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We propose a new anomaly-free and family nonuniversal Uð1Þ0 extension of the standard model with the
addition of two scalar singlets and a new scalar doublet. The quark sector is extended by adding three exotic
quark singlets, while the lepton sector includes two exotic charged lepton singlets, three right-handed
neutrinos, and three sterile Majorana leptons to obtain the fermionic mass spectrum of the standard model.
The lepton sector also reproduces the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
and the squared-mass differences data from neutrino oscillation experiments. Also, analytical relations
of the PMNS matrix are derived via the inverse seesaw mechanism, and numerical predictions of the
parameters in both normal and inverse order scheme for the mass of the phenomenological neutrinos are
obtained. We employed a simple seesawlike method to obtain analytical mass eigenstates of the CP-even
3 × 3 mass matrix of the scalar sector.

DOI: 10.1103/PhysRevD.95.095037

I. INTRODUCTION

Despite all its success, the standard model (SM) of
Glashow, Weinberg and Salam [1] has some unexplained
features, which has motivated many models and extensions.
In particular, the observed fermion mass hierarchies, their
mixing and the three family structure are not explained in
the SM. From the phenomenological point of view, it is
possible to describe some features of the mass hierarchy by
assuming zero-texture Yukawa matrices [2]. Models with
spontaneously broken flavor symmetries may also produce
hierarchical mass structures. For example, in models
with gauge symmetry SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L, the
electroweak doublets exhibit a discrete symmetry after
the spontaneous symmetry breaking, obtaining Fritzsch
zero-texture mass matrices [3] in the basis U ¼ ðu0; c0; t0Þ
of the form:

−hLY;Ui0 ¼ UL

0B@ 0 a 0

a� 0 b

0 b� c

1CAUR þ H:c: ð1Þ

The zero-texture of the above matrix can describe the mass
spectrum in the quark sector and the CP violation phase
observed in the experiments. This mass structure can also
be obtained in the lepton sector, as shown by Fukugita,
Tanimoto y Yanagida [4], where very small mass values are
predicted through a seesaw mechanism. In addition, these
type of models contain Majorana neutrinos which induce
matter-antimatter asymmetry through leptogenesis [5].

Another issue that the SM can not explain is the
observation of neutrino oscillations. These observations
have been confirmed by many experiments from four
different sources: solar neutrinos as in Homestake [6],
SAGE [7], GALLEX & GNO [8], SNO [9], Borexino [10],
and Super-Kamiokande [11] experiments, atmospheric
neutrinos as in IceCube [12], neutrinos from reactors as
KamLAND [13], CHOOZ [14], Palo Verde [15], Daya Bay
[16], RENO [17], and SBL [18], and from accelerators as in
MINOS [19], T2K [20], and NOνA [21]. The experimental
data are compatible with the hypothesis that at least two
species of neutrinos have mass, where the left-handed
flavor neutrino fields are linear combinations of mass
eigenstates,

jνaLi ¼
X

i¼1;2;3

UaijνiLi; a ¼ e; μ; τ; ð2Þ

where U is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix, which can be parametrized as a function
of three mixing angles and one CP violating phase [22,23].
However, the experiments cannot determine the true nature
of the active neutrinos (Majorana or Dirac) nor the absolute
values of their mass. Table I shows the parameters from
references [22,24] and available at NuFIT 3.0 [25], where
two hierarchies are assumed: normal ordering (NO), where
the squared mass difference between the third and first
species accomplish Δm2

31 > 0, and inverted ordering (IO),
where Δm2

32 < 0 between the second and third species.
On the other hand, in order to obtain tiny neutrino

masses, two methods can be used: radiative corrections
and the seesaw mechanism. The latter scheme has been
studied in the literature and is considered as one of the most
traditional schemes for the explanation of smallness of
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neutrino masses. The seesaw mechanism implies the
addition of a lepton-number-violating high-energy scale
(M), which gives masses to light neutrinos as mν ¼ v2w=M.
There are some basic ways to implement this mechanism: a
heavy right-handed Majorana neutrino νR mixed to the
corresponding left-handed neutrino νL via the SM scalar
doublet (type I seesaw), a heavy scalar triplet bosons
(type II), or a heavy fermionic triplet (type III). Since
the new scale M associated with the new fields is high
(∼1012 GeV), this mechanism cannot be tested in experi-
ments. However, there is another possibility: the inverse
seesaw mechanism (ISS), where a very light Majorana
neutrino NR is incorporated, such that in the basis
ðνL; νRc; NR

cÞ the mass matrix has the form of the
Fristzsch zero-texture:

Mν ¼

0B@ 0 mT
ν 0

mν 0 mT
N

0 mN MN

1CA; ð3Þ

where the submatrixmN has components of the order of the
TeV scale, while MN is of the order of the KeV scale, in
order to obtain active neutrinos at the sub-eV scale. The
inverse seesaw mechanism was proposed in [26]. This
mechanism has also been implemented in the SUð3ÞL ⊗
Uð1ÞX models in order to study the μ → eγ decay [27].
On the other hand, the discovery of the Higgs boson at

ATLAS [28] and CMS [29] whose mass is 125 GeVopens
the window to propose other scalar fields. A new scalar
sector is considered as extension to the SM in order to
explain some phenomenological aspects. One of the most
studied SM extension is the two-Higgs-doublet-model
(2HDM) which proposes the existence of two scalar
doublets whose scalar potential mixes them together
obtaining two charged scalar bosons H�, a CP-odd
pseudoscalar A0 and two CP-even scalar bosons h and
H [30]. This model was motivated in order to give masses
to uplike and downlike quarks [31] where vacuum expect-
ation values (VEV) v2 and v1 are related to the electroweak
VEV by v2 ¼ v22 þ v21.

There are also extensions to the 2HDM adding a
new scalar singlet χ, as in the Next-to-Minimal 2HDM
(N2HDM) [32]. In some cases, this additional singlet
implement the spontaneous symmetry breaking (SSB) of
an additional Uð1Þ0 gauge symmetry through the acquis-
ition of non-vanishing VEV vχ, and consequently its
imaginary part become in the would-be Goldstone boson
eaten by the corresponding gauge boson of Uð1Þ0 [33].
Furthermore, if this SSB happens at a higher scale than the
electroweak (v ≪ vχ), the CP-even mass matrix exhibits an
internal hierarchy which allows us to employ a perturbative
seesawlike method in order to obtain analytical expressions
for the mass eigenvalues and angles of the corresponding
mixing matrix.
Models with extra Uð1Þ0 symmetry are one of the most

studied extensions of the SM, which implies many phe-
nomenological and theoretical advantages including
flavor physics [34], neutrino physics [35], dark matter
[36], among other effects [37]. A complete review of the
above possibilities can be found in reference [38]. In
particular, family nonuniversal Uð1Þ0 symmetry models
have many well-established motivations. For example, they
provide hints for solving the SM flavor puzzle, where even
though all the fermions acquire masses at the same scale,
υ ¼ 246 GeV, experimentally they exhibit very different
mass values. These models also imply a new Z0 neutral
boson, which contains a large number of phenomenological
consequences at low and high energies [39]. In addition to
the new neutral gauge boson Z0, an extended fermion
spectrum is necessary in order to obtain an anomaly-free
theory. Also, the new symmetry requires an extended scalar
sector in order to (i) generate the breaking of the new
Abelian symmetry and (ii) obtain heavy masses for the
new Z0 gauge boson and the extra fermion content. A
nonuniversal Uð1Þ0 model in the quark sector was proposed
in [33], obtaining zero-texture quark mass matrices with
hierarchical structures, where three quarks [up, down and
strange] acquire masses at the MeV scale, and three quarks
[charm, bottom and top] exhibit masses at the GeV scale.
Additional phenomenological consequences of this model
were studied in [40–42] including effects on scalar DM.
The main purpose of this paper is to construct an

anomaly-free and family nonuniversal Uð1Þ0 symmetry
model in both the quark and leptonic sector, with extra
lepton and quark singlets, two scalar doublets, and two
scalar singlets. The leptonic sector includes new charged
and right-handed neutral leptons, and sterile Majorana
neutrinos in order to reproduce the PMNS matrix and
the observed mass structure of the leptons. In Sec. II, we
describe the spectrum and most important properties of the
model. We also show the scalar and gauge Lagrangians,
including rotations into mass eigenvectors. In Sec. III we
show how mass structures in the fermion sector are
predicted in the model, first for the quark sector in
subsection III A, and later for the leptonic sector in

TABLE I. Three-flavor oscillation parameter values at 1σ
reported by [22,24]. l ¼ 1 for NO and 2 for IO.

Normal ordering (NO) Inverted ordering (IO)

sin2 θ12 0.308þ0.013
−0.012 0.308þ0.013

−0.012

sin2 θ23 0.440þ0.023
−0.019 0.584þ0.018

−0.022

sin2 θ13 0.02163þ0.00074
−0.00074 0.02175þ0.00075

−0.00074

δCP 289þ38
−51 269þ39

−45
Δm2

21

10−5 eV2
7.49þ0.19

−0.17 7.49þ0.19
−0.17

Δm2
3l

10−3 eV2
þ2.526þ0.039

−0.037 −2.518þ0.038
−0.037
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subsection III B. Sec. IV is devoted to obtain some
phenomenological parameters from neutrino oscillation
data at 1σ. Finally, the Sec. V outlines the main results
of the article.

II. NONUNIVERSAL MODEL WITH
EXTRA Uð1ÞX SYMMETRY

The model proposes the existence of a new nonuniversal
gauge group Uð1Þ0 whose gauge boson and coupling
constant are Z0

μ and gX, respectively. It brings the following
triangle anomaly equations:

½SUð3ÞC�2Uð1ÞX → AC ¼
X
Q

XQL
−
X
Q

XQR
; ð4Þ

½SUð2ÞL�2Uð1ÞX → AL ¼
X
l

XlL þ 3
X
Q

XQL
; ð5Þ

½Uð1ÞY �2Uð1ÞX → AY2 ¼
X
l;Q

½Y2
lL
XlL þ 3Y2

QL
XQL

�

−
X
l;Q

½Y2
lR
XLR

þ 3Y2
QR
XQR

�; ð6Þ

Uð1ÞY ½Uð1ÞX�2 → AY ¼
X
l;Q

½YlLX
2
lL

þ 3YQL
X2
QL
�

−
X
l;Q

½YlRX
2
lR

þ 3YQR
X2
QR
�; ð7Þ

½Uð1ÞX�3 → AX ¼
X
l;Q

½X3
lL

þ 3X3
QL
� −
X
l;Q

½X3
lR

þ 3X3
QR
�;

ð8Þ

½Grav�2Uð1ÞX → AG ¼
X
l;Q

½XlL þ 3XQL
�

−
X
l;Q

½XlR
þ 3XQR

�; ð9Þ

where the sums in Q run over quarks while l runs over
leptons with nontrivial Uð1ÞX values. Y is the correspond-
ing weak hypercharge. The fermion content compatible
with the above conditions is composed by ordinary SM
particles but also new exotic non-SM particles, as shown in
Table II, where column X contains the quantum numbers of
the extra Uð1ÞX and the Z2 column presents their corre-
sponding Z2-parity under a new Z2 discrete symmetry.
Some properties of this spectrum are outlined below:

1. The Uð1ÞX symmetry is only nonuniversal in the
left-handed SM quark sector: the first family 1 has
X ¼ 1=3 while the last two 2,3 have X ¼ 0. Leptons
exhibit nonuniversal charges in both left- and
right-handed sectors: X ¼ 0 for the left-handed
components e, μ and X ¼ −1 for τ, while for the
right-handed components X ¼ −4=3 for e, τ and

X ¼ −1=3 for μ. We use the following assignation
for the phenomenological families:

U1;2;3 ¼ ðu; c; tÞ; D1;2;3 ¼ ðd; s; bÞ;
ee;μ;τ ¼ ðe; μ; τÞ; νe;μ;τ ¼ ðνe; νμ; ντÞ: ð10Þ

2. In order to ensure cancellation of the gauge chiral
anomalies, the model includes extra isospin singlets.
The quark sector has an up T and two down J1;2

quarks. For the lepton sector, three right-handed
neutrinos νe;μ;τR and two charged leptons E and E are
added with nontrivial Uð1ÞX charges, as shown in
Table II.

3. The most natural way to obtain massive neutrinos,
according to neutrino oscillations, is through a
seesaw mechanism, which requires the introduction
of extra Majorana neutrinos. Thus, for obtaining a
realistic model compatible with massive neutrinos,
three sterile Majorana neutrinos Ne;μ;τ

R are included.
The scalar sector of the model is shown in Table III,

which exhibits the following properties:
1. Two scalar doublets ϕ1;2 are included with Uð1ÞX

charges þ2=3 and þ1=3 respectively, whose vac-
uum expectation values (VEVs) are related to the
electroweak VEV by v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
. The internal

Z2 symmetry is introduced in order to obtain
adequate zero texture matrices.

2. An extra scalar singlet χ with VEV υχ is required for
the SSB of Uð1ÞX and also to generate masses to

TABLE II. Nonuniversal X quantum number and Z2 parity for
SM and non-SM fermions.

Quarks X Z2 Leptons X Z2

SM fermionic isospin doublets

q1L ¼
�U1

D1

�
L

þ1=3 þ
le
L ¼

� νe
ee
�
L

0 þ

q2L ¼
�U2

D2

�
L

0 −
lμ
L ¼

� νμ
eμ
�
L

0 þ

q3L ¼
�U3

D3

�
L

0 þ
lτ
L ¼

� ντ
eτ
�
L

−1 þ

SM fermionic isospin singlets

U1;3
R

þ2=3 þ ee;τR −4=3 −
U2

R þ2=3 − eμR −1=3 −
D1;2;3

R
−1=3 −

Non-SM quarks Non-SM leptons

TL þ1=3 − νe;μ;τR 1=3 −
TR þ2=3 − Ne;μ;τ

R 0 −

J1;2L
0 þ EL, ER −1 þ

J1;2R
−1=3 þ EL, ER −2=3 þ
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exotic isospin singlets. We assume that it happens at
a larger scale υχ ≫ υ than electroweak.

3. Another scalar singlet σ is introduced. Since it is not
essential for the symmetry breaking mechanisms, we
may choose υσ ¼ 0 for its VEV.

Finally, in the vector sector, an extra gauge boson Z0
μ is

required to obtain a local Uð1ÞX symmetry. The covariant
derivative of the model is

Dμ ¼ ∂μ − igWα
μTα − ig0

Y
2
Bμ − igXXZ0

μ; ð11Þ

where 2Tα corresponds to the Pauli matrices for isospin
doublets and Tα ¼ 0 for isospin singlets. The electric
charge is defined by the Gell-Mann-Nishijima relation:

Q ¼ T3 þ
Y
2
: ð12Þ

A. Scalar masses

The scalar potential of the model is

V ¼ μ21ϕ
†
1ϕ1 þ μ22ϕ

†
2ϕ2 þ μ2χχ

�χ þ μ2σσ
�σ þ fffiffiffi

2
p ðϕ†

1ϕ2χ
� þ H:c:Þ þ f0ffiffiffi

2
p ðϕ†

1ϕ2σ
� þ H:c:Þ þ λ1ðϕ†

1ϕ1Þ2 þ λ2ðϕ†
2ϕ2Þ2

þ λ3ðχ�χÞ2 þ λ4ðσ�σÞ2 þ λ5ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ05ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ þ ðϕ†
1ϕ1Þ½λ6ðχ�χÞ þ λ06ðσ�σÞ�

þ ðϕ†
2ϕ2Þ½λ7ðχ�χÞ þ λ07ðσ�σÞ� þ λ8ðχ�χÞðσ�σÞ þ λ08½ðχ�σÞðχ�σÞ þ H:c:�: ð13Þ

After symmetry breaking, the mass matrices for the
scalar sector are found. For the charged scalar bosons, the
mass matrix is obtained in the basis ðϕ�

1 ;ϕ
�
2 Þ

M2
C ¼ 1

4

 
−f vχv2

v1
− λ05v2

2 fvχ þ λ05v1v2

fvχ þ λ05v1v2 −f vχv1
v2

− λ05v1
2

!
; ð14Þ

which is diagonalized by

RC ¼
�

cβ sβ
−sβ cβ

�
; ð15Þ

where tan β ¼ sβ=cβ ¼ v1=v2. The mass matrix has the
eigenvalues

m2
G�

W
¼ 0; m2

H� ¼ −
1

4

fvχ
sβcβ

−
1

4
λ05v

2; ð16Þ

yielding the Goldstone bosonsG�
W , which provide the mass

to the physicalW�
μ gauge bosons, and two physical charged

Higgs bosons H�.
Regarding the neutral scalar sector, the mass matrix of

the CP-odd sector in the basis ðη1; η2; ζχÞ is:

M2
I ¼ −

f
4

0BBB@
v2vχ
v1

−vχ v2

−vχ
v1vχ
v2

−v1
v2 −v1

v1v2
vχ

1CCCA; ð17Þ

which can be diagonalized by the following transformation,

RI ¼

0B@ cβ sβ 0

−sβ cβ 0

0 0 1

1CA
0B@ cγ 0 sγ

0 1 0

−sγ 0 cγ

1CA; ð18Þ

where γ describes the doublet-singlet mixing tan γ ¼
sγ=cγ ¼ vχ=vsβcβ. When RI acts on M2

I , the following
eigenvalues are obtained,

m2
G0

Z
¼ 0;

m2
G0

Z0
¼ 0;

m2
A0 ¼ −

1

4

fvχ
sβcβs2γ

; ð19Þ

where the first two are the would-be Goldstone bosons of
the neutral vector bosons Zμ and Z0

μ, respectively, while the
latter is a physical CP-odd pseudoscalar boson A0.

TABLE III. Nonuniversal X quantum number for Higgs fields.

Scalar bosons X Z2

Higgs doublets

ϕ1 ¼
�

ϕþ
1

h1þv1þiη1ffiffi
2

p

�
2=3 þ

ϕ2 ¼
�

ϕþ
2

h2þv2þiη2ffiffi
2

p

�
1=3 −

Higgs singlets

χ ¼ ξχþvχþiζχffiffi
2

p −1=3 þ
σ −1=3 −
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On the other hand, the CP-even scalar mass matrix is

M2
R¼

0BBB@
λ1v21− 1

4

fvχv2
v1

λ̂5v1v2þ 1
4
fvχ

1
4
λ6v1vχþ 1

4
fv2

λ̂5v1v2þ 1
4
fvχ λ2v22− 1

4

fvχv1
v2

1
4
λ7v2vχþ 1

4
fv1

1
4
λ6v1vχþ 1

4
fv2 1

4
λ7v2vχþ 1

4
fv1 λ3v2χ− 1

4
fv1v2
vχ

1CCCA;

ð20Þ

where λ̂5 ¼ ðλ5 þ λ05Þ=2. Since this matrix exhibits a
characteristic third order polynomial with nontrivial eigen-
values, it is convenient to use another approximation in
order to obtain the eigenvalues and mixing angles. We
propose a seesawlike mechanism by assuming a hierarchy
of VEVs through the condition jfjυχ ; υ2χ ≫ υ2 in the matrix
elements. Thus, the matrix (20) can be written in blocks as

M2
R ¼

�
M1 MT

12

M12 M2

�
; ð21Þ

where

M1 ¼
 

λ1v21 − 1
4

fvχv2
v1

λ̂5v1v2 þ 1
4
fvχ

λ̂5v1v2 þ 1
4
fvχ λ2v22 − 1

4

fvχv1
v2

!
;

MT
12 ¼

 λ6v1vχ
4

þ fv2
4

λ7v2vχ
4

þ fv1
4

!
≈

 λ6v1vχ
4

λ7v2vχ
4

!
;

M2 ¼ λ3v2χ −
1

4

fv1v2
vχ

≈ λ3v2χ : ð22Þ

According to the block diagonalization procedure shown
in Appendix A, the mass matrix (21) can be decoupled into
two independent blocks through a unitary transformation as

RT
SM

2
RRS ¼

�M2
hH 0

0 m2
Hχ

�
; ð23Þ

where the transformation matrix can be approximately
written as

RS ¼
�

1 FT
R

−FR 1

�
; ð24Þ

with

FR ≈M2
−1M12;

m2
Hχ

≈M2 ¼ λ3v2χ ;

M2
hH ≈M1 −MT

12M2
−1MT

12; ð25Þ

and

M2
hH ¼

 
~λ1v2s2β −

1
4

fvχ
tβ

~λ5v2s2βc
2
β þ 1

4
fvχ

~λ5v2s2βc
2
β þ 1

4
fvχ ~λ2v2c2β −

1
4
fvχtβ

!
; ð26Þ

where the new tilde constants are

~λ1 ¼ λ1 −
λ26
4λ3

−
λ27

4λ3t2β
;

~λ2 ¼ λ2 −
λ26t

2
β

4λ3
−

λ27
4λ3

;

~λ5 ¼ λ̂5 −
λ26tβ
2λ3

−
λ27

2λ3tβ
: ð27Þ

In order to obtain the largest eigenvalue of M2
hH,

we neglect nondominant terms from the condition that
fvχ ≫ v22, v

2
1, v2v1, which leads us to

M2
hH ≈ −

1

4
fvχ

�
cot β −1
−1 tan β

�
: ð28Þ

Due to this approximation, the new matrix has null
determinant and its trace is of the order of the largest
eigenvalue:

m2
H ≈ Tr½M2

hH� ≈ −
1

4

fvχ
sβcβ

: ð29Þ

The lightest mass eigenvalue can be calculated through the
ratio of the determinant and the trace of (26), i.e.,

Det½M2
hH�

Tr½M2
hH�

¼ m2
hm

2
H

m2
h þm2

H
≈m2

h; ð30Þ

obtaining

m2
h ≈ ð~λ1s2β þ 2~λ5cβsβ þ ~λ2c2βÞv2; ð31Þ

which we associate with the observed 125 GeV Higgs
boson. The mixing angle associated with (26) is defined as
t2α ¼ tan 2α, where

t2α ¼
fvχ þ 2~λ5sβcβv2

fvχ þ 2t2βðs2β ~λ1 − c2β ~λ2Þv2
t2β: ð32Þ

Finally, the diagonalization of theCP-even matrix (20) is
achieved by RR parametrized by a CKM-like matrix

NEUTRINO AND CP-EVEN HIGGS BOSON MASSES IN … PHYSICAL REVIEW D 95, 095037 (2017)

095037-5



RR¼

0B@1 0 0

0 c23 s23
0 −s23 c23

1CA
0B@ c13 0 s13

0 1 0

−s13 0 c13

1CA
0B@ cα sα 0

−sα cα 0

0 0 1

1CA;

ð33Þ

where tα ¼ sα=cα and

s13 ¼
1

2

λ6vsβ
λ3vχ

; s23 ¼
1

2

λ7vcβ
λ3vχ

; ð34Þ

whose corresponding cosines are approximated as c13 ≈
1 − s213=2 and c23 ≈ 1 − s223=2. In fact, the RS matrix which
block-diagonalizes M2

R is the product of the former two
rotation matrices with mixing angles θ23 and θ13.
In conclusion, the scalar spectrum of the model is
(i) Four would-be Goldstone bosons: G�

W , G
0
Z y G0

Z0 .
(ii) Three scalar CP-even h, H y Hχ fields with mass

m2
h ≈ ð~λ1c4β þ 2~λ5c2βs

2
β þ ~λ2s4βÞv2;

m2
H ≈ −

fvχ
4sβcβ

;

m2
Hχ

≈ λ3v2χ : ð35Þ

(iii) A pseudoscalar CP-odd A0 whose mass is

m2
A0 ¼ −

1

4

fvχ
sβcβs2γ

: ð36Þ

(iv) Two charged scalar bosons H� with mass

m2
H� ¼ −

1

4

fvχ
sβcβ

−
1

4
λ05v

2: ð37Þ

B. Gauge boson masses

The kinetic terms of the scalar fields are

Lkin ¼
X
i

ðDμSÞ†ðDμSÞ: ð38Þ

After the symmetry breaking, the charged bosons W�
μ ¼

ðW1
μ ∓ W2

μÞ=
ffiffiffi
2

p
acquire masses MW ¼ gv=2, while the

masses for neutral gauge bosons are obtained from the
following squared mass matrix in the basis ðW3

μ; Bμ; Z0
μÞ,

M2
0 ¼

1

4

0BBBBBB@

g2v2 −gg0v2 − 2
3
ggXv2ð1þ c2βÞ

� g02v2 2
3
g0gXv2ð1þ c2βÞ

� � 4
9
g2Xv

2
χ ½1þ ð1þ 3c2βÞϵ2�

1CCCCCCA;

ð39Þ

where ϵ ¼ υ=υχ . Taking into account ϵ2 ≪ 1, the matrix
can be diagonalized with only two angles, obtaining the
following mass eigenstates,

0B@ Aμ

Z1μ

Z2μ

1CA ≈ R0

0B@W3
μ

Bμ

Z0
μ

1CA; ð40Þ

with

R0 ¼

0B@ sW cW 0

cWcZ −sWcZ sZ
−cWsZ sWsZ cZ

1CA; ð41Þ

where tan θW ¼ sW=cW ¼ g0=g defines theWeinberg angle,
and sZ ¼ sin θZ is a small mixing angle between the SM
neutral gauge boson Z and the Uð1ÞX gauge boson Z0 such
that in the limit sZ → 0, Z1 ¼ Z and Z2 ¼ Z0. This mixing
angle is approximately

sZ ≈ ð1þ c2βÞ
2gXcW
3g

�
MZ

MZ0

�
2

; ð42Þ

where the neutral masses are

MZ ≈
gυ
2cW

; MZ0 ≈
gXυχ
3

: ð43Þ

III. FERMION MASSES

A. Quark sector

We find the Yukawa Lagrangian compatible with the
SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞX gauge symmetry. For the quark
sector, we obtain

−LQ ¼ q1Lð ~ϕ2hU2 Þ1jUj
R þ qaLð ~ϕ1hU1 ÞajUj

R þ q1Lðϕ1hD1 Þ1jDj
R þ qaLðϕ2hD2 ÞajDj

R þ q1Lðϕ1hJ1Þ1mJmR þ qaLðϕ2hJ2ÞamJmR
þ q1Lð ~ϕ2hT2 Þ1TR þ qaLðeϕ1hT1 ÞaTR þ TLðσhUσ þ χhUχ ÞjUj

R þ TLðσhTσ þ χhTχ ÞTR þ JnLðσ�hDσ þ χ�hDχ ÞnjDj
R

þ JnLðσ�hJσ þ χ�hJχÞnmJmR þ H:c:; ð44Þ
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where ~ϕ1;2 ¼ iσ2ϕ�
1;2 are conjugate fields, a ¼ 2, 3 label

the second and third quark doublets and nðmÞ ¼ 1, 2 is the
index of the exotic JnðmÞ quarks. A sum over the indices i,
a, and n is understood. We can see in the quark Lagrangian
that due to the nonuniversality of the Uð1ÞX symmetry, not
all couplings between quarks and scalars are allowed by the
gauge symmetry, which leads us to specific zero-texture
Yukawa matrices. However, these structures are not in-
herited by the mass matrices of the quarks, due to the

interactions of the four scalar fields ϕ1, ϕ2, σ0, and χ0 that
couple simultaneously to all quark flavors. In order to
reproduce the observed mass spectrum, we must restrict
further the number of couplings in the Lagrangian, which
can be done by assuming the Z2 discrete symmetries shown
in Tables II and III. Assuming these discrete symmetries,
the Lagrangian (44) after the symmetry breaking leads us to
the following mass terms at tree level:

−hLQi ¼ Ui
LðMUÞijUj

R þDi
LðMDÞijDj

R þ TLðMTÞTR þ JnLðMJÞnmJmR þ TLðMTUÞjUj
R þUi

LðMUTÞiTR

þDi
LðMDJÞimJmR þ H:c:; ð45Þ

where the mass matrices generate the following zero structures:

MU ¼ 1ffiffiffi
2

p

0B@ 0 υ2a12 0

0 υ1a22 0

υ1a31 0 υ1a33

1CA; MD ¼ υ2ffiffiffi
2

p

0B@ 0 0 0

0 0 0

B31 B32 B33

1CA;

MJ ¼
υχffiffiffi
2

p
�
k11 k12
k21 k22

�
; MT ¼ υχffiffiffi

2
p hTχ ;

MTU ¼ υχffiffiffi
2

p ð0; c2; 0Þ; MUT ¼ 1ffiffiffi
2

p

0B@ υ2y1
υ1y2
0

1CA
MDJ ¼

1ffiffiffi
2

p

0B@ υ1j11 υ1j12
υ2j21 υ2j22
0 0

1CA; MJD ¼ 0; ð46Þ

which leads us to the following extended mass matrices:

M0
U ¼

0B@ MU j MUT

—— — ——

MTU j MT

1CA ¼ 1ffiffiffi
2

p

0BBBBBB@

0 υ2a12 0 j υ2y1
0 υ1a22 0 j υ1y2

υ1a31 0 υ1a33 j 0

— — — — —

0 υχc2 0 j υχhTχ

1CCCCCCA;

M0
D ¼

0B@ MD j MDJ

—— — ——

MJD j MJ

1CA ¼ 1ffiffiffi
2

p

0BBBBBBBBB@

0 0 0 j υ1j11 υ1j12
0 0 0 j υ2j21 υ2j22

υ2B31 υ2B32 υ2B33 j 0 0

— — — — — —

0 0 0 j υχk11 υχk12
0 0 0 j υχk21 υχk22

1CCCCCCCCCA
: ð47Þ

After diagonalization, the above structures leads us to hierarchies of the phenomenological quarks, as detailed below.
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1. Up sector

First, we consider the up-type matrix M0
U in Eq. (47). We obtain its symmetrical quadratic form as

M2
U ¼ M0

UðM0
UÞT ¼ 1

2

0BBBBBBBB@

υ22ða212 þ y21Þ υ1υ2ða12a22 þ y1y2Þ 0 j υ2υχða12c2 þ y1hTχ Þ
υ1υ2ða12a22 þ y1y2Þ υ21ða222 þ y22Þ 0 j υ1υχða22c2 þ y2hTχ Þ

0 0 υ21ða231 þ a233Þ j 0

— — — — —

υ2υχða12c2 þ y1hTχ Þ υ1υχða22c2 þ y2hTχ Þ 0 j υ2χðc22 þ hT2χ Þ

1CCCCCCCCA
: ð48Þ

The above mass matrix can be written as

M2
U ¼

�
A C

CT D

�
; ð49Þ

which has the same structure as the general form of Eq. (A1) in the Appendix A, where each block is

A ¼ 1

2

0B@ υ22ða212 þ y21Þ υ1υ2ða12a22 þ y1y2Þ 0

υ1υ2ða12a22 þ y1y2Þ υ21ða222 þ y22Þ 0

0 0 υ21ða231 þ a233Þ

1CA;

C ¼ 1

2

0B@ υ2υχða12c2 þ y1hTχ Þ
υ1υχða22c2 þ y2hTχ Þ

0

1CA;

D ¼ 1

2
υ2χðc22 þ hT2χ Þ: ð50Þ

We can see that each block are of the order A ∼ υ21;2, C ∼
υ1;2υχ and D ∼ υ2χ , respectively, obeying the hierarchy from
Eq. (A2). Thus, according to Appendix A, the mass matrix
(49) can be block diagonalized as

m2
U ¼ ðVðUÞ

L ÞTM2
UV

ðUÞ
L ¼

�
m2

U 0

0 m2
T

�
; ð51Þ

where:

m2
U ≈ A − CD−1CT; m2

T ≈D; ð52Þ

and the rotation matrix has the approximated form:

VðUÞ
L ≈

�
I FU

−FT
U I

�
; FU ≈ CD−1: ð53Þ

Since the block D is just a number [see Eq. (50)], from
(52) we obtain directly the mass of the heavy T quark:

m2
T ≈

1

2
υ2χðc22 þ hT2χ Þ: ð54Þ

On the other hand, from the matrices in (50), and after
some algebra, the matrix m2

U in (52), which contains the
SM sector, can be put into the form:

m2
U ≈

1

2

0BB@
υ22r

2
1 υ1υ2r1r2 0

υ1υ2r1r2 υ21r
2
2 0

0 0 υ21ða231 þ a233Þ

1CCA; ð55Þ

where:

r1 ¼
ða12hTχ − y1c2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c22 þ hT2χ
q ;

r2 ¼
ða22hTχ − y2c2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c22 þ hT2χ
q : ð56Þ

We see that the 33 component of (55) appears decoupled,
which corresponds to one of the eigenvalues. We associate
this component to the top quark:

m2
t ¼

1

2
υ21ða231 þ a233Þ; ð57Þ
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which leaves us with the 2 × 2 submatrix

m2
uc ≈

1

2

�
υ22r

2
1 υ1υ2r1r2

υ1υ2r1r2 υ21r
2
2

�
: ð58Þ

It is evident that the above matrix has null determinant,
which leads us to at least one null eigenvalue. In fact, this
structure produces one massless quark, which we associate
to the lightest quark: the up quark (u), while the other
eigenvalue, associated to the charm quark, corresponds to
the trace of the matrix:

m2
c ¼ Tr½m2

uc� ¼
1

2
ðυ21r22 þ υ22r

2
1Þ ≈

1

2
υ21r

2
2; ð59Þ

Since the mass of the top quark in (57) depends only on υ1,
we take υ2 ≪ υ1, which leads us to the approximation
in Eq. (59).
In order to generate mass to the u quark, we consider

the one-loop radiative correction shown in figure 1(a).
This contribution add an input into the 11 component in the
original 4 × 4 matrix M0

U in (47), which produces the one-
loop quadratic mass matrix

M2
Uð1Þ ¼ M2

U þ ΔM2
U; ð60Þ

where the small one-loop contribution is:

ΔM2
U ¼ 1

2

0BBBBBB@
υ21Σ2

11 0 υ21a31Σ11 j 0

0 0 0 j 0

υ21a31Σ11 0 0 j 0

— — — — —

0 0 0 j 0

1CCCCCCA; ð61Þ

and Σ11 the value of the diagram in Fig. 1(a) which obey the
following analytical expression:

Σ11 ¼
−1
16π2

f0ðhUσ Þ1ðhT2 Þ1ffiffiffi
2

p
MT

C0

�
M2

MT
;
Mσ

MT

�
; ð62Þ

where

C0ðx1; x2Þ ¼
1

ð1 − x21Þð1 − x22Þðx21 − x22Þ

×

�
x21x

2
2 ln

�
x21
x22

�
− x21 ln x

2
1 þ x22 ln x

2
2

�
; ð63Þ

andM2 is a characteristic mass derived from the internal ϕ2

line as linear combinations of mass eigenvalues. The new
one-loop contribution only has effect on the 3 × 3 block
matrix m2

U in (55), which change into the one-loop mass
matrix

m2
Uð1-loopÞ ≈

1

2

0BB@
υ22r

2
1 þ υ21Σ2

11 υ1υ2r1r2 υ21a31Σ11

υ1υ2r1r2 υ21r
2
2 0

υ21a31Σ11 0 2m2
t

1CCA;

ð64Þ

where mt is the top mass at tree level obtained in (57).
The new 13 component emerged from the 1 loop diagram
will correct the top mass. However, we will neglect this
correction, which leads us again to a 2 × 2 matrix

m2
ucð1-loopÞ ≈

1

2

�
υ22r

2
1 þ υ21Σ2

11 υ1υ2r1r2
υ1υ2r1r2 υ21r

2
2

�
; ð65Þ

which exhibits determinant different from zero. The trace of
the matrix corresponds to the sum of the eigenvalues, i.e.:

Tr½m2
ucð1-loopÞ� ¼ m2

u þm2
c ¼

1

2
ðυ21r22 þ υ22r

2
1Þ þ

1

2
υ21Σ2

11:

ð66Þ

If we approximate the mass of the charm quark accord-
ing to (59), we obtain for the quark u that

m2
u ¼

1

2
υ21Σ2

11: ð67Þ

2. Down sector

For the down-type matrix M0
D in (47), for simplicity we

take in the heavy sector, proportional to υχ , a diagonal form,
i.e., kij ¼ 0 for i ≠ j. In this scenery, its quadratic form can
also be put in the block form

M2
D ¼

�
A C

CT D

�
; ð68Þ

where

FIG. 1. Mass one-loop correction for (a) up and (b) down
sector, where k, l, m, n ¼ 1, 2 and j ¼ 1, 2, 3.
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A ¼ 1

2

0B@ υ21ðj211 þ j212Þ υ1υ2ðj11j21 þ j12j22Þ 0

υ1υ2ðj11j21 þ j12j22Þ υ22ðj221 þ j222Þ 0

0 0 υ22ðB2
31 þ B2

32 þ B2
33Þ

1CA;

C ¼ 1

2

0B@ υ1υχj11k11 υ1υχj12k22
υ2υχj21k11 υ2υχj22k22

0 0

1CA;

D ¼ υ2χ
2

�
k211 0

0 k222

�
: ð69Þ

After block diagonalization, the matrix becomes

m2
D ¼ ðVðDÞ

L ÞTM2
DV

ðDÞ
L ¼

�
m2

D 0

0 m2
J

�
; ð70Þ

where

m2
D ≈ A − CD−1CT; m2

J ≈D; ð71Þ

with

VðDÞ
L ≈

�
I FD

−FT
D I

�
; FD ≈ CD−1: ð72Þ

First, since the matrix D appears diagonal, we obtain
directly the mass of the heavy down-type quarks:

m2
J1 ¼

1

2
υ2χk211; m2

J2 ¼
1

2
υ2χk222: ð73Þ

Second, for the SM down sector, the matrix m2
D in (71)

gives

m2
D ¼ 1

2

0B@ 0 0 0

0 0 0

0 0 υ22ðB2
31 þ B2

32 þ B2
33Þ

1CA; ð74Þ

which exhibits two massless quarks: the down (d) and
strange (s) quarks, and one massive quark associated to the
bottom (b):

m2
b ¼

1

2
υ22ðB2

31 þ B2
32 þ B2

33Þ: ð75Þ

In order to obtain mass for d and s, we again consider the
one-loop contribution shown in Fig. 1(b), which produces
new entrances different from zero in (74) as follows:

m2
Dð1−loopÞ ¼

1

2

0B@ υ22ðΣ2
11 þ Σ2

12 þ Σ2
13Þ υ1υ2ðΣ11Σ21 þ Σ12Σ22 þ Σ13Σ23Þ υ22ðΣ11B31 þ Σ12B32 þ Σ13B33Þ

� υ21ðΣ2
21 þ Σ2

22 þ Σ2
23Þ υ1υ2ðΣ21B31 þ Σ22B32 þ Σ23B33Þ

� � 2m2
b

1CA; ð76Þ

where the one-loop correction is

Σlj ¼
−1
16π2

f0ðhJl ÞlmðhDσ Þnjffiffiffi
2

p
MJ

C0

�
Ml

MJ
;
Mσ

MJ

�
: ð77Þ

If the matrix in (76) is grouped as

m2
Dð1-loopÞ ¼

�
m2

1 n

nT 2m2
b

�
; ð78Þ

where the bottom mass is dominant, we can block diag-
onalize it as

RT
Lm

2
Dð1-loopÞRL ≈

�
m2

ds 0

0 2m2
b

�
; ð79Þ

with

m2
ds ¼ m2

1 −
nnT

2m2
b

¼ 1

2m2
b

�
s11υ22 s12υ1υ2
s12υ1υ2 s22υ21

�
; ð80Þ

and

S. F. MANTILLA, R. MARTINEZ, and F. OCHOA PHYSICAL REVIEW D 95, 095037 (2017)

095037-10



s11 ¼ ðΣ11B32 − Σ12B31Þ2 þ ðΣ11B33 − Σ13B31Þ2 þ ðΣ12B33 − Σ13B32Þ2;
s22 ¼ ðΣ21B32 − Σ22B31Þ2 þ ðΣ21B33 − Σ23B31Þ2 þ ðΣ22B33 − Σ23B32Þ2;
s12 ¼ B2

31ðΣ13Σ23 þ Σ12Σ32Þ þ B2
32ðΣ11Σ12 þ Σ13Σ23Þ þ B2

33ðΣ11Σ21 þ Σ12Σ22Þ
− B31B32ðΣ12Σ21 þ Σ11Σ22Þ − B31B33ðΣ11Σ23 þ Σ13Σ21Þ − B32B33ðΣ13Σ22 þ Σ12Σ23Þ: ð81Þ

The eigenvalues ofm2
ds in (80) will lead us to the down and

strange masses. For example, if the mixing component s12
is null, we obtain

m2
d ≈

s11υ22
2m2

b

; m2
s ≈

s22υ21
2m2

b

: ð82Þ

B. Lepton sector

The nonuniversal Uð1ÞX also forbids some Yukawa
couplings between leptons and scalar bosons. The allowed
couplings are shown below for neutral and charged leptons,
respectively:

−LY;N ¼ hνe2el
e
L
~ϕ2ν

e
R þ hνμ2el

e
L
~ϕ2ν

μ
R þ hντ2el

e
L
~ϕ2ν

τ
R

þ hνe2μl
μ
L
~ϕ2ν

e
R þ hνμ2μl

μ
L
~ϕ2ν

μ
R þ hντ2μl

μ
L
~ϕ2ν

τ
R

þ hνjχiν
iC
R χ�NR þ 1

2
NiC

R Mij
NN

j
R þ H:c:; ð83Þ

−LY;E ¼ ηle
Lϕ2e

μ
R þ hlμ

Lϕ2e
μ
R þ ζlτ

Lϕ2eeR þHlτ
Lϕ2eτR

þ q11le
Lϕ1ER þ q21l

μ
Lϕ1ER þ hEσeELσeeR

þ hEσμELσ
�eμR þ hEστELσeτR þH1ELχER

þH2ELχ
�ER þ H:c: ð84Þ

Since the Higgs doublet ϕ2 has the discrete symmetry
ϕ2 → −ϕ2, all the right-handed leptons except ER and ER
also have Z2 negative parities in order to obtain the
adequate zero textures, i.e.,

ee;μ;τR →−ee;μ;τR ; νe;μ;τR →−νe;μ;τR ; Ne;μ;τ
R →−Ne;μ;τ

R : ð85Þ

1. Neutral leptons

Evaluating in the VEVs, the terms obtained from (83)
can be written in the following mass term using the basis
NL ¼ ð νe;μ;τL ; ðνe;μ;τR ÞC; ðNe;μ;τ

R ÞC ÞT for the neutral sector

−LY;N ¼ 1

2
NC

LMνNL; ð86Þ

where the mass matrix is

Mν ¼

0B@ 0 mT
D 0

mD 0 MT
D

0 MD MM

1CA; ð87Þ

with MD ¼ hνχvχ=
ffiffiffi
2

p
being a Dirac mass between νcR and

NR, where hNχ is a 3 × 3 matrix, and

mD ¼ v2ffiffiffi
2

p

0B@ hνe2e hνμ2e hντ2e
hνe2μ hνμ2μ hντ2μ
0 0 0

1CA ð88Þ

is a Dirac mass matrix between νL and νR. MM is the mass
of the Majorana neutrino NR.
Considering that MM ≪ mD and MD, the matrixMν can

be diagonalized through the inverse seesaw mechanism
[26,27]. If the following blocks are defined,

Mν ¼
�
mD

0

�
;

MN ¼
�

0 MT
D

MD MM

�
; ð89Þ

the mass matrix becomes

Mν ¼
�

0 MT
ν

Mν MN

�
; ð90Þ

which has the same form as the block matrix (A1) from
Appendix A in the limit with A ¼ 0. Thus, we define the
rotations

WSS
TMνWSS ¼

�
mlight 0

0 mheavy

�
; ð91Þ

with

WSS ≈
�

I FN

−ðFNÞT I

�
;

FN ≈ ðMNÞ−1Mν; ð92Þ

and

mlight ≈ −MT
νM−1

N Mν; ð93Þ
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mheavy ≈MN: ð94Þ

Since

M−1
N ¼

�
−ðMDÞ−1MMðMT

DÞ−1 M−1
D

ðMT
DÞ−1 0

�
; ð95Þ

the light mass term is

mlight ¼ mT
DðMDÞ−1MMðMT

DÞ−1mD: ð96Þ

Now, a unitary matrix V is considered which diago-
nalizes the 3 × 3 block matrix MN [27]:

VTMNV ¼ VT

�
0 MD

MT
D MN

�
V

¼
�
V�
1M

diag
1 V†

1 0

0 V�
2M

diag
2 V†

2

�
; ð97Þ

with V1 and V2 subrotation matrices. V may be formally
expressed as [27]

V ¼ 1ffiffiffi
2

p
�

1 1

−1 1

��
1 − SS†

2
S

−S† 1 − S†S
2

�
: ð98Þ

Using (97), and assuming thatMD¼MT
D,MMS† ¼ STMM,

MMS ¼ S�MM, MDS† ¼ STMD and MDS ¼ S�MD, from
the off-diagonal elements, we find

S ¼ S† ¼ −
1

4
M−1

D MM; ð99Þ

and substituting for the diagonal elements, we get the mass
matrices

V�
1M

diag
1 V†

1 ¼
MM

2
−MD −

1

8
MMM−1

D MM ≈ −MD; ð100Þ

V�
2M

diag
2 V†

2 ¼
MM

2
þMD þ 1

8
MMM−1

D MM ≈MD: ð101Þ

The mass eigenstates nL are constructed as

NL ¼ UNnL; ð102Þ

with nL ¼ ðν1;2;3L ; N1;2;3
1L ; N1;2;3

2L Þ, and the rotation matrix as

UN ¼ WSSWHWB; ð103Þ

with WSS the seesaw matrix rotation from (92),

WH ¼
�
1 0

0 V

�
; ð104Þ

the matrix rotation of the heavy neutrinos, and

WB ¼ block diagðUν; V1; V2Þ ð105Þ

the matrices that diagonalize each 3 × 3 block.

2. Charged leptons

For the charged sector in the flavor basis
E ¼ ðee; eμ; eτ; EÞ, the mass terms obtained from (84)
after the symmetry breaking are

−LY;E ¼ ELMEER þH2vχffiffiffi
2

p ELER þ H:c:; ð106Þ

where the lepton mass matrix ME has the following form,

ME ¼ v2ffiffiffi
2

p

0BBBBBB@

0 η 0 j q11tβ
0 h 0 j q21tβ
ζ 0 H j 0

— — — — —

0 0 0 j H1vχ=v2

1CCCCCCA; ð107Þ

which exhibits one massless lepton (the electron). To obtain
a massive electron, we include the one-loop correction
shown in Fig. 2, which adds a new term,

MEð1Þ ¼ ME þ ΔME; ð108Þ

with

ΔME ¼ υ2
2

0BBBBBB@

Σ11 0 Σ13 j 0

Σ21 0 Σ23 j 0

0 0 0 j 0

— — — — —

0 0 0 j 0

1CCCCCCA: ð109Þ

Since MEð1Þ is not hermitian, there are two rotation
matrices VE

L and VE
R for left- and right-handed electrons.

FIG. 2. Mass one-loop correction for charged leptons, where
n ¼ e, τ and k ¼ e, μ.
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Hence, the left-handed rotation is obtained by diagonaliz-
ing MEM

†
E obtaining the corresponding eigenvalues

m2
e ¼

h2Σ2
11v

2
2

2ðη2 þ h2Þ ≈
v22
2
Σ2
11;

m2
μ ¼

v22
2
ðη2 þ h2Þ ≈ v22

2
h2;

m2
τ ¼

v22
2
ðζ2 þH2Þ ≈ v22

2
H2;

m2
E ¼ H2

1v
2
χ

2
: ð110Þ

In addition, the flavor eigenstates are related to mass
eigenstates e ¼ ðe; μ; τ; E0ÞT by

EL ¼ VE
LeL; ð111Þ

where the corresponding left-handed rotation matrix can be
expressed as

VE
L ¼ VE

SS;LV
E
SM;L; ð112Þ

which diagonalizes as

MEM
†
E ¼ 1

2

�
M2

ee M2
eE

M2T
eE M2

EE

�
; ð113Þ

whose blocks are

M2
ee ¼

v22
2

0B@ q211t
2
β þ η2 þ Σ2

11 þ Σ2
13 q11q21t2β þ hηþ Σ11Σ21 þ Σ13Σ23 ζΣ11 þHΣ13

� q221t
2
β þ h2 þ Σ2

21 þ Σ2
23 ζΣ21 þHΣ23

� � H2 þ ζ2

1CA;

M2
eE ¼ v1vχ

2
H1

0B@ q11
q21
0

1CA;

M2
EE ¼ v2χH1

2
: ð114Þ

The former matrix VE
SS;L is

VE
SS;L ¼

�
I FE

−FE† I

�
; ð115Þ

with FE ¼ M2
eEðM2

EEÞ−1. The latter rotation is

VE
SM;L ¼

�
VE
SM;L 0

0 1

�
; ð116Þ

where the top-left block diagonalizes the SM charged
lepton masses,

VE
SM;L ¼

0BBB@
cαeμ sαeμ

Σ13

H

−sαeμ cαeμ
Σ23

H

− Σ13

H − Σ23

H 1

1CCCA: ð117Þ

The angle αeμ is defined by tαeμ ¼ tan αeμ ≈ η=h, which is a
free parameter of the model as shown below.

IV. PMNS MATRIX

To explore some phenomenological consequences of the
above structures, we assume for simplicity that MD is
diagonal and MM is proportional to the identity

MD ¼

0B@hNχ1 0 0

0 hNχ2 0

0 0 hχN3

1CA vχffiffiffi
2

p ð118Þ

MM ¼ μNI3×3: ð119Þ

Thus, V1 ¼ V2 ¼ I3×3 in (97). On the other hand, replacing
the Dirac matrix from (88) into the light mass eigenvalues
in (96), we obtain

mlight ¼
μNv22

hNχ1
2v2χ

0BB@
ðhνe2eÞ2 þ ðhνe2μÞ2ρ2 hνe2eh

νμ
2e þ hνe2μh

νμ
2μρ

2 hνe2eh
ντ
2e þ hνe2μh

ντ
2μρ

2

hνe2eh
νμ
2e þ hνe2μh

νμ
2μρ

2 ðhνμ2eÞ2 þ ðhνμ2μÞ2ρ2 hνμ2eh
ντ
2e þ hνμ2μh

ντ
2μρ

2

hνe2eh
ντ
2e þ hνe2μh

ντ
2μρ

2 hνμ2eh
ντ
2e þ hνμ2μh

ντ
2μρ

2 ðhντ2eÞ2 þ ðhντ2μÞ2ρ2

1CCA; ð120Þ
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where ρ ¼ hNχ1=hNχ2. The matrix mlight has zero determi-
nant, obtaining at least one massless neutrino. The above
matrix is diagonalized through

UT
νmlightUν ¼ mdiag

light; ð121Þ

where Uν contains the mixing angles that transform the
weak eigenstates νe;μ;τL into mass eigenstates ν1;2;3L . The

PMNS matrix is defined as the product of the above
rotation matrix and the rotation matrix of the charged
sector VE

SM;L,

UPMNS ¼ ðVE
SM;LÞ†Uν: ð122Þ

We use the following parametrization for the PMNS
matrix [43]:

UPMNS ¼

0B@ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1CA: ð123Þ

The mixing angles can be obtained from some matrix
components as

s213 ¼ jUe3j2;

s223 ¼
jUμ3j2

1 − jUe3j2
;

s212 ¼
jUe2j2

1 − jUe3j2
: ð124Þ

A. Parameter values

In order to have a model consistent with neutrino
oscillation data [22], the values of the Yukawa parameters
hνe2e, hνμ2e, hντ2e, hνe2μ, hνμ2μ, hντ2μ, and αeμ must be properly
adjusted. To achieve this, we implement a Monte Carlo
method to generate random numbers in the parameter
space, where only the numbers which match up the mass
matrix to experimental data are accepted, while the others
are rejected. It is worth mentioning that the other two
rotation parameters described by Σ13=H and Σ23=H were
approximated to me=mτ, while hνμ2e was chosen null to
simplify the search.

On the other hand, the appropriate mass scale and mass
ordering can be obtained by adjusting the outer factor of the
mass matrix and the ratio ρ. For NO, the Yukawa coupling
can be set by

hNχ1
2 ¼ 0.02; ρ2 ¼ 0.5; ð125Þ

while for IO,

hNχ1
2 ¼ 0.025; ρ2 ¼ 0.625: ð126Þ

TABLE IV. Yukawa coupling domain which fulfil at 1σ
neutrino oscillation data for NO reported by [22]. hνe2μ ¼ 0 for
simplifying the Monte Carlo search.

αeμ ¼ 0° αeμ ¼ 15° αeμ ¼ 30°

hνe2e 0.264 → 0.278 0.285 → 0.299 0.237 → 0.270

hνμ2e −0.707 → −0.244 −0.726 → −0.335 −0.796 → −0.547
hνμ2μ −0.491 → −0.190 −0; 464 → −0.173 −0.342 → −0.039

hντ2e 0.267 → 0.748 0.313 → 0.677 0.140 → 0.355

hντ2μ 0.130 → 0.462 0.196 → 0.460 0.440 → 0.510

(a) (b) (c)

FIG. 3. Contour plots of vχ vs v2 from Eq. (128) for different values of hNχ1
2 and μN . From below to above, there are the corresponding

contour plots for the following values of μN : 500 eV (gray, line), 1 keV (black, line), 5 keV (gray, dashed), 10 keV (black, dashed),
50 keV (gray, dot-dashed), and 100 keV (black, dot-dashed).
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In the same way, the mass scale is set by

v2 ¼ 7 GeV;

vχ ¼ 7 TeV;

μN ¼ 1 keV: ð127Þ

The above values fix the outer factor of the mass matrix
(120) at 50 meV, which yields to the correct squared-mass
differences. Nevertheless, there exist other possible values
for the parameters μN , hN1χ , vχ , and tan β that lead us to the
factor at 50 meV.
If the following constraint is assumed,

μNv22
hNχ1

2vχ2
¼ 50 meV; ð128Þ

contour plots can be done for different values of μN in the
vχ vs v2 plane, as shown in Fig. 3.
Tables IV and V and V show regions where the neutrino

Yukawa couplings and the angle αeμ make consistent this
model with neutrino oscillation data reported by [22] at 3σ.
The Yukawa coupling hχN3 is not fixed by oscillations

of the light neutrinos; however, they may contribute to
the total rotation matrix UN in (103). Thus, the neutral
spectrum of the model is composed by three active light
neutrinos ν1;2;3L and six quasidegenerated sterile neutrinos
N1;2;3

1L and N1;2;3
2L at the TeV scale.

V. CONCLUSIONS

Abelian nonuniversal gauge extensions of the SM are very
well-motivated models which involve a wide number of
theoretical aspects. In this work, by requiring nonuniversal-
ity in the left-handed quark sector and in the lepton sector,
we propose a newGSM × Uð1Þ0 gauge model. We obtained a
free-anomaly theory with invariant Yukawa interactions,
predicting hierarchical mass structures in the quark and
charged lepton sector with few free parameters
For the quark sector, we identify three energy scales.

First, at the breaking scale of the Uð1ÞX symmetry, we
obtain heavy masses to the extra heavy quarks Jn and T,

with MJn ≈MT ∼ υX. Second, at tree level, we obtain
masses at the electroweak scale for the c, t and b quarks,
withMc;t;u ∼ υ1;2. Finally, at one-loop level, we obtain light
masses for the u, d and s quarks, withMu;d;s ∼ υ21;2=υχ . For
the leptonic sector, we also obtain the same hierarchical
structure, where the extra leptons E and E acquire masses at
the υχ scale, the μ and τ have masses at the electroweak
scale, and the electron obtain masses at one-loop, which is
suppressed as υ21;2=υχ .
On the other hand, with the addition of extra Majorana

neutrinos, we found that neutrinos may acquire tiny masses
via the inverse seesaw mechanism. The selection of a small
Majorana mass term (from eV to KeV scale) and the
experimental limits on observables from neutrino oscilla-
tions allows us to perform numerical adjustment for the
values of the Yukawa couplings of neutrinos in NO and IO
scenarios. In addition, because the nonuniversal Uð1ÞX
charges, the electron remains massless at tree level but a
nonvanishing mass term emerges at one-loop corrections
which gives a viable explanation for its small mass
compared to the electroweak scale.
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APPENDIX: BLOCK DIAGONALIZATION

Let us take a generic matrix with arbitrary dimension of
the form

M2 ¼
�

A C

CT D

�
; ðA1Þ

with A, D, and C submatrices, whose elements obey the
hierarchy

A ≪ C ≪ D: ðA2Þ

The matrix (A1), as shown in Ref. [44], can be block
diagonalized approximately by a unitary rotation of the
form

V ¼
�

I F

−FT I

�
; ðA3Þ

where I is an identity matrix, and F a small subrotation
with F ≪ 1. Keeping only up to linear terms on F, the
rotation gives

TABLE V. Yukawa coupling domain which fulfils at 1σ
neutrino oscillation data for IO reported by [22]. hνe2μ ¼ 0 for
simplifying the Monte Carlo search.

αeμ ¼ 0° αeμ ¼ 1° αeμ ¼ 2°

hνe2e 1.094 → 1.107 1.091 → 1.105 1.090 → 1.103

hνμ2e −0.122 → −0.106 −0.127 → −0.113 −0.128 → −0.118
hνμ2μ 0.970 → 1.060 0.980 → 1.070 1.010 → 1.080

hντ2e 0.110 → 0.127 0.122 → 0.138 0.135 → 0.149

hντ2μ 0.930 → 1.030 0.920 → 1.010 0.910 → 0.980
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VTM2V ¼
�

A − CFT − FCT Cþ AF − FD

CT þ FTA −DFT Dþ CTF þ FTC

�
;

ðA4Þ
which, by definition, must lead us to a diagonal block
form,

m2 ¼
�
a 0

0 d

�
; ðA5Þ

with a and d nondiagonal matrices, and 0 the null matrix.
By matching the upper right nondiagonal block in (A4)
and (A5), we obtain that Cþ AF − FD ¼ 0. Taking into

account the hierarchy in (A2), we may neglect the term
with A, finding the following approximate solution:

F ≈ CD−1: ðA6Þ

On the other hand, if we match the diagonal blocks in
(A4) and (A5), and use the solution (A6), we can obtain the
form of the submatrices a and b in terms of the original
blocks A, C, and D. We obtain at dominant order that

a ≈ A − CD−1CT b ≈D: ðA7Þ

The above matrices can be diagonalized independently.
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