

here fðx; kÞðf̄ðx; kÞ) and bðx; kÞ are the distribution func-
tions for quarks (antiquarks) and gluons. gf and gb are the
degeneracy factors for quarks and gluons. Therefore, ΔTμν

becomes

ΔTμν¼
Z

d3k
ð2πÞ3Ek

μkνfgfδfðx;kÞþgf̄δf̄ðx;kÞþgbδbðx;kÞg:

ð5Þ

In relaxation time approximation, C½f� in Eq. (1) can be
written as

C½f� ¼ −
kμuμ
τf

ðf − f0Þ; ð6Þ

where f0 is the equilibrium distribution function for quarks.
Assuming that the distribution function (f) is not very far
from its equilibrium distribution (f0). Thus, f can be taken
as f ¼ f0 þ δf and in this approximation Eq. (1) becomes

kμ∂μfðx; kÞ ¼ −
kμuμ
τf

δf: ð7Þ
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Similarly, for antiquarks and gluons having equilibrium
distribution functions, f̄0 and b0, Eq. (1) can be written as

kμ∂μf̄ðx; kÞ ¼ −
kμuμ
τf̄

δf̄; ð8Þ

kμ∂μbðx; kÞ ¼ −
kμuμ
τb

δb: ð9Þ

Inserting δf; δf̄, and δb from Eqs. (7)–(9) into Eq. (5),
we get

ΔTμν ¼ −
Z

d3k
ð2πÞ3E

kμkν

k:u
fgfτfkα∂αfðx; kÞ

þ gfτf̄k
α∂αf̄ðx; kÞ þ gbτbkα∂αbðx; kÞg; ð10Þ

where τfðτf̄Þ and τb are the relaxation time for quarks
(antiquarks) and gluons, respectively. Momentum density,
T0i, is small in a local Lorentz frame and the space-space
component of energy momentum tensor ΔTij depends
linearly on the gradients of local three velocity as [99]

ΔTij ¼
Z

d3k
ð2πÞ3Ekikj

1

T

�
fgfτff0ð1 − f0Þ þ gfτf̄ f̄

0ð1 − f̄0Þ

þ gbτbb0ð1þ b0Þg
��

E

�∂k
∂ϵ

�
n
− k2=3E

�
∂lul −

kkkl

2E
Wkl

�

þ fgfτff0ð1 − f0Þ − gf̄τf̄ f̄
0ð1 − f̄0Þg ×

�∂k
∂n

�
ϵ

∂lul
�
; ð11Þ

where ε and n are the energy density and number density.
The shear η and bulk ζ viscosities (we do not discuss the
bulk viscosity, ζ) are defined as

ΔTij ¼ −ζδij∂kuk − ηWij; ð12Þ

where

Wij ¼ ∂iuj þ ∂jui −
2

3
δij∂kuk: ð13Þ

We can calculate the proportionality constant, η, at
zero chemical potential using Eq. (12) for the isotropic
medium as

ηiso ¼
1

15T

Z
d3k
ð2πÞ3

k4

E2
f2gfτff0ð1−f0Þþgbτbb0ð1þb0Þg;

ð14Þ

where the equilibrium distribution functions for quark, f0,
and gluon, b0, at μ ¼ 0 can be written as

f0ðx;k;TÞ ¼ 1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2þm2Þ

p
=T þ 1

; ð15Þ

and

b0ðx;k;TÞ ¼ 1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2þm2Þ

p
=T − 1

: ð16Þ

At finite chemical potential (μ ≠ 0), the distribution func-
tion is different for quarks and antiquarks.

f0ðf̄0Þ ¼ 1

eðE�μÞ=T þ 1
; ð17Þ

where E2 ¼ k2 þm2 and the −ðþÞ sign is for quarks
(antiquarks).
Shear viscosity at μ ≠ 0,

ηiso ¼
1

15T

Z
d3k
ð2πÞ3

k4

E2
fgfτff0ð1 − f0Þ þ gf̄τf̄ f̄

0ð1 − f̄0Þ

þ gbτbb0ð1þ b0Þg: ð18Þ

As we discussed earlier we are considering the anisotropic
QGP medium for our calculation. The hot QCD plasma
due to expansion and nonzero viscosity exhibits a local
anisotropy in momentum space that is given by [64]

~k2 ¼ k2 þ ξðk:n̂Þ2; ð19Þ

where ξ is the anisotropic parameter and generically
defined as follows [64]:

ξ ¼ hk2
Ti

2hk2Li
− 1; ð20Þ

where kL and kT are the components of momentum parallel
and perpendicular to the direction of anisotropy, n, respec-
tively. The distribution function of quarks in an anisotropic
system takes the following form at μ ¼ 0,

fanisoðx;k;TÞ ¼
1

eð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þξðk:nÞ2þm2

p
Þ=T þ 1

; ð21Þ
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and the distribution function for the gluon in anisotropic
medium can be written as

banisoðx;k;TÞ ¼
1

eð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þξðk:nÞ2þm2

p
Þ=T − 1

: ð22Þ

For small ξ limit (ξ < 1), Eqs. (21) and (22) can be
expanded as

fanisoðx;k;TÞ ¼ f0 −
ξ

2EfT
eEf=Tf02ðk · nÞ2; ð23Þ

and

banisoðx;k;TÞ ¼ b0 −
ξ

2EbT
eEb=Tb02ðk · nÞ2; ð24Þ

where k · n ¼ k sin θ sinϕ sin αþ k cos θ cos α. α is the
angle between n and the z axis.
Nonequilibrium corrections can be computed by expand-

ing the distribution function around equilibrium [98]. For
the anisotropic distribution function, Eq. (21), the expres-
sion for shear viscosity, η, becomes

ηaniso ¼
gfτf
15Tπ2

Z
dk

k6

E2
f

ff0ð1 − f0Þg þ gbτb
30Tπ2

Z
dk

k6

E2
b

fb0ð1þ b0Þg

−
gfτf
45Tπ2

ξ

Z
dk

k8

E2
f

�
f0ð1 − f0Þ 1

2EfT
−
ðf0Þ2
EfT

�
−

gbτb
90Tπ2

ξ

Z
dk

k8

E2
b

�
b0ð1þ b0Þ 1

2EbT
þ ðb0Þ2

EbT

�
ð25Þ

and at finite chemical potential (μ ≠ 0)

ηaniso ¼
1

30Tπ2

Z
dk

k6

E2
f

fgfτff0ð1 − f0Þ þ gf̄τf̄ f̄
0ð1 − f̄0g þ gbτb

30Tπ2

Z
dk

k6

E2
b

fb0ð1þ b0Þg

−
1

90Tπ2
ξ

Z
dk

k8

E2
f

�
gfτf

�
f0ð1 − f0Þ 1

2EfT
−
ðf0Þ2
EfT

�
þ gf̄τf̄

�
f̄0ð1 − f̄0Þ 1

2EfT
−
ðf̄0Þ2
EfT

��

−
gbτb
90Tπ2

ξ

Z
dk

k8

E2
b

�
b0ð1þ b0Þ 1

2EbT
þ ðb0Þ2

EbT

�
: ð26Þ

In kinetic theory, the entropy density for isotropic medium at μ ¼ 0 can be written as [99]

siso ¼ −
gf
π2

Z
k2dkfð1 − f0Þ logð1 − f0Þ þ f0 log f0g þ gb

2π2

Z
k2dkfð1þ b0Þ logð1þ b0Þ − b0 log b0g; ð27Þ

and at μ ≠ 0

siso ¼ −
gf
2π2

Z
k2dkð1 − f0Þ logð1 − f0Þ þ f0 log f0 þ ðf0 → f̄0Þ þ gb

2π2

Z
k2dkð1þ b0Þ logð1þ b0Þ − b0 log b0: ð28Þ

For the anisotropic medium at μ ¼ 0 we get

saniso ¼ −
gf
π2

Z
k2dkfð1 − f0Þ logð1 − f0Þ þ f0 log f0g þ gb

2π2

Z
k2dkfð1þ b0Þ logð1þ b0Þ − b0 log b0g

− ξ
gf

6π2EfT

Z
k4dkf0ð1 − f0Þ log ð1 − f0Þ

f0
− ξ

gb
12π2EbT

Z
k4dkb0ð1þ b0Þ log ð1þ b0Þ

b0
ð29Þ

and at μ ≠ 0 as

saniso ¼ −
gf
2π2

Z
k2dkfð1 − f0Þ logð1 − f0Þ þ f0 log f0g þ ðf0 → f̄0Þ þ gb

2π2

Z
k2dkfð1þ b0Þ logð1þ b0Þ − b0 log b0g

− ξ
gf

6π2EfT

Z
k4dkf0ð1 − f0Þ log ð1 − f0Þ

f0
þ ξðf0 → f̄0Þ − ξ

gb
12π2EbT

Z
k4dkb0ð1þ b0Þ log ð1þ b0Þ

b0
: ð30Þ
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III. ELECTRICAL CONDUCTIVITY

The electric conductivity (σel) represents the response of
the system to an applied electric field. According to Ohm’s
law σel can be written as

J ¼ σelE; ð31Þ

where the proportionality coefficient σel is the electrical
conductivity. We start our calculation from the four current
(Jμ),

Jμ ¼
Z

d3k
ð2πÞ3Ekμfqgffðx; kÞ − q̄gf̄f̄ðx; kÞg; ð32Þ

where q and q̄ are the charge for quarks and antiquarks.
For the case when the chemical potential is zero (μ ¼ 0),
Eq. (32) takes the following form:

Jμ ¼ 2qfgf

Z
d3k

ð2πÞ3Ekμfðx; kÞ: ð33Þ

In the presence of some external disturbance, Jμ ¼
Jμ0 þ ΔJμ, where

ΔJμ ¼ 2qfgf

Z
d3k

ð2πÞ3Ekμδfðx; kÞ: ð34Þ

One can obtain the δfðx; kÞ by using the RBT equation as
given in Sec. II. In the presence of the external field that is
not directly related with the momentum, the RBT equation
can be written in RTA as follows [100,101],

kμ∂μfðx; kÞ þ qFαβkβ
∂
∂kα fðx; kÞ ¼ −

kμuμ
τ

δf; ð35Þ

where Fαβ is the electromagnetic field strength tensor. As
we are only interested in the electric field components of
the field strength tensor (Fαβ), we take only F0i ¼ −E and
Fi0 ¼ E. Thus, the RBT equation [Eq. (35)] becomes

q

�
k0E ·

∂f0
∂k þE · k

∂f0
∂k0

�
¼ −

k0

τ
δf: ð36Þ

After solving Eq. (36) for the anisotropic distribution
function, faniso [Eq. (21)], and substituting δf in
Eq. (34), we obtain the expression for σel as

σanisoel ðμq ¼ 0Þ ¼ 1

3π2T

X
f

gfq2f

Z
dk

k4

E2
f

τff0ð1 − f0Þ þ ξ
1

6π2T

X
f

gfq2f

Z
dk

k4

E2
f

τff0ð1 − f0Þ

− ξ
1

18π2T

X
f

gfq2f

Z
dk

k6

E2
f

τf

�
f0ð1 − f0Þ

�
1

E2
f

þ 1

EfT

�
−

2

EfT
ðf0Þ2

�
: ð37Þ

For ξ ¼ 0, the above expression reduces to

σisoel ¼ 1

3π2T

X
f

gfq2f

Z
dk

k4

E2
f

τff0ð1 − f0Þ: ð38Þ

The electrical conductivity for μqðq̄Þ ≠ 0,

σanisoel ðμqðq̄Þ ≠ 0Þ ¼ 1

6π2T

X
f

gfq2f

Z
dk

k4

E2
f

½τff0ð1− f0Þ þ τf̄ f̄
0ð1− f̄0Þ�

þ ξ
1

12π2T

X
f

gfq2f

Z
dk

k4

E2
f

½τff0ð1− f0Þ þ τf̄ f̄
0ð1− f̄0Þ�

− ξ
1

36π2T

X
f

gfq2f

Z
dk

k6

E2
f

τf

�
½τff0ð1− f0Þ þ τf̄ f̄

0ð1− f̄0Þ�
�

1

E2
f

þ 1

EfT

�
−

2

EfT
ðf0Þ2 − 2

EfT
ðf̄0Þ2

�
:

ð39Þ

For ξ ¼ 0, the above expression reduces to

σisoel ðμq ≠ 0Þ ¼ 1

6π2T

X
f

gfq2f

Z
dk

k4

E2
f

½τff0ð1 − f0Þ þ τf̄ f̄
0ð1 − f̄0Þ�: ð40Þ
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IV. QUASIPARTICLE MODEL

A. Effective masses and relaxation times

In the quasiparticle model, all the quarks (antiquarks)
have both the thermal mth and the bare mass mi0 and hence
the total effective mass can be written as [94–96]

m2
i ¼ m2

i0 þ
ffiffiffi
2

p
mi0mth;i þm2

th;i: ð41Þ

The thermal mass, mth, which arises due to the interaction
of quarks (antiquarks) with the constituents of the medium,
can be expressed as [94,97,102]

m2
th;i ¼

g2ðTÞT2

6

�
1þ μ2i

π2T2

�
; ð42Þ

where g2 is the QCD running coupling constant up to two-
loop order that is dependent on both the temperature (T)
and chemical potential (μ) [103,104],

αSðTÞ ¼
g2ðTÞ
4π

¼ 6π

ð33 − 2NfÞ ln
	

T
ΛT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a μ2q

T2

q 


×

0
B@1 −

3ð153 − 19NfÞ
ð33 − 2NfÞ2

ln
	
2 ln T

ΛT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a μ2q

T2

q 


ln
	

T
ΛT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a μ2q

T2

q 

1
CA;

ð43Þ

where ΛT is the QCD scale parameter and the parameter a
is equal to 1

π2
.

The τf is the relaxation time for quarks, antiquarks, and
gluons [Eqs. (38) and (37)] that can be calculated by using
the following expressions in Ref. [99] for the massless case:

τqðq̄Þ ¼
1

5.1Tα2s logð 1αsÞð1þ 0.12ð2Nf þ 1ÞÞ ; ð44Þ

τg ¼
1

22.5Tα2s logð 1αsÞð1þ 0.06NfÞ
: ð45Þ

Note that we have used the relaxation time for the massless
case for simplicity. Our results do not change much for
the massive particles case as well. Further, as shown in
Ref. [105], it is clear that the effect of the massive quark is
small in the estimation of the scattering cross sections.
Thus, it results in a negligible effect on the relaxation time
estimation. Here the results for the dissipative coefficients
remain qualitatively unchanged.
In the ideal case, partons are treated as particles having

rest mass only and interact weakly. Thus, the distribution

function of the ideal case contains only the rest mass term
while the distribution function of the quasiparticle model
(QPM) contains the rest as well as thermal mass [Eq. (41)].
Here we take the rest mass of the quarks, m0 ¼ 8 MeV, for
two light quarks u and d and m0 ¼ 80 MeV for the strange
quark [95].

V. RESULTS AND DISCUSSIONS

In Fig. 1, we have shown the variation of the ratio of
electrical conductivity to temperature (σel=T) with respect
to T=Tc at zero chemical potential for both the anisotropic
[Eq. (37)] and isotropic [Eq. (38)] medium. Here we take
Tc ¼ 180 MeV as the critical temperature corresponding to
the quark-hadron phase transition. We found that σisoel =T
increases monotonically with an increase in temperature.
This shows that near the critical temperature, the system is
electrically less conductive than at the higher temperatures.
The QCD plasma becomes opaque to transport any
electrical charge at the time of phase transition. In the
case of anisotropic plasma, we have observed that as the ξ
increases from 0.0 to 0.6, the σanisoel =T increases for all the
values of temperature. This suggests that momentum
anisotropy causes the system to behave electrically more
conductively. We have compared our model results with the
corresponding dynamical quasiparticle model (DQPM)
results (green points) [52] as well as with the data points
from various lattice calculations [45,46,48,51]. From Fig. 1
we found that DQPM results overestimate the value of
σel=T as compared to our model results and lattice results.
Since the lattice results are distributed over a wide range,
we cannot say the exact status of any model.

cT/T
1 2 3 4 5 6

/T
elσ

3−10

2−10

1−10

/T
iso

σ
 =0.2)ξ/T (

aniso
σ

 =0.4)ξ/T (
aniso

σ
 =0.6)ξ/T (

aniso
σ
DQPM, PRL110, Cassing et al.

Lattice Data, PRL 111, Amato et al.
Lattice Data, PoS 185, Ding et al.
Lattice Data, PRL 99, Aarts et al.
Lattice Data, PoS 186, Brandt et al.
Lattice Data, PLB 597, S. Gupta

FIG. 1. Variation of σel=T with respect to T=Tc for isotropic
(solid line) and anisotropic QGP (i.e., ξ ¼ 0.2, 0.4, 0.6 etc) in the
present calculation. Comparison with a different lattice result is
also shown.
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Figure 2 demonstrates the comparison between the ideal
case and quasiparticle model for both the isotropic and
anisotropic medium. We found that σaniso=T is more with
the ideal case calculation as compared to the quasiparticle
model calculation and the ratio increases with the
anisotropy. This gives the possible hint to the role of
thermal mass in the electrical conductivity of QCD plasma.
Figure 3 shows the variation of s=T3 with respect to

T=Tc at zero chemical potential. The solid lines represent
the QPM results for the isotropic case and the dashed line

represents the anisotropic case. The data points in the figure
are the lattice results taken from [106]. As shown in Fig. 3
there is a smooth rise in entropy density in the vicinity of
critical temperature Tc that supports a crossover type of
phase transition. The increase in entropy is more in the
presence of anisotropy. Here we have taken the anisotropic
parameter, ξ ¼ 0.4. The plot suggests that the momentum
anisotropy generates additional entropy in the system.
Shear viscosity is an important quantity to quantify the

properties of QCD plasma. In isotropic plasma, shear
viscosity has only one contribution, which comes from
the collisional mode. However, in anisotropic QGP,
anomalous viscosity also arises due to momentum-space
anisotropy along with collisional viscosity. The total
viscosity of any system is dominated by the contribution
that has a lower value. This anomalous viscosity may give
the medium the character of a nearly perfect fluid even at
moderately weak coupling. In Fig. 4 we have shown the
variation of shear viscosity to entropy density ratio, η=s,
with T=Tc at zero chemical potential. From the figure we
found that the η=s ratio first decreases and then increases
monotonically with the increase in temperature. The η=s
ratio decreases in the presence of anisotropy (dashed line)
and keeps the same pattern as in the ξ ¼ 0 (solid line) case.
Our results are in agreement with a few of the lattice results,
which show large uncertainties. From Fig. 4, it is clear that
the collisional viscosity is high in comparison to anomalous
viscosity generated due to momentum-space anisotropy.
Consequently, it is actually the anomalous viscosity that
makes the system behave as a perfect fluid and thus
suggests that QCD plasma may not be very strongly
interacting [107].
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FIG. 4. Variation of shear viscosity to entropy ratio, η=s, with
respect to T=Tc for isotropic (solid line) and anisotropic (dashed
line) QGP in the present calculation. Different lattice data results
are shown by various symbols.
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FIG. 2. Variation of σel=T with respect to T=Tc for anisotropic
QGP (ξ ¼ 0.4) in the quasiparticle model (quarks having thermal
mass) and ideal case (no thermal mass for quarks). Different data
points from the lattice are the same as in Fig. 1.
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FIG. 3. Entropy density normalized by T3 with respect to T=Tc
for isotropic (solid line) and anisotropic (dashed line) QGP in
the present calculation. Symbols represent the lattice data taken
from [106].

SHEAR VISCOSITY η TO ELECTRICAL … PHYSICAL REVIEW D 95, 096009 (2017)

096009-7



Figure 5 shows the variation of ðη=sÞ=ðσel=TÞ with
respect to T=Tc at μ ¼ 0. The solid lines represent
ðη=sÞ=ðσel=TÞ for the isotropic case and the dashed line
represents the anisotropic case. We have compared our
quasiparticle model results with the interpolated lattice
results taken from Ref. [54]. We found that ðη=sÞ=ðσel=TÞ
starts from a large value near T ¼ Tc and then decreases
sharply with temperature and remains almost constant at
higher temperatures. This suggests that gluonic contribu-
tion in the total scattering cross section is large near Tc in
comparison to the quark contribution and as the system
departs from the phase transition point the contribution
from quarks increases and starts to play a role. The ratio
ðη=sÞ=ðσel=TÞ decreases in the presence of anisotropy in
the entire temperature range. As we know η=s is effected
by the contribution from gluon-gluon scattering and quark-
quark scattering while σel=T is effected only via quark-
quark scattering. Thus if ðη=sÞ=ðσel=TÞ decreases due to
anisotropy, it means that anisotropy causes either a reduc-
tion in the contribution from the gluonic sector or an
enhancement in the contribution from the quark sector.
Figure 6 shows the variation of σel=T with respect to

T=Tc at finite quark chemical potential, i.e., μ ¼ 0, 200,
and 300 MeV for both isotropic (ξ ¼ 0) and anisotropic
(ξ ¼ 0.4) cases. From the figure we observe that the finite
μ effect is significantly large at lower temperatures as
compared to higher temperatures. The value of σel=T is
large at finite μ as compared to zero chemical potential
and its value increases with increase in the value of μ.
This significant effect at lower temperatures is due to a
sizable change in distribution function of quarks at these
temperatures since the ratio μ=T is significant and as the

temperature increases μ=T becomes small and therefore the
role of finite chemical potential diminishes on the distri-
bution function as well as on the electrical conductivity.
Note that we have presumed a weak dependence of

relaxation time on μ and have taken τqðq̄Þ as given in
Eq. (45). The μ dependence on transport coefficients arises
solely from the μ dependence of the distribution functions.
In Fig. 7 we have shown the variation of η=s with respect to
T=Tc at finite μ (viz., 0,200, and 300 MeV) for ξ ¼ 0 and
ξ ¼ 0.4. Similar to μ ¼ 0 case (Fig. 4), we found that the
η=s ratio first decreases and then increases monotonically
with the increase in temperature at finite μ. The ratio η=s
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FIG. 7. Variation of shear viscosity to entropy ratio, η=s, with
respect to T=Tc at finite μ for ξ ¼ 0 and ξ ¼ 0.4.
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FIG. 5. Shear viscosity η=s to electrical conductivity σel=T ratio
with respect to T=Tc for isotropic (solid line) and anisotropic
(dashed line) QGP in the present calculation. Interpolated lattice
results are taken from [54].
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increases with the increase in the value of chemical
potential. However, the effect of finite μ is much less at
high temperature (above 4Tc). Figure 8 represents the effect
of finite chemical potential on the ðη=sÞ=ðσel=TÞ ratio. We
found that the ratio decreases with the increase in chemical
potential. The effect of finite μ is more pronounced at lower
temperature as compared to higher temperature.

VI. SUMMARY

In summary, we have studied the transport coefficients,
viz., shear viscosity (η), electrical conductivity (σel), and
thermodynamic quantity entropy density (s) of the QGP
phase in the presence of momentum anisotropy and
discussed the connection between them. The relativistic
Boltzmann kinetic equation has been solved in RTA to
calculate the η and σel for the QGP phase. First we revisited
the expression for shear viscosity for the isotropic medium
and then derived it for the anisotropic medium by intro-
ducing the momentum anisotropy in the distribution

functions of quarks, antiquarks, and gluons. Similarly,
we have calculated the entropy density and electrical
conductivity for the anisotropic medium. We have shown
the variation of σel=T with respect to T=Tc for both the
isotropic and anisotropic medium. We found that the
conductivity increases with the increase in anisotropic
parameter ξ.
Further, we have shown the difference arising in trans-

port properties of QCD plasmas due to two different
equations of state derived from the quasiparticle model
and ideal case, respectively. We have shown the variation
of entropy density with T=Tc and found a smooth rise in
entropy density in the vicinity of Tc that increases in the
presence of momentum anisotropy. Therefore, we can say
that anisotropy generates additional entropy in the system.
We have also shown the effect of anisotropy on η=s ratio
(Fig. 4) and found that it decreases with increase in
anisotropy. From this result one may infer that anomalous
viscosity that arises due to momentum anisotropy makes
the system behave as a perfect fluid. Our results are in
agreement with a few of the lattice results, which show
large uncertainties. We have discussed the variation of
ðη=sÞ=ðσel=TÞ with respect to T=Tc. We found that quark
contribution in the total scattering cross section is less
near Tc in comparison to gluon contribution and at higher
temperature quark contribution increases and plays a
significant role. The presence of anisotropy results in a
decrease in the ratio ðη=sÞ=ðσel=TÞ in the entire temperature
range and thus provides a hint regarding the change in the
contribution of the gluonic sector.
Finally, we have shown the effect of finite chemical

potential, i.e., μ ¼ 200 and 300 MeV on σel=T, η=s, and
ðη=sÞ=ðσel=TÞ for both the isotropic and anisotropic cases.
Within the quasiparticle approximations the transport
coefficients turn out to be larger at finite μ as compared
to their value at vanishing chemical potential. The finite μ
effect is more significant at lower temperature as compared
to higher temperature due to the sizable change in the
distribution function at lower temperature as compared to
higher temperature.
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