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Various theories beyond the Standard Model predict new particles with masses in the sub-eV range with
very weak couplings to ordinary matter which can possess spin-dependent couplings to electrons and
nucleons. Present laboratory constraints on exotic spin-dependent interactions with pseudoscalar and axial
couplings for exchange boson masses between meVand eVare very poor compared to constraints on spin-
independent interactions in the same mass range arising from spin-0 and spin-1 boson exchange. It is
therefore interesting to analyze in a general way how one can use the strong experimental bounds on spin-
independent interactions to also constrain spin-dependent interactions by considering higher-order
exchange processes. The exchange of a pair of bosons between two fermions with spin-dependent
couplings will possess contributions which flip spins twice and thereby generate a polarization-
independent interaction energy which can add coherently between two unpolarized objects. In this paper
we derive the dominant long-range contributions to the interaction energy between two nonrelativistic
spin-1=2 Dirac fermions from double exchange of spin-0 and spin-1 bosons proportional to couplings of
the form g4P, g

2
Sg

2
P, and g2Vg

2
A. Our results for g4P are in agreement with previous calculations that have

appeared in the literature. We demonstrate the usefulness of this analysis to constrain spin-dependent
couplings by presenting the results of a reanalysis of data from a short-range gravity experiment to derive
an improved constraint on ðgNP Þ2, the pseudoscalar coupling for nucleons, in the range between 40 and
200 μm of about a factor of 5 compared to previous limits. We hope that the expressions derived in this
work will be employed by other researchers in the future to evaluate whether or not they can constrain
exotic spin-dependent interactions from spin-independent measurements. The spin-independent contri-
bution from 2-boson exchange with axial vector couplings of the form g4A requires special treatment and
will be explored in another paper.

DOI: 10.1103/PhysRevD.95.096005

I. INTRODUCTION

The possible existence of new interactions in nature with
ranges of mesoscopic scale (millimeters to μm), correspond-
ing to exchange boson masses in the 1 meV to 1 eV range
and with very weak couplings to matter, has been discussed
for some time [1,2] and has recently begun to attract renewed
scientific attention. Particles which might mediate such
interactions are sometimes referred to generically as
WISPs (weakly interacting sub-eV particles) [3] in recent
theoretical literature. Many theories beyond the Standard
Model, including string theories, possess extended sym-
metries which, when broken at a high energy scale, lead to
weakly coupled light particles with relatively long-range
interactions such as axions, arions, familons, and Majorons

[4,5]. The well-known Goldstone theorem in quantum field
theory guarantees that the spontaneous breaking down of
a continuous symmetry at scale M leads to a massless
pseudoscalar modewith weak couplings to massive fermions
m of order g ¼ m=M. The mode can then acquire a light
mass (thereby becoming a pseudo-Goldstone boson) of order
mboson ¼ Λ2=M if there is also an explicit breaking of the
symmetry at scale Λ [6]. New axial-vector bosons such as
paraphotons [7] and extra Z bosons [8] appear in certain
gauge theories beyond the Standard Model. Several theo-
retical attempts to explain dark matter and dark energy also
produce new weakly coupled long-range interactions. The
fact that the dark energy density of order ð1 meVÞ4 corre-
sponds to a length scale of 100 μm also encourages searches
for new phenomena on this scale [9].
A general classification of interactions between non-

relativistic fermions assuming only rotational invariance
[10] reveals 16 operator structures involving the spins,
momenta, interaction range, and various possible couplings
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of the particles. Of these 16 interactions, one is spin
independent, six involve the spin of one of the particles,
and the remaining nine involve both particle spins. Ten of
these 16 possible interactions depend on the relative
momenta of the particles. The addition of the spin degree
of freedom opens up a large variety of possible new
interactions to search for which might have escaped
detection to date. Powerful astrophysical constraints on
exotic spin-dependent couplings [11–13] exist from stellar
energy-loss arguments, either alone or in combination with
the very stringent laboratory limits on spin-independent
interactions from gravitational experiments [14]. However,
a chameleon mechanism could in principle invalidate some
of these astrophysical bounds while having a negligible
effect in cooler, less dense lab environments [15], and the
astrophysical bounds do not apply to axial-vector inter-
actions [10]. These potential loopholes in the astrophysical
constraints, coupled with the intrinsic value of controlled
laboratory experiments and the large range of theoretical
ideas which can generate exotic spin-dependent inter-
actions, has led to a growing experimental activity to
search for such interactions in laboratory experiments.
Many experiments search for a monopole-dipole inter-

action [16] involving an exchange of spin-0 bosons with
scalar and pseudoscalar couplings. This interaction violates
P and T symmetry and in the nonrelativistic limit is
proportional to gSgPσ⃗ · r̂ where gS and gP are the scalar
and pseudoscalar couplings, σ⃗ is the spin of one of the
particles, and r⃗ is the separation between the particles.
Contrary to some expectations, experimental upper bounds
on electric dipole moments, which are also P-odd and
T-odd, do not in general rule out the existence of such
bosons with masses in the meV to eV range [17]. Many of
the experiments which have been performed to search for
such interactions using polarized gases [18] and para-
magnetic salts [19–21] are sensitive to ranges λ ≥ 1 cm.
Constraints on monopole-dipole interactions involving
nucleons at smaller range have come from experiments
using slow neutrons [22–27] and polarized helium and
xenon gas [28–35]. Many experiments have also sought
exotic spin-spin interactions proportional to g2Pσ⃗1 · σ⃗2,
where gP is the pseudoscalar coupling and σ⃗1 and σ⃗2 are
the spins of the two particles. Such a spin-dependent
potential with a dipole-dipole form is one of the three
velocity-independent spin-spin interactions which can
come from 1-boson exchange between two nonrelativistic
spin-1=2 fermions [10]. Separated ensembles of polarized
atoms [36–39] have set limits on long-range spin-
dependent nucleon interactions, and analysis of high pre-
cision spectroscopy in molecular hydrogen [40,41] has set
limits on atomic-range spin-dependent nucleon interactions.
Torsion balance measurements have recently set new strin-
gent limits on both monopole-dipole interactions and
dipole-dipole interactions involving polarized electrons
with macroscopic ranges [42–47]. Comparison of precision

QED calculations with atomic physics data [48] has set
strong limits on exotic spin-dependent electron interactions
with ranges at the atomic scale. Ion traps [49] have recently
constrained exotic spin-spin interactions between polarized
electrons of the form g2Aσ⃗1 · σ⃗2 from spin-1 boson exchange
at μm distance scales. New experimental methods to search
for polarized electron couplings using rare earth-based
ferrimagnetic test masses [50], paramagnetic insulators
[51], and spin-exchange relaxation-free magnetometers
[52] have been proposed.
Laboratory constraints on possible new interactions of

mesoscopic range which depend on both the spin and the
relative momentum are less common, since the polarized
electrons or nucleons in most experiments employing
macroscopic amounts of polarized matter typically possess
hp⃗i ¼ 0 in the lab frame. Some limits exist for spin-0 boson
exchange. Kimball et al. [53] used measurements and
calculations of cross sections for spin exchange collisions
between polarized 3He and Na atoms to constrain possible
new spin-dependent interactions between neutrons and
protons. Hunter [54] exploited the existence of a small
but nonzero polarization of the electrons in the Earth
combined with atomic magnetometry to place very strin-
gent constraints on a large number of spin and velocity-
dependent interactions involving polarized electrons for
macroscopic force ranges.
Spin and velocity-dependent interactions from spin-1

boson exchange can be generated by a light vector boson
Xμ coupling to a fermion ψ with an interaction of the
form LI ¼ ψ̄ðgVγμ þ gAγμγ5ÞψXμ, where gV and gA are the
vector and axial couplings. In the nonrelativistic limit, this
interaction gives rise to two interaction potentials of interest
depending on both the spin and the relative momentum
[55]: one proportional to g2Aσ⃗ · ðv⃗ × r̂Þ and another propor-
tional to gVgAσ⃗ · v⃗. As noted above, many theories beyond
the Standard Model can give rise to such interactions. For
example, spontaneous symmetry breaking in the Standard
Model with two or more Higgs doublets with one doublet
responsible for generating the up quark masses and the
other generating the down quark masses can possess an
extra U(1) symmetry generator distinct from those which
generate B, L, and weak hypercharge Y. The most general
U(1) generator in this case is some linear combination
F ¼ aBþ bLþ cY þ dFax of B, L, Y, and an extra axial
U(1) generator Fax acting on quark and lepton fields, with
the values of the constants a, b, c, d depending on the
details of the theory. The new vector boson associated with
this axial generator can give rise to LI above [56].
Neutrons have recently been used with success to tightly

constrain possible weakly coupled spin-dependent inter-
actions of mesoscopic range [57]. A polarized beam of slow
neutrons can have a long mean free path in matter and is a
good choice for such an experimental search [58]. Piegsa
and Pignol [59] recently reported improved constraints on
the product of axial vector couplings g2A in this interaction.
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Polarized slow neutrons which pass near the surface of
a plane of unpolarized bulk material in the presence of
such an interaction experience a phase shift which can be
sought using Ramsey’s well-known technique of separated
oscillating fields [60]. Other experiments have constrained
gVgnA. Yan and Snow reported constraints on gVgnA using
data from a search for parity-odd neutron spin rotation in
liquid helium [61]. Adelberger and Wagner [14] combined
experimental constraints on g2V from searches for violations
of the equivalence principles and g2A from other sources
to set much stronger constraints on gVgnA for interactions
with ranges beyond 1 cm. Yan [62] analyzed the dynamics
of ensembles of polarized 3He gas coupled to the Earth to
constrain gVgnA for interactions with ranges beyond 1 cm
with laboratory measurements.
The strength of nearly all of these constraints is very weak

compared to spin-independent interactions. Very stringent
constraints exist on spin-independent Yukawa interactions
arising from light scalar or vector boson exchange. The
present constraints on the dimensionless coupling constants
are g2S;V ≤ 10−40 for an exchange boson with a mass between
10 meV and 100 μeV [63], which corresponds to a length
scale between 10 μm and 1mm. Experimental constraints on
possible new interactions of mesoscopic range which depend
on the spin of one or both of the particles are much less
stringent than those for spin-independent interactions [50,64].
Several facts contribute to this situation. First of all such
experiments require one or both of the particles under
investigation to be polarized. Even if one can achieve perfect
polarization, only the valence fermions in the ground
states of bound electrons and nucleons are accessible.
Experimental polarization techniques are often specific to
particular atoms or nuclei and vary widely in their efficiency.
Macroscopic objects with large nuclear or electron polariza-
tion are not easy to arrange without an environment that
includes large external magnetic fields. Even if one succeeds
in polarizing ensembles of particles in low ambient magnetic
fields, the magnetic moments of the spin-aligned particles
themselves generatemagnetic fieldswhich eventually interact
with and depolarize other members of the ensemble. Both
internal and external magnetic fields can produce large
systematic effects in delicate experiments. Another reason
for the differing sensitivities follows from the fact that, for the
small momentum transfers accessed in interactions between
two nonrelativistic massive Dirac fermions, the amplitude for
a helicity flip associated with a spin-dependent interaction
at the fermion-boson vertex can be suppressed by a factor
ðμ=mÞn, where μ is themass of the exchanged boson,m is the
fermion mass and n ¼ 1, 2, or 3 depending on the type of
interaction. This suppressionarises at parity-oddvertices such
as igPγ5, gVγ, and gAγ0γ5 where in order for parity to be
conserved the boson must be emitted with nonzero angular
momentum relative to the initial and final nonrelativistic
fermions, thus giving rise to an angular momentum suppres-
sion of order ðμ=mÞn. The only case of a spin-dependent

interaction with no mass suppressions arises in the “dipole-
dipole” interactionmediatedbyanaxialbosonwitheven-parity
coupling gAγγ5. This is one of the reasons why, for example
the constraint on an electron axial vector coupling ðgeAÞ2 ∼
10−40 for μ ≥ 1 μeV [46] is orders of magnitude stronger
than the constraint on ðgNA Þ2 ∼ 10−13 for μ ∼ 100 μeV [59],
where the latter was obtained from a “monopole-dipole”
interaction arising from parity-odd vertices.
The huge difference in the strength of these constraints

on spin-dependent and spin-independent interactions moti-
vated us to investigate whether or not limits on spin-
dependent couplings can be improved using the constraints
from existing spin-independent data. Exchange of two
bosons can flip the helicity of the fermions twice and
generate a spin-independent contribution to the interaction
energy between two fermions. Although 2-boson exchange
between fermions generates an interaction energy of
order g4 and direct spin-dependent experiments look for
effects from single boson exchange of order g2, the strong
constraints from spin-independent experiments can still be
better than direct experiments in certain situations. Since
searches for new spin-independent interactions span a
broader range of exchange boson masses than the spin-
dependent searches, such an analysis can extend constraints
on spin-dependent interactions to new length scales where
experimental coverage is either poor or nonexistent. Many
experiments to search for spin-independent interactions
are probing the smaller distance scales where limits on
spin-dependent interactions are poor [65,66].
Similar analyses motivated by the same considerations

have been conducted in the past. The functional form for
2-boson exchange with pseudoscalar couplings has been
derived before and applied in different contexts [67–70]
such as tests of the inverse square law of gravity and the
weak equivalence principle [71] to derive the first direct
limits on gNP . The most recent constraints on spin-0 boson
exchange with pseudoscalar couplings gNP to nucleons [72]
span bosons masses between 0.01 μeV and 1 eV.
To the best of our knowledge, no similar analysis has

been performed for other spin-dependent couplings and
no functional forms for the spin-independent component of
the interaction energy arising from other types of 2-boson
exchange have been exhibited in the nonrelativistic limit
of interest to us. The aim of this paper is to calculate the
dominant long-range contribution to the interaction energy
between two nonrelativistic spin-1=2 Dirac fermions from
double boson exchange of spin-0 and spin-1 bosons with
spin-dependent couplings of the form g2Sg

2
P and g2Vg

2
A.

The case of two axial vector exchange requires a special
treatment and will be explored in another paper. In addition,
we use the existing 2-boson calculation for pseudoscalar
exchange in a reanalysis of data from a short-range gravity
experiment to derive an improved constraint on ðgNP Þ2, the
pseudoscalar coupling for nucleons, in the range between
40 and 200 μm of about a factor of 5 compared to previous
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limits. This analysis constitutes an existence proof that
sensitive experimental searches for spin-independent inter-
actions can also yield the most stringent constraints on
spin-dependent interactions at certain distance scales.
The rest of this paper is organized as follows. In Sec. II

we define the problem and specify the method of calcu-
lation. The calculation itself along with the results are
outlined in Sec. III. In Sec. IV, we present our derivation
of a new limit on nucleon pseudoscalar couplings from
analysis of an experiment to probe violations of the inverse
square law in short-range gravity. Natural units with
ℏ ¼ c ¼ 1 are used throughout the paper.

II. DEFINITION OF THE PROBLEM
AND METHOD

Some groups have undertaken exact calculations of the
amplitudes for double boson exchangevalid in the relativistic
limit [73]. It is not our purpose here to attempt a complete
calculation of this type. We are interested in determining the
leading long-range contributions to the spin-independent
component of the interaction energy associated with the
exchange of two massive spin-0 and spin-1 bosons between
two massive spin-1=2 Dirac fermions with various types of
spin-dependent couplings. The distance scale regime we are
interested in is r ≥ 1

μ ≫
1
m, where r ¼ jr1 − r2j is the sepa-

ration between the two fermions, μ is the exchange boson
mass, and m is the fermion mass.
Many authors have performed similar calculations for

various purposes using different approaches. Iwasaki studied
this problem using noncovariant perturbation theory [74].
Feinberg and Sucher used dispersion methods in covariant
perturbation theory [75] to extract long-range effects from
loop corrections. Holstein examined this problem using
effective field theory (EFT) [76]. In this paper we shall
use a nonrelativistic approach based on “old fashioned”
perturbation theory (OFPT) using time-ordered diagrams.
The reasonwe are pursuing this approach is that it suffices for
the direct identification of spin-independent long-range
terms in the nonrelativistic limit in which we are interested.
In dispersion methods, obtaining long-range effects from
loop corrections amounts to calculating t-channel disconti-
nuities in Feynman diagrams and performing a Laplace
transformation which, although doable in principle, is not
necessary for our purposes. A similar procedure could be
realized in EFT by recognizing that long-range components
are associated with pieces in the scattering amplitude that are
nonanalytic in momenta transfer [76].
We first consider the elastic scattering of two spin-1=2

Dirac fermions of masses m1 and m2. We denote the
incoming momenta by p1 and p2 and the outgoing
momenta by p10 and p20. The on-shell transition amplitude
is given by

TfiðQÞ ¼ ð2πÞ3δðp01 þ p02 − p1 − p2ÞNfMfiðQÞNi; ð1Þ

where Q is the momentum transfer to the fermion of mass
m. Here Mfi is the Feynman scattering amplitude and Nf

and Ni are normalization factors associated with the
incoming and outgoing particles in the initial and final
states which in the nonrelativistic limit are taken to be
unity [77]. We define the interaction energy corresponding
to the long-range contribution from Mð2ÞðQÞ by [78].

Vð2ÞðrÞ ¼
Z

d3Q
ð2πÞ3 e

−iQ·rMð2Þ
fi ðQÞ: ð2Þ

III. CALCULATION OF THE
INTERACTION ENERGY

We start with the Hamiltonian density

H ¼ ψ̄ðγ · pþmÞψ þHint; ð3Þ
where ψ is the 4-component fermion field. The first term
is the free fermion Hamiltonian density and Hint is the
interaction Hamiltonian density given by

Hint ¼ ψ̄ ½ðgS þ igPγ5Þϕþ ðgVγμ þ gAγμγ5ÞAμ�ψ ; ð4Þ

where ϕ and Aμ are the massive spin-0 and spin-1
boson fields, respectively. The nonrelativistic limit of the
Hamiltonians in Eqs. (3) and (4) are derived by performing
a Foldy-Wouthuysen unitary transformation [79] to elimi-
nate all pair production diagrams associated with higher
energies which are subdominant in our limit. For our
purposes we need only expand the effective Hamiltonian
to order p=m:

Heff
S ¼ gSψþψϕ; ð5aÞ

Heff
P ¼ ψþ

�
−i

gP
2m

σ · kϕþ g2P
2m

ϕ2

�
ψ ; ð5bÞ

Heff
V ¼ψþ

�
gVA0−

gV
2m

ðpþp0Þ ·A−i
gV
2m

σ ·k×Aþ g2V
2m

A2

�
ψ ;

ð5cÞ

Heff
A ¼ ψþ

�
−gAσ · Aþ gA

2m
σ · ðpþ p0ÞA0 þ

g2A
2m

A2
0

�
ψ ;

ð5dÞ

where ψ is now a 2-component fermion field associated
with a positive energy spinor. Here p and p0 are the
incoming and outgoing momenta of the fermion in each
vertex, k is the boson momentum, and A and A0 are the
space and time components of the massive spin-1 field,
respectively.
In OFPT, momentum (but not energy) is conserved at the

vertices. The propagator for internal lines 1
Ei−En

, where Ei
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is the energy of the initial state and En is the energy of
the intermediate state, is multiplied by a sum over the
transverse and longitudinal modes, δij −

kikj
μ2

or −1þ ω2

μ2
, for

each massive spin-1 exchange boson present in the dia-
gram. The internal momenta are summed over in the
usual way.
We will only derive the spin-independent long-range

contributions to the interaction energy arising from the
following three cases: exchanges with two pseudoscalar
couplings, exchanges with one scalar and one pseudoscalar
coupling, and exchanges with one vector coupling and
one axial vector coupling. The case of two axial vector

exchange requires insertions from higher order corrections
in the small momentum expansion of the Hamiltonian and
will be explored in detail in another paper. Although exotic
spin-0 and spin-1 boson exchange could appear together in
box and cross box diagrams, we are not interested in this
case for our purposes.
For exchanges with two pseudoscalar couplings, the

leading effect comes from the double seagull diagrams (a)
and (b) in Fig. 1. Effects arising from diagrams (c)–(h)
are suppressed by a factor of ðμ=mÞ3 as can be inferred
from the form of Heff

P in Eq. (5b). The transition
amplitude is

Tð2Þ
P−P ¼ −

g2P;1g
2
P;2

4m1m2

Z
d3kd3q
ð2πÞ6

�
1

ωkωqðωk þ ωqÞ
δðp01 − k − q − p1Þδðp02 þ kþ q − p2Þ

�
: ð6Þ

From Eqs. (1) and (2), the interaction energy is related to Tð2Þ
P−P via

Vð2Þ
P−PðrÞ ¼ −

g2P;1g
2
P;2

4m1m2

Z
d3Q
ð2πÞ3 e

−iQ·r
Z

d3kd3q
ð2πÞ3

δðp01 − k − q − p1Þδðp02 þ kþ q − p2Þ
ωkωqðωk þ ωqÞ

: ð7Þ

Now by carrying out the integral over Q first we obtain

Vð2Þ
P−PðrÞ ¼ −

g2P;1g
2
P;2

4m1m2

Z
d3kd3q
ð2πÞ6

e−iðkþqÞ·r

ωkωqðωk þ ωqÞ

¼ −
g2P;1g

2
P;2

4m1m2

μK1ð2μrÞ
8π3r2

; ð8Þ

where K1ðxÞ is the modified Bessel function of the second
kind. This agrees with the result previously derived by
Drell and Huang [68] and Ferrer and Nowakowski [67].
This result, however, is not correct for the exchange of two
pseudoscalar bosons which have a derivative coupling of
the form gP

m ψ̄γμγ5ψ∂μϕ. Derivative and nonderivative
pseudoscalar couplings give the same interaction energy
in first order perturbation theory but not in second order.
The long-range behavior arising from two massless boson
exchange with pseudoscalar derivative couplings to matter
have been calculated in the limit as the exchange boson
mass goes to zero and is shown to be highly suppressed

relative to the analogous case with nonderivative pseudo-
scalar couplings [70]. This is also expected to follow for
massive bosons, but we have not calculated this case in
this paper. Since the case of pseudoscalar boson exchange
is especially interesting from a physics point of view, we
plan to calculate this case and present the results in a
later paper.
For interactions with one scalar coupling and one

pseudoscalar coupling, the leading spin-independent con-
tribution arises from diagrams (c)–(h) of Fig. 1 with two
orders of gSϕ and one order of ðg2P=2mÞϕ2. The transition
amplitude is

Tð2Þ
S−P ¼ g2S;1g

2
P;2

2m2

Z
d3kd3qd3l1

ð2πÞ6
�

1

4ωkωq

�
δðp02 þ kþ q − p2Þδðp01 − q − l1Þδðl1 − k − p1Þ

ðωq þ X1Þðωk þ ωqÞ

þ δðp02 − k − q − p2Þδðp01 þ q − l1Þδðl1 þ k − p1Þ
ðωk þ X1Þðωk þ ωqÞ

þ δðp02 þ q − k − p2Þδðp01 − q − l1Þδðl1 þ k − p1Þ
ðωk þ X1Þðωq þ X1Þ

�

þ 1 ↔ 2; k ↔ −k; q ↔ −q
�
: ð9Þ
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Expanding in the limit X ≪ ωk and taking advantage of symmetry under k and q gives

Tð2Þ
S−P ¼ g2S;1g

2
P;2

2m2

Z
d3kd3qd3l1

ð2πÞ6
�

1

4ωkωq
δðp02 þ kþ q − p2Þδðp01 − q − l1Þδðl1 − k − p1Þ

×

�
1

ωqðωk þ ωqÞ
þ 1

ωkðωk þ ωqÞ
þ 1

ωkωq

�
þ 1 ↔ 2; k ↔ −k; q ↔ −q

�
: ð10Þ

The interaction energy is then given by

Vð2Þ
S−PðrÞ ¼

�
g2S;1g

2
P;2

2m2

þ g2S;2g
2
P;1

2m1

�
e−2μr

32π2r2
: ð11Þ

The leading spin-independent contribution for the case of
one vector coupling and one axial vector coupling also
follows from diagrams (c)–(h) of Fig. 1. Two different
processes give rise to this interaction at this order: one from
two factors of −gAσ · A with one factor of ðg2V=2mÞ A2 and
the other from two factors of gVA0 with one factor of

ðg2A=2mÞA2
0. In the limit X ≪ ωk, the vector-axial inter-

action energy is given by

Vð2Þ
V−AðrÞ¼

Z
d3kd3q
ð2πÞ6

��
g2V;1g

2
A;2

2m1

þg2V;2g
2
A;1

2m2

�
k2q2

μ4

þ
�
g2V;2g

2
A;1

2m1

þg2V;1g
2
A;2

2m2

��
3−

q2

μ2
−
k2

μ2
þðk ·qÞ2

μ4

��

×
e−iðkþqÞ·r

2ωkωq

�
1

ωqðωkþωqÞ
þ 1

ωkðωkþωqÞ
þ 1

ωkωq

�
:

ð12Þ

Integration over k and q gives

Vð2Þ
V−AðrÞ ¼

"
g2V;1g

2
A;2

2m1

þ g2V;2g
2
A;1

2m2

þ 2

�
g2V;2g

2
A;1

2m1

þ g2V;1g
2
A;2

2m2

�
�
3þ 2

μr
þ 5

ðμrÞ2 þ
6

ðμrÞ3 þ
3

ðμrÞ4
�#

e−2μr

16π2r2
;

ð13Þ

which is the same as Eq. (11) except for extra terms due
to the sum over polarization states. These terms possess
singularities in the μ → 0 limit due to the inclusion of the
longitudinal component of the massive spin-1 field in the
absence of a conserved current [48,80–82]. As we never
let μ → 0 by assumption this infrared singularity is not
realized in our case. The range of validity of Eq. (13) is
r ≫ 1=μ ≫ 1=m1; 1=m2 with μ finite, in which case it
simplifies to

Vð2Þ
V−AðrÞ≃

�
g2V;1g

2
A;2

2m1

þ g2V;2g
2
A;1

2m2

þ 6

�
g2V;2g

2
A;1

2m1

þ g2V;1g
2
A;2

2m2

��
e−2μr

16π2r2
: ð14Þ

IV. CONSTRAINTS FROM THE INDIANA
SHORT-RANGE GRAVITY EXPERIMENT

To illustrate the potential power of these results, we have
used existing data from a previous short-range gravity
experiment to constrain the couplings in the interaction
energies in Eqs. (8), (11), and (14). This experiment is
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FIG. 1. The relevant 2-boson exchange time-ordered diagrams.
Solid lines represent the fermions while wavy lines represent
massive spin-0 or spin-1 bosons.
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optimized for sensitivity to macroscopic, spin-independent
forces beyond gravity at short range, which in turn could
arise from exotic elementary particles or even extra
spacetime dimensions. It is described in detail elsewhere
[83,84]; here we concentrate on the essential features.
The experiment is illustrated in Fig. 1 of Ref. [85].

The test masses consist of 250 μm thick planar tungsten
oscillators, separated by a gap of 100 μm, with a stiff
conducting shield in between them to suppress electrostatic
and acoustic backgrounds. Planar geometry concentrates as
much mass as possible at the scale of interest, and is
nominally null with respect to 1=r2 forces. This is effective
in suppressing the Newtonian background relative to exotic
short-range effects, and is well suited for testing inter-
actions of the form e−μr, and K1ðμrÞ. The force-sensitive
“detector” mass is driven by the force-generating “source”
mass at a resonance near 1 kHz, placing a heavy burden on
vibration isolation. The 1 kHz operation is chosen since at
this frequency it is possible to construct a simple vibration
isolation system. This design has proven effective for
suppressing all background forces to the level of the
thermal noise due to dissipation in the detector mass
[84]. After a run in 2002, the experiment set the strongest
limits on forces beyond gravity between 10 and 100 μm
[83]. The experiment has since been optimized to explore
gaps below 50 μm, and new force data were acquired in
2012. These data have been used to set limits on Lorentz
invariance violation in gravity [85,86].
Analysis of the 2012 data for evidence of double

boson exchange follows that in Ref. [83] for Yukawa-
type mass-coupled forces. Equations (8), (11), and (14)
are converted to forces and integrated numerically by
Monte Carlo techniques over the 2012 experimental geom-
etry, using the parameters in Refs. [83,85] and their errors.
Systematic errors from the dimensions and positions of the
test masses are determined at this stage, by computing a
population of force values generated from a spread of
geometries based on the metrology errors. Gaussian like-
lihood functions for the experiment are constructed using
the difference between the measured force and the
numerical expressions for the double exchange forces as
the means.
Limits on the double boson exchange interactions are

determined by integration of the likelihood functions over
the spin-dependent couplings (which are free parameters in
the likelihood functions), for several values of the range
λ ¼ 1=μ. Results for the 2σ limits on the coupling ðgNP Þ2 in
Eq. (8) are shown in Fig. 2. The constraints are more
sensitive than previously published limits [71,72] by about
a factor of 5 in the range near 100 μm. Analysis of Eqs. (11)

and (14) is still in progress with the understanding that (14)
is only applicable for μr ≫ 1.

V. CONCLUSION

We have derived the leading-order spin-independent
contribution to the interaction energy arising from the
exchange of two light massive bosons between two
spin-1=2 Dirac fermions in the nonrelativistic limit. Our
expressions agree with previous calculations in the liter-
ature where they exist. The functional forms derived in this
paper open up an opportunity to constrain, using existing
spin-independent data, spin-dependent couplings over new
length scales that are outside the sensitivity of current spin-
dependent experiments. We also used our expressions to
reanalyze data from a short-range gravity experiment. From
this analysis we derive a new limit on pseudoscalar
couplings for nucleons which is more sensitive than direct
constraints from other existing spin-dependent experi-
ments. These limits can be further improved by reconfigur-
ing existing experiments to make themmore sensitive to the
2-BEP functional forms.
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