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We study a left right (LR) extension of the Standard Model (SM) where the Dark Matter(DM) candidate
is composed of a set of fermionic Majorana triplets. The DM is stabilized by a remnant Z2 symmetry from
the breaking of the LR group to the SM. Two simple scenarios where the DM particles plus a certain set of
extra fields lead to gauge coupling unification with a low LR scale are explored. The constraints from relic
density and predictions for direct detection are discussed for both scenarios. The first scenario with a
SUð2ÞR vectorlike fermion triplet contains a DM candidate which is almost unconstrained by current direct
detection experiments. The second scenario, with an additional SUð2ÞR triplet, opens up a scalar portal
leading to direct detection constraints which are similar to collider limits for right gauge bosons. The DM
parameter space consistent with phenomenological requirements can also lead to successful gauge
coupling unification in a SOð10Þ setup.
DOI: 10.1103/PhysRevD.95.095034

I. INTRODUCTION

To guarantee the stability of the dark matter, many
models postulate a discrete symmetry, usually a Z2, under
which the standard model particles are even, while the dark
matter is odd.1 Of course, from a theoretical point of view it
would be much more attractive if such a symmetry had a
deeper origin or at least some other phenomenological
consequences apart from stabilizing the DM. An example
for the former is a broken gauge symmetry. An example for
the latter are discrete family symmetries, in which the
stability of the DM is related to the generation of neutrino
masses [3,4].
One example of a discrete symmetry, which can emerge

from the spontaneous breaking of a gauge symmetry ismatter
parity, PM ¼ ð−1Þ3ðB−LÞ. In SOð10Þ based models this
discrete symmetry can survive breaking of SOð10Þ and
stabilize the dark matter as has been shown in [5–7]. SOð10Þ
can be broken to the standard model group directly or in
different steps. Interestingly, one of the intermediate groups
that can arise from SOð10Þ is the left-right (LR) symmetric
group [8], SUð3Þc × SUð2ÞL × SUð2ÞR × Uð1ÞB−L. In the
minimal LR model, gauge coupling unification can be

achieved, if the LR scale is in the range of Λ≃
10ð10–11Þ GeV [9]. However, for such a large scale, no
phenomenological effects of the LR symmetry can be seen
in DM—apart from the stabilization of the DM candidate
itself. However, it is possible to buildmodels inwhich theLR
scale can be lowered to the electro-weak scale, without
destroying gauge coupling unification [10].
Such low-scale LR models can maintain an unbroken Z2

after symmetry breaking, if the field that breaks SUð2ÞR ×
Uð1ÞB−L has even charge under (B − L) [11]. Different
models of this kind have been studied recently. For
example, the singlet component of a scalar 16 as a DM
candidate has been studied in [12]. Dark matter phenom-
enology in low-scale left-right symmetric models with
fermionic triplets (Ψ1130 and Ψ1310) has been studied in
[13] along with quintuplets (also studied in [14]) and in
[15] where also bidoublets (see also [16]), and scalar
doublets or septets are studied.2

Potentially realistic models containing the SOð10Þ 10
and 45 fermionic representations, from which a neutralino-
like mass matrix with arbitrary mixings can be obtained,
was discussed in [17]. A model with a fermionic (right-
handed) 5-plet was studied in [14]. Other examples in this
line of thought include asymmetric dark matter from
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1Recently also Z3;…ZN symmetries as the origin of the DM

stability have been discussed, see for example [1,2].

2A note on notation: We use the transformation properties/
charges of the fields under the LR and SM group to identify the
fields: ΨSUð3Þc;SUð2ÞL;SUð2ÞR;Uð1ÞB−L
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SOð10Þ [18], or right-handed neutrinos as DM in a “dark
left-right model,” stabilized by an extra symmetry S [19].
One can also explore different intermediate gauge groups
from SOð10Þ and their connection to DM models, as has
been done in [20]. Another example with right-handed
neutrinos as DM based on the group SUð3ÞC × SUð2ÞL ×
SUð2ÞR ×Uð1ÞYL

×Uð1ÞYR
can be found in [21,22].

Unlike many studies based on nonsupersymmetric left
right SM extensions where the DM is considered as a
single, unmixed state, as for example, a pure fermion
triplet, a bidoublet etc. [13,15], in this work we study some
models where the DM candidate is not necessarily a pure
state, but may instead be a mixture of two or more
multiplets, similar to neutralinos in supersymmetry. In
[17,23,24], some fermion mixed DM models composed
of combinations such as the singlet-triplet, singlet-
bidoublet, triplet-bidoublet were already studied. Here,
we consider a combination of SUð2ÞR triplet-triplet fer-
mionic DM multiplets. Mixing between the fermions is
induced through the coupling to the triplet scalar ΔR. A
similar model was studied in the context of the diphoton
excess in [25] for low values of the Ψ1132 ⊕ Ψ̄113−2 triplet
mass.
In this paper, we extend the generic left right model with

a certain set of fields, see next section, such that the gauge
couplings unify in the ballpark of mG ≃ 2 × 1016 GeV.
The dark matter in our setup are the right-handed
fermionic triplets. We start with a very simple scenario,
denoted as Case I, with a DM candidate from a vectorlike
pair of fields, Ψ1132 and Ψ̄113−2. A second scenario,
denoted as Case II, contains a mixed DM candidate build
from the above fields plus a Ψ1130. The addition of the
latter allows us to add a scalar portal interaction to the
model and a nonzero direct detection cross section σSIN
appears. Note that Case I arises from Case II as a specific
limit on the DM masses. We also check that both setups
can lead to successful gauge coupling unification and
calculate the parameter space allowed by proton decay
constraints.
The rest of this paper is organized as follows. In Sec. II

we start by recalling the basics of the minimal left right
model and SOð10Þ inspired unification. To have successful
unification of gauge couplings (GCU) and at the same time
a “low” LR scale (i.e., order TeV), requires additional
fields. We discuss a particular set of fields (“configuration”)
which gives the correct GCU and also fulfills some addi-
tional phenomenological requirements. We identify the
GUT parameter space and the region of DM candidate
masses where GCU and successful fermionic DM simulta-
neously arise in Sec. II B. In Sec. III we discuss the DM
phenomenology of our two simple cases of fermionic DM
in more detail. The relic density and direct detection cross
sections are calculated. Finally in Sec. IV we conclude with
a discussion of our results. Some technical aspects of our
work are presented in the appendix.

II. MODEL FRAMEWORK

In this section we will briefly describe a nonSUSY left-
right symmetric scenario inspired by SOð10Þ-like gauge
coupling unification. As mentioned above, breaking the
Uð1ÞB−L symmetry by a field with an even charge can leave
a remnant Z2 symmetry in the model, which allows to
stabilize the DM. First, let us consider possible DM
candidates. Considering multiplets of up to 144 represen-
tations, see Appendix, we can find several scalar and
fermionic candidates. First note that scalar candidates need
to be odd with respect to (B − L), because all standard
scalars are even. Thus, scalar candidates can be found in the
16 or the 144. Fermionic DM candidates, on the other hand,
have to be (B − L) even, since all SM fermions are odd
under ðB − L). Thus, possible candidates can be found in
the 1, 10, 45, � � � 126. In our numerical study, we will
concentrate on the DM candidates found in the 45 (Ψ1130)
and 126=126 (Ψ1132=Ψ̄113−2) multiplets. We will study two
cases, denoted as Case I and Case II. In Case I, the DM is
taken to be the neutral component of the vectorlike pair
which belongs to the SOð10Þ representationsΨ1132=Ψ̄113−2.
This scenario is very minimal in the sense that it has only
one additional new parameter, which corresponds to the
bare mass term of the vectorlike pair and also gives a zero
spin-independent (SI) DM-nucleon cross section at tree
level, as will be discussed in the next section. In Case II, we
add to the above fermion vectorlike pair an extra SUð2ÞR
fermionic triplet which belongs to the 45 representation,
i.e., Ψ1130. In this case, new terms, can be added to the
Lagrangian, mixing the different neutral components in
Ψ1132=Ψ̄113−2 and Ψ1130. A nonzero SI DM-nucleon cross
section results. As expected, the Case I is recovered in the
limit where the DM particles are unmixed states and Ψ1130

is decoupled.
Although our numerical calculations are done in a left-

right symmetric model, the underlying theory at higher
energies should be unifiable into SOð10Þ. We thus consider
constraints arising from gauge coupling unification. For
this, we consider a simple configuration of fields which
contains our DM candidates, but adds a few more fields,
such that the gauge couplings unify correctly at a mG scale
allowed by proton decay. We then discuss the allowed GUT
parameter space of this setup.

A. Left-Right scalar sector

The first stage of the symmetry breaking SOð10Þ → LR
arises when a scalar field belonging to the 54 of SOð10Þ
representation acquires a vacuum expectation value (vev).
Although our analysis is inspired by such a SOð10Þ
unification, we do not concern ourselves in detail with
this first step. The second step is to break the LR group to
the SM, which is then broken to Uð1ÞEM. In the minimal
LR scenario, the scalar sector consists of only two
multiplets: a bidoublet Φ1220, needed to give the correct
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masses to the electroweak vector bosons and SM charged
fermions, and a scalar triplet ΔR ≡Φ113−2, which
breaks the LR group to the SM one. The neutral and
charged components of these multiples can be written
as [26]:

Φ ¼
�Φ0

1 Φþ
2

Φ−
1 Φ0

2

�
; ΔR ¼

�
Δ−

R=
ffiffiffi
2

p
Δ−−

R

Δ0
R −Δ−

R=
ffiffiffi
2

p
�
:

ð1Þ

It is assumed that the neutral components of these fields
acquire vevs:

hΦi ¼
�
v1 0

0 v2eiα

�
; hΔRi ¼

�
0 0

vR 0

�
: ð2Þ

The parameters v1;2 are real and positive. For more details
on left-right symmetry and gauge boson masses see [27]. In
our analysis, we do not assume an exact LR symmetry, i.e.,
gL ≠ gR, see below.

B. Gauge coupling unification constraints

In this subsection, we will discuss briefly gauge coupling
unification (GCU) and the possible constraints on the
parameter space of LR dark matter models. As is well
known [9], the minimal LR model can lead to GCU only if
the LR scale is of the order of 1010−11 GeV. In order to
lower this scale to a phenomenologically interesting range,
additional particles need to be added to the minimal model.
We will use the results of [10]. Essentially, we require the
following two conditions to be fulfilled:

(i) Perturbative unification: This implies that the gauge
couplings unify with a value of αG in the perturba-
tive regime. Since our simple calculation does not
consider GUT-scale thresholds, we are not neces-
sarily imposing an exact unification of the gauge
couplings at the GUT scale (mG). Rather, we allow
for a difference of the gauge couplings at mG
falling into a “small nonunification triangle,” i.e:
α3ðmGÞ − α2ðmGÞ≲ 0.9 [28,29].

(ii) Proton decay: In nonsupersymmetric SOð10Þ GUT
models, the primary mode of proton decay is
p → π0eþ. We consider the model valid if, in all
the parameter space, it fulfills the constraint from
proton decay τp→π0eþ ≳ 1034 years [30,31]. The
gauge d ¼ 6 operator associated to this decay leads
a GUT scale of m4

G ≈ τp→π0eþα
2
Gm

5
p. The current

value of τp→π0eþ yrs. sets a lower limit on the GUT
scale of the order of mG ≳ 5 × 1015 GeV.

An extra set of fields added at an intermediate LR scale,
denoted here as MLR ∼ vR, gives new contributions to the
β-coefficients of the gauge couplings. Many solutions that
achieve GCU exist [10], but all of them require to add

particles which transform non-trivially under color. For the
numerical study we choose the following set of fields:

SMþΦ1220 þΦ113−2

þ Ψ1130 þ Ψ1132 þ Ψ̄113−2

þ Ψ1310 þ Ψ3211
3
þ Ψ̄321−1

3
þΨ8110: ð3Þ

The scalar bidoublet Φ1220 and the scalar triplet Φ113−2 are
needed to achieve the correct symmetry breaking pattern.
The particles in the 2nd line are our dark matter candidates.
In principle, also Ψ1310 could be a dark matter candidate.
Left right DMmodels withΨ1310 andΨ1130 as possible DM
candidates andmΨ1310

∼mΨ1130
have already been studied in

the literature [13]. For the case of mΨ1310
≠ mΨ1130

, the
smaller of the two will determine the character of the DM.
If Ψ1310 is the lighter, results of [13] will qualitatively still
apply. We do not cover the mixed case with Ψ1130 having a
small component of Ψ1310 in detail, because the phenom-
enology will interpolate between these results. Here in this
work, we show that a left triplet Ψ1310 being heavier than
Ψ1130 would not spoil GCU.
The remaining colored fields are added to bring the

prediction of αS in agreement with experimental data. Note
that all the extra fermionic fields can have vectorlike
masses. The evolution of the gauge couplings, explained
in detail in Appendix B, corresponding to this configuration
of fields is shown in Fig. 1. There, all of the new particle
content, including the DM, is added at the scale
MLR ¼ 2 TeV. Although “exact parity” (gL ¼ gR) sym-
metry is required in many constructions of LR models, this
is not a mandatory requirement for LR model building. In
particular, our model does not have gL ¼ gR at the scale
where the LR symmetry is broken. Only for the sake of
simplicity, we have chosen the number of fields in our
configuration as small as possible. Models with exact parity
(and a correspondingly larger set of fields) could easily be

FIG. 1. Evolution of the gauge couplings for the configuration
of fields described by Eq. (3), with MLR ¼ 2 TeV. All new
particle thresholds are added at MLR in this example.
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constructed, without any fundamental changes in the
phenomenology we discuss here.
An interesting question to ask is whether the requirement

of correct GCU allows us to constrain the mass scales of the
model. Since the new fermions can all have vectorlike
masses, not necessarily related to the symmetry breaking
scale MLR, we will consider two simple scenarios:
(a) Adding all of the fields, including the fermion DM
particles Ψ1130, Ψ1132 and Ψ̄113−2 at the scale MLR, while
the left triplet Ψ1310 is added at some scale of new physics
denoted asMNP. The resulting parameter space in the plane
spanned by MLR and MNP is shown in the left panel of
Fig. 2. And scenario (b): only the scalar fields Φ1220 and
Φ113−2 are added at the scale MLR while all the other
fermions—including DM—are added at theMNP scale. The
parameter space corresponding to this case is shown in the
right panel of Fig. 2.
In both cases, the figures show contour lines for the size

of the “nonunification triangle,” i.e., Δðα−1ðmGÞÞ as a
function of the new physics scales. As the figure to the left
shows, in case (a) unification improves for low values of
both MNP and MLR and values below Δðα−1ðmGÞÞ < 0.1
requires the LR scale to be around 1 TeV. For this scenario,
the LR symmetry breaking scale should be roughly below
20 TeV for Δðα−1ðmGÞÞ < 0.9. However, if we allow all
new fermions to have masses larger than MLR, case (b), no
upper limit on MLR can be inferred from this analysis, as
the figure on the right shows. Note, however, that MNP has
to be larger than MLR for good GCU to be maintained.
Therefore for this case, constraints from the relic density
provide interesting upper limits, as we will discuss in the
next section.

III. FERMIONIC DARK MATTER

As a first step, we add to our LR minimal setup the two
additional fermionic triplets Ψ1132 ⊕ Ψ̄113−2 which

represents a vectorlike pair of Majorana DM. This scenario,
which corresponds to a simple and unmixed DM case, is
denoted here as Case I. Considering that, in this scenario
the vectorlike DM has zero hypercharge, the SI DM-
nucleon cross section, σSIN , is expected to be zero at tree
level. As a second step, an extra fermionic triplet Ψ1130 is
included to complete a scenario of mixed fermion Dark
Matter in which, although the DM has hypercharge zero, a
scalar portal interaction of the DM through the interaction
of the DM with the ΔR generates a nonzero σSIN .
All the numerical calculations of the next sections where

implemented using SARAH [32–34] (based on the LR
implementation in [35]) which generates the necessary
subroutines used subsequently by SPHENO [36,37]. The
calculation of the relic density and the relevant cross sections
is done by MicrOMEGAs [38], solving the Boltzman equation
numerically throughCalcHEP [39] output of SARAH.The scans
were done using the SSP MATHEMATICA package [40].

A. Case I

In this benchmark scenario we introduced two Weyl
fermions Ψ1132 and Ψ̄113−2 which can be parametrized as:

Ψ1132 ¼
�
Ψþ=

ffiffiffi
2

p
Ψþþ

Ψ0 −Ψþ=
ffiffiffi
2

p
�
;

Ψ̄113−2 ¼
�
Ψ−=

ffiffiffi
2

p
Ψ̄0

Ψ−− −Ψ−=
ffiffiffi
2

p
�
: ð4Þ

Note that, due to the quantum numbers and the chosen
transformation properties ofΨ1132 and Ψ̄113−2 under the LR
gauge symmetry, the most general renormalizable
Lagrangian contains only the following mass term
as a new parameter: L ⊃ M23TrðΨ1132Ψ̄113−2Þ. M23 corre-
sponds to the tree-level mass of the different Ψ1132 and
Ψ̄113−2 components. The absence of any interaction term

FIG. 2. Allowed GUT parameter space passing the conditions (i)–(ii). The scenarios (a) (left) and (b) (right) are discussed in the text.
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mediating the decay of the DM particles into the SM
particles guarantees that the lightest component of these
triplets is accidentally stable and thus represents a DM
candidate. In this scenario, the resulting relic density
abundance Ωh2 depends not only on the DM mass, related
directly byM23, but also on the value of vR, via the mass of
ZR and WR. By construction, in this setup the only
interactions affecting the relic density abundance are the
gauge interactions. When the mass splitting between
the dark matter candidate and the charged components
of the triplet are small, coannihilation effects need also to
be included. This is done automatically in MicrOMEGAs. The
most important annihilation and coannihilation processes
contributing to the relic density are described in Fig. 3.
The resulting Ωh2 as a function of the DM mass, for

different values of vR ¼ 2, 5, 10 TeV, is shown in Fig. 4.
The current bound provided by Planck [41]:

Ωh2 ¼ 0.1199� 0.0027; ð5Þ

gives important restrictions on the parameter space of our
model. As expected, there is a strong dependence of the
relic density onMWR

andMZR
which appear due to the (co-)

annihilation channels involvingWR and ZR. The dips in the
figure around MDM ≃MWR

=2 and MDM ≃MZR
=2 corre-

spond to theWR and the ZR resonances respectively. As one
can see, for each value of vR, the coannihilation effects are
most important for the region where the DM mass is below
the first resonance, i.e.,MDM ≤ MWR

=2. On the other hand,
for values of MDM above the second resonance, the
annihilation effects become less important and the relic
density increases. The most important contributions to the
relic density come from the channels ΨΨ̄ → WRγ, ΨΨ̄ →
qq̄ and ΨΨ̄ → Wþ

RW
−
R via the exchange of Ψ, WR and ZR

FIG. 3. Some of the Feynman diagrams for dark matter (co)annihilations determining the relic abundance of DM.

FIG. 4. Relic density Ωh2 as a function of mDM for different
values of vR.

FIG. 5. Allowed values of MDM vs MZR
, when the DM relic

density is in the 3σ-range of the relic density in Eq. (5). The
dashed line shows the lower limit on MZR

imposed by CMS
Collaboration [42].
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respectively. Note that for MDM ≳ 2 TeV, the correct relic
density can be obtained only if MDM ≲MWR

;MZR
.

Now, if instead of fixing vR, we let this scale as a free
parameter in the range of 0.5 < vR=TeV < 50, the allowed
region imposed by Planck in the plane spanned by the DM
mass MDM and the ZR mass MZR

is shown in Fig. 5. As we
can appreciate, there is a region of points which is associated
with the ZR and WR resonances for MZR

≳ 7 TeV. For the
lowest values ofMDM, only large values ofMZR

are allowed,
for example, for MDM ≃ 700 GeV, MZR

≃ ½7; 40� TeV. As
observed also from Fig. 4, for larger values of MZR

, larger
values of MDM are allowed. Importantly, values of MDM ≳
10 TeV are ruled out by the bound given in Eq. (5). In
addition, the current LHC limit of approximately MZR

≳
3 TeV [42], based on the first few fb−1 of the 2016 data set,
excludes part of the otherwise allowed range ofMDM in the
region of MDM ≃ 2 TeV. We expect that the updated
analysis of the full

ffiffiffi
s

p ¼ 13 TeV data set will increase this
limit towards MZR

≳ 5 TeV.
As mentioned before, due to the fact that in this simple

scenario our DM is a Majorana particle with hypercharge
zero, there is no direct Z-exchange and we have a zero tree-
level σSIN . Due to this fact, this scenario is nearly entirely
unconstrained by direct detection experiments. However, as
will be described in the next section, adding an extra
fermionic field to the DM setup, opens a LR scalar portal
and then a nonvanishing σSIN arises.

B. Case II

In this scenario we introduce an extra Weyl fermion,
Ψ1130 in addition to the DM setup described in Case I. As in
the previous scenario, due the absence of any interaction
terms mediating the decay of Ψ1130 into the SM particles,
the lightest component of this triplet is accidentally stable
and hence can be a DM candidate. A mixture of the neutral
components of the fields Ψ1130 ⊕ Ψ1132 ⊕ Ψ̄113−2 is the
DM. The relevant mass terms and interactions of the new
fields, including the scalar portal, are given by:

L ⊃ M11TrðΨ1130Ψ1130Þ þM23TrðΨ1132Ψ̄113−2Þ
þ λ13TrðΔRΨ̄113−2Ψ1130Þ þ λ12TrðΔ†

RΨ1132Ψ1130Þ;
ð6Þ

where M11 is the tree-level mass of the components of the
triplet Ψ1130. The LR scalar “portal” is given by the
interactions of the new field Ψ1130 with the scalar boson
ΔR. These interactions are proportional to the λ13 and λ12
Yukawa couplings. Depending on the choice of these
Yukawa parameters, the direct detection nucleon cross
section, σSIN , will or will not be different from zero. We
define

tan γ ¼ λ13
λ12

; λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ212 þ λ213

q
: ð7Þ

To illustrate the dependence of the direct detection
cross section, σSIN , on these parameters, we choose a point
with a vR ¼ 6 TeV andM11 ¼ 50 TeV. We then scan over
the other parameters as illustrated in Fig 6, with
2.7 < M23=TeV < 3.1. We can see that σSIN is proportional
to λ. As illustrated in the left panel of Fig. 6, there is a blind
spot3 for positive values of tan γ at tan γ ¼ 1. This is
expected, since for decoupled M11, the mixing with the
scalar is proportional to M23 sin 2γ −MDM, with
MDM ≈M23. Note that values for j tan γj > 1 are equivalent
to the values with j tan γj < 1. In what follows we only
consider the region j tan γj ≥ 1. In the right panel of Fig. 6,
we show explicitly the dependence of σSIN withMDM for the
same color range of λ. There, we include only points well
outside the blind spot with tan γ > 5. Note that it is
sufficient that only one of the Yukawa couplings λ12 or
λ13 is different from zero to obtain a nonvanishing σSIN . In
our scans, we choose the Yukawa couplings λ12 and λ13 to

FIG. 6. Direct detection cross section for vR ¼ 6 TeV and M11 ¼ 50 TeV. The color variation of λ is the same for both plots.

3The blind spot corresponds to the zone in the parameter space
where the coupling between the DM and the scalar sector is zero,
leading to a vanishing direct detection cross section.
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be small, in the ballpark ðλ12; λ13 ≤ 0.1Þ. Since the RGEs
for λ are proportional to the λ’s themselves, we expect that
also a the GUT scale these couplings remain perturbative,
i.e: ðλ12ðmGÞ; λ13ðmGÞÞ ≤ 4π.
In Fig. 7 σSIN is shown as a function of MZR

for different
values of MDM, without imposing the constraint from the
proper relic density. The curves correspond to different
choices of M11 (M23) for fixed values of M23 ¼ 1 TeV

(M11 ¼ 1 TeV), tan γ ¼ −1, and λ ¼ 0.14. As expected,
σSIN decrease as M11 (M23) increase, recovering back the
simplest Case I when M11 is sufficiently high.
The allowed parameter space restricted by the relic

density Planck bound Eq. (5), in the plane spanned by
MDM and MZR

, is shown in the upper panel of Fig. 8
for a specific choice of the parameters: vR∶½2; 50� TeV,
M23∶½0.2; 50� TeV, M11∶50 TeV, tan γ ¼ −1 and
λ ¼ 0.14. The scan includes the caseM23 ≪ M11, approach-
ing then the simple DM scenario described in Case I, where
σSIN is zero. Hence the similarity between both plots. Note
however that the mixing opens up the window of small DM
masses whenM11 < M23. Moreover, the region of lowMZR

corresponding to the green points in the plot, are excluded by
the spin-independent elastic DM-nucleon direct detection
constraints from LUX-2016 bound [43].
The numerical results for this constraints are shown

explicitly in the lower panel of Fig. 8 as a function ofMDM
(left) and MZR

(right). From the left down panel, we can
appreciate that the LUX-2016 bound on σSIN , is above
almost all the points in the plane spanned by σSI and MDM
allowing DM into the range MDM ∼ ½0.1; 10� TeV, except

FIG. 7. Direct detection rate vs MZR
for M23;M11 ¼ 103 GeV

and different values of M11 and M23 respectively

FIG. 8. Allowed parameter space for vR∶½2; 50� TeV,M23∶½0.2; 50� TeV,M11∶50 TeV, tan γ ¼ −1, and λ ¼ 0.14. The green points in
the upper panel correspond to the MDM and MZR

masses excluded by the LUX bounds.
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for one small window around MDM ∼ 2 TeV. From the
down right panel we can also observe that the LUX-2016
bound significantly cuts the parameter space for low MZR

,
and allows only ZR masses larger than aboutMZR

∼ 1 TeV.
Future limits from direct detection might lead to constraints
that are competitive with the collider’s limits for this
scenario. It is expected that the projected values for
XENON [44,45] impose more stringent constraints in the
values of MDM and MZR

. It is worth noting that the MZR

current limit given by the LHC [46]MZR
≥ ½2.6 − 3.5� TeV,

depending on the ZR couplings (i.e., the values of gR and
gB−L, makes this scenario consistent with the relic density
constraints and the XENON100 and the LUX bounds.
The allowed values of the DM restricted by direct

detection analysis are in perfectly agreement with range
of DM masses which fulfill all the GUT phenomenological
requirements, presented in Sec. II B.

IV. CONCLUSIONS

We explored simple left right scenarios with a dark
matter candidate as a mixed state of fermionic SUð2ÞR
triplets. Such models, denoted as Case I and Case II,
correspond to combinations of triplet-triplet and triplet-
triplet-triplet DM candidates respectively, not explored in
the literature for a wide range of DM masses. Acceptable
relic abundance, imposed by the Planck bound, is obtained
for a wide range of masses in each of the models. Due to the
Majorana nature of the DM and the absence of VV
interactions, a vanishing tree-level cross section σSIN is
obtained in Case I. This model is less constrained than
models with left right triplet-triplet DM candidates [13,15].
A nonzero σSIN ≠ 0 appears in Case II through the inter-
actions with the LR scalar sector. The direct detection
parameter space in Case II is constrained by the bounds
imposed by the LUX-2016 results in a competitive way
with collider constraints. More stringent constraints are
expected from future experiments such as XENON1T. The
unification of the gauge couplings through the SOð10Þ-LR
channel SUð3Þ×SUð2ÞL×SUð2ÞR×Uð2ÞB−L is achieved
in our model, by requiring some additional fermionic fields
up to the SM and DM setup. Part of the parameter space
allowed by the DM bounds is perfectly compatible with the

parameter space which fulfill all the GUT phenomenologi-
cal constraints.
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APPENDIX A

UnderSOð10Þ, awhole family of SMquarks and fermions
belongs to the 16 representation which is 3ðB − LÞ odd. On
the other hand, theSMHiggs,which belong to the 10SOð10Þ
representation is even. As a result, if all the fields breaking
Uð1ÞB−L and SOð10Þ are 3ðB − LÞ even, aZ2 symmetrywill
remain unbroken. This lead two possible stable DM candi-
dates: scalar DM which has to belong to a SOð10Þ repre-
sentation odd under 3ðB − LÞ, because all the other scalar
particle combinations it couples to, or decays to, are even. On
the other hand, DM could be a fermion if it belongs to
SOð10Þ representation even under 3ðB − LÞ, because all the
other fermion combination it couples to or decays to are odd
[47]. Considering also that DM must be colorless and
electrically neutral, the different possibilities of scalar and
fermionic DM candidates under SOð10Þ are depicted in
Table I.

APPENDIX B

The equation for the running of the inverse gauge
couplings at 1-loop level can be written as:

α−1i ðtÞ ¼ α−1i ðt0Þ þ
bi
2π

ðt − t0Þ ðB1Þ

where ti ¼ logðmiÞ, as usual. The effective one-loop
β−RGE coefficients are given by:

TABLE I. Different dark matter candidates coming from SOð10Þ representations up to 126.

SOð10Þ 16 144 10 45 54 120 126 ¯126

SUð3Þc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SUð2ÞL 1 2 2 1 3 2 2 1 1 1 3 1 3 2 2 3 1 1
SUð2ÞR 2 1 1 2 2 3 2 1 3 1 1 1 3 2 2 1 3 3
Uð1ÞB−L −1 1 1 −1 −1 1 0 0 0 0 0 0 0 0 0 −2 2 −2
Uð1ÞY 0 − 1

2
− 1

2
0 0 − 1

2
− 1

2
0 0 0 0 0 −1 − 1

2
− 1

2
−1 0 0

Scalar DM ✓ ✓ ✓ ✓ ✓ ✓

Fermion DM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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ðbSM3 ; bSM2 ; bSM1 Þ ¼ ð−7;−19=6; 41=10Þ ðB2Þ

ðbSM3 ; bSM2 ; bSM1 Þ
¼ ð−7;−3;−3; 4Þ þ ðΔbLR3 ;ΔbLR2 ;ΔbLRR ;ΔbLRðB−LÞÞ

ðB3Þ

and the (B-L) charges are written in the canonical nor-
malization. The contributions from the additional scalar
and fermionic fields in the regime: ½mLR;mG�, not
accounted for in the SM are given by:

ðΔbLR3 ;ΔbLR2 ;ΔbLRR ;ΔbLRðB−LÞÞ ¼ ð10=3; 10=3; 14=3; 47=6Þ
ðB4Þ
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