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The conserved magnetic flux of Uð1Þ electrodynamics coupled to matter in four dimensions is
associated with a generalized global symmetry. We study the realization of such a symmetry at finite
temperature and develop the hydrodynamic theory describing fluctuations of a conserved 2-form current
around thermal equilibrium. This can be thought of as a systematic derivation of relativistic magneto-
hydrodynamics, constrained only by symmetries and effective field theory. We construct the entropy
current and show that at first order in derivatives, there are seven dissipative transport coefficients. We
present a universal definition of resistivity in a theory of dynamical electromagnetism and derive a direct
Kubo formula for the resistivity in terms of correlation functions of the electric field operator. We also study
fluctuations and collective modes, deriving novel expressions for the dissipative widths of magnetosonic
and Alfvén modes. Finally, we demonstrate that a nontrivial truncation of the theory can be performed at
low temperatures compared to the magnetic field: this theory has an emergent Lorentz invariance along
magnetic field lines, and hydrodynamic fluctuations are now parametrized by a fluid tensor rather than a
fluid velocity. Throughout, no assumption is made of weak electromagnetic coupling. Thus, our theory
may have phenomenological relevance for dense electromagnetic plasmas.
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I. INTRODUCTION

Hydrodynamics is the effective theory describing the
long-distance fluctuations of conserved charges around a
state of thermal equilibrium. Despite its universal utility in
everyday physics and its pedigreed history, its theoretical
development continues to be an active area of research even
today. In particular, the new laboratory provided by gauge/
gravity duality has stimulated developments in hydrody-
namics alone, including an understanding of universal
effects in anomalous hydrodynamics [1–3], potentially
fundamental bounds on dissipation [4,5], a refined under-
standing of higher-order transport [6–12], and path-integral
(action principle) formulations of dissipative hydrodynam-
ics [13–21]; see e.g. Refs. [5,22,23] for reviews of hydro-
dynamics from the point of view afforded by holography.
It is well understood that the structure of a hydrodynamic

theory is completely determined by the conserved currents
and the realization of such symmetries in the thermal
equilibrium state of the system. In this paper, we would like
to apply such a symmetry-based approach to the study of
magnetohydrodynamics, i.e. the long-distance limit of
Maxwell electromagnetism coupled to light charged matter
at finite temperature and magnetic field.

To that end, we first ask a question with a seemingly
obvious answer: what are the symmetries of Uð1Þ electro-
dynamics coupled to charged matter? One might be
tempted to say that there is a Uð1Þ current jμel associated
with electric charge. There is indeed such a divergenceless
object, related to the electric field strength by Maxwell’s
equations:

1

g2
∇μFμν ¼ jνel: ð1:1Þ

However, the symmetry associated with this current is a
gauge symmetry. Gauge symmetries are merely redundan-
cies of the description and thus are presumably not useful
for organizing universal physics.
The true global symmetry of Uð1Þ electrodynamics is

actually something different. Consider the following anti-
symmetric tensor:

Jμν ¼ 1

2
εμνρσFρσ: ð1:2Þ

It is immediately clear from the Bianchi identity (i.e. the
absence of magnetic monopoles) that ∇μJμν ¼ 0. This is
not related to the conservation of electric charge but rather
states that magnetic field lines cannot end.
What is the symmetry principle behind such a conser-

vation law? It has recently been stressed in Ref. [24] that
just as a normal 1-form current Jμ is associated with a
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global symmetry, higher-form symmetries such as Jμν are
associated with generalized global symmetries and should
be treated on precisely the same footing. We first review the
physics of a conventional global symmetry, which we call a
0-form symmetry in the notation of Ref. [24]: with every
0-form symmetry comes a divergenceless 1-form current
jμ, the Hodge dual of which we integrate over a codi-
mension-1 manifold to obtain a conserved charge. If this
codimension-1 manifold is taken to be a time slice, then the
conserved charge can be conveniently thought of as
counting a conserved particle number: intuitively, since
particle world lines cannot end in time, we can “catch” all
the particles by integrating over a time slice. The objects
that are charged under 0-form symmetries are local oper-
ators which create and destroy particles, and the symmetry
acts [in the Uð1Þ case] by multiplication of the operator by
a 0-form phase Λ that is weighted by the charge of the
operator q: OðxÞ → eiqΛOðxÞ.
Consider now the less familiar but directly analogous case

of a 1-form symmetry. a 1-form symmetry comes with a
divergenceless 2-form current Jμν, the Hodge star of which
we integrate over a codimension-2 surface to obtain a
conserved chargeQ ¼ R

S ⋆J. This conserved charge should
be thought of as counting a string number: as strings do not
end in space or in time, an integral over a codimension-2
surface is enough to catch all the strings,1 as shown in Fig. 1.
The objects that are charged under 1-form symmetries are
one-dimensional (1D) objects such as Wilson or ’t Hooft
lines. These 1D objects create and destroy strings, and the
symmetry acts (in the 1-form case) by multiplication by a
1-form phase Λμ integrated along the contour C of the ’t
Hooft line: WðCÞ → exp ðiq RC ΛμdxμÞWðCÞ.
In the case of electromagnetism, the 2-form current is

given by (1.2), and the strings that are being counted are
magnetic field lines. We could also consider the dual
current Fμν itself, which would count electric flux lines;
however, from (1.1), we see that Fμν is not conserved in the
presence of light electrically charged matter, because
electric field lines can now end on charges. Thus, electro-
dynamics coupled to charged matter has only a single
conserved 2-form current. This is the universal feature that
distinguishes theories of electromagnetism from other
theories, and the manner in which the symmetry is realized
should be the starting point for further discussion of the
phases of electrodynamics.2 For example, this symmetry is
spontaneously broken in the usual Coulomb phase (where
the gapless photon is the associated Goldstone boson) and

is unbroken in the superconducting phase (where magnetic
flux tubes are gapped). We refer the reader to Ref. [24] for a
detailed discussion of these issues.
In this paper, we discuss the long-distance physics of

this conserved current near thermal equilibrium, applying
the conventional machinery of hydrodynamics to a theory
with a conserved 2-form current and conserved energy
momentum. We are thus constructing a generalization of
the (very well-studied) theory that is usually called rela-
tivistic magnetohydrodynamics. To the best of our knowl-
edge, most discussions of magnetohydrodynamics (MHD)
separate the matter sector from the electrodynamic sector.
It seems to us that this separation makes sense only at weak
coupling and may often not be justified; for example, the
plasma coupling constant Γ, defined as the ratio of potential
to kinetic energies for a typical particle, is known to attain
values up toOð102Þ in various astrophysical and laboratory
plasmas [26]. Experimental estimates of the ratio of shear
viscosity to entropy density (where a small value is widely
understood as being a universal measure of interaction
strength [4]) in such plasmas at high Γ obtain minimum
values that are Oð1Þ −Oð10Þ [27]. These suggest the
presence of strong electromagnetic correlations.
Our discussion will not make any assumptions of weak

coupling and should therefore be valid for any value ofΓ; we
will be guided purely by symmetries and the principles of the
effective field theory of hydrodynamics. Beyond the
(global) symmetries, the construction of the hydrodynamic
gradient expansions also requires us to choose relevant
hydrodynamic fields (degrees of freedom),which, aswewill
discuss, crucially depend on the symmetry breaking pattern
in the physical system at hand. In particular, in addition to
conventional hydrodynamics at finite temperature, we will
also study a variant of magnetohydrodynamics at very low
temperatures. This theory has an emergent Lorentz invari-
ance associated with boosts along the background magnetic
field lines, and the parametrization of hydrodynamic fluc-
tuations is considerably different. Interestingly, at T ¼ 0,
leading-order corrections to ideal hydrodynamics only enter
at second order, thus showing the direct relevance of higher-
order hydrodynamics (see e.g. Refs. [6,8,9,11]). While this
treatment does not include the typical light modes that

FIG. 1. Integration over a codimension-2 surface S counts the
number of strings that cross it at a given time.

1Note that the dynamics of stringlike degrees of freedom has
been discussed in the context of superfluid hydrodynamics in the
interesting recent paper [25]. In that case, strings arise as solitons
and, unlike in our work, interact through long range forces.

2In electrodynamics in 2þ 1 dimensions, this point of view is
somewhat more familiar, as the analog of Jμν is a conventional
1-form “topological” current Jμ2þ1 ¼ εμνρFνρ.
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emerge at T ¼ 0, it does capture a universal self-contained
sector of magnetohydrodynamics.
We now describe an outline of the rest of this paper. In

Sec. II, we discuss the construction of ideal hydrodynamic
theory at finite temperature. In Sec. III, we move beyond
ideal hydrodynamics: we work to first order in derivatives
and demonstrate that there are seven transport coefficients
that are consistent with entropy production, describing also
how they may be computed through Kubo formulas. In
Sec. IV, we study linear fluctuations around the equilibrium
solution and derive the dispersion relations and dissipative
widths of gapless magnetohydrodynamic collective modes.
In Sec. V, we study the simple extension of the theory
associated with adding an extra conserved 1-form current
(e.g. baryon number). In Sec. VI, we turn to the theory at
strictly zero temperature, where we discuss novel phenom-
ena that can be understood as arising from a hydrodynamic
equilibrium state with extra unbroken symmetries. We
conclude with a brief discussion and possible future
applications in Sec. VII.
Previous study of the hydrodynamics of a fluid of strings

includes Ref. [28]. While this work was being written, we
came to learn of the interesting paper [29], which also
studies a dissipative theory of strings and makes the
connection to MHD. Though the details of some deriva-
tions differ, there is overlap between that work and our
Secs. II and III.

II. IDEAL MAGNETOHYDRODYNAMICS

Our hydrodynamic theory will describe the dynamics of
the slowly evolving conserved charges, which in our case
are the stress-energy tensor Tμν and the antisymmetric
current Jμν.

A. Coupling external sources

For what follows, it will be very useful to couple the
system to external sources. The external source for the
stress-energy tensor is a background metric gμν, and we also
couple the antisymmetric current Jμν to an external 2-form
gauge field source bμν by deforming the microscopic on-
shell action S0 by a source term:

S½b�≡ S0 þ ΔS½b�;

ΔS½b�≡
Z

d4x
ffiffiffiffiffiffi
−g

p
bμνJμν: ð2:1Þ

The currents are defined in terms of the total action as

TμνðxÞ≡ 2ffiffiffiffiffiffi−gp δS
δgμνðxÞ

; ð2:2Þ

JμνðxÞ≡ 1ffiffiffiffiffiffi−gp δS
δbμνðxÞ

: ð2:3Þ

Demanding invariance of this action under the gauge
symmetry δΛb ¼ dΛ with Λ a 1-form gauge parameter
results in

∇μJμν ¼ 0: ð2:4Þ

Similarly, demanding invariance under an infinitesimal
diffeomorphism that acts on the sources as a Lie derivative,
δξg ¼ Lξg, δξb ¼ Lξb, gives us the (non)conservation of
the stress-energy tensor in the presence of a source,

∇μTμν ¼ Hν
ρσJρσ; ð2:5Þ

where H ¼ db. The term on the right-hand side of the
equation states that an external source can perform work on
the system.
We now discuss the physical significance of the b-field

source. A term bti ¼ μ should be thought of as a chemical
potential for the charge Jti, i.e. a string oriented in the ith
spatial direction.
For our purposes, we can obtain some intuition by

considering the theory of electrodynamics coupled to such
an external source, i.e. consider using (1.2) to write the
current as

Jμν ¼ εμνρσ∂ρAσ; ð2:6Þ

with A the familiar gauge potential from electrodynamics.3

Then, the coupling (2.1) becomes after an integration by
parts

ΔS½b� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Aσjσext;

jσext ≡ εσρμν∂ρbμν: ð2:7Þ

The field strengthH associated to b can be interpreted as an
external background electric charge density to which the
system responds.
For example, consider a cylindrical region of space V

that has a nonzero value for the chemical potential in the z
direction,

btzðxÞ ¼
μ

2
θVðxÞ; ð2:8Þ

where θVðxÞ is 1 if x ∈ V and is 0 otherwise. Then, from
(2.7), we see that we have

jϕextðxÞ ¼ μδ∂VðxÞ; ð2:9Þ

i.e. we have an effective electric current running in a delta-
function sheet in the ϕ direction along the outside of the
cylinder. Thus, the chemical potential for producing a

3We choose conventions whereby εtxyz ¼ 1.
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magnetic field line poking through a system is an electrical
current running around the edge of the system, as one
would expect from textbook electrodynamics. In our
formalism, the actual magnetic field created by this
chemical potential is controlled by a thermodynamic
function, the susceptibility for the conserved charge
density Jtz.
We will sometimes return to the interpretation of b as

charge source to build intuition; however, we stress that in
general when there are light electrically charged degrees
of freedom present, the AðxÞ defined in (2.6) does not
have a local effective action and is not a useful quantity to
consider.

B. Hydrodynamic stress-energy tensor and current

We now turn to ideal hydrodynamics at nonzero temper-
ature. We first discuss the equilibrium state. Recall that the
analog of a conserved chargeQ for our 2-form current is its
integral over a codimension-2 spacelike surface S with no
boundaries, as shown in Fig. 1,

Q ¼
Z
S
⋆J: ð2:10Þ

Q counts the number of field lines crossing S at any instant
of time and is thus unaltered by deformations of S in both
space and time. A thermal equilibrium density matrix is
then given (for a particular choice of S) by

ρðT; μÞ ¼ exp

�
−
1

T
ðH − μQÞ

�
; ð2:11Þ

where μ is the chemical potential associated with the
2-form charge. This density matrix can be obtained from
cutting open a Euclidean path integral with an appropriate
component of b turned on, e.g. the S is the xy plane then we
would use btz ¼ μ

2
.

Elementary arguments, which we spell out in detail in
Appendix A, then give us the form of the stress-energy
tensor and the conserved higher rank current in thermal
equilibrium4:

Tμν
ð0Þ ¼ ðεþ pÞuμuν þ pgμν − μρhμhν;

Jμνð0Þ ¼ 2ρu½μhν�; ð2:12Þ

satisfying the conservation equations in the ideal limit

∇μT
μν
ð0Þ ¼ 0; ∇μJ

μν
ð0Þ ¼ 0: ð2:13Þ

We have labeled this expression with a subscript 0, as
this will be only the zeroth-order term in an expansion in
derivatives. Here, uμ is the fluid velocity as in conventional
hydrodynamics. hμ is the direction along the field lines, and
we impose the following constraints:

uμuμ ¼ −1; hμhμ ¼ 1; hμuμ ¼ 0: ð2:14Þ

It will also often be useful to use the projector onto the two-
dimensional subspace orthogonal to both u and h,

Δμν ¼ gμν þ uμuν − hμhν; ð2:15Þ

with trace Δμ
μ ¼ 2. In (2.12) and where ρ is the conserved

flux density and p is the pressure. There is no mixed uμhν

term, as this can be removed with no loss of generality by a
Lorentz boost in the ðu; hÞ plane.5
Note the presence of the hμhν term in the stress-energy

tensor, representing the tension in the field lines. Its
coefficient in equilibrium is μρ. It is a bit curious from
the effective field theory perspective that this coefficient is
fixed and is not given by an equation of state, like p, for
example. There is a quick thermodynamic argument to
explain this fact. Consider the variation of the internal
energy for a system containing field lines running perpen-
dicularly to a cross section of area A, with an associated
tension τ and a conserved charge Q given by the flux
through the section,

dU ¼ TdS − pdV þ τAdLþ μLdQ; ð2:16Þ

where L is the length of the system perpendicular to A.
BecauseQ is a charge defined by an area integral, it is given
by Q ¼ ρA, and the factor of L in front of dQ is the correct
scaling with the height of the system. Now, perform a
Legendre transform to the Landau grand potential,

Φ ¼ U − TS − μLQ; ð2:17Þ

dΦ ¼ −sVdT − pdV − ρVdμþ ðτ − μρÞAdL; ð2:18Þ

where s is the entropy density. Notice that Φ is the quantity
naturally calculated by the on-shell action, and we expect
it to scale with volume in local quantum field theory.
This scaling is spoiled by the term proportional to dL
unless τ ¼ μρ. This condition is, therefore, enforced by
extensivity.

4Equilibrium thermodynamics in the presence of magnetic
fields has also recently been studied in Ref. [30]; that work differs
from ours in that the magnetic fields there are fixed external
sources for a conventional 1-form current, whereas in our case the
magnetic fields are themselves the fluctuating degrees of freedom
of a 2-form current.

5We note that the form of the stress-energy tensor (2.12),
including constraints (2.14), is precisely that of anisotropic ideal
hydrodynamics with different longitudinal and transverse pres-
sures (with respect to some vector) [31,32]. In that case, μρ
measures the difference between the two pressures. The role of
this additional vector is now played by hμ.
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The thermodynamics is, thus, completely specified by a
single equation of state, i.e. by the pressure as a function of
temperature and chemical potential pðT; μÞ. The relevant
thermodynamic relations are

εþ p ¼ Tsþ μρ; dp ¼ sdT þ ρdμ; ð2:19Þ

with s the entropy density. Here, we have made use of the
volume scaling assumption.
The microscopic symmetry properties of J do not

actually determine those of hμ and ρ, only that of their
product. In this work, we assume the charge assignments in
Table I, which are consistent with magnetohydrodynamical
intuition and are particularly convenient. Note that all scalar
quantities (such as ρ and μ) are taken to have even parity
under all discrete symmetries, and charge conjugation is
taken to flip the sign of h. These symmetries will play a
useful role later on in restricting corrections to the entropy
current.
Hydrodynamics is a theory that describes systems that

are in local thermal equilibrium but can globally be far from
equilibrium, in which case the thermodynamic degrees of
freedom become space-time-dependent hydrodynamic
fields. Thus, the degrees of freedom are the two vectors
uμ, hμ and two thermodynamic scalars which can be taken
to be μ and T, leading to 7 degrees of freedom. The
equations of motion are the conservation equations (2.5)
and (2.4). As J is antisymmetric, one of the equations for
the conservation of J does not include a time derivative and
is a constraint on initial data. This constraint is consistently
propagated by the remaining equations of motion, thus
leaving effectively six equations for six variables, and the
system is closed.
We now demonstrate that the equations of motion of

ideal hydrodynamics result in a conserved entropy current.
Consider dotting the velocity u into the conservation
equation for the stress-energy tensor (2.5). Using the
thermodynamic identities (2.19), we find

uν∇μTμν ¼ −T∇μðsuμÞ − μ∂μðρuμÞ
− μρðuν∇μhνÞhμ ¼ 0: ð2:20Þ

We now project the conservation equation for J along hμ:

hν∇μJμν ¼ ∇μðρuμÞ − ρhμð∇μuνhνÞ ¼ 0: ð2:21Þ

Inserting this into (2.20) and using ∇μðuνhνÞ ¼ 0 to
rearrange derivatives, we find

∇μðsuμÞ ¼ 0: ð2:22Þ

We thus see that the local entropy current suμ is conserved,
as we expect in ideal hydrodynamics.
We now turn to the interpretation of the other compo-

nents of the hydrodynamic equations. The projections of
(2.5) along hν and Δνσ , respectively, are

hν½ðεþ pÞuμ∇μuν þ∇νp� −∇μðμρhμÞ ¼ 0; ð2:23Þ

Δνσ½ðεþ pÞuμ∇μuν þ∇νp − μρhμ∇μhν� ¼ 0: ð2:24Þ

These are the components of the Euler equation for fluid
motion in the direction parallel and perpendicular to the
background field.
Similarly, the evolution of the magnetic field is given by

the projection of the conservation equation for Jμν along hν
in (2.21) and along Δνσ below:

Δνσðuμ∇μhν − hμ∇μuνÞ ¼ 0: ð2:25Þ

The equation states that the transverse part of the magnetic
field is Lie dragged by the fluid velocity.
This is the most general system that has the symmetries

of Maxwell electrodynamics coupled to charged matter.
In particular, unlike conventional treatments of MHD, we
have made no assumption that the Uð1Þ gauge coupling g2

is weak. Indeed, it appears nowhere in our equations; in
theories with light charged matter, the fact that g2 runs
means that it does not have a universal significance and will
not appear as a fundamental object in hydrodynamic
equations.
To make contact with the traditional treatments of MHD,

consider expanding the pressure in powers of μ, e.g.

pðμ; TÞ ¼ p0ðTÞ þ
1

2
gðTÞ2μ2 þ � � � : ð2:26Þ

Here, p0ðTÞ should be thought of as the pressure of the
matter sector alone. The expansion is given in powers of μ2,
as the sign of μ is not physical.6 If we stop at this order and
then further assume that the coefficient of the μ2 term is
independent of temperature gðTÞ ¼ g, then the theory of
ideal hydrodynamics arising from this particular equation
of state is entirely equivalent to traditional relativistic MHD
with gauge coupling given by g. From our point of view,
this is then a weak-magnetic-field limit of our more general
theory. Note that this weak-field limit is entirely different
from the hydrodynamic limit that we are taking throughout

TABLE I. Charges under discrete symmetries of 2-form current
and hydrodynamical degrees of freedom.

Jti Jij ut ui ht hi ρ, μ, ε, p

C − − þ þ − − þ
P þ − þ − − þ þ
T − þ þ − þ − þ

6In this theory, the sign of the magnetic field is carried by the
direction of the hμ vector.
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this paper, and there is an entirely consistent effective
theory even if we do not take the weak-field limit. We
discuss some physical consequences of keeping higher-
order terms in this expansion (which will be generically
present in any interacting theory, even if their coefficient
may be small under particular circumstances) later on in
this paper.
Nevertheless, if we truncate the expansion for the

pressure as in (2.26), then we find from (2.19): ρ ¼ g2μ

and ε ¼ ε0 þ ρ2

2g2 with ε0 ¼ T∂Tp0ðTÞ − p0. The ideal

hydrodynamic theory of our 2-form current is now entirely
equivalent to conventional treatments of ideal MHD, as
presented in e.g. Ref. [33]. As s ∼ ∂Tp, the T-independ-
ence of g and thus of the μ-dependent piece of the pressure
essentially means that the magnetic field degrees of free-
dom carry no entropy.

III. FIRST-ORDER HYDRODYNAMICS

Hydrodynamics is an effective theory, and thus (2.12) are
only the zeroth-order terms in a derivative expansion. We
now move on to first order in derivatives; to be more
precise, the full stress-energy tensor is given by

Tμν ¼ Tμν
ð0Þ þ Tμν

ð1Þ þ � � � ; ð3:1Þ

Jμν ¼ Jμνð0Þ þ Jμνð1Þ þ � � � ; ð3:2Þ

where the zeroth-order term is given by the ideal MHD
expressions in (2.12), and our task now is to determine the
first-order corrections as a function of the fluid variables
such as the velocity and magnetic field. The numbers that
parametrize these corrections are the transport coefficients
such as viscosity and resistivity. The physics of dissipation
and entropy increase enter at first order in the derivative
expansion; as usual in hydrodynamics, the possible tensor
structures that can appear (and thus the number of inde-
pendent transport coefficients) are greatly constrained by
the requirement that entropy always increases.

A. Transport coefficients

We follow the standard procedure to determine these
corrections [34]. We begin by writing down the most
general form for the first-order terms:

Tμν
ð1Þ ¼ δεuμuν þ δfΔμν þ δτhμhν þ 2lðμhνÞ

þ 2kðμuνÞ þ tμν;

Jμνð1Þ ¼ 2δρu½μhν� þ 2m½μhν� þ 2n½μuν� þ sμν: ð3:3Þ

Here, lμ; kμ; mμ, and nμ are transverse vectors (i.e. orthogo-
nal to both uμ and hμ); tμν is a transverse, traceless, and
symmetric tensor; and sμν is a transverse, antisymmetric
tensor.

Next, we exploit the possibility of changing the hydro-
dynamical frame. In hydrodynamics, there is no intrinsic
microscopic definition of the fluid variables fuμ; hμ; μ; Tg.
Each field can therefore be infinitesimally redefined, as e.g.
uμðxÞ → uμðxÞ þ δuμðxÞ. The microscopic currents and the
stress-energy tensor must remain invariant under this
operation, and thus the redefinition alters the functional
form of the relationship between the currents and the fluid
variables. In conventional hydrodynamics of a charged
fluid, this freedom is often used to set Tμν

ð1Þuν ¼ 0 (Landau

frame) or jμð1Þ ¼ 0 (Eckart frame). We will use the scalar

redefinitions of μ and T to set δρ ¼ δε ¼ 0 and the vector
redefinitions of uμ and hμ to set kμ ¼ nμ ¼ 0. We now have
the simpler expansion:

Tμν
ð1Þ ¼ δfΔμν þ δτhμhν þ 2lðμhνÞ þ tμν; ð3:4Þ

Jμνð1Þ ¼ 2m½μhν� þ sμν: ð3:5Þ

Our task now is to determine the form of the reduced set
fδf; δτ;lμ; mμ; tμν; sμνg in terms of derivatives of the fluid
variables.
To proceed, we require an expression for the nonequili-

brium entropy current Sμ. The textbook approach to this
problem is to postulate a standard “canonical” form for this
entropy current, motivated by promoting the thermody-
namic relation Ts ¼ pþ ε − μρ to the following covariant
expression:

TSμ ¼ puμ − Tμνuν − μJμνhν: ð3:6Þ

Up to first order in derivatives, this is equivalent to

Sμ ¼ suμ −
1

T
Tμν
ð1Þuν −

μ

T
Jμνð1Þhν: ð3:7Þ

We will take this to be our entropy current. As in conven-
tional hydrodynamics [35], one can show that it is invariant
under frame redefinitions of the sort described above.
Next, we directly evaluate the divergence ∇μSμ. Using

the contraction of the conservation Eqs. (2.5) and (2.4) with
uμ, we find after some straightforward algebra

∇μSμ ¼ −
�
Tμν
ð1Þ∇μ

�
uν
T

�
þ Jμνð1Þ

�
∇μ

�
hνμ
T

�
þ uσHσ

μν

T

��
:

ð3:8Þ

We see that entropy is no longer conserved, as one expects
for a dissipative theory. The second law of thermodynamics
in its local form states that entropy should always increase.
Thus, the right-hand side of Eq. (3.8) should be a positive
definite quadratic form for all conceivable fluid flows.
For the vector and tensor dissipative terms, positivity
implies that the right-hand side is simply a sum of squares,
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requiring that the dissipative corrections take the following
form,

lμ ¼ −2η∥Δμσhν∇ðσuνÞ; ð3:9Þ

tμν ¼ −2η⊥
�
ΔμρΔνσ −

1

2
ΔμνΔρσ

�
∇ðρuσÞ; ð3:10Þ

mμ ¼ −2r⊥Δμβhν
�
T∇½β

�
hν�μ
T

�
þ uσHσ

βν

�
; ð3:11Þ

sμν ¼ −2r∥ΔμρΔνσðμ∇½ρhσ� þHλ
ρσuλÞ; ð3:12Þ

where the four transport coefficients η⊥;∥ and r⊥;∥ must all
be positive.
In the bulk channel parametrized by δf and δτ, mixing is

possible. The most general allowed form that is consistent
with positivity is parametrized by three transport coeffi-
cients ζ⊥;∥;×:

δf ¼ −ζ⊥Δμν∇μuν − ζ×hμhν∇μuν ð3:13Þ

δτ ¼ −ζ×Δμν∇μuν − ζ∥hμhν∇μuν: ð3:14Þ

Note that this mixing matrix is symmetric, in that the
mixing term ζ× is the same for δf and δτ. This follows from
an Onsager relation on mixed correlation functions, as we
explain in Sec. III B below.7

Further demanding that the right-hand side of (3.8) be a
positive-definite quadratic form imposes two constraints on
the bulk viscosities, which may be written as

ζ⊥ ≥ 0 ζ⊥ζ∥ ≥ ζ2×: ð3:15Þ

There are no further constraints that we know of. At first
order, we thus have seven transport coefficients ζ⊥;∥;×, η⊥;∥
and r⊥;∥. If we were to allow all coefficients permitted by
symmetries, we would instead have concluded that there
were 11 independent transport coefficients consistent with
the parity assignments under hμ → −hμ, illustrating the
constraints enforced by the second law of thermodynamics.
We now turn to the interpretation of these transport

coefficients. It is clear that ζ⊥;∥;× and η⊥;∥ are anisotropic
bulk and shear viscosities, respectively; for a charged fluid
in a fixed external magnetic field, one finds instead seven
independent viscosities [37], where the difference in
counting arises from the fact that we have imposed a
charge-conjugation symmetry hμ → −hμ.

The transport coefficients r∥;⊥ can be interpreted as the
conventional electrical resistivity parallel and perpendicular
to the magnetic field. To understand this, first note that
the familiar electric field Eμ is defined in terms of the
electromagnetic field strength as Eμ ¼ Fμνuν. Using (1.2),
we find

Eμ ¼ −
1

2
εμνρσuνJρσ

¼ −
1

2
εμνρσuνð2m½ρhσ� þ sρσ þ � � �Þ; ð3:16Þ

where the ellipsis indicates further higher-order corrections.
Note that a nonzero electric field enters only at first order in
hydrodynamics; an electric field is not a low-energy object,
as the medium is attempting to screen it.
Next, we note that a resistivity is conventionally defined

as the electric 1-form current response to an applied
external electric field. However, our formalism instead
naturally studies the converse object, i.e. the 2-form current
response Jμν in a field theory with a total action S½b�
deformed by a fixed external b-field source [which can be
interpreted as an external electric current via (2.7)]. Thus,
we need to perform a Legendre transform to find the analog
of the quantum effective action Γ½J̄�, which is a function of
a specified 2-form current J̄:

Γ½J̄�≡ S½b� −
Z

d4x
ffiffiffiffiffiffi
−g

p
bμνJ̄μν: ð3:17Þ

Here, S½b� is defined to be the on-shell action in the
presence of the b-field source, and b is implicitly deter-
mined by the condition that J ≡ δbS ¼ J̄, i.e. that the
stationary points of the action coincide with the specified
value for J̄. We now write J̄ in terms of a vector potential Ā
using (2.6) and define the electrical 1-form current
response j̄μ via

j̄μðxÞ≡ δΓ½J̄�
δĀμðxÞ

¼ −εμνρσ∂νbρσ: ð3:18Þ

Note the sign difference with respect to the external fixed
source jμext defined in (2.7). This arises from the Legendre
transform and is the difference between having a fixed
external source and a current response.
We now need to determine the relationship between the

electric field (3.16) and the response 1-form current (3.18).
Consider a static and homogenous fluid flow with

uμðxÞ ¼ δμt ; hμðxÞ ¼ δμz ; ð3:19Þ

in the presence of a homogenous but time-dependent
b-field source bxyðtÞ, bxzðtÞ. From (3.18), in the fixed J̄
ensemble, this b-field can be interpreted as an electrical
current response j̄z ¼ −2_bxy, j̄y ¼ 2_bxz. Now, inserting the

7In the first version of this paper on the arXiv, the possibility of
a nonzero ζ× was not taken into account, leading to an incorrect
count of transport coefficients. This inaccuracy was pointed out to
us by the authors of Ref. [36], and we thank them for bringing this
to our attention.
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expansion (3.11) and (3.12) into (3.16) and neglecting the
fluid gradient terms, we find that the electric field created
by this current source is

Ez ¼ r∥j̄z; Ey ¼ r⊥j̄y: ð3:20Þ
Thus, r∥;⊥ are indeed anisotropic resistivities as claimed.
Finally, we discuss a technical point: our starting point

for the discussion of dissipation was the canonical form for
the nonequilibrium entropy current (3.7). It is now well
understood that this form for the entropy current is not
unique; for example, in the hydrodynamics of fluids with
anomalous global symmetries (and thus with parity viola-
tion), the second law requires that extra terms must be
added to the entropy current, resulting eventually in extra
transport coefficients corresponding to the chiral magnetic
and vortical effects [1,2]. It was, however, shown in
Ref. [38] that for a parity-preserving fluid with a conserved
1-form current, all ambiguities in the entropy current can be
fixed by demanding that entropy production on an arbitrary
curved background be positive. We have performed a
similar analysis for the 2-form current. Here, charge-
conjugation invariance acts as hμ → −hμ, and this sym-
metry together with positivity of entropy production on
curved backgrounds is sufficient to show that the form of
the entropy current exhibited in (3.7) is unique.

B. Kubo formulas

We now derive Kubo formulas—i.e. expressions in terms
of real-time correlation functions—for these transport
coefficients. We follow an approach described in
Ref. [5] which we briefly review below.
A standard result in linear response theory states that

when thermal equilibrium is perturbed by an infinitesimal
source, the response of the system is given by the retarded
correlator of the operator that couples to the source. For
example, if we turn on a small b-field source, we find

δhJμνðω; kÞi ¼ −Gμν;ρσ
JJ ðω; kÞbρσðω; kÞ; ð3:21Þ

where Gμν;ρσ
JJ ðω; kÞ is the retarded correlator of J.

However, above, we saw that in the presence of an
infinitesimal perturbation around a static flow (3.19) by a
time-varying but spatially homogenous b-field source
bxyðtÞ, bxzðtÞ, the response within the hydrodynamic theory
was

Jxy ¼ −2r∥ _bxyðtÞ; Jxz ¼ −2r⊥ _bxzðtÞ: ð3:22Þ
Equating these two relations, we find the following Kubo
formulas for the parallel and perpendicular resistivities:

r∥ ¼ lim
ω→0

Gxy;xy
JJ ðωÞ
−iω

; r⊥ ¼ lim
ω→0

Gxz;xz
JJ ðωÞ
−iω

: ð3:23Þ

We will return to the physical interpretation of this
formula shortly. First, we derive Kubo formulas for the

viscosities. To do this, we consider perturbing the spatial
part of the background metric slightly away from flat space,

gij ¼ δij þ hijðtÞ; gti ¼ 0; gtt ¼ −1; ð3:24Þ

where hij ≪ 1. The response of the stress-energy tensor to
such a perturbation is given in linear response theory by

δhTijðω; kÞi ¼ −
1

2
Gij;kl

TT ðω; kÞhklðω; kÞ: ð3:25Þ

The hydrodynamic response to such a source is given by
(3.9) to (3.14) where the full contribution comes from the
Christoffel symbol

∇ðiujÞ ¼ −Γt
ijut ¼

1

2
_hij: ð3:26Þ

Matching the response in each tensor channel just as above,
we find the following set of Kubo relations:

η∥ ¼ lim
ω→0

Gxz;xz
TT ðωÞ
−iω

; η⊥ ¼ lim
ω→0

Gxy;xy
TT ðωÞ
−iω

; ð3:27Þ

ζ∥ ¼ lim
ω→0

Gzz;zz
TT ðωÞ
−iω

; ζ⊥þη⊥ ¼ lim
ω→0

Gxx;xx
TT ðωÞ
−iω

; ð3:28Þ

ζ× ¼ lim
ω→0

Gzz;xx
TT ðωÞ
−iω

¼ lim
ω→0

Gxx;zz
TT ðωÞ
−iω

: ð3:29Þ

These are a straightforward anisotropic generalization of
the usual formulas for the bulk and shear viscosity. Our
normalization for the anisotropic bulk viscosity has been
chosen so that no dimension-dependent factors enter into
the Kubo formula; however, this is not the standard
normalization. Note that we present two equivalent for-
mulas for the mixed bulk viscosity ζ×; the equality of these
two correlation functions is guaranteed by the Onsager
relations for off-diagonal correlation functions. Indeed, it is
this Onsager relation that sets to zero a possible antisym-
metric transport coefficient in (3.13)–(3.14).8
We now turn to a discussion of the resistivity for-

mula (3.23). Unlike the hydrodynamics of a conventional
1-form current where we generally obtain a Kubo formula
for the conductivity, here we find a Kubo formula directly
for its inverse, the resistivity, in terms of correlators of
the components of the antisymmetric tensor current corre-
sponding to the electric field. The resistivity is the natural
object here; in a theory of dynamical electromagnetism, we
examine how an electric field responds to an external
current flow, not the other way around.

8The Kubo formulas (3.23) and (3.27)–(3.29) agree with those
presented in Ref. [36]. We thank Pavel Kovtun for discussions
regarding these matters.
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To the best of our knowledge, such a Kubo formula for
the resistivity in terms of electric field correlations is novel.
Traditionally, in order to compute a resistivity, one instead
computes the conductivity of the 1-form global current that
is being gauged and then takes the inverse of the resulting
number “by hand.” This procedure—which essentially
treats a gauge symmetry as a global one—is probably only
physically reasonable at weak gauge coupling. On the other
hand, the Kubo formula above permits a precise universal
definition for the resistivity in a dynamical Uð1Þ gauge
theory, independently of the strength of the gauge coupling.
It is interesting to study its implications.
For example, we might see whether it agrees with the

traditional prescription. Consider a weakly coupled Uð1Þ
gauge theory with action

S½A;ϕ� ¼
Z

d4x

�
1

g2
F2 þ Aμj

μ
el½ϕ�

�
; ð3:30Þ

where jμel is a 1-form current that is built out of other
matter fields (schematically denoted by ϕ) that has been
weakly gauged. The considerations here do not involve
the background magnetic field, and so we turn it to zero.
Within this theory, we may compute the finite-temperature
correlator of the electric field to compute the resistivity
through (3.23).
One first attempt to do so might involve summing the

series of diagrams shown in Fig. 2. The geometric sum
leads to an answer of the schematic form

hEEðωÞi ∼ −ð−iωÞ2 g2GγγðωÞ
1 − hjeljelðωÞig2GγγðωÞ

; ð3:31Þ

where Gγγ is the free photon propagator for spatial polar-
izations and hjeljeli is the correlation function of the
electrical current. The photon propagator at zero spatial
momentum has a pole at ω → 0; at low frequencies, we
now zoom in on this pole to find for the resistivity r,

r ∼ ð−iωÞ 1

hjeljelðωÞi
∼
1

σ
; ð3:32Þ

where we have used the standard Kubo formula for the 0-
form global conductivity hjeljelðω → 0Þi ¼ −iωσ. Thus,
within this approximation scheme, it is indeed true that the
resistivity (defined via our Kubo formula) is equal to the
inverse of the conductivity of the current that is being
gauged.9

Note, however, that this class of diagrams is not the only
set of diagrams that one should include. One might also
imagine diagrams of the form Fig. 3; computationally,
they arise from the fact that the photon is now dynamical,
and thus the classification of diagrams as “one-particle-
irreducible” has changed. Such diagrams will contribute to
(3.23); as they simply do not exist in the theory of the
global 1-form current jel, they will necessarily modify the
conclusion above, changing r away from σ−1. We have not
attempted a systematic study of such diagrams, but it would
be very interesting to understand their effect. It seems likely
that they can be suppressed at weak gauge coupling,
justifying the approximation scheme above, but it is an
important open issue to demonstrate precisely when this is
possible.

IV. APPLICATION: DISSIPATIVE ALFVÉN AND
MAGNETOSONIC WAVES

In this section, we study the collective modes of the
relativistic MHD theory constructed above. Wewill linearly
perturb the background solution and determine the
dispersion relations ωðkÞ of the resulting modes. We
organize the fluctuations in the following way: without
loss of generality, we fix the direction of the background
magnetic field by setting the hμ field to point in the
z-direction, hμ ¼ ð0; 0; 0; 1Þ (note that its size is fixed by
the normalization of hμ). Furthermore, we can use a
residual SOð2Þ symmetry to fix the 4-momentum as

kμ ¼ ðω; q; 0; kÞ≡ ðω; κ sin θ; 0; κ cos θÞ; ð4:1Þ

so that θ measures the angle between the direction of the
background magnetic field and momentum of the hydro-
dynamic waves. The background velocity field is fixed to
uμ ¼ ð1; 0; 0; 0Þ at rest, and the background temperature
and chemical potential are kept general and space-time
independent. We then linearly perturb uμ, hμ, T, and μ as

FIG. 2. Sum over current-current insertions to compute elec-
trical resistivity.

FIG. 3. Example of new diagram that contributes to electrical
resistivity.

9Here, we have been somewhat cavalier with details. To make
these considerations precise, one should imagine performing the
sum over bubbles in Euclidean signature then analytically
continuing to the retarded propagator at frequency ω via ωE →
−iω before taking the small frequency limit. We have assumed
here that no subtleties arise in this continuation.
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uμ → uμ þ δuμe−iωtþiqxþikz; ð4:2Þ

hμ → hμ þ δhμe−iωtþiqxþikz; ð4:3Þ

T → T þ δTe−iωtþiqxþikz; ð4:4Þ

μ → μþ δμe−iωtþiqxþikz: ð4:5Þ

Note that linearized constraints (2.14) impose that

uμδuμ ¼ 0; hμδhμ ¼ 0; uμδhμ þ hμδuμ ¼ 0:

ð4:6Þ

For a background source without curvature, i.e. Hμ
ρσ ¼ 0,

the fluctuations can be organized into two classes:
(i) Transverse Alfvén waves with

hμδuμ ¼ uμδhμ ¼ 0; ð4:7Þ

kμδuμ ¼ kμδhμ ¼ 0; ð4:8Þ

δT ¼ δμ ¼ 0: ð4:9Þ

Note that the fluid displacement is perpendicular to
the background magnetic field; thus, these waves
can be thought of as the usual vibrational modes that
travel down a string with tension. These modes were
first discovered in the magnetohydrodynamic con-
text by Alfvén in Ref. [39]. For an introductory
treatment, see e.g. Ref. [40].

(ii) Magnetosonic waves with δuμ and δhμ contained in
the space spanned by fuμ; hμ; kμg. These are more
closely related to the usual sound mode in a finite-
temperature plasma. We will see that there are two
branches of this kind: “fast” and “slow.”

We first study Alfvén waves. Solving the conservation
Eqs. (2.4) and (2.5), we find the dispersion relation for
Alfvén waves to Oðκ2Þ to be

ω ¼ �vAκ −
i
2

�
1

εþ p
ðη⊥ sin2 θ þ η∥ cos2 θÞ

þ μ

ρ
ðr⊥ cos2 θ þ r∥ sin2 θÞ

�
κ2; ð4:10Þ

where the parameter that enters the Alfvén phase velocity is

v2A ¼ V2
Acos

2θ; V2
A ¼ μρ

εþ p
: ð4:11Þ

The expression for the speed of the wave is standard. Recall
that μρ is the tension in the field lines; in the nonrelativistic
limit, (εþ p) is dominated by the rest mass, and this
becomes the textbook formula for the speed of wave
propagation down a string. We are not, however, aware

of much previous discussion of dissipative corrections to
Alfvén waves; Ref. [41] studied a dissipative fluid pertur-
batively coupled to electrodynamics, and our expression
reduces to their angle-independent result if we assume an
isotropic shear viscosity and no resistivity.
When the magnetic field is perpendicular to the direc-

tion of momentum, i.e. cos2 θ ¼ 0, the Alfvén wave ceases
to propagate and becomes entirely diffusive, as is usually
the case for transverse excitations in standard hydro-
dynamics. Note that the width of the mode depends on the
momentum perpendicular to the strings; elementary treat-
ments of MHD often assume that the Alfvén wave has no
dependence on the perpendicular momentum at all, which
is sometimes taken as license to make it arbitrarily high,
allowing Alfvén waves that are arbitrarily well localized
in the plane perpendicular to the field (see e.g. Ref. [40]).
Here, we see that this is an artifact of the ideal hydro-
dynamic limit.
Turning now to the magnetosonic waves, a straightfor-

ward but somewhat tedious calculation shows that the
dispersion relations for the two magnetosonic waves are
given by

ω ¼ �vMκ − iτκ2; ð4:12Þ

where

v2M ¼ 1

2
fðV2

A þV2
0Þcos2θþV2

Ssin
2θ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðV2

A −V2
0Þcos2θþV2

Ssin
2θ�2 þ 4V4cos2θsin2θ

q
g:

ð4:13Þ

Note that fast magnetosonic waves have aþ sign before the
square root in Eq. (4.13) and slow magnetosonic waves
have a − sign. Above, we have defined the following
quantities,

V2
0 ¼

sχ
Tðcχ − λ2Þ ; ð4:14Þ

V2
S ¼

s2χ þ ρ2c − 2ρsλ
ðcχ − λ2Þðεþ pÞ ; ð4:15Þ

V4 ¼ sðρλ − sχÞ2
Tðcχ − λ2Þ2ðεþ pÞ ; ð4:16Þ

and the susceptibilities,

χ ¼ ∂ρ
∂μ ; c ¼ ∂s

∂T ; λ ¼ ∂s
∂μ ¼ ∂ρ

∂T : ð4:17Þ

It is easy to see that the formulas above predict
generically the existence of a two fully dissipative modes
at θ ¼ π

2
, namely the slow magnetosonic mode and the
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Alfvén mode. We can interpret VS as the speed of the fast
magetosonic mode at θ ¼ π

2
, a kind of speed of sound for

the system. At θ ¼ 0, on the other hand, one magnetosonic
mode has the same speed as the Alfvén mode, while the
other one has velocity V0. We plot these velocities as a
function of the angle θ for some interesting exam-
ples below.
The dissipative parts of these modes can be calculated

in a straightforward manner by going to one higher order
in derivatives using the formalism above. Unfortunately,
explicit expressions are rather cumbersome to write in
print. We quote below only the values for τ at θ ¼ 0
and θ ¼ π

2
, where we indicate which mode the width

applies to by specifying the value of the phase velocity at
that angle10:

τðVA; θ ¼ 0Þ ¼ 1

2

�
η∥

εþ p
þ r⊥μ

ρ

�
; ð4:18Þ

τðV0; θ ¼ 0Þ ¼ 1

2

ζ∥
sT

; ð4:19Þ

τ

�
0; θ ¼ π

2

�
¼ 1

2

�
η∥
sT

þ r⊥ðεþ pÞ2
T2ðs2χ þ ρ2c − 2ρsλÞ

�
; ð4:20Þ

τ

�
VS; θ ¼ π

2

�
¼ 1

2

�
ζ⊥ þ η⊥
εþ p

þ r⊥ðcTρþ ρλμ − sTλ − sμχÞ2
T2ðcχ − λ2Þðs2χ þ ρ2c − 2ρsλÞ

�
:

ð4:21Þ

While the coefficient ζ× enters into the dispersion
relations of magnetosonic waves, its coefficient is propor-
tional to sin2 θ cos2 θ, which implies that the magnetosonic
dispersion relations have no dependence on the bulk
viscosity ζ× at θ ¼ 0 nor at θ ¼ π=2. Notice that the
dissipative part (4.18) coincides exactly with the θ → 0
limit of (4.10). This is expected, as in this limit there is an
enhanced SOð2Þ rotational symmetry around the shared
axis of background magnetic field and momentum, relating
the modes in question. As a result of this coincidence, the
results presented allow the measurement of only five of the
seven dissipative coefficients. As it turns out, if we allow
measurements at arbitrary angles, then ζ× can be deter-
mined, but the value of η⊥ cannot be measured from the
study of dissipation of linear modes alone. By introducing

sources, one can of course use the Kubo formulas pre-
viously discussed to determine all transport coefficients.

A. Magnetohydrodynamics at weak field

In order to recover the familiar results from standard
magnetohydrodynamics, we can take the small chemical
potential limit, which corresponds to weak magnetic fields.
This is the regime in which the standard treatment is valid.
In the weak-field limit, we can expand the equation of

state as [cf. (2.26)]

pweakðμ; TÞ ¼ p0ðTÞ þ
1

2
g2ðTÞμ2 þ � � � ; ð4:22Þ

where p0ðTÞ and gðTÞ are temperature-dependent functions
that control the leading-order behavior. In this limit, to
leading order,

v2A ¼ g2μ2

sT
cos2 θ þ � � � ; ð4:23Þ

ðv2MÞfast ¼
s
cT

þ � � � ; ð4:24Þ

ðv2MÞslow ¼ g2μ2

sT
cos2 θ þ � � � : ð4:25Þ

This agrees with the standard treatment (for a relativistic
discussion, see e.g. Ref. [41]). Notice that the slow
magnetosonic mode and the Alfvén wave are indistinguish-
able to this order. If we want to separate them, we need to
go to higher order in the expansion. One nice example
when one can do this and obtain concrete expressions is in
the case where μ is much larger than any other scale in the
problem (while still being much smaller than T2). In this
case, we have no other scale, and the expansion of the
equation of state to the necessary order is

pweakðμ; TÞ ¼
a
4
T4 þ g2

2
μ2 þ β

4

μ4

T4
þ � � � ; ð4:26Þ

where a, g, and β are dimensionless constants. We find the
leading μ2 effects on the velocities of modes to be

v2A ¼ g2μ2

aT4
cos2 θ þ � � � ; ð4:27Þ

ðv2MÞfast ¼
1

3
þ 2

3

g2μ2

aT4
sin2 θ þ � � � ; ð4:28Þ

ðv2MÞslow ¼ g2μ2

aT4
cos2 θ þ � � � ; ð4:29Þ

v2A − ðv2MÞslow ¼ g4 þ aβ
2a2

μ4

T8
sin2 2θ þ � � � : ð4:30Þ

10Note that, depending on the equation of state and the specific
values of μ and T (which determine the relative numerical
magnitudes of VA and V0), it can be either the fast or the slow
magnetosonic mode that has phase velocity coinciding with
the Alfvén wave at θ ¼ 0, as can be seen explicitly in Figs. 4(a)
and 4(b).
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In each of the expressions, we have kept only the first
nontrivial term to illustrate the angular dependence. The
factor of 1

3
in the leading-order expression for ðv2MÞfast is

characteristic of the sound mode of conformal fluids in four
dimensions. The fact that sound is the fastest mode is in
agreement with our expectations at high temperatures
where propagation is by nature diffusive. Note that both
the Alfvén and the slow magnetosonic wave speeds start at
Oðμ2Þ, which is the small expansion parameter in this limit.
Thus, they propagate very slowly indeed. We present some
illustrative plots of these dispersion relations in Fig. 4(a).

B. Magnetohydrodynamics at strong field

The situation is quite different for a fluid in which
magnetic fields are strong. Here, our formalism can make
concrete predictions away from the weak coupling limit.
For concreteness, let us assume, similarly as in the previous
discussion, that T2 is much larger than any other scale in the
problem, while still much smaller than μ. In that case, we
can write the equation of state in a small temperature
expansion (strong magnetic field) as

pstrongðμ; TÞ ¼
g02

2
μ2 þ a0

4
T4 þ β0

8

T8

μ2
þ � � � ; ð4:31Þ

where g0, a0, and β0 are dimensionless constants. The
expansion above is shown to the second subleading order
to highlight that this expansion is, despite similarities,
indeed different from (4.26). The fact that the leading-order
terms agree (in form, but not numerical coefficients)
between the two expansions is a coincidence due to our
working in four dimensions.
From the above equation of state, we can calculate the

mode velocities to first nontrivial order in temperature
corrections:

v2A ¼ cos2 θ −
a0T4

g02μ2
cos2 θ þ � � � ; ð4:32Þ

ðv2MÞfast ¼ 1 −
a0T4

g02μ2
2

2þ sin2 θ
þ � � � ; ð4:33Þ

ðv2MÞslow ¼ 1

3
cos2 θ

−
T4 cos2 θ
9g02a0μ2

�
4g02β0 þ 3a02 sin2 θ

2þ sin2 θ

�
þ � � � :

ð4:34Þ

There are a few interesting features of these expressions.
For propagation in the direction of the magnetic field lines,
the Alfvén wave now has the same velocity as the fast
magnetosonic mode, instead of having the same velocity as
the slow mode, which was the case in the large temperature
expansion. Furthermore, the speed of these modes is that of
light in the strict T → 0 limit. This feature is completely
general and independent of the particular no-scale
assumption for the Alfvén wave. Another important differ-
ence is that Alfvén modes can only propagate along
magnetic field lines while fast magnetic modes propagate
in any direction.
The slow magnetosonic mode is somewhat peculiar.

Notice that the β0 coefficient contributes at an earlier order
in T than in the other modes. A more striking related feature
is that the leading factor of 1

3
is not universal and depends

strongly on the power of the leading temperature contri-
bution. If, for example, a0 had been zero, we would have
found that the zero-temperature velocity squared of the
slow mode in the direction of the magnetic field lines
was instead 1

7
. Therefore, the high magnetic field limit is

0.1
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FIG. 4. Sample plots illustrating the velocity squared of Alfvén wave v2A (solid black line), fast magnetosonic wave ðv2MÞfast (dotted
line), and slow magnetosonic wave ðv2MÞslow (dashed line) as a function of angle θ between the momentum of the wave and the
background magnetic field.
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nonuniversal for this mode. The reason behind this is that
this mode is the only one that contains δT fluctuations as
μ ≫ T2. It is an interesting question weather a universal
hydrodynamic theory can be built that only describes the
physics of fluctuating chemical potentials at fixed temper-
ature if μ ≫ T2. We answer this question in the affirmative
in Sec. VI.
We present some representative plots of the velocities in

the strong-field expansion in Fig. 4(b).

C. Cyclotron mode

Lastly, let us mention that by introducing a nontrivial
curvature for the source of our generalized charge, we can
recover the familiar cyclotron mode of plasma physics in
the presence of a finite electric charge. At zero spatial
momentum in the presence of a spatial and isotropic
external field Hijk ¼ nϵijk, we find that the system can
undergo cyclotron motion with frequency

ω ¼ � 2n

μ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ts

μρ

q : ð4:35Þ

V. MAGNETOHYDRODYNAMICS WITH A
BARYON NUMBER

The theory that we have developed above demonstrates
the essential physics in the hydrodynamics of conserved
flux tubes. However, for phenomenological applications,
we should extend it slightly to also include a conventional
0-form global symmetry (e.g. baryon number). This turns
out to be entirely straightforward, and thus we present here
only results without derivations.
We denote the baryon number current by Bμ. We have

∇μBμ ¼ 0, and we denote its conserved charge and
chemical potential by nB and μB. The thermodynamic
relations of interest are

εþ p ¼ μBnB þ μρþ Ts; ð5:1Þ

dp ¼ sdT þ ρdμþ nBdμB: ð5:2Þ

At the level of ideal hydrodynamics, the relations
(2.12) remain unaltered, and the expression for the baryon
current is

Bμ
ð0Þ ¼ nBuμ: ð5:3Þ

The conservation equation for Tμν is modified to include a
contribution from an external gauge field FB ¼ dAB that
couples to the baryon current:

∇μTμν ¼ Hν
ρσJρσ þ Fνμ

B Bμ: ð5:4Þ

Just as before, the ideal hydrodynamics equations result in
a conserved entropy current suμ at the ideal hydrody-
namic level.
If we move to first-order hydrodynamics, the canonical

form for the entropy current is

Sμ ¼ suμ −
1

T
Tμν
ð1Þuν −

μ

T
Jμνð1Þhν −

μ

T
Bμ
ð1Þ: ð5:5Þ

We expand the first-order correction to the baryon
current as

Bμ
ð1Þ ¼ δnBuμ þ qhμ þ fμ; ð5:6Þ

with δnB and q first-order scalars and fμ a transverse vector.
It is convenient to use scalar redefinitions of the baryon
chemical potential to set δnB ¼ 0; then, an entropy analysis
similar to that above results in the following expressions,

q ¼ −σ∥hμ
�
T∂μ

�
μB
T

�
− FB

μνuν
�
; ð5:7Þ

fμ ¼ −σ⊥Δμν

�
T∂ν

�
μB
T

�
− FB

νρuρ
�
; ð5:8Þ

where the transport coefficients σ⊥;∥ are simply conven-
tional global (if anisotropic) conductivities for the baryon
current.

VI. RELATIVISTIC MHD AT ZERO
TEMPERATURE

In this section, we turn our attention to MHD at zero
temperature. What do we mean by this? Normally, a system
at T ¼ 0 is outside the hydrodynamic limit as there is no
way to properly define a long wavelength limit compared
with typical decay widths. Another way of stating this fact
is the following: at T ¼ 0, there is no dissipation, and this
leads to long-lived excitations that do not arise necessarily
as a consequence of conservation laws, leading to the
presence of gapless modes that need to be included in the
description of these systems. Also common is the presence
of gapless Goldstone modes when there is a broken
symmetry.
There is, however, a physical situation of interest that can

be described from a hydrodynamic perspective. Consider a
system at a very low temperature compared with the scale
set by μ. Is there a universal description of this system? The
answer is typically no. The reason is that there are finite-
energy excitations around this equilibrium state that require
understanding of the finite-temperature theory. An example
of this feature is given by the physics of the slow magneto-
sonic mode described in Sec. IV B. The situation is even
more severe if more light modes need to be included as
T → 0. One can, instead, consider a subsector of the theory
where temperature fluctuations are not allowed. In this
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case, we are effectively studying a small part of the Hilbert
space at energies E ∼ μQ. In order to do this, we can then
restrict to T ¼ 0 in our equation of state and study the
universal properties implied by the conservation of charge.
Notice that an important feature of this system is that
entropy is typically zero (i.e. the number of states we are
considering is not exponentially large) according to the
third law of thermodynamics. A curious counterexample to
this seems to be holographic systems at finite density for
standard conserved 1-form currents [42]. We will be
agnostic about this for now and come back to this issue
at the end of this section around Eq. (6.36).
The program above can be carried out in standard

hydrodynamics of conserved 1-form currents. See
Appendix B for a short discussion. The physics of this
system is, however, conceptually not fundamentally differ-
ent from usual hydrodynamics at T ≠ 0. This is due to the
fact that the symmetry breaking pattern of a system at finite
density but with T ¼ 0 is identical to that of the T ≠ 0
situation. It is always the case that the SOð3; 1Þ Lorentz
symmetry is broken down to SOð3Þ. This is because the
charge density still selects a rest frame, even at T ¼ 0.
The situation is much more interesting in our description

of magnetohydrodynamics. At T ≠ 0 and μ ¼ 0, we have
the usual symmetry breaking pattern SOð3; 1Þ → SOð3Þ.
At μ ≠ 0, more symmetries are broken; the presence of
background magnetic fields leads to the choice of a
preferred spatial direction, further breaking Lorentz sym-
metry as SOð3; 1Þ → SOð2Þ and leading to the richer
theory described in the previous sections. What happens
at T ¼ 0 and μ ≠ 0? Interestingly, the situation is different
from the case discussed before. At T ¼ 0, there is only an
antisymmetric tensor turned on in the background respon-
sible for the magnetic field. This configuration is invariant
under Lorentz boosts along the magnetic field lines.
Therefore, in this case, we have an enhanced symmetry
SOð3; 1Þ → SOð1; 1Þ × SOð2Þ with respect to the finite-
temperature case.
This novel symmetry breaking pattern implies that the

thermodynamic variables necessary to describe the system
are completely different from the discussion in Sec. II. In
what follows, we describe this new theory. There are
concrete applications of this formalism in the understand-
ing of systems at strong magnetic fields, such as some
astrophysical systems.

A. Effective degrees of freedom

The relevant hydrodynamic fields are a scalar chemical
potential μ and an antisymmetric uμν field that parametrizes
the rest frame enjoying SOð1; 1Þ × SOð2Þ symmetry. We
normalize it as

uμνuμν ¼ −2: ð6:1Þ
As in usual hydrodynamics, the normalization is possible as
μ carries this information. What is crucial, however, is the

sign above, signalling that the tensor above is “mostly” in
the plane acted on by SOð1; 1Þ. This is similar to the
familiar uμuμ ¼ −1 constraint. We would like, however,
uμν to satisfy a stronger constraint and live entirely in the
plane acted on by the SOð1; 1Þ, so there exists a frame
where the charge is entirely at rest. This is enforced in a
covariant manner by further demanding that

uμνuνρuρσ ¼ uμσ: ð6:2Þ

It will be convenient to introduce a symmetric tensor,

Ωμν ≡ uμλuλν: ð6:3Þ

The tensor Ω is the SOð1; 1Þ-invariant metric on the 2D
subspace spanned by the magnetic field. It projects any
index onto this subspace. We will also make use of the
projector orthogonal to this subspace, which projects onto
the SOð2Þ-invariant sector,

Πμν ≡ gμν −Ωμν; ð6:4Þ

with trace Πμ
μ ¼ Ωμ

μ ¼ 2. Henceforth, we will focus on
the theory in flat space, gμν ¼ ημν. It will also be useful to
visualize our construction in a Cartesian coordinate system
aligned to the magnetic field by setting utz ¼ −uzt ¼ 1,
while all remaining components are zero. The SOð1; 1Þ
group then acts on ðt; zÞ and leaves invariant the metricΩμν.
SOð2Þ acts on ðx; yÞ and leaves invariant the metric Πμν.
We can now write down the most general stress-energy

tensor and the antisymmetric conserved 2-form in flat
space,

Tμν
ð0Þ ¼ −εΩμν þ pΠμν; Jμνð0Þ ¼ ρuμν; ð6:5Þ

where ε, p, and ρ are functions of μ only. It is also
important to note that the thermodynamic relation (2.19)
has now become

εþ p ¼ μρ; dp ¼ ρdμ: ð6:6Þ

We can recover the zero temperature hydrodynamic
theory of (6.5) from the finite-temperature theory (2.12)
by the following identification of the hydrodynamic var-
iables,

uμν ¼ 2u½μhν�; ð6:7Þ

keeping μ finite and sending T to zero. In this language, the
symmetric SOð1; 1Þ and SOð2Þ metrics are

Ωμν ¼ hμhν − uμuν; ð6:8Þ

Πμν ¼ gμν þ uμuν − hμhν ¼ Δμν; ð6:9Þ
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where Δμν is the finite-temperature projector from
Eq. (2.15).
At T2 ≪ μ, we therefore expect a universal subsector of

hydrodynamics to satisfy, in the ideal limit, the dynamical
conservation equations

∇μT
μν
ð0Þ ¼ 0; ð6:10Þ

∇μJ
μν
ð0Þ ¼ 0; ð6:11Þ

with the constituent relations (6.5).
As always, it is important to check that this system of

equations closes and is not overdetermined. The system we
are considering has a priori 5 degrees of freedom given by
the scalar μ and the 4 degrees of freedom in uμν subject to
the constraints (6.1) and (6.2). These 4 degrees of freedom
can be viewed, in terms of symmetries, as the nontrivial
action of the Lorentz group on a tensor preserving the
SOð1; 1Þ × SOð2Þ symmetries.
On the other hand, we see that the system above consists,

naively, of eight equations of motion. This presents a
danger, as the system of equations could be overdeter-
mined. This is, however, not so. One of the equations (the
time component of the charge conservation) is actually a
constraint, as in the T ≠ 0 case. This constraint is con-
sistently propagated by the other equations of motion.
Thus, enforcing this constraint removes two equations of
motion and 1 degree of freedom, still leaving an excess of
two equations. For this system to not be overdetermined,
they need to be trivial. Luckily, this is exactly the case for
(6.5). Consider the equation

ð∇μTμνÞΩνλ þ μð∇μJμνÞuνλ ¼ 0: ð6:12Þ

This equality is satisfied off shell for any field uμν
satisfying the constraints (6.1) and (6.2), and thus the two
equations of motion that it contains are redundant.
Therefore, the system of equations under consideration
is consistent as a full set of nonlinear partial differential
equations. Interestingly, as we elaborate in Appendix B,
Eq. (6.12) can be viewed as the natural zero-temperature
generalization of the equation for the conservation of the
entropy current at finite temperature.

B. Beyond ideal hydrodynamics

We now move beyond ideal hydrodynamics. From the
structure of available tensors, it is clear that there are no
suitable one-derivative structures as they would have an
odd number of indices. Therefore, Tμν

ð1Þ ¼ Jμνð1Þ ¼ 0. The

leading-order corrections only enter at the level of second-
order hydrodynamics. This observation, which follows
only from available tensor structures is consistent with
the fact that at T ¼ 0, the theory is expected to be
nondissipative. Since first-order corrections to ideal

hydrodynamics are normally purely dissipative, such cor-
rections should be absent.
To determine the form of the potential second-order

corrections, we first discuss the decomposition of an
arbitrary tensor under SOð2Þ × SOð1; 1Þ. Using a; b;…
for SOð1; 1Þ indices and i; j;… for SOð2Þ indices, an
antisymmetric tensor sμν breaks into three blocks: sab and
sij, which are tensors under SOð1; 1Þ and SOð2Þ, respec-
tively, as well as the off-diagonal elements sia that trans-
form as a product of vectors under SOð1; 1Þ and SOð2Þ
(denoted as v ⊗ v). A similar classification holds for
symmetric tensors tμν, except that we can also extract
out the scalar traces of the tensors tab and tij.
The three projectors onto the tensor representation of

SOð1; 1Þ, SOð2Þ, and vector representations of SOð1; 1Þ ⊗
SOð2Þ are

SOð1; 1Þ∶ Pμν
ðωÞρσ ¼ Ωμ

ρΩν
σ; ð6:13Þ

SOð2Þ∶ Pμν
ðΠÞρσ ¼ Πμ

ρΠν
σ; ð6:14Þ

v ⊗ v∶ Pμν
ðvÞρσ ¼ Ωμ

ρΠν
σ þ Πμ

ρΩν
σ; ð6:15Þ

with traces Pμ
ðωÞμρσ ¼ Ωρσ , P

μ
ðΠÞμρσ ¼ Πρσ, and Pμ

ðvÞμρσ ¼ 0.

Hence, the symmetric and traceless projectors of an
arbitrary matrix Mμν onto the three sectors are

SOð1; 1Þ∶
�
PðμνÞ
ðωÞρσ −

1

2
ΩμνΩρσ

�
Mρσ; ð6:16Þ

SOð2Þ∶
�
PðμνÞ
ðΠÞρσ −

1

2
ΠμνΠρσ

�
Mρσ; ð6:17Þ

v ⊗ v∶ PðμνÞ
ðvÞρσM

ρσ; ð6:18Þ

and the antisymmetric parts follow from P½μν�
ρσMρσ in all

three cases.
We now use this classification to parametrize the most

general correction to (6.5), i.e. the analog of (3.3) at zero
temperature:

Tμν
ð2Þ ¼ −δεΩμν þ δpΠμν þ tμνSOð1;1Þ þ tμνSOð2Þ þ tμνv⊗v;

Jμνð2Þ ¼ δρuμν þ sμνSOð2Þ þ sμνv⊗v: ð6:19Þ

Here, a two-index object with the SOð2Þ or the SOð1; 1Þ
subscript indicates that the object transforms as a tensor
under the appropriate group, whereas the v ⊗ v subscript
indicates that it transforms as a product of vectors under
SOð2Þ and SOð1; 1Þ. Note that in the antisymmetric sector,
any putative sμνSOð1;1Þ is proportional to uμν, and thus any

corrections from those terms have been included in the
δρuμν term.
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We now note, paralleling the discussion around (3.3),
that we may exploit the possibility to change the hydro-
dynamic frame under a scalar redefinition μ → μþ δμ and
an antisymmetric tensor redefinition uμν → uμν þ δuμν. The
redefinitions are subject to two constraints. First, the
perturbation of the normalization constraint (6.1) results in

uμνδuμν ¼ 0: ð6:20Þ

Second, the perturbation of the subspace constraint (6.2)
can be written in the following form:

ðPμν
ðΠÞρσ − 2Pμν

ðωÞρσÞδuρσ ¼ 0: ð6:21Þ

This annihilates the part of δuμν living in the SOð1; 1Þ and
SOð2Þ tensor blocks, meaning that it lives entirely in the
(antisymmetric part of the) vector ⊗ vector block. This
automatically implies the first constraint, i.e. Eq. (6.20).
By using the scalar redefinitions of μ, we may eliminate a

single scalar correction in (6.19), which we take to be δρ.
Furthermore, using the antisymmetric tensor redefinition of
uμν, we may further remove the vector ⊗ vector term sμνv⊗v.
Thus, we find the simpler frame-fixed structure of correc-
tions to the conserved hydrodynamic tensors to be

Tμν
ð2Þ ¼ −δεΩμν þ δpΠμν þ tμνSOð1;1Þ þ tμνSOð2Þ þ tμνv⊗v;

Jμνð2Þ ¼ sμνSOð2Þ: ð6:22Þ

These expressions are analogous to the finite-temperature
expressions in Eq. (3.5). The task is now to determine these
six corrections in terms of the available second-derivative
objects. For the purposes of this paper, we will only focus
on terms that play a role in linearized hydrodynamics and
enter into linear dispersion relations. As is well known in
the hydrodynamics literature [6,9,11], a full nonlinear
analysis even at a two-derivative order typically involves
tens of possible structures.
We expand the effective degrees of freedom to linear

order,

μ → μþ δμ; uμν → uμν þ δuμν; ð6:23Þ

where we take μ and uμν to be constant. Note that to linear
order, we can write all structures efficiently in momentum
space spanned by kμ. Furthermore, it will come in handy to
make use of the decomposition into SOð1; 1Þ and SOð2Þ
indices. Following the notation above,

uμν → uab; ð6:24Þ

δuμν → δu½ai�; ð6:25Þ

kμ → ðωa; qiÞ: ð6:26Þ

We find in this approximation the following allowed tensor
structures,11

δε ¼ ζð1;1Þ½qiδuaiuabωb�; ð6:27Þ

δp ¼ ζð2Þ½qiδuaiuabωb�; ð6:28Þ

tabSOð1;1Þ ¼ ηð1;1Þ½2qiδuciucðaωbÞ

−Ωabqiδuciucdωd�; ð6:29Þ

tijSOð2Þ ¼ ηð2Þ½2qðiδuajÞuabωb

−Πijqkδuakuabωb�; ð6:30Þ

taiv⊗v ¼ tiav⊗v ¼ ν0½qjδubjubaqi�
þ ν1½δubiubaωcωc� þ ν2½δubiubaqjqj�; ð6:31Þ

sijSOð2Þ ¼ 0; ð6:32Þ

with transport coefficients parametrized by ζð1;1Þ, ζð2Þ,
ηð1;1Þ, ηð2Þ, ν0, ν1, ν2. Note that at linear order, no
antisymmetric tensors in the SOð2Þ sector remain after
using the equations of motion of the ideal system. The
details behind this construction are described in
Appendix C.
Importantly, it turns out that not all of these corrections

are permitted for a consistent system; we discuss this in the
next section.

C. Application: Modes of the system

To find the modes of MHD at zero temperature, we apply
the same procedure as in Sec. IV. We choose coordinates
such that the background is given by utz ¼ −uzt ¼ 1 and
the other components equal zero. In our covariant notation
from before, we identify t, z with a; b;… and x, y
with i; j;….
As in the previous case, we can always use the SOð2Þ

symmetry to rotate the qi momentum into the x axis. But in
this case, we can also make use of the SOð1; 1Þ symmetry
acting on the ðt; zÞ plane. Differently from the SOð2Þ case,
here, there are two different representations of SOð1; 1Þ that
we can consider.12 An SOð1; 1Þ vector ωa can be:

(i) lightlike: ωaωa ¼ 0,
(ii) timelike: ωaωa < 0.
Let us first consider the lightlike case and choose

ωt ¼ ω, ωz ¼ ω, qx ¼ q, qy ¼ 0. Solving the system of

11Here, we have demanded that corrections to the energy-
momentum tensor should be even under uμν → −uμν,
δuai → −δuai, as the ideal term. This is consistent with the
charge assignments in Table I.

12In principle, one could also have spacelike representations
ωaωa > 0. They correspond, however, to dissipative modes not
present in this nondissipative T ¼ 0 theory.
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equations, we find this choice is a solution for excitations in
the Alfvén channel,

δuiaqi ¼ δuiaωa ¼ 0; δμ ¼ 0: ð6:33Þ

Notice that this implies that Alfvén waves have dispersion
relations manifestly independent of q. Using the familiar
representation familiar from the finite-temperature case,

kμ ¼ ðω; q; 0; kÞ≡ ðω; κ sin θ; 0; κ cos θÞ; ð6:34Þ

we obtain the dispersion relation

ωA ¼ k ¼ κ cos θ: ð6:35Þ

This dispersion relation is also manifestly independent of
all transport coefficients. One might have expected that
higher-derivative corrections could have modified it, mak-
ing the Alfvén mode into a timelike representation of
SOð1; 1Þ. This is not the case, however. Furthermore, it is
simple to see that this situation persists to all orders in
derivatives. A correction to the linear equations of motion
appears in the form of a vector linear in δuia. In order to
make a vector, one of these two indices needs to be
contracted, but for Alfvén waves, all contractions vanish,
and the dispersion relation cannot be corrected at any order
in derivatives. The result (6.35) is, therefore, completely
universal in any magnetohydrodynamical theory at high
enough μ ≫ T2, and it agrees with our large μ expansion
(4.32). The mode corresponds to the transverse fluctuation
of magnetic field lines. This fluctuation can only move in
the direction of the magnetic field and at the speed of light
as seen from (6.35).
Now, consider the second, timelike case. It is now

possible to use the symmetries to choose ωt ¼ ω,
ωz ¼ 0, qx ¼ q, qy ¼ 0. These modes correspond to
magnetosonic excitations. In this case, the higher-derivative
corrections do contribute to the dispersion relation.
There remains an important point that constrains these

higher-derivative corrections. In the previous discussion
concerning the ideal fluid at T ¼ 0, it was of crucial
importance that two equations in the system (6.12) hap-
pened to be trivial for the system not to be overdetermined.
This property of the differential equations is lost once the
higher-derivative corrections are included. It appears that
ensuring the system to not be overdetermined is a more
dramatic version of the usual requirements that apply to the
divergence of the entropy current (in standard hydrody-
namics) and severely restricts the possible number (and
signs) of transport coefficients.
A complete resolution of the issue and enumeration of

the resulting constraints on second-order coefficients would
demand understanding the full nonlinear behavior of the
theory, which lies outside the scope of this article. For
linear perturbations, it is interesting to remark that the

formerly trivial Eq. (6.12) can be written as a total
divergence:

ð∇μTμνÞΩνλþμð∇μJμνÞuνλ∼∇μðTμνΩνλþμJμνuνλ−pΩμ
λÞ:

ð6:36Þ
Therefore, a sufficient but not necessary condition for
consistency at the linear level is to demand that the term
inside the divergence vanishes identically. This is some-
what reminiscent of a third law of thermodynamics at
T ¼ 0. This condition would have the effect of setting
ζð1;1Þ ¼ ηð1;1Þ ¼ ν0 ¼ ν1 ¼ ν2 ¼ 0, leaving only ζð2Þ and
ηð2Þ available. Unfortunately, this condition is not sufficient
at the nonlinear level; terms that have been omitted from
(6.36) can spoil the consistency relation.
Therefore, in this article, we take a more conservative

stance and simply demand the minimal condition for the
linear system be self-consistent. An explicit solution of
the equations of motion for the magnetosonic mode yields
the necessary condition

ν0 ¼ −ν2 þ
ρ

μχ
ðν1 − ηð1;1Þ þ ζð1;1ÞÞ ð6:37Þ

and gives the following dispersion relation,

ωM ¼ �
ffiffiffiffiffi
ρ

μχ

r
q

�
1þ 1

2μ2χ

�
ðζð1;1Þ − ηð1;1ÞÞ

−
μχ

ρ
ðζð2Þ þ ηð2ÞÞ

�
q2
�
; ð6:38Þ

where χ ¼ ∂ρ
∂μ. Boosting this result in the ðt; zÞ plane, we get

ωM ¼ �ðvMκ þ αMκ
3Þ; ð6:39Þ

with

vM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ þ ρ

μχ
sin2 θ

r
ð6:40Þ

and

αM ¼ ρ

2μ3χ2
sin4θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2θ þ ρ
μχ sin

2θ
q

×

�
ðζð1;1Þ − ηð1;1ÞÞ −

μχ

ρ
ðζð2Þ þ ηð2ÞÞ

�
: ð6:41Þ

In the particular case when no other scale enters the
problem, we must have ρ

μχ ¼ 1, and the formulas above
agree with (4.34). In this case, the speed of the universal
magnetosonic mode is that of light in the ideal limit, but it
can be corrected at higher order in the derivative expansion.
As expected, this must impose causality constraints on the
transport coefficients.
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VII. CONCLUSIONS AND OUTLOOK

In this work, we have systematically developed the
hydrodynamic theory of a 2-form current at finite temper-
ature, describing the dynamics of a finite density of strings
as it relaxes toward thermal equilibrium. As we have
emphasized, the conventional theory of relativistic mag-
netohydrodynamics fits into this general class of theories,
where the density of strings represents magnetic flux. Thus,
our work may be viewed as a construction of a generalized
theory of MHD from the point of view of symmetries and
effective field theory, making no reference to any sort of
weak electromagnetic coupling. For a particular choice of
equation of state (one in which temperature and chemical
potential decouple entirely), our theory reduces to conven-
tional MHD, but this choice is not required on effective
field theory grounds.
We also worked to first order beyond ideal hydrody-

namics, finding that there is a total of seven transport
coefficients that can be interpreted as anisotropic resistiv-
ities and viscosities. Along the way, we provide a precise
definition of a resistivity for a dynamical Uð1Þ gauge
theory and explain how this resistivity can be computed
microscopically from Kubo formulas involving correlation
functions of the electric field operator. It is interesting to
note that we expect that our universal resistivity will
precisely coincide with the inverse of the conventionally
defined conductivity of the “gauged” electric current only
at weak electromagnetic coupling.
While our theory is conceptually satisfying, it also makes

precise physical predictions. For example, as a first step, we
studied small fluctuations around thermal equilibrium,
identifying within our framework well-known magneto-
hydrodynamic modes. We systematically study the dis-
sipation of these modes, obtaining (to the best of our
knowledge) novel physics, such as angle-dependent dis-
sipation of Alfvén and magnetosonic waves. In principle,
these predictions are open to experimental verification.
We then turned to a truncation of the theory at low

temperatures; this involved an emergent Lorentz symmetry
along the background magnetic field lines, and as a result,
hydrodynamic fluctuations involved a fluid tensor rather
than a fluid velocity. This led to an interesting generali-
zation of hydrodynamics. We initiated the study of this new
framework, working out the structure of linear perturba-
tions and listing possible higher-derivative corrections to
second order in fluid momenta. We find it particularly
interesting that a consistency condition on the closure of the
differential equations appears to play a role analogous to
the constraints imposed by the second law of thermody-
namics in conventional hydrodynamics. This deserves
further exploration.
There are many directions for future research. One could

imagine studying this hydrodynamic theory from holog-
raphy, by developing the magnetohydrodynamic analog of
the fluid-gravity correspondence [7]. The dual of the

2-form current will now be a 2-form gauge field propa-
gating in a five-dimensional bulk. It turns out that the
background black hole solution corresponding to an
equilibrium fluid is S-dual to the black holes studied in
Ref. [43], and our theory could be tested by studying
perturbations around this background.
A further direction is to understand the formulation of

MHD, in light of our work, in the language of the effective
field theory of Goldstone bosons for space-time symmetry
breaking along the lines of Ref. [44]. As generalized global
symmetries provide new examples with potentially novel
symmetry breaking patterns, these theories provide a
natural arena to test the power of the formulation in
Ref. [44]. Such a framework may allow for the systematic
study of fluctuations. It would also be interesting to go to
higher orders in hydrodynamics and to understand any
possible instabilities in the long-distance hydrodynamic
theory in our formalism.13

Finally, we stress that our theory differs from that of
traditional MHD, as it separates the universal constraints of
symmetry and the effective theory of hydrodynamics from
nonuniversal artifacts that arise from assuming aweak electro-
magnetic coupling. As we explain in the Introduction, the
effective strength of electromagnetic interactions in suffi-
ciently dense plasmas can be very large indeed, and it would
be very interesting to explore if our generalized theory of
strings could be experimentally relevant for plasma physics.
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APPENDIX A: IDEAL FLUID PARTITION
FUNCTION AND THERMODYNAMICS

In this Appendix, we follow Refs. [10,45] to derive the
equilibrium form of the ideal stress-energy tensor and
current (2.12)

13See Ref. [21] for a recent discussion of stability of (Navier-
Stokes) hydrodynamics in connection with the Israel-Stewart
theory.
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Tμν
ð0Þ ¼ ðεþ pÞuμuν þ pgμν − μρhμhν;

Jμνð0Þ ¼ 2ρu½μhν�; ðA1Þ

from a partition function. This is done by writing down the
form of the most general Euclidean partition function in the
presence of static (but spatially dependent) metric and
2-form gauge field sources. Gauge and diffeomorphism
invariance constrains the form of this partition function,
providing an efficient way to derive constraints the hydro-
dynamic stress-energy tensor and currents. As we are
performing a static Euclidean computation, this only allows
access to objects that can be probed by equilibrium
fluid flows.
We should first define what is meant by “equilibrium.” In

conventional fluid dynamics, to have an equilibrium
solution, one requires a timelike Killing vector ξ to define
the direction of fluid flow uμ ∼ ξμ. We will also require an
additional spacelike Killing vector ζ to define the direction
of the strings hμ ∼ ζμ. Note that with no loss of generality,
we may take ξ · ζ ¼ 0. Provided that these two vectors have
a vanishing Lie bracket, Lξζ ¼ 0, it is straightforward to
show that such a field profile satisfies the equations of
motion arising from the conservation of (A1), correspond-
ing to a fluid at rest with the strings oriented in the direction
of ζ.
As ξ and ζ have a vanishing Lie bracket, we can take

them to define a coordinate system ðt; zÞ. Thus, we may
write the background Lorentzian background metric of the
form

ds2 ¼ gijðxkÞdxidxj
þ gabðxiÞðdxa − Aa

i ðxkÞdxiÞðdxb − Ab
i ðxkÞdxiÞ:

ðA2Þ

Where here a, b run over t, z and i, j run over the remaining
coordinates. Furthermore, since ξ · ζ ¼ 0, we may take the
metric in the ðt; zÞ directions to be diagonal,

gabdxadxb ¼ −gttdt2 þ gzzdz2: ðA3Þ

We are now interested in accessing the physics of this
equilibrium flow from a Euclidean partition function. Thus,
consider the Wick rotation of (A2) to the Euclidean
signature. We identify the Euclidean time with period
T−1
0 , and we identify the z coordinate with period L0.

We further expand all quantities in derivatives in the
remaining xi directions.
What are the gauge-invariant data on which the partition

function can depend? To lowest order in derivatives, it can
depend on the proper distances around the time and z
cycles,

gttðxiÞ
T0

; gzzðxiÞL0; ðA4Þ

as well as the gauge-invariant Wilson “sheet,” correspond-
ing to the integral of the background source Bμν over the
ðt; zÞ torus:

WðxiÞ≡
Z

BtzðxiÞdtdz ¼ BtzðxiÞ
L0

T0

: ðA5Þ

Now, to the lowest order in derivatives, the partition
function will take the form

logZ≡W

¼ 1

T0

Z
d3x

ffiffiffiffiffiffi
−g

p
PðT0

ffiffiffiffiffi
gtt

p
; L0

ffiffiffiffiffiffi
gzz

p
; Btz

ffiffiffiffiffiffiffiffiffiffiffi
gttgzz

p
Þ;

ðA6Þ
where we have chosen to take as an independent variable
the Wilson sheet normalized by the proper distances and
where everything depends on the transverse coordinates xi.
Now, if we assume that the z coordinate distance L is much
bigger than the other scales in the problem, we can neglect
the dependence of the partition function on it and conclude
that

WðL → ∞Þ ¼ 1

T0

Z
d3x

ffiffiffiffiffiffi
−g

p
PðT0

ffiffiffiffiffi
gtt

p
; Btz

ffiffiffiffiffiffiffiffiffiffiffi
gttgzz

p
Þ:

ðA7Þ
For notational convenience, we will denote the two argu-
ments of P by α and β, respectively. Now, we use the
definitions of the stress-energy tensor in terms of functional
derivatives with respect to sources,

TμνðxÞ ¼ −
2T0ffiffiffiffiffiffi−gp δW

δgμνðxÞ ; ðA8Þ

JμνðxÞ ¼ T0ffiffiffiffiffiffi−gp δW
δbμνðxÞ

; ðA9Þ

to conclude

Ttt ¼ −gttðP −
ffiffiffiffiffi
gtt

p
T0∂αP −

ffiffiffiffiffiffiffiffiffiffiffi
gttgzz

p
Btz∂βPÞ; ðA10Þ

Tij ¼ Pgij; ðA11Þ

Tzz ¼ gzzðP −
ffiffiffiffiffiffiffiffiffiffiffi
gttgzz

p
Btz∂βPÞ; ðA12Þ

Jtz ¼
ffiffiffiffiffiffiffiffiffiffiffi
gttgzz

p ∂βP: ðA13Þ

These expressions have precisely the form of the ideal
hydrodynamic stress-energy tensor postulated in (A1), with
the identifications

pðxÞ ¼ PðxÞ; ðA14Þ
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ε ¼ −P þ
ffiffiffiffiffi
gtt

p
T0∂αP þ

ffiffiffiffiffiffiffiffiffiffiffi
gttgzz

p ∂βP; ðA15Þ

ρ ¼ ∂βP; ðA16Þ

μ ¼
ffiffiffiffiffiffiffiffiffiffiffi
gttgzz

p
Btz: ðA17Þ

If we further identify

T ¼
ffiffiffiffiffi
gtt

p
T0; s ¼ ∂αP; ðA18Þ

we find that the expression for the energy is actually the
thermodynamic identity

εþ p ¼ Tsþ μρ: ðA19Þ
Note that the relation dp ¼ sdT þ ρdμ is now automati-
cally satisfied.
It was shown in Refs. [10,45] that, in general, such

considerations can be extended to higher orders in the
derivative expansion and provide an alternative route to
deriving the constraints on transport that arise from the
local form of the second law. It would be interesting to
understand whether this is the case for the higher-form
current studied in this paper.

APPENDIX B: HYDRODYNAMICS OF A 1-FORM
CURRENT AT ZERO TEMPERATURE

Here, we discuss the physics of a zero-temperature
standard hydrodynamics with a 1-form conserved current,
rather than the 2-form theory (cf. Sec. VI). As this is a
simpler version of the theory discussed in Sec. VI, we will
be somewhat brief.
The theory has a conserved stress-energy tensor and

1-form Uð1Þ current. The degrees of freedom are a
normalized fluid velocity and the chemical potential μ.
At the ideal level, the stress-energy tensor and current are
given by

Tμν
ð0Þ ¼ ðεþ pÞuμuν þ pgμν; jμð0Þ ¼ ρuμ; ðB1Þ

where the relevant thermodynamic relations are just as in
(6.6),

εþ p ¼ μρ; dp ¼ ρdμ: ðB2Þ
We note that there is a total of 4 degrees of freedom (in four
space-time dimensions). However, there are five equations
of motion:

∇μT
μν
ð0Þ ¼ 0; ∇μj

μ
ð0Þ ¼ 0: ðB3Þ

Thus, this system naively appears overconstrained. This is
an illusion, as in fact the combination of equations

ð∇μTμνÞuν þ μ∇μjμ ¼ 0 ðB4Þ

holds off shell, i.e. for any stress-energy tensor and current
that are parametrized in terms of fluid variables as in (B1).
Thus, this equation is redundant, and we have four
dynamical equations for 4 degrees of freedom.
It is interesting to note that in the usual finite-temperature

theory of ideal hydrodynamics, Eq. (B4) is instead (off-
shell) equal to the divergence of the entropy current. Thus,
it is tempting to think of the vanishing of the entropy at zero
temperature as the key principle that allows a consistent
zero-temperature hydrodynamics.
We do not describe solutions to the set of Eqs. (B3) in

great detail, except to state that they admit a linearly
dispersing sound mode with dispersion relation

ω2 ¼ v2sk2; v2s ¼
ρ

μχ
; χ ¼ dρ

dμ
: ðB5Þ

It would be interesting to develop this theory further, e.g.
to go beyond ideal hydrodynamics, or to understand
whether it can be related to fluctuations of holographic
finite-density systems at zero temperature such as those
studied in Refs. [46,47]. We leave these questions to
future work.

APPENDIX C: CLASSIFICATION OF TENSOR
STRUCTURES IN MHD AT ZERO

TEMPERATURE

In order to write all possible higher-order (in derivatives)
modifications of the constitutive relations (6.5), one needs
to construct all possible tensors of the desired type out of
the building blocks provided by the effective degrees of
freedom. In our case, after linearization (6.23), these are

δuai; uab;ωa; qi; δμ: ðC1Þ
Notice that we have used the same notation as in the

main section of this paper where SOð1; 1Þ indices are given
by a; b;… and SOð2Þ indices are given by i; j;…. The fact
that δuai is in a bifundamental representation is a direct
consequence of the constraint (6.2).
An expansion in derivatives is an expansion in ωa and qi.

To first order, it is straightforward to see that no two index
objects can be constructed with the above ingredients. This
implies that at T ¼ 0, we cannot correct our ideal equations
to first order. The situation becomes more interesting at
second order.
As in standard hydrodynamics, the classification of

tensor structures for higher-derivative corrections is greatly
simplified by making use of ideal equations of motion.
Because this is a perturbative construction performed order
by order, one can always use lower-order equations of
motion in constraining higher-order terms.
The ideal equations of motion can be efficiently written

by projecting them onto SOð1; 1Þ and SOð2Þ vector
equations. First, consider the conservation of the antisym-
metric current Jμν:
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SOð1; 1Þ∶ χωbubaδμ ¼ ρqiδuai; ðC2Þ

SOð2Þ∶ ρωaδuai ¼ 0: ðC3Þ

The first of the above equations states that any SOð1; 1Þ
derivative of δμ can be expressed in terms of the derivatives
of δuai. The second equation states that we cannot contract
δuai with ωa.
The conservation of Tμν can also be decomposed and

expanded to linear order to yield

SOð1; 1Þ∶ μχωaδμ ¼ μρqiδubiuba; ðC4Þ

SOð2Þ∶ ρqiδμ ¼ μρuabωaδubi: ðC5Þ

The first equation above is identical to the SOð1; 1Þ
equation arising form Jμν conservation. This was pointed
out around (6.12) and is a crucial feature that allows for the
consistency of the equations. The SOð2Þ equation implies
that the SOð2Þ derivative of δμ can be written in terms of
derivatives of δuai. A straightforward consequence is that
by using the above remarks, we can disregard δμ com-
pletely in building our higher-derivative corrections, as this
is not an independent quantity.
One can also consider further constraints that appear at

the level of two derivatives by considering the “integra-
bility” conditions:

0 ¼ ω½aωb�δμ ¼ ρ

χ
qiδuciuc½aωb�; ðC6Þ

0 ¼ q½iqj�δμ ¼ μuabωaδub½iqj�; ðC7Þ

qiωa δμ

μ
¼ ρ

μχ
qjδubjubaqi ¼ ubcωbδuciωa: ðC8Þ

These constraints end up reducing the number of indepen-
dent antisymmetric and bifundamental tensors.
Armed with the above constraints, we can classify all

tensors quadratic in derivatives (or quadratic in powers of
ωa, qi). Notice that because we build only linear structures
and δμ has been excluded from the building blocks as a
consequence of the ideal equations of motion, the tensor
δuai must appear exactly once in all tensor structures.
Lastly, we consider a theory respecting the charge assign-
ments of Table I. This implies that all corrections to the
energy-momentum tensor Tμν must be even under
ðuμν → −uμν; δuai → −δuaiÞ, while corrections to the cur-
rent Jμν must be odd.
Using these rules, we construct all possible scalars and

tensors:
(i) (even) scalars: δuaiqiuabωb;
(ii) (even) symmetric traceless SOð1; 1Þ tensors:

2qiδuciucðaωbÞ −Ωabqiδuciucdωd;
(iii) (even) symmetric traceless SOð2Þ tensors:

2qðiδuajÞuabωb − Πijqkδuakuabωb;
(iv) (even) bifundamental tensors: qjδubjubaqi,

δubiubaωcωc, δubiubaqjqj;
(v) (odd) antisymmetric SOð2Þ tensors: none.
These structures match exactly the expressions (6.27)–

(6.32). A few comments are important regarding details in
the construction of the above structures. First, one could
have guessed that a new symmetric SOð1; 1Þ tensor can be
built by acting on the one above on both indices with uab.
The tracelessness condition implies this new tensor is equal
to the one presented above. Also, one could have naively
constructed a fourth bifundamental tensor, but this one can
be expressed in terms of the ones above by the integrability
constraints. Lastly, parity under ðuμν → −uμν; δuai →
−δuaiÞ is responsible for the absence of SOð2Þ antisym-
metric tensors. Even if the parity condition were to be
relaxed, the constraints would still prohibit this structure.
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