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Neutrino and CP-even Higgs boson masses in a nonuniversal U(1)’ extension
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We propose a new anomaly-free and family nonuniversal U(1) extension of the standard model with the
addition of two scalar singlets and a new scalar doublet. The quark sector is extended by adding three exotic
quark singlets, while the lepton sector includes two exotic charged lepton singlets, three right-handed
neutrinos, and three sterile Majorana leptons to obtain the fermionic mass spectrum of the standard model.
The lepton sector also reproduces the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
and the squared-mass differences data from neutrino oscillation experiments. Also, analytical relations
of the PMNS matrix are derived via the inverse seesaw mechanism, and numerical predictions of the
parameters in both normal and inverse order scheme for the mass of the phenomenological neutrinos are
obtained. We employed a simple seesawlike method to obtain analytical mass eigenstates of the CP-even

3 x 3 mass matrix of the scalar sector.
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I. INTRODUCTION

Despite all its success, the standard model (SM) of
Glashow, Weinberg and Salam [1] has some unexplained
features, which has motivated many models and extensions.
In particular, the observed fermion mass hierarchies, their
mixing and the three family structure are not explained in
the SM. From the phenomenological point of view, it is
possible to describe some features of the mass hierarchy by
assuming zero-texture Yukawa matrices [2]. Models with
spontaneously broken flavor symmetries may also produce
hierarchical mass structures. For example, in models
with gauge symmetry SU(2);, ® SU(2), ® U(1)p_;, the
electroweak doublets exhibit a discrete symmetry after
the spontaneous symmetry breaking, obtaining Fritzsch
zero-texture mass matrices [3] in the basis U = (u, g, 1))
of the form:

0 a O
~(Lyuv)o=U.| a 0 b |Ug+He (1)
0 b ¢

The zero-texture of the above matrix can describe the mass
spectrum in the quark sector and the CP violation phase
observed in the experiments. This mass structure can also
be obtained in the lepton sector, as shown by Fukugita,
Tanimoto y Yanagida [4], where very small mass values are
predicted through a seesaw mechanism. In addition, these
type of models contain Majorana neutrinos which induce
matter-antimatter asymmetry through leptogenesis [5].
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Another issue that the SM can not explain is the
observation of neutrino oscillations. These observations
have been confirmed by many experiments from four
different sources: solar neutrinos as in Homestake [6],
SAGE [7], GALLEX & GNO [8], SNO [9], Borexino [10],
and Super-Kamiokande [11] experiments, atmospheric
neutrinos as in IceCube [12], neutrinos from reactors as
KamLAND [13], CHOOZ [14], Palo Verde [15], Daya Bay
[16], RENO [17], and SBL [18], and from accelerators as in
MINOS [19], T2K [20], and NOvA [21]. The experimental
data are compatible with the hypothesis that at least two
species of neutrinos have mass, where the left-handed
flavor neutrino fields are linear combinations of mass
eigenstates,

a=e,ur, (2)

Vi) = D Ualvh),

i=123

where U is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix, which can be parametrized as a function
of three mixing angles and one CP violating phase [22,23].
However, the experiments cannot determine the true nature
of the active neutrinos (Majorana or Dirac) nor the absolute
values of their mass. Table I shows the parameters from
references [22,24] and available at NuFIT 3.0 [25], where
two hierarchies are assumed: normal ordering (NO), where
the squared mass difference between the third and first
species accomplish Am3; > 0, and inverted ordering (10),
where Am3, < 0 between the second and third species.
On the other hand, in order to obtain tiny neutrino
masses, two methods can be used: radiative corrections
and the seesaw mechanism. The latter scheme has been
studied in the literature and is considered as one of the most
traditional schemes for the explanation of smallness of
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TABLE 1. Three-flavor oscillation parameter values at lo
reported by [22,24]. £ = 1 for NO and 2 for IO.

Normal ordering (NO) Inverted ordering (I0)

sin” ) 030879913 0.30820013
sin2 0 0.4400023 0.58400,5
sin2 0,4 0.02163+0.00074 0.02175* 000073
Scp 289+3% 269172

2 0.19 0.19
oy 7.49+0.19 7491012

i 0.039 0.038
1()A4 Z\/Z +2526f0037 —2.51 81L0.037

neutrino masses. The seesaw mechanism implies the
addition of a lepton-number-violating high-energy scale
(M), which gives masses to light neutrinos as m, = v2,/M.
There are some basic ways to implement this mechanism: a
heavy right-handed Majorana neutrino v mixed to the
corresponding left-handed neutrino v; via the SM scalar
doublet (type I seesaw), a heavy scalar triplet bosons
(type II), or a heavy fermionic triplet (type III). Since
the new scale M associated with the new fields is high
(~10'? GeV), this mechanism cannot be tested in experi-
ments. However, there is another possibility: the inverse
seesaw mechanism (ISS), where a very light Majorana
neutrino Ny is incorporated, such that in the basis
(vp,vgS, Ng©) the mass matrix has the form of the
Fristzsch zero-texture:

0 ml!' 0
M,=|m, 0 my|. (3)
O my MN

where the submatrix m, has components of the order of the
TeV scale, while My is of the order of the KeV scale, in
order to obtain active neutrinos at the sub-eV scale. The
inverse seesaw mechanism was proposed in [26]. This
mechanism has also been implemented in the SU(3), ®
U(1)y models in order to study the y — ey decay [27].

On the other hand, the discovery of the Higgs boson at
ATLAS [28] and CMS [29] whose mass is 125 GeV opens
the window to propose other scalar fields. A new scalar
sector is considered as extension to the SM in order to
explain some phenomenological aspects. One of the most
studied SM extension is the two-Higgs-doublet-model
(2HDM) which proposes the existence of two scalar
doublets whose scalar potential mixes them together
obtaining two charged scalar bosons H*, a CP-odd
pseudoscalar A° and two CP-even scalar bosons 4 and
H [30]. This model was motivated in order to give masses
to uplike and downlike quarks [31] where vacuum expect-
ation values (VEV) v, and v, are related to the electroweak
VEV by v = 13 + 0.
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There are also extensions to the 2HDM adding a
new scalar singlet y, as in the Next-to-Minimal 2HDM
(N2HDM) [32]. In some cases, this additional singlet
implement the spontaneous symmetry breaking (SSB) of
an additional U(1)" gauge symmetry through the acquis-
ition of non-vanishing VEV wv,, and consequently its
imaginary part become in the would-be Goldstone boson
eaten by the corresponding gauge boson of U(1)" [33].
Furthermore, if this SSB happens at a higher scale than the
electroweak (v < v,), the CP-even mass matrix exhibits an
internal hierarchy which allows us to employ a perturbative
seesawlike method in order to obtain analytical expressions
for the mass eigenvalues and angles of the corresponding
mixing matrix.

Models with extra U(1)" symmetry are one of the most
studied extensions of the SM, which implies many phe-
nomenological and theoretical advantages including
flavor physics [34], neutrino physics [35], dark matter
[36], among other effects [37]. A complete review of the
above possibilities can be found in reference [38]. In
particular, family nonuniversal U(1)" symmetry models
have many well-established motivations. For example, they
provide hints for solving the SM flavor puzzle, where even
though all the fermions acquire masses at the same scale,
v = 246 GeV, experimentally they exhibit very different
mass values. These models also imply a new Z’ neutral
boson, which contains a large number of phenomenological
consequences at low and high energies [39]. In addition to
the new neutral gauge boson Z', an extended fermion
spectrum is necessary in order to obtain an anomaly-free
theory. Also, the new symmetry requires an extended scalar
sector in order to (i) generate the breaking of the new
Abelian symmetry and (ii) obtain heavy masses for the
new Z' gauge boson and the extra fermion content. A
nonuniversal U(1)" model in the quark sector was proposed
in [33], obtaining zero-texture quark mass matrices with
hierarchical structures, where three quarks [up, down and
strange] acquire masses at the MeV scale, and three quarks
[charm, bottom and top] exhibit masses at the GeV scale.
Additional phenomenological consequences of this model
were studied in [40—42] including effects on scalar DM.

The main purpose of this paper is to construct an
anomaly-free and family nonuniversal U(1)" symmetry
model in both the quark and leptonic sector, with extra
lepton and quark singlets, two scalar doublets, and two
scalar singlets. The leptonic sector includes new charged
and right-handed neutral leptons, and sterile Majorana
neutrinos in order to reproduce the PMNS matrix and
the observed mass structure of the leptons. In Sec. II, we
describe the spectrum and most important properties of the
model. We also show the scalar and gauge Lagrangians,
including rotations into mass eigenvectors. In Sec. III we
show how mass structures in the fermion sector are
predicted in the model, first for the quark sector in
subsection III A, and later for the leptonic sector in
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subsection IIIB. Sec. IV is devoted to obtain some
phenomenological parameters from neutrino oscillation
data at lo. Finally, the Sec. V outlines the main results
of the article.

II. NONUNIVERSAL MODEL WITH
EXTRA U(1), SYMMETRY

The model proposes the existence of a new nonuniversal
gauge group U(1)" whose gauge boson and coupling
constant are Z;, and gy, respectively. It brings the following
triangle anomaly equations:

[SUB) U1y = Ac = ZXQL - ZXQR, (4)
o 0
[SUQ),PU()x = AL =D Xe, +3D Xo,, (5)
2 0
[U(),PU(1)yx = Ay = [¥2 X, +3Y% Xg ]
Z,0
- Z[Y%RXLR +3Y3, X, (6)
z,0

U(I)Y[U(1>X]2 - Ay = Z[Ynqu + 3YQLX2QL]

Z.0
=Y e X2 43V, X5 ) (7)
‘.0
Uy = Ax = D (X3, +3X3,] = Y _[X3, +3Xp, ],
7.0 Z.0
(8)
[Grav?U(1)y — Ag = > _[X,, +3X,,]
.0
= IXe, +3Xg,). ©)
2.0

where the sums in Q run over quarks while £ runs over
leptons with nontrivial U(1), values. Y is the correspond-
ing weak hypercharge. The fermion content compatible
with the above conditions is composed by ordinary SM
particles but also new exotic non-SM particles, as shown in
Table II, where column X contains the quantum numbers of
the extra U(1)y and the Z, column presents their corre-
sponding Z,-parity under a new Z, discrete symmetry.
Some properties of this spectrum are outlined below:
1. The U(1), symmetry is only nonuniversal in the
left-handed SM quark sector: the first family 1 has
X = 1/3 while the last two 2,3 have X = 0. Leptons
exhibit nonuniversal charges in both left- and
right-handed sectors: X =0 for the left-handed
components e, u and X = —1 for 7z, while for the
right-handed components X = —4/3 for e, ¢ and
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TABLE II. Nonuniversal X quantum number and Z, parity for
SM and non-SM fermions.
Quarks X Z, Leptons X Z,
SM fermionic isospin doublets

U'! -‘1-1/3 + e 0 +
= (p1), 1= (o),

U? 0 - w 0 +
i =(p2), = (),

U3 0 + . v -1 +
7= (ps), = (e),
SM fermionic isospin singlets
UlRf3 +2/3 + ey’ -4/3 -
U% +2/3 - e -1/3 -
DIIQ.ZS _1/3 —
Non-SM quarks Non-SM leptons
T, +1/3 - vt 1/3 -
Tx +2/3 - NGH* 0 -
J;“'z O + EL! ER —1 +
J;Q’z —]/3 + EL’ ER —2/3 +

X = —1/3 for yu. We use the following assignation
for the phenomenological families:

U'23 = (u,c,1),

et = (e, p,7),

D'23 = (d,s,b),

VOt = (L8, U 00).

(10)

2. In order to ensure cancellation of the gauge chiral
anomalies, the model includes extra isospin singlets.
The quark sector has an up 7 and two down J'?
quarks. For the lepton sector, three right-handed
neutrinos vz and two charged leptons E and € are
added with nontrivial U(1), charges, as shown in
Table II.

3. The most natural way to obtain massive neutrinos,
according to neutrino oscillations, is through a
seesaw mechanism, which requires the introduction
of extra Majorana neutrinos. Thus, for obtaining a
realistic model compatible with massive neutrinos,
three sterile Majorana neutrinos N are included.
The scalar sector of the model is shown in Table III,

which exhibits the following properties:

1. Two scalar doublets ¢, are included with U(1)y
charges +2/3 and +1/3 respectively, whose vac-
uum expectation values (VEVs) are related to the

electroweak VEV by v = \/v} + v3. The internal
7, symmetry is introduced in order to obtain
adequate zero texture matrices.

2. An extra scalar singlet y with VEV v, is required for
the SSB of U(1)y and also to generate masses to
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TABLE III. Nonuniversal X quantum number for Higgs fields.

Scalar bosons X Z,

Higgs doublets

b7 2/3 +
¢1 = | htov+in

V2

b5 1/3 -
¢2 - <h2+1)2+iqz

V2
Higgs singlets
7= ‘fl+“\;;’i‘:1 -1/3 +
c -1/3 -

exotic isospin singlets. We assume that it happens at
a larger scale v, > v than electroweak.

3. Another scalar singlet o is introduced. Since it is not
essential for the symmetry breaking mechanisms, we
may choose v, = 0 for its VEV.

* * f T *
V =13\ + 13h5by + 1y + uico + NG (ipoy” + He.) +
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Finally, in the vector sector, an extra gauge boson Zj, is

required to obtain a local U(1), symmetry. The covariant
derivative of the model is

. Y .
D, =0,-igWiT, - 19’53” —igxXZ,, (11)

where 27 corresponds to the Pauli matrices for isospin
doublets and 7% =0 for isospin singlets. The electric
charge is defined by the Gell-Mann-Nishijima relation:

Y
Q:T3+§. (12)

A. Scalar masses

The scalar potential of the model is

U

V;Mm&+ﬂw+awwﬁ+@@wﬁ

+ 130007+ 4a(070)? + As(d1h1) (D3ha) + A5(h1h2) (d31) + (d1h1) A6 (r* %) + 4 (07 0)]
+ (@) hr (r'x) + 25(0%0)] + As(r'x) (0*0) + X [(x*0) (r*o) + H.c.]. (13)

After symmetry breaking, the mass matrices for the
scalar sector are found. For the charged scalar bosons, the
mass matrix is obtained in the basis (@7, ¢3)

fv, + Av0,
x T 45 ()

Y WV )
f vy /157)1

2
C

| [~ = A0y
4 fv, + 50,0,

which is diagonalized by

Rc=<% ”>, (15)

—Sp Cp

where tan 8 = sz/cy = v, /v,. The mass matrix has the
eigenvalues

yielding the Goldstone bosons G3,, which provide the mass
to the physical W/T gauge bosons, and two physical charged
Higgs bosons H*.

Regarding the neutral scalar sector, the mass matrix of
the CP-odd sector in the basis (17;.7,¢,) is:

Va0,

vy _U)( L)
SRR A T
M= | - S5E | (17)
V102
v —v —
2 1,

which can be diagonalized by the following transformation,

cg sp 0 ¢ 0 s,
RI = _Sﬂ C/) 0 0 1 0 s (18)
0 0 1 -s, 0 ¢,

where y describes the doublet-singlet mixing tany =
s,/c, = v,/vspcs. When Ry acts on M7, the following
eigenvalues are obtained,

2 =0
mG% ,
mZGO =0,
Z!
1 fo
mly = =3 =45, (19)
SpCpSy

where the first two are the would-be Goldstone bosons of
the neutral vector bosons Z, and Z),, respectively, while the
latter is a physical CP-odd pseudoscalar boson A°.
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On the other hand, the CP-even scalar mass matrix is
2 1Sy g 1 1 1
/111)1—1 ;1 ﬂsl)lvz“‘zfvx 1/16vlvl+zf1)2
2_| 3 1 2_ /v 1
MR_ /151]11)2 +Zf1})( 12712—1 ;2 1171]27})(4-1‘](‘1]1 5
1 1 1 1 2 _1fvvy
4)“61)1 U/Y +4f1]2 417 1)211){ +4fl)1 23 U/Y 1,
(20)

where 15 = (45 + A5)/2. Since this matrix exhibits a
characteristic third order polynomial with nontrivial eigen-
values, it is convenient to use another approximation in
order to obtain the eigenvalues and mixing angles. We
propose a seesawlike mechanism by assuming a hierarchy
of VEVs through the condition |f|v,, v; > v* in the matrix
elements. Thus, the matrix (20) can be written in blocks as

M, ML
o (MY
MIZ MQ
where
A 2 _ 1fuw ;1 1
10— sV + 1,
Ml - N 1 > 1 fv,0
Asvivy 3 fv, vy ==~
AUV f AgVU1 0
MT = ERREY ~ R
12 /17121/*)(4»% /171;“21;}( ,
1 fov
Mzzgwf_—f 12 % 2302 (22)
4 v,

According to the block diagonalization procedure shown
in Appendix A, the mass matrix (21) can be decoupled into
two independent blocks through a unitary transformation as

My 0 ) 23)

2

RIMARs =
STIRTS < O ”lH
X

where the transformation matrix can be approximately

written as
1 FT
Rg = ( R), (24)
-Fr 1
with
Fr~ My™ "My,
m%ll ~ M, = A2,
M%H ~ M, — /\/lsz/\/lz‘lMsz, (25)
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and

722 1y 7222 1
v A S/J_ZEI Asv=sgey + 30, 6)
" Asv 32 +Lfv hPA —Lfu 1 ’

5V SpCp T4 J Uy 2V Cp T q ) Uytp

where the new tilde constants are

1] — ﬂ.] —ﬁ— ﬂ%
Ay Alst3’
i el %
SRV RV R
~ . 2 A2
ds=Adg—2L_ 7 27
T2y 2ty (27)

In order to obtain the largest eigenvalue of M7,
we neglect nondominant terms from the condition that
fv, > 3, v}, vv;, which leads us to

1 cotp -1
M}, ~—— )
hit 4fvx( -1 tanﬁ)

(28)
Due to this approximation, the new matrix has null
determinant and its trace is of the order of the largest
eigenvalue:

1 fv
my =~ Tr[M32,] ~ _LJvy

. 29
4SﬁCﬂ ( )

The lightest mass eigenvalue can be calculated through the
ratio of the determinant and the trace of (26), i.e.,

2

Det[M;, ] mymy ~ m2
~m3,

Te[M3, ] mi +m3

(30)
obtaining

mi (:lls[% + 2:156/;5‘/; + ;120/23)112,

(31)

which we associate with the observed 125 GeV Higgs
boson. The mixing angle associated with (26) is defined as
1, = tan 2a, where

_ fv, + 2;15sﬁcﬁv2
fU)( + 2t2ﬂ<5§11 - Cﬁﬂz)vz

trg tap- (32)

Finally, the diagonalization of the CP-even matrix (20) is
achieved by Ry parametrized by a CKM-like matrix
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1 0 0 C13 0 S13 Coq Sq 0
RR: 0 Cr3 8§73 0 1 0 —Sq Cq 0 s
0 —823 Co3 —513 0 C13 0 01
(33)
where ¢, = s,/c, and
1/161}Sﬂ N 1/171)Cﬂ (34)

BT 0, BT 2,
whose corresponding cosines are approximated as cj3 &
1 = s3;/2 and cp3 ~ | — s3;/2. In fact, the Rg matrix which
block-diagonalizes M3 is the product of the former two
rotation matrices with mixing angles 6,3 and 6,5.

In conclusion, the scalar spectrum of the model is

(i) Four would-be Goldstone bosons: G, G y GY,.

(i) Three scalar CP-even h, H y H, fields with mass

mi ~ (;11(:; + 2;15c/2,s/2, + ;lzs;)ﬁ,

m2 ~ _fi ,
" 4S/}C/,’
myy & A303. (35)

(iii) A pseudoscalar CP-odd A° whose mass is

1 fo
et 0
(iv) Two charged scalar bosons H* with mass
1 fv 1
s LY
B. Gauge boson masses
The kinetic terms of the scalar fields are
Lign = Y _(D,S)"(D*S). (38)

1

After the symmetry breaking, the charged bosons Wi =
(WL F W2)/v/2 acquire masses My = gv/2, while the
masses for neutral gauge bosons are obtained from the

following squared mass matrix in the basis (Wf, B, Z;,)
|

PHYSICAL REVIEW D 95, 095037 (2017)

gt —gdv* =3g9xv* (1 +¢f)
1
M} =7] * g*v? $99xv* (1 + ¢p) ,
* * soxvsll+(1+ 3c§)€2]

(39)

where € = v/v,. Taking into account €? < 1, the matrix
can be diagonalized with only two angles, obtaining the
following mass eigenstates,

Ay W,
le‘ ~ RO B/l R (40)
Z, z
with
Sw Cw 0
R() = CwCgz —SwCz Sz R (41)
—CwSz SwSz Cy

where tan 8y, = sy /cw = ¢/ g defines the Weinberg angle,
and s, = sin#, is a small mixing angle between the SM
neutral gauge boson Z and the U(1), gauge boson Z’ such
that in the limit s, - 0, Z; = Z and Z, = Z'. This mixing
angle is approximately

2gxcw M\ 2
sz~ (1+c3) §9W<M;> : (42)

where the neutral masses are

o 9xv,

M ~ 5 M/z—. 43
g My (43)

III. FERMION MASSES

A. Quark sector

We find the Yukawa Lagrangian compatible with the
SU(2), ® U(1)y ® U(1)y gauge symmetry. For the quark
sector, we obtain

~Lo = q}($:hY), Uk + 4L (1 hY)jUk + qL (1 hD) ;D% + q7 ($2hD) ;D% + ab (ih]) 1, T + G5 (h2h3) oS

+
+ (6" h) +x*h]),, Jn +H.c.,

qb ($2h3)\ T + g3 (1 h1) Tx + Tp(chY +Zh)l(1)jU{€ + Tp(ohg + xhy)Tg + J (" +)(*h)?)njD{€

(44)
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where &51’2 = ioy¢7, are conjugate fields, a = 2, 3 label
the second and third quark doublets and n(m) = 1, 2 is the
index of the exotic J"") quarks. A sum over the indices i,
a, and n is understood. We can see in the quark Lagrangian
that due to the nonuniversality of the U(1)y symmetry, not
all couplings between quarks and scalars are allowed by the
gauge symmetry, which leads us to specific zero-texture
Yukawa matrices. However, these structures are not in-
herited by the mass matrices of the quarks, due to the

|

PHYSICAL REVIEW D 95, 095037 (2017)

interactions of the four scalar fields ¢, ¢, 0¢, and y, that
couple simultaneously to all quark flavors. In order to
reproduce the observed mass spectrum, we must restrict
further the number of couplings in the Lagrangian, which
can be done by assuming the Z, discrete symmetries shown
in Tables II and III. Assuming these discrete symmetries,
the Lagrangian (44) after the symmetry breaking leads us to
the following mass terms at tree level:

~(Lo) = UL (My);;Ug + Dy (Mp);; Dy + Ty (Mp)Tg + T (M) J % + Tr (Mry);Up + Uy (Myr) Tx

+ DL (Mp));J} + He., (45)
where the mass matrices generate the following zero structures:
1 0 [%X250) 0 0 0 0
MU = ﬁ 0 (U255 0 s MD = \D/—% 0 0 0 .
viasr 0 vjaz B3y B3y Bi
D k] 1 k]z (Y
MJ__X< > My =—%hy,
V2 \ ko ko V2
v CoRs
MTU:_X(O’C%O)’ Myr=—71| vy
V2 V2
0
vijit Vi
Mp; = % Vajo1 V2j22 |, M;p =0, (46)
0 0
which leads us to the following extended mass matrices:
0 V2d12 0 | oy
My | Myr | 0 V1dy 0 | o
My=| — — —— 2% viaz; 0 wviaz | 0o 1.
My | My - - - = =
0 v,C) 0 | Ulh};
0 0 0 | o v
0 0 0 Y TR Y )
Mp | Mpy
, 1 | B3 0By 0By | 0 0
My=|— — — | =—% (47)
\/i — — _ S _ S
Myp | vy
0 | U;(kll U;(k12
0 0 0 | D;(kZI kazz

After diagonalization, the above structures leads us to hierarchies of the phenomenological quarks, as detailed below.
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1. Up sector

First, we consider the up-type matrix M7, in Eq. (47). We obtain its symmetrical quadratic form as

v3(af, + 1) 0105 (a12a2 + y1Y2) 0 | v, (anncy, +yih))
v10y(agan + y1y2) vi(az, +y3) 0 | v, (axncy +y2h))
MZ, = My (M,)T = 5 0 0 vi(d3, +d3;) | 0 . (48)
va0,(apcy +yihy) v, (axnc, + y,hy) 0 | U;%(C% + hf)

The above mass matrix can be written as

A C
M2, = , 49
U <CT D) ( )
which has the same structure as the general form of Eq. (A1) in the Appendix A, where each block is
202 2 0
i v3(at, + y7) 010y (a12G2; + V1Y2)
A= 5 0102 (a12G2, + V1Y2) vi(as, +y3) 0 )
0 0 vi(a3) + a3)
1 0w, (ajacy + yihl)
C= E 1)11)){((1226'2 + yzl’l;) s
0
1
D = 03+ ). (50)
|
We can see that each block are of the order A ~ u%.z, C~ On the other hand, from the matrices in (50), and after

v1,0, and D ~ v, respectively, obeying the hierarchy from ~ some algebra, the matrix mi, in (52), which contains the
Eq. (A2). Thus, according to Appendix A, the mass matrix ~ SM sector, can be put into the form:
(49) can be block diagonalized as

. U%V% V07T 0
m3 0 2 o 2.2
m?, = (V(LU>)TM%]V<LU> _ < OU e >’ (51) MRy | vianr vir; 0 , (55)
T 0 0 vi(a3; + az)
where: where
mi, ~A—CD™'CT, m3 ~ D, (52) (ah! = yyc))
r =,
) ) . 1 \/c3 + hl?
and the rotation matrix has the approximated form: 20
anhl —y,c
r :( 2/, — Y2 2). (56)
v (1t Fy~CD™'.  (53) NS
L —F][} I ’ U . X

We see that the 33 component of (55) appears decoupled,
which corresponds to one of the eigenvalues. We associate
this component to the top quark:

Since the block D is just a number [see Eq. (50)], from
(52) we obtain directly the mass of the heavy T quark:

1 1
2 Lo g
my & 2”;((% +hy®). (54) m? = Euf(agl + a3y). (57)
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which leaves us with the 2 x 2 submatrix

» 1 u%r% AN
mi. ~ = ) .

2\vyriry V313 (58)
It is evident that the above matrix has null determinant,
which leads us to at least one null eigenvalue. In fact, this
structure produces one massless quark, which we associate
to the lightest quark: the up quark (u), while the other
eigenvalue, associated to the charm quark, corresponds to
the trace of the matrix:

[a—

mg = Tr[mi.] =

=3 (59)

(03 + o3rd) w5083
Since the mass of the top quark in (57) depends only on vy,
we take v, < vy, which leads us to the approximation
in Eq. (59).

In order to generate mass to the u quark, we consider
the one-loop radiative correction shown in figure 1(a).
This contribution add an input into the 11 component in the

original 4 x 4 matrix M7, in (47), which produces the one-
loop quadratic mass matrix

M%](l) = M3, + AM7, (60)
where the small one-loop contribution is:
viZh 0 wfayZy | 0
| 0 0 0 | 0
AM%} = E 0%613]211 0 0 | 0 . (61)
0 0 0 | 0

and X, the value of the diagram in Fig. 1(a) which obey the
following analytical expression:

-1 f hf,] Kl M, M,
E“ _ > ( )1( 2)1 C() 72’7 , (62)
16z V2My My My
where
1
Co(x1,x) =

(1 =xp)(1 = x3)(xf - x3)

2
X [x%x% In (;%) —x2Inx] + x3In x%] . (63)
2

and M, is a characteristic mass derived from the internal ¢,
line as linear combinations of mass eigenvalues. The new
one-loop contribution only has effect on the 3 x 3 block
matrix m?, in (55), which change into the one-loop mass
matrix

PHYSICAL REVIEW D 95, 095037 (2017)

2.2 252 2
V3T FUIE] V0 Ty VTA3 Xy

2.2
v 0 ,

2
2my

~
~

D1V 1

2
viaz Zy 0

1
m%](l-loop) 5

(64)

where m;, is the top mass at tree level obtained in (57).
The new 13 component emerged from the 1 loop diagram
will correct the top mass. However, we will neglect this
correction, which leads us again to a 2 x 2 matrix

2.2

20 252
1 <02r1 + 012y,
o1r;

V10117
mic(l—loop) ~ E ) ’ (65)

D1V 17

which exhibits determinant different from zero. The trace of
the matrix corresponds to the sum of the eigenvalues, i.e.:

Tr[m?

1 1
uc(l-loop)] = mﬁ + m% = E (U%r% + U%F%) + _U%Z%l'

2
(66)

If we approximate the mass of the charm quark accord-
ing to (59), we obtain for the quark u that

1
2 _ 1 252
m;, = ~viXq,.

: (67)

2. Down sector
For the down-type matrix M, in (47), for simplicity we
take in the heavy sector, proportional to v,, a diagonal form,
i.e., k;; = 0 for i # j. In this scenery, its quadratic form can
also be put in the block form

M2 4 c (68)
P~ \cr b))
where
(@) ()
1 1
4’—1“~ "_J._~~
o /’, \\\ ¢2 o ,” N N ¢l
/ \ U \
4 \ 4 \
1 \ ] \
H i H H
Up, T | T U Dy T 1 JP  Df
(x) (x)
() (b)
FIG. 1. Mass one-loop correction for (a) up and (b) down

sector, where k, [, m, n=1,2 and j =1, 2, 3.
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1 011 + ih) v102(J1njar + ji2J22) 0
A= 3 0102 (j11j21 + Ji2j22) 33, +J3,) 0 ’
0 0 v3(B3, + B3, + B3;)
. v, jiikin V1o, jiokyn
C= 3 V2V, o1kt VIV, 0k |,
0 0
vy (ki 0
33
2N 0 k3,

After block diagonalization, the matrix becomes

s _ Ny _ (M0
mp, = (V) MpV,” = 0o m) (70)
7
where
m3 ~A—-CD™'CT, m% ~ D, (71)
with
1 F
(D) D -1
Vi~ , Fp~CD™". 72
De(g ) ™)

First, since the matrix D appears diagonal, we obtain
directly the mass of the heavy down-type quarks:

v3(Z 4+ 2%, +2h)

0102 (Z11 20 + Z12Zp + Zi3203)

|
Second, for the SM down sector, the matrix m%) in (71)
gives

0 0 0
0 0 0 .
0 0 U%(Bgl + B%z + B%3)

(74)

1
2 _—
mD—2

which exhibits two massless quarks: the down (d) and
strange (s) quarks, and one massive quark associated to the
bottom (b):

1
m,% = EU%(B§1 + B%z + 333)- (75)

In order to obtain mass for d and s, we again consider the
one-loop contribution shown in Fig. 1(b), which produces
new entrances different from zero in (74) as follows:

v}(Z11B31 + Z12B3y + Z13B33)

M1 toop) = 3 * v1(23; + I35, + 23) 0102(E01B31 + ZpBsy +Ey3B33) |, (76)
* * 2mi
|
where the one-loop correction is m? 0
T 2 ~ ds
RLmD(l—loop)RL ~ ( 0 2mi > ’ (79)
=1 f' ) (hS ) . (M) M,
% =16 v, \agm,) 77
d J 7 M with
If the matrix in (76) is grouped as
5 , nn’
mds ml Zm%
m2 = <m% " > (78) 1 8111)2 S12010,
D(1-loop) nl 2m% = ( 2 ) > ’ (80)
2my, \ s1p010, 507
where the bottom mass is dominant, we can block diag-
onalize it as and
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s11 = (Z11Bx — Z12B31)* + (211B33 — Z13B31)* + (Z12B33 — Z13B3,)°,
s22 = (01B3 — Z32B31)* + (E51B33 — Z93B31)” + (Z52B33 — Z3B3)°,
s12 = B3 (Z3Z03 + Z12Z5) + B3 (211212 + Zi3Zns) + B5(Z11 201 + ZipZn)
= B3B3 (Z10Zy + Z112yp) — B3 B33 (211203 + Z13201) — B3pB33(Z1320 + Z1pZp3). (81)

The eigenvalues of m?_ in (80) will lead us to the down and
strange masses. For example, if the mixing component s,
is null, we obtain

2
S1103 zzsﬂvl _ (82)

B. Lepton sector

The nonuniversal U(1)y also forbids some Yukawa
couplings between leptons and scalar bosons. The allowed
couplings are shown below for neutral and charged leptons,
respectively:

—Lyn = h55 ovy + Wl oty + WSLE5 oy

+ RSO ovy + WLET ot + WSLET vy

J— l—= i

+ Wvg N + 5N;SM,&N;e + H.c., (83)
~Ly i = Nl ey + hEprély + (7 prely + HEL ey

+qulidEg + Clzlf_’iéf’lER + hE,E oef

+ e, E " ey + hEE o€y + H E yEg

+ H,E y*Er + Hec. (84)

Since the Higgs doublet ¢, has the discrete symmetry
¢> — —¢,, all the right-handed leptons except E and Ep
also have Z, negative parities in order to obtain the
adequate zero textures, i.e.,

et et et et

eu,T et
e o —eg!t, VT o =t NPT =N (85)

1. Neutral leptons

Evaluating in the VEVs, the terms obtained from (83)
can be written in the following mass term using the basis
N, = (077, (Wg'1)C, (NRHT)E)T for the neutral sector

1—

~Lyn =5 NEMN,, (36)

where the mass matrix is

|
0 mi O
M,=|mp 0 MY, (87)
0 M, My

with M, = hyv,/ /2 being a Dirac mass between Vg and
Npr, where hN;( 1s a 3 x 3 matrix, and

ve vp vt
h2e h2e hZe

mD:7§ hy hz,lj hs, (88)
0 0 O

is a Dirac mass matrix between v; and vz. M, is the mass
of the Majorana neutrino Ng.

Considering that M, < mp and M p, the matrix M, can
be diagonalized through the inverse seesaw mechanism
[26,27]. If the following blocks are defined,

e ()
w2 ) e

Mp My

the mass matrix becomes

0 T
M, = < My ) (90)
Mu MN

which has the same form as the block matrix (Al) from
Appendix A in the limit with A = 0. Thus, we define the
rotations

my; O
Wes ™M, Wgs = ( o ) (91)
0 Mpeavy
with
W ( 1 FN )
ss®| (FMT 1 )
FN (MN)_IMW (92)
and
My & —MI MM, (93)
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Mpeavy & My. (94)
Since
-1 Ty\-1 -1
My = (_<MD>(M¥)A{EMD) MOD ) (95)
the light mass term is
Mg = mp(Mp) ™ My (M)~ mp. (96)

Now, a unitary matrix V is considered which diago-
nalizes the 3 x 3 block matrix My [27]:

0 M
\/TMN\/:\/T< . D)\/
Mp My
s gdiagy ¥
= <V1M1 Vi Ei)iag T)’ (97)
0 V3M, V),

with V| and V, subrotation matrices. V may be formally
expressed as [27]

.
\/:L< 1 1><1—%

\/5 -1 1 _ST
Using (97), and assuming that M, =M}, My, ST = STM,,,

MMS = S*MM, MDST = STMD and MDS = S*MD, from
the off-diagonal elements, we find

l_Ss‘s> (98)

2

1
§= 8" =~ Mp' My, (99)

and substituting for the diagonal elements, we get the mass
matrices

My

ViM{V] = S = M) %MMMBIMM ~—Mp, (100)
viMyeyi = @ +Mp + éMMMl‘)'MM ~Mp.  (101)

The mass eigenstates n; are constructed as
N; = Uyny, (102)

. 3 3 . .
with n; = (ui’z’3 N iLz N%Lz ), and the rotation matrix as

Uy = WesW, W, (103)
with Wgg the seesaw matrix rotation from (92),
1 0
Wy = , 104
=y o) (104)

PHYSICAL REVIEW D 95, 095037 (2017)

the matrix rotation of the heavy neutrinos, and

Wy = block diag(U,, Vy,V,) (105)
the matrices that diagonalize each 3 x 3 block.
2. Charged leptons
For the charged sector in the flavor basis

E = (e, ¢, ¢, E), the mass terms obtained from (84)
after the symmetry breaking are

~Lyp=EMEg + H;;X £.6x +He., (106)
where the lepton mass matrix My has the following form,
0 n 0 | q11lp
0 h 0 | 911p
Mg = % ¢ 0 H | 0 ., (107)
0 0 0 | Huy/n

which exhibits one massless lepton (the electron). To obtain
a massive electron, we include the one-loop correction
shown in Fig. 2, which adds a new term,

ME(]) = ME + AME, (108)
with
Iy 0 Z5 [ O
v 221 0 Z23 | 0
AM = 32 0 0 0 | 0 (109)

Since Mg(;) is not hermitian, there are two rotation
matrices V¥ and VE for left- and right-handed electrons.

(¢12)
1
Y
/” ~\\
o ,/ \\ ¢1
V4 \
1 \
1 \
1 ]
n $ —_— I $ =
€R Ep Er 7
(x)

FIG. 2. Mass one-loop correction for charged leptons, where
n=e,7and k =e, p.
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Hence, the left-handed rotation is obtained by diagonaliz-
ing MzM}; obtaining the corresponding eigenvalues

252 2
2 h"2{,v5

e § " 2
" T2 + )

v3

z? 11
2 2

2 Yo 2y P22

m;, 2(11 + h*) 2
2 2

2_ Y N Y20

== H")~—=H~,

PHYSICAL REVIEW D 95, 095037 (2017)
EL :\/EeL, (111)

where the corresponding left-handed rotation matrix can be
expressed as

\/E = \/gS,L\/gM,L’ (1 12)

which diagonalizes as

H?*p? 2 2
o Yy 1/ M M
mp=—"". (110) MEME——( - ;E>, (113)
2\ Mz Mg
In addition, the flavor eigenstates are related to mass
eigenstates e = (e, u, 7, E')T by whose blocks are
|
5 anty+n* I+ ququty +hn 4+ 20T + 238y (B + HEps
v
M, = ?2 * @515 + I + I3 + 2y {3y + HEy |
* * H? 4+ 2
- q11
MgE = 121H1 9 |-
0
2
viH
M2, *2 L (114)

The former matrix Vi, is

I FF
Vs = ’
' —-FET 1

with FE = M2, (M32;)~". The latter rotation is

\/E — (VgM,L O>
SM,L 0 1 ’

(115)

(116)

where the top-left block diagonalizes the SM charged
lepton masses,

(W5e)? o+ (s 2P Wsghtt + gt p?
20) + (h3,)*0?

C s In
ae;« ae;x H
E _ 2y
VSM,L =1 “Sa, Ca, H (117)
_In _In
H H
|
ﬂNU% 2
_ ve 1,VH ve J,VH
Myight = ho 2,2 hsohy, + hshy,p
Nyl 7])(

e h -+ s p?

LR+

[
The angle a,, is defined by ly,, = tana,, =1 /h, which is a
free parameter of the model as shown below.

IV. PMNS MATRIX

To explore some phenomenological consequences of the
above structures, we assume for simplicity that Mp is
diagonal and M, is proportional to the identity

hyyy 00

Mp=| 0 hy, 0 % (118)
0 0 Ay

My = pnlsxs. (119)

Thus, V| = V;, = 3,5 in (97). On the other hand, replacing
the Dirac matrix from (88) into the light mass eigenvalues
in (96), we obtain

s + e p?
haehs, + by, hsp° |
(h2)? + (s P

2 (120)
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10

10F T T T =

o N A O
N
N
\
\

V2
(@) NO: hny1? = 0.01.

(b) NO: hyy1? = 0.10.

V2 V2
(¢) NO: hyy1? = 1.00.

FIG. 3. Contour plots of v, vs v, from Eq. (128) for different values of Ay, 2 and p . From below to above, there are the corresponding

X

contour plots for the following values of uy: 500 eV (gray, line), 1 keV (black, line), 5 keV (gray, dashed), 10 keV (black, dashed),

50 keV (gray, dot-dashed), and 100 keV (black, dot-dashed).

where p = hy,1/hy,,. The matrix myg, has zero determi-
nant, obtaining at least one massless neutrino. The above
matrix is diagonalized through

diag

UImlighth = mlight, (121)

where U, contains the mixing angles that transform the

weak eigenstates v into mass eigenstates v}*>. The
|

C12€13
_ i5
Upvmns = | —S12€23 — 125235 13¢€"

is
$12823 = €12€23513€

The mixing angles can be obtained from some matrix
components as

s%}» = |Ue3|2’
2
S%3 _ |Uﬂ3| )
1- |Ue3|2
2 |U€2|2

2, =2l (124)
2 1 - |Ue3|2

A. Parameter values

In order to have a model consistent with neutrino
oscillation data [22], the values of the Yukawa parameters

50, My, M55, hse, hy,, Ry, and a,, must be properly
adjusted. To achieve this, we implement a Monte Carlo
method to generate random numbers in the parameter
space, where only the numbers which match up the mass
matrix to experimental data are accepted, while the others
are rejected. It is worth mentioning that the other two
rotation parameters described by X,3/H and X,3/H were
approximated to m,/m,, while k3. was chosen null to

simplify the search.

PMNS matrix is defined as the product of the above
rotation matrix and the rotation matrix of the charged
sector Vy ;.

Upnns = (Vénr) U, (122)

We use the following parametrization for the PMNS
matrix [43]:

—i6

$12€13 S13€
is
C12C23 — §128523513€ $23C13 (123)
is
—C12823 — §12€23513€ C€23C13

On the other hand, the appropriate mass scale and mass
ordering can be obtained by adjusting the outer factor of the
mass matrix and the ratio p. For NO, the Yukawa coupling
can be set by

hyp? =002,  p> =05, (125)

while for 10,

hy 2= 0025,  p? = 0.625. (126)

TABLE IV. Yukawa coupling domain which fulfil at lo
neutrino oscillation data for NO reported by [22]. k3, = 0 for

simplifying the Monte Carlo search.

A, = 0° a,, = 15° a,, = 30°
hye  0.264 — 0.278 0.285 — 0.299 0.237 - 0.270
hy, —0.707 - —0.244 —-0.726 — —0.335 —0.796 — —0.547
h’z”; -0.491 - —0.190 —0,464 — —0.173 —0.342 — —0.039
hyt  0.267 — 0.748 0.313 — 0.677 0.140 — 0.355
Ry, 0.130 — 0.462 0.196 — 0.460 0.440 — 0.510
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TABLE V. Yukawa coupling domain which fulfils at lo
neutrino oscillation data for 10 reported by [22]. h’i; =0 for

simplifying the Monte Carlo search.

a,, =0° a,, =1° a,, =2°
hye  1.094 — 1.107 1.091 — 1.105 1.090 — 1.103
ny, —0.122 - —0.106 —0.127 - —0.113 —0.128 — —0.118
hy,  0.970 > 1.060 0.980 — 1.070 1.010 — 1.080
hyt 0.110 — 0.127 0.122 - 0.138 0.135 — 0.149
s, 0.930 — 1.030 0.920 - 1.010 0.910 — 0.980

In the same way, the mass scale is set by

Uy = 7 GCV,
v, = 7 TeV,
uy =1 keV. (127)

The above values fix the outer factor of the mass matrix
(120) at 50 meV, which yields to the correct squared-mass
differences. Nevertheless, there exist other possible values
for the parameters py, hy1,, v,, and tan § that lead us to the
factor at 50 meV.

If the following constraint is assumed,

2
HNV3

=50 meV, (128)
hNlevxz

contour plots can be done for different values of y in the
v, VS v, plane, as shown in Fig. 3.

Tables IV and V and V show regions where the neutrino
Yukawa couplings and the angle a,, make consistent this
model with neutrino oscillation data reported by [22] at 36.

The Yukawa coupling £,y is not fixed by oscillations
of the light neutrinos; however, they may contribute to
the total rotation matrix Uy in (103). Thus, the neutral

spectrum of the model is composed by three active light

neutrinos 1/22 and six quasidegenerated sterile neutrinos

Ni’Lm and N;*Lm at the TeV scale.

V. CONCLUSIONS

Abelian nonuniversal gauge extensions of the SM are very
well-motivated models which involve a wide number of
theoretical aspects. In this work, by requiring nonuniversal-
ity in the left-handed quark sector and in the lepton sector,
we propose a new Ggy X U(1)’ gauge model. We obtained a
free-anomaly theory with invariant Yukawa interactions,
predicting hierarchical mass structures in the quark and
charged lepton sector with few free parameters

For the quark sector, we identify three energy scales.
First, at the breaking scale of the U(l)y symmetry, we
obtain heavy masses to the extra heavy quarks J" and 7,

PHYSICAL REVIEW D 95, 095037 (2017)

with M;» = M ~vyx. Second, at tree level, we obtain
masses at the electroweak scale for the ¢, t and b quarks,
with M., , ~ vy ,. Finally, at one-loop level, we obtain light
masses for the u, d and s quarks, with M, 4 ~ 1)%’2 /v,. For
the leptonic sector, we also obtain the same hierarchical
structure, where the extra leptons E and £ acquire masses at
the v, scale, the y and 7 have masses at the electroweak
scale, and the electron obtain masses at one-loop, which is
suppressed as v%,z /v,.

On the other hand, with the addition of extra Majorana
neutrinos, we found that neutrinos may acquire tiny masses
via the inverse seesaw mechanism. The selection of a small
Majorana mass term (from eV to KeV scale) and the
experimental limits on observables from neutrino oscilla-
tions allows us to perform numerical adjustment for the
values of the Yukawa couplings of neutrinos in NO and 10
scenarios. In addition, because the nonuniversal U(1)y
charges, the electron remains massless at tree level but a
nonvanishing mass term emerges at one-loop corrections
which gives a viable explanation for its small mass
compared to the electroweak scale.
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APPENDIX: BLOCK DIAGONALIZATION

Let us take a generic matrix with arbitrary dimension of

the form
I\ 1]2 ( >
C D ’

with A, D, and C submatrices, whose elements obey the
hierarchy

(A1)

A< C<kD. (A2)

The matrix (Al), as shown in Ref. [44], can be block
diagonalized approximately by a unitary rotation of the

form
( )
F 1 '

where [ is an identity matrix, and F a small subrotation
with F < 1. Keeping only up to linear terms on F, the
rotation gives

(A3)
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A—CFT - FCT C+ AF - FD
CT+FTA-DFT D+CTF+F'C

(A4)

which, by definition, must lead us to a diagonal block

form,
0
(5 u)
0 d

with a and d nondiagonal matrices, and O the null matrix.
By matching the upper right nondiagonal block in (A4)
and (AS), we obtain that C + AF — FD = 0. Taking into

(AS)

PHYSICAL REVIEW D 95, 095037 (2017)

account the hierarchy in (A2), we may neglect the term
with A, finding the following approximate solution:

F~CD™". (A6)

On the other hand, if we match the diagonal blocks in

(A4) and (AS5), and use the solution (A6), we can obtain the

form of the submatrices @ and b in terms of the original
blocks A, C, and D. We obtain at dominant order that

axA-CD'CT

b~D. (A7)

The above matrices can be diagonalized independently.
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