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We demonstrate the existence of various nonlinear waves along open vortex filaments in the
nonrelativistic Abelian Higgs model. These include nonlinear waves, which give the birth and death
of helical filaments, as well breathers, which modify the amplitude of helical filaments periodically in time.
Importantly, we demonstrate that some of the dynamics are quite particular to the equation of motion for
vortex filaments under the nonrelativistic Abelian Higgs model, giving rise to vortex filament solutions not
possible under the hydrodynamic vortex filament equation of motion (the local induction approximation) or
generalizations used to study the dynamics of quantized vortex filaments in He4.
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I. INTRODUCTION

Vortex solutions appear in a wide variety of field-
theoretic models, with applications including quantized
vortex filaments in He4 [1], Abrikosov lines in type-II
superconductors [2], vortices in Bose-Einstein condensates
[3], and cosmic strings [4]. Regarding the latter application,
a relativistic form of the Abelian Higgs model which results
in Nambu-Goto action [5] gives one model with which to
study cosmic string dynamics [6]. Another interesting case
is that of the nonrelativistic Abelian Higgs model, which
also permits vortex filament solutions [7].
Under the nonrelativistic Abelian Higgs model, the

equation of motion under the assumption of negligible
dissipation was considered in Ref. [7]. Later, this was
generalized to account for the situation in which the gauge
field is coupled to the asymmetric background of chiral
fermions, in both static [8] and dynamic (time-dependent)
[9] cases. The resulting equations of motion can be seen as
one possible generalization of the Betchov-Da Rios equa-
tions [often referred to as the local induction approximation
(LIA)] governing the self-induced motion of a thin vortex
filament in hydrodynamics and in particular differ from the
generalization used in the study of He4 which involves
mutual friction with a normal fluid flow [10]. While much
effort has been spent on understanding vortex filament
dynamics in hydrodynamics under the LIA and also for the
generalizations to He4, there are relatively few solutions
studied under models such as the nonrelativistic Abelian
Higgs model. It is known that in certain limits, helix
solutions are possible [8], while in a fairly restrictive limit,
the equation of motion is equivalent to the LIA [9] (with
helices, rings, and line filaments among those solutions
possible).

In the present paper, we demonstrate the existence of
more general helixlike vortex filament solutions which
depend nonlinearly on time. These include a family of
solutions which asymptotically behaves like a line filament
for time tending to �∞ yet a helix for finite time. This
solution allows for a helical filament to come into exist-
ence, amplify, and then eventually decay to a line filament.
Another interesting solution is a breather filament, which
takes the form of a helical filament which has a periodic
amplitude in time. Such a solution exhibits the creation and
destruction of a helical filament in finite time. We compare
these solutions to solutions obtained for similar equations
of motion governing vortex filament motion in He4,
demonstrating that some of these solutions differ from
known solutions under LIA and generalizations to He4.

II. VORTEX DYNAMICS UNDER THE
NONRELATIVISTIC ABELIAN HIGGS MODEL

We briefly review the derivation in Refs. [7,9]. The
action of the nonrelativistic Abelian Higgs model which
incorporates gauge vortices can be given in terms of the
Lagrangian density acting on the scalar field ψ given by [9]

L ¼ 1
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where Aμ ¼ ðφ;AÞ is the 4-vector gauge potential; ∂τ is the
time partial derivative; q and m are the charge and mass of
particles forming the condensate of the scalar field ψ ; n0 is
the density of the scalar field condensation; ρ0 is the
homogeneous positive charge density, selected to give net*Robert.VanGorder@maths.ox.ac.uk
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neutrality of the system (ρ0 þ qn0 ¼ 0); g is a coupling
constant; ℏ is the reduced Planck constant; and c is the
speed of light.
Before going on, a comment about how this Lagrangian

was derived is in order, since we do not reproduce a
derivation here. This Lagrangian was developed in Ref. [7]
to study the dynamics of the curved line defects based on
field-theoretic models and to scrutinize the role of the
excitations of the gauge and scalar fields exchanged
between the different segments of the vortex. Local (gauge)
vortex equations of motion were obtained from the effec-
tive action of the Abelian Higgs model at zero temperature.
The same task is performed for the global vortex by taking
the limit of the vanishing gauge coupling constant. This
framework includes the background contribution, which is
essential for the static situation, in addition to the excita-
tions. A fully three-dimensional geometry is considered.
The expressions for the transverse Magnus-like force and
the effective masses of the local and global vortices are
obtained.
The vortex is represented as the curve of singular phase

χs of the scalar field ψ ¼ ffiffiffiffiffi
n0

p
exp ðiχsÞ which forms the

spatially homogeneous condensate of the density n0 every-
where except for the vortex core, where it goes to zero at the
transverse distances of the order of the healing (or corre-
lation) length ξ. With this, the vector aμ ¼ ða0; aÞ ¼
− ℏc

q ∂μχs is the 4-gradient of the singular phase,

½∇ ×∇�χs ¼ 2π

Z
dσX0δð3Þðx −XÞ; ð2Þ

serving as the source of the gauge vortex with the unit flux
quantum of which the space-time location is given by the
vector X. Taking Xðτ; σÞ to denote the vortex filament
curve (σ is the arclength along the curve, while τ denotes
time), we may obtain [9] the components of aμ (in the
gauge ∇a ¼ 0),

a0 ¼
ℏ
2q

I
l

ðXτðτ; σÞ ×Xσðτ; σÞÞ · ðxðτ; σ̂Þ −Xðτ; σÞÞ
jxðτ; σ̂Þ −Xðτ; σÞj3 dσ̂;

ð3Þ

a ¼ ℏc
2q

I
l

Xσðτ; σÞ × ðxðτ; σ̂Þ −Xðτ; σÞÞ
jxðτ; σ̂Þ −Xðτ; σÞj3 dσ̂: ð4Þ

The equation of motion of the gauge vortex filament
resulting from the Lagrangian density given in (1) is shown
to be [7,9]
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r
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are the London penetration depth, the velocity of sound,
and the healing length (the characteristic size of the vortex
core), respectively; μf is the chemical potential; and the
intermediate scale λs ¼ λLcs=c ≪ λL. It was pointed out
[8] that in the limit T0 ¼ 0 and ~μ ≠ 0 a nontrivial static
solution is found in the form of a helical filament. Note also
that in the limit T0 ¼ 0 and ~μ ¼ 0 one would have
recovered Xt ¼ γκb (where κ is the curvature and b is
the binormal vector), which is the LIA for the self-induced
motion of vortex filaments.
Usually, while deriving the equation of motion for the

center line of the vortex from the dynamics of an under-
lying field, one assumes that the radius of curvature of the
filament curve is much larger than the core size, as
previously discussed for hydrodynamic fields and vortex
filaments [11–14]. Mathematically, the filament curve
described by Xðτ; σÞ should therefore be of sufficient
bounded variation. That is to say, the filament should
not change too rapidly over space [15]. In the purely helical
case, this means that the product of amplitude and wave
number, Ak, should be sufficiently bounded. Otherwise, for
large Ak, the assumptions in the local approximation break
down. For a discussion of the breakdown for rapidly
varying vortex filaments via a comparison with local
(LIA) and nonlocal (Biot-Savart) models, see Ref. [16].

A. Nondimensional vortex filament equation

Since we shall be interested in the T0 > 0, ~μ > 0 regime,
let us introduce the nondimensionalization

Xðτ; σÞ ¼ r0rðt; sÞ; ð8Þ

where

r0 ¼
ffiffiffiffiffiffiffiffi
γT0

p
; s ¼ s0σ ¼

ffiffiffiffiffi
c0
~μ

r
σ; t ¼ t0τ ¼

ffiffiffiffiffi
c30
~μ

s
τ;

ð9Þ

which puts Eq. (5) into the form of the vector nonlinear
wave equation

rtt − rss þ rt × rs þ rs × rsss ¼ 0: ð10Þ
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This form of the vortex filament equation will make the
following analysis more tractable.

B. Scalar PDE system

Note that a solution rðt; sÞ to Eq. (10) can be written in
terms of three real-valued functions,

rðt; sÞ ¼ ½Φðt; sÞ; Yðt; sÞ; Zðt; sÞ�T: ð11Þ
Placing this into Eq. (10), we obtain the partial differential
equation (PDE) system

Φtt −Φss þ YtZs − YsZt þ YsZsss − YsssZs ¼ 0; ð12Þ

Ytt − Yss þΦsZt −ΦtZs þΦsssZs −ΦsZsss ¼ 0; ð13Þ

Ztt − Zss −ΦsYt þΦtYs −ΦsssYs þΦsYsss ¼ 0: ð14Þ

Often, one assumes the length of a vortex filament is
aligned roughly along one axis, with the components along
the other axis measuring deflections from this central axis.
Let us assume that the vortex filament is aligned along
the first component in Eq. (11). Further, by symmetry
present in the system (12)–(14), we define Ψðt; sÞ ¼
Yðt; sÞ þ iZðt; sÞ. Then, adding Eq. (13) to i times
Eq. (14), one obtains a single equation for Ψ, and we
obtain the system of nonlinear wave equations

Φtt −Φss −
i
4
fΨsΨ�

t −Ψ�
sΨt þ Ψ�

sΨsss −ΨsΨ�
sssg ¼ 0;

ð15Þ
Ψtt −Ψss þ ifΦtΨs −ΦsΨt þΦsΨsss −ΦsssΨsg ¼ 0;

ð16Þ
for real-valued field Φ and complex-valued field Ψ. This
system is the analog of similar nonlinear Schrödinger
(NLS) equations for classical vortex filaments or vortex
filaments in He4.

III. VORTEX FILAMENT SOLUTIONS

From our understanding of vortex solutions under LIA in
He4, we expect that a thin vortex may have waves or
perturbationswhich undergo translation, rotation, and ampli-
fication along a central axis. Therefore, it makes sense to
consider a family of particular solutions of the form

rðt;sÞ¼ ½s−βðtÞ;AðtÞcosðks−ωðtÞÞ;AðtÞsinðks−ωðtÞÞ�T:
ð17Þ

The function β denotes translational motion, ω gives rota-
tional motion, and changes in A give the amplification or
decay ofwaves along the vortex.WhenA ¼ 0, we have a line
vortex, while when A ≠ 0, we have a wavy (helical) vortex

solution. Such waves along a line filament are often referred
to asKelvinwaves.WhenA ≠ 0 is constant,wehave a purely
helical solution, and the amplitude of the Kelvin waves will
not change with time. The parameter k is the wave number,
and this will determine how tightly coiled the vortex
solution is. Note that this solution ansatz (17) is equivalent
to taking the ansatz Φðt; sÞ ¼ s − βðtÞ and Ψðt; sÞ ¼
AðtÞ expðifks − ωðtÞgÞ in Eqs. (15) and (16).
Placing the assumed solution (17) into Eq. (10), we obtain

2
664

kA _A − β̈

ð2 _ωþ 1Þ _A sinðks − ωðtÞÞ þM cosðks − ωðtÞÞ
−ð2 _ωþ 1Þ _A cosðks − ωðtÞÞ þM sinðks − ωðtÞÞ

3
775 ¼ 0;

ð18Þ

where M ¼ Äþ ½k3 − k2 − _ω − _ω2 þ k _β�A. This puts a
restriction on the possible forms of β, ω, and A and is
equivalent to the system of ordinary differential equations

kA _A − β̈ ¼ 0; ð19Þ

ð2 _ωþ 1Þ _A ¼ 0; ð20Þ

Äþ ðk3 − k2 − _ω − _ω2 þ k _βÞA ¼ 0: ð21Þ

A solution to Eqs. (19)–(21) will then provide us with a
vortex solution (17).

A. Kelvin waves along filaments

In the case in which AðtÞ ¼ A0, a constant, Eqs. (19)–
(21) imply that βðtÞ ¼ β1tþ β0 and ωðtÞ ¼ ω1tþ ω0,
provided that the constants β1 and ω1 satisfy the algebraic
condition

−ω2
1 − ω1 þ kβ1 þ k3 − k2 ¼ 0: ð22Þ

This is the condition for a regular helical solution. For k ≠
0 and arbitrary rotational velocity ω1, Kelvin waves along
the vortex filament translate with translational velocity,

β1 ¼
ω1ðω1 þ 1Þ þ k2ð1 − kÞ

k
: ð23Þ

The vortex filament solution in this case is given by

rðt; sÞ ¼

2
6664
s − ω1ðω1þ1Þþk2ð1−kÞ

k t − β0

A0 cosðks − ω1t − ω0Þ
A0 sinðks − ω1t − ω0Þ

3
7775: ð24Þ

As waves on the vortex filament rotate more rapidly, the
rate of translation of the Kelvin waves along the filament
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increases (for fixed k). The influence of k is perhaps more
interesting. As k increases (corresponding to more tightly
coiled solutions), there will be a reversal in the direction of
propagation of the Kelvin waves. Indeed, for ω1 > 0, the
wave will propagate toward increasing arclength s → ∞ for
a large time if k > 0 is small, while the wave will propagate
toward negative arclength (in the opposite direction along
the filament, as toward s → −∞) for large k > 0. The
critical value between these two corresponds to the positive
root of ω1ðω1 þ 1Þ þ k2ð1 − kÞ. Whenω1 < 0 (the rotation
corresponds to the counterflow case), the situation is more
complicated, with two positive critical values of k for which
there is a change in the direction of propagation of the
Kelvin waves. In Fig. 1, we plot the translational velocity of
Kelvin waves as a function of the angular velocity, while in
Fig. 2, we plot the translational velocity as a function of the
wave number.
One may show that these are the only traveling waves

which move along a filament. One can search for another
class of traveling wave solutions which are not aligned along
a central axis. Themost general such solutionswould take the
form rðs; tÞ ¼ Rðks − ηtÞ. From the form of Eq. (10), we
shouldhave a bounded solution in thewavevariable s − t and
an unbounded solution in the wave variable sþ t. The
bounded wave solution then takes the form

rðt; sÞ ¼ C½0� þ C½1� cosðs − tÞ þ C½2� sinðs − tÞ; ð25Þ

where C½j� ∈ R3 is a constant vector for j ¼ 0, 1, 2.
More generally, for the wave variable z ¼ ks − ηt, we

consider

rðs; tÞ ¼ ½sþ βðzÞ; fðzÞ; gðzÞ�T: ð26Þ

Such waves are disturbances along a line filament ½s; 0; 0�T
which propagates in the �s direction (depending on the
sign of η). From Eq. (10), we obtain the system

ðη2 − k2Þβ00 þ k4ðf0g000 − g0f000Þ ¼ 0; ð27Þ

ðη2 − k2Þf00 − ηg0 − k3g000 þ k4ðg0β000 − β0g000Þ ¼ 0; ð28Þ

ðη2 − k2Þg00 þ ηf0 þ k3f000 − k4ðf0β000 − β0f000Þ ¼ 0: ð29Þ

This system is in general singular yet admits a solution
when each unknown function takes the form
C0 þ C1 expðΩzÞ. When Ω is purely imaginary, we can
recover the helical filaments. When Re½Ω� ≠ 0, then there is
unbounded growth for one of the limits s → �∞, and so
the filament becomes unbounded away from the refer-
ence axis.

B. Creation and destruction of Kelvin waves

If A is not constant, then by Eq. (20), we must have
ωðtÞ ¼ ω0 − t=2. Similarly, by Eq. (19), we need
_β ¼ β1 þ k

2
A2. Placing these into Eq. (21), we obtain a

single equation for A; to wit,

Äþ
�
k3 − k2 þ β1kþ

1

4

�
Aþ k2

2
A3 ¼ 0: ð30Þ

When k > 0 and β1 < β�1ðkÞ ¼ k − k2 − ð4kÞ−1, Eq. (30)
has the exact solution

AðtÞ ¼ 2

k
Â1ðtÞ; ð31Þ

where

FIG. 1. Plot of the Kelvin wave translational velocity β1 as a
function of the rotational velocity ω1, for various fixed values of
wave number k.

FIG. 2. Plot of the Kelvin wave translational velocity β1 as a
function of the wave number k, for various fixed values of the
rotational velocity ω1.
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Â1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðβ�1ðkÞ − β1Þ

q
sech

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðβ�1ðkÞ − β1Þ

q
t
�
: ð32Þ

This results in the vortex filament solution

rðt; sÞ ¼

2
664
s − β1t − β0 −

R
t
0ðÂ1ðqÞÞ2dq

2
k Â1ðtÞ cosðksþ t=2 − ω0Þ
2
k Â1ðtÞ sinðksþ t=2 − ω0Þ

3
775: ð33Þ

As t → �∞, this solution behaves like a straight line
filament, while for finite t, the solution behaves like a
helical filament. The maximal amplitude is attained at
t ¼ 0. This solution therefore models the creation and
dissipation of Kelvin waves along the vortex filament. Note
that for the present case the maximal translational velocity
of waves along the filament corresponds to the maximum
amplitude of the waves. In Fig. 3, we plot the filament
solution (33) for various values of time, showing the
creation of a helix from a perturbed line filament and then
the decay of this filament structure.
Note that the creation and decay are not observed in the

LIA or Biot-Savart model for the motion of a vortex
filament in He4. In that case, one either has amplification
or decay, but not both, for a single solution. Runaway
amplification of the analytical solutions corresponds to the
Donnelly-Glaberson instability seen experimentally and
numerically [17–20]. For the nonrelativistic Abelian
Higgs model, runaway amplification does not appear to
occur, with an amplifying filament instead decaying after it
amplifies to the maximum possible extent away from the
center axis of the filament. This highlights one important
way these vortex filament solutions differ from those found
for other models.

C. Breathers along vortex filaments

While we have so far demonstrated the existence of
constant amplitude and sechðtÞ-type amplitude solutions,
corresponding to an eternal helical filament and the for-
mation and dissipation of a helical filament, respectively, it
remains to be shown that there are breather-type solutions.
Such solutions would exhibit pulselike behavior in time.
Noting that for some parameter values Eq. (30) should have

Jacobi elliptic function solutions, we find that there exists a
class of solutions parametrized by amplitude a > 0 given
by

AðtÞ ¼ aÂ2ðtÞ; ð34Þ

where

Â2ðtÞ ¼ cn

�
κt
2
;
ak
κ

�
ð35Þ

and

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β1kþ ð2a2 − 4Þk2 þ 4k3

q
: ð36Þ

Here, cn denotes the relevant Jacobi elliptic function. Such
solutions exist provided that κ2 > 0; i.e., κ must be real
valued. We therefore have the solution

rðt; sÞ ¼

2
664
s − β1t − β0 − a2k

2

R
t
0ðÂ2ðqÞÞ2dq

aÂ2ðtÞ cosðksþ t=2 − ω0Þ
aÂ2ðtÞ sinðksþ t=2 − ω0Þ

3
775: ð37Þ

This solution represents a breather; a representative sol-
ution is shown in Fig. 4. Indeed, at t ¼ 0, we have a helical
vortex filament with amplitude a. As time increases, this
solution decreases in amplitude to a line filament, then
increases in amplitude with the reverse twist direction,
decreases in amplitude to a line filament again, and finally
increases in amplitude with the original twist orientation.
This process continues over each period of the Jacobi
elliptic function cn.
These breather solutions feature amplitude as an arbi-

trary parameter, a, while the solution (33) has amplitude
fixed in a relationship depending on the helix wave number
k. Therefore, the solution giving growth for t < 0 and
decay for t > 0 is really a rather special case, while the
breather solution we exhibit in Eq. (37) is far more
ubiquitous in parameter space.
Note that there are no single-twist reversing solutions

(solutions which reverse the twist and keep it under the new

FIG. 3. Plot of the growth and decay of a helical vortex filament under the solution representation (33) for k ¼ 1, β1 ¼ −1, β0 ¼ 0, and
ω0 ¼ 0. Time values taken are (left to right) t ¼ −5, −2, 0, 2, 5.
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orientation indefinitely). Such a solution would correspond
to AðtÞ ∼ tanhðtÞ, which is not possible for real-valued
wave number k.

IV. DISCUSSION

We have demonstrated the existence of breathers and
other nonlinear waves along open vortex filaments in the
nonrelativistic Abelian Higgs model. All of these solutions
are generalizations of helical vortex filaments, and hence
waves along these filaments are essentially generalized
Kelvin waves with time-varying amplitude. Although the
equation of motion shares some characteristics of equations
governing the dynamics of hydrodynamic vortex filaments,
the solutions we obtain are qualitatively quite distinct from
the vortex filament solutions found, say, in the study of
quantized vortex filaments in He4.
Amplifying solutions for the nonrelativisticAbelianHiggs

model reach a maximal deflection away from a centrally
defined axis and then deamplify. Solutions of this type of
equation will amplify and then decay once (giving rise to a
helical vortex filament for intermediate times) or amplify/
decay periodically (giving rise to breathers along the vortex
filament). This behavior is fundamentally different from
quantized vortex filaments in He4, which can either
(i) amplify and then destabilize, (ii) maintain fixed amplitude
in time, or (iii) decay into line filaments. This process is
referred to as theDonnelly-Glaberson instability [17–19] and
is observed in both the quantum form of the LIA [21] and the
nonlocal Biot-Savart dynamics [20]. While i above is some-
times mentioned as a possible route to quantum turbulence,
note that there is disagreement about this. Kelvin waves, by
definition, are a small perturbation of the vortex filaments,
and their dynamics is a very small part of the overall
dynamics of vortex tangle. Only a full-scale deformation
may lead to a collision (or self-collision) of vortex filaments
and then to reconnection and development of chaos. See
details of this discussion in the review [22]. Still, the
amplification of such quantized vortex filaments within
the quantum form of the LIA can be undesirable, as if the
filament amplifies too far, it may violate the bounded
variation requirement, and hence the assumptions of a local

model. While it shares some similarities with the equation of
motion for the quantized LIA, the equation of motion for
vortex filaments under the nonrelativistic Abelian Higgs
model permits solutions which self-regulate to avoid this
manner of amplification leading to blowup. Such a solution
shares some similarities with the Peregrine soliton [23–25],
which is a type of NLS water wave solution which amplifies
and then decays back to the ground start. Because of this
attribute, the Peregrine soliton has been suggested as amodel
of rogue waves [24,25]. The solution we obtain is simpler,
only involving space in the phase, resulting in a temporal
scaling of a helical filament.
Breather structures were found for the LIA and in

simulations for quantized vortex filaments [26]. These
breathers are NLS breathers which, by way of the
Hasimoto transformation [27], are mapped into homoclinic
vortex filament solutions [28]. However, these breathers
differ from ones we have found here for the nonrelativistic
Abelian Higgs model. The LIA breathers can eventually
evolve so that distinct segments of the vortex filament
interact in finite time, leading to vortex ring shedding as
seen in the simulations of Ref. [26]. In contrast, the breather
solutions we obtain for the nonrelativistic Abelian Higgs
model result in a type of pulsating behavior of Kelvin
waves along the vortex filament, and such filaments will
always maintain their structure. These differences point to
the fact that we have obtained a breather solution which is
fundamentally different than the breathers obtained in
hydrodynamic models, such as the NLS breather [29]
and also the sine-Gordon breather [30]. Indeed, the breather
solution we obtain is markedly simpler than the aforemen-
tioned breather solutions from the literature.
Note that self-similar solutions do not exist, which is one

qualitative difference between Eq. (5) and the local induc-
tion approximation for classical [31] and quantized [32,33]
vortex filaments. One may also verify that planar filaments
will not exist in this model, either, which is what we see for
the generalized LIA, which includes mutual friction con-
tributions [34]. This is in contrast to the classical LIA,
which does permit such solutions [35].

FIG. 4. Plot of the breather vortex filament under the solution representation (37) for k ¼ 1, a ¼ 1=2, β1 ¼ −1=8, β0 ¼ 0, and ω0 ¼ 0.
Time values taken are (left to right) t ¼ 0, 3.2, 6.4, 10.0, 13.4.
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