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We show that in a complementary two-Higgs doublet model (C2HDM) the CP violating phase in the
Cabibbo-Kobayashi-Maskawa matrix can be generated spontaneously, dangerous flavor changing neutral
currents (FCNC) can be naturally suppressed and the strong CP problem can also be avoided. The two
Higgs doublets in the model are complementary in the sense that none of them is enough to describe masses
of a given type of quarks. We find that the strength of FCNC is suppressed by the strength of Yukawa
couplings of the first generation quark and the tree-level FCNC is sufficiently small. Using an explicit
example, we show that radiative correction to the assumed Yukawa couplings can modify the discussion
about the strong θ. The correction to the strong θ is estimated to be less than around 10−12 ∼ 10−10 which
can be tested in future experiments.

DOI: 10.1103/PhysRevD.95.095020

I. INTRODUCTION

One of the deep mysteries of particle physics is the origin
of CP violation. On one hand, CP symmetry is found to be
broken in flavor changing processes of K and Bmesons. CP
violating phenomena so far measured are successfully
explained by the CP violating phase in the complex
Cabibbo-Kobayashi-Maskawa (CKM)matrix in the standard
model (SM). On the other hand, the strong CP phase θ in

ΔL ¼ αs
8π

θGμν
~Gμν; ð1Þ

another possible source of CP violation in SM, has not been
observed in experiment. On the contrary, this strong θ is
found to be θ ≲ 10−10 ∼ 10−9, in measurements of electric
dipole moment (EDM) of neutron, mercury etc. [1].
The problem is quite challenging in view of the fact that

the CP violating phase in the CKM matrix arises from
complex Yukawa couplings of quarks. These complex
Yukawa couplings are natural to have nonzero flavor
diagonal phases which can contribute to the strong θ.
More specifically, after spontaneous breaking of the
SUð2ÞL ×Uð1ÞY gauge symmetry, the mass terms of
quarks in the SM are generated as

Mu;d ¼ Yu;dv; ð2Þ

where Yu;d is the Yukawa coupling of up(down)-type
quarks, v ¼ 246=

ffiffiffi
2

p
GeV the vacuum expectation value

of the Higgs doublet in the SM. Performing redefinitions
of left-handed and right-handed fields separately and
diagonalizing the mass terms, one can get the CKM matrix
in charged current interaction of left-handed quarks.
Meanwhile, the chiral Uð1Þ part of the field-redefinition
would transform the θ term so that the presence of these

complex mass terms or Yukawa terms would give a
contribution to the physical strong θ

θ ¼ θ0 þ argðdetðMuMdÞÞ; ð3Þ

where θ0 is the θ term before receiving correction. One
would naturally expect the second term in (3) is not zero
if Yu;d (or Mu;d) are complex matrices. So a very large
fine-tuning between the two terms in (3) is required to
achieve a value of θ as small as≲10−9. In particular, a large
fine-tuning seems unavoidable if CP symmetry is broken
explicitly as in the SM.1 This is the so-called strong CP
problem [3].
One approach to understand the origin of CP violation is

spontaneous breaking of CP symmetry [4]. In this
approach, CP symmetry is exact and the θ term is zero
before the symmetry is broken spontaneously. So sponta-
neous breaking of CP symmetry is a possible solution to
the strong CP problem [5–7], and the strong θ can be
calculable in some new physics models. Moreover, it was
shown by some authors that the CP violating phase in the
CKM matrix can be generated spontaneously [8,9].
Although this is a very interesting approach to understand
the origin of CP violation, it is not straightforward to see
whether the complex quark mass matrices generated in this
kind of model can still give a zero contribution to the θ term

1If making an extra assumption that there is no flavor-diagonal
phase in complex Yukawa couplings, one can ignore this fine-
tuning problem. In this case, flavor nondiagonal phase in CKM
matrix can still contribute to strong θ through radiative correction.
But the first nonzero correction appears in 4th order in loop and is
of order 10−16 [2]. We do not study this case concerning the CP
violation in the SM.
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after the CP violating phase in the CKM matrix is
generated spontaneously.
In this paper, we are going to pursue the idea of

spontaneous generation of flavor nondiagonal CP violating
phase in the CKM matrix and study the strong θ term in this
approach. We will show that the CP violating phase in the
CKM matrix and a zero or very small strong θ can be
obtained simultaneously in a model of spontaneous gener-
ation of CP violation. First, we will show, using an explicit
toy model, that the flavor nondiagonal CP violating phase in
the CKMmatrix can be generated spontaneously. Since more
than one Higgs doublets are needed in order to implement
spontaneous CP violation, Yukawa couplings can be very
complicated in general and dangerous flavor changing
neutral current (FCNC) processes could be generated. We
show that there are some cases for which FCNC processes
can be naturally suppressed. Since CP symmetry is exact
before spontaneous breaking, the initial strong θ0 is zero. We
show that the strong θ can still be zero in such kind of model
even when the CP violating phase in the CKM matrix is
generated spontaneously. We also study radiative corrections
to Yukawa couplings and check the robustness of the above
statement against possible radiative corrections. We find that
θ is smaller than around 10−12 ∼ 10−10 in a particular model.

II. SPONTANEOUS GENERATION OF FLAVOR
CHANGING CP VIOLATING PHASE

In this section we show that the CP violating phase in the
CKM matrix can be generated spontaneously. We assume
that CP symmetry is exact before spontaneous symmetry
breaking. So Yukawa couplings are real and initial strong
θ0 is zero.
Spontaneous CP violation in general involves more than

one Higgs doublets, e.g. the two Higgs doublets ϕ1 and ϕ2.
A general Lagrangian with two Higgs doublets which can
give rise to a spontaneous generation of CP violating phase
has been discussed in literature, e.g. in a recent paper [10].
In the present article we are not going to elaborate on this
Lagrangian. Instead, we assume that a spontaneous break-
ing of CP symmetry and a suitable CP violating phase can
be achieved with a suitable Lagrangian. We assume that ϕ1

and ϕ2, both having hypercharge − 1
2
, develop vacuum

expectation values after spontaneous symmetry breaking

hϕ1i ¼ ðv1; 0ÞT; hϕ2i ¼ ðv2; 0ÞT; ð4Þ
where v1 and v2 are complex in general and they satisfy
jv1j2 þ jv2j2 ¼ v2. ϕ1 and ϕ2 can both couple to quarks:

−ΔL ¼ Q̄Yu
1ϕ1uR þ Q̄Yu

2ϕ2uR þ Q̄Yd
1
~ϕ1dR þ Q̄Yd

2
~ϕ2dR;

ð5Þ
where Q is the field of the left-handed quark doublet,
uR and dR the fields of right-handed up-type and down-
type quarks. ~ϕ1;2 ¼ iσ2ϕ�

1;2. Flavor indices have been

suppressed in (5). Yu;d in (5) are all real matrices so that
CP symmetry is not broken explicitly. After spontaneous
symmetry breaking the mass matrices of quarks are
obtained as

Mu ¼ Yu
1v1 þ Yu

2v2; ð6Þ

and

Md ¼ Yd
1v

�
1 þ Yd

2v
�
2: ð7Þ

Complex values of v1 and v2 in general make Mu;d

complex. So there is a possibility to get the flavor non-
diagonal phase in the CKM matrix from this setup [8,9].
However, it is complicated to show that this can be
achieved in general cases. In the following, we will use
an explicit example to show that this can be achieved.
An explicit example of spontaneous generation of the

flavor nondiagonal CP violating phase in the CKM matrix
can be given by couplings as follows

Yu
1 ¼

0
B@

1 0 0

0 0 0

0 0 0

1
CAK†

23g
u;

Yu
2 ¼

0
B@

0 0 0

0 1 0

0 0 1

1
CAK†

23h
u; ð8Þ

and

Yd
1 ¼ K13

0
B@

1 0 0

0 0 0

0 0 0

1
CAK12gd;

Yd
2 ¼ K13

0
B@

0 0 0

0 1 0

0 0 1

1
CAK12hd; ð9Þ

where gu;d and hu;d are diagonal matrices with real
eigenvalues and they are taken as

gu;d ¼ yu;dv=jv1j; hu;d ¼ yu;dv=jv2j ð10Þ

where yu and yd are diagonalized real Yukawa couplings
appearing in the SM. K12;13;23 are standard rotation matri-
ces in the standard parametrization of the CKMmatrix with
rotation angles appearing in 1–2, 1–3 or 2–3 entries. In the
following, we will take sij and cij as the sine and cosine of
the rotation angle θij in the matrix Kij. We note that
Yukawa couplings in (8) and (9) can be redefined subject to
rotations as Yu

i → OLYu
i Ou and Yd

i → OLYd
i Od where

OL;u;d are real rotation matrices, and results presented in
this article are kept intact under this redefinition.
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We can see in (8), (9), and (10) that the strength of the
Yukawa couplings can be much larger than that in the SM.
In particular, if jv1j ≪ v, e.g. jv1j ∼ 0.1v, strength of Y1

can be ten times larger than in the SM, while the strength of
Y2, the couplings with the second and third generation of
quarks would remain almost the same as in the SM.
Measurements of the Yukawa couplings of the third
generation quark, which are so far consistent with the
SM prediction [1], would put a constraint on this model.
This constraint says that jv2j should be much larger than
jv1j. So we can conclude in this model that the strength of
the Yukawa couplings of the first generation quark should
be much larger than that in the SM.
The CP phases in v1 and v2 are subject to rephasing of

scalar fields and can be taken in v1:

v1 ¼ jv1je−iδ; v2 ¼ jv2j: ð11Þ

So we can find that

Mu ¼ Vu
Lm

u; mu ¼ yuv; ð12Þ

and

Vu
L ¼

0
B@

e−iδ 0 0

0 1 0

0 0 1

1
CAK†

23 ð13Þ

for up-type quarks, and

Md ¼ Vd
Lm

d; md ¼ ydv; ð14Þ

and

Vd
L ¼ K13

0
B@

eiδ 0 0

0 1 0

0 0 1

1
CAK12; ð15Þ

for down-type quarks. In writing out (12) and (14), (10) has
been used.
So we can get the CKM matrix

K ¼ Vu†
L Vd

L ¼ K23

0
B@

eiδ 0 0

0 1 0

0 0 1

1
CAK13

0
B@

eiδ 0 0

0 1 0

0 0 1

1
CAK12:

ð16Þ

It is equivalent to the standard parametrization of the CKM
matrix [1,11] via a vectorlike transformation of up quark
which does not change θ. That is, with

uL → e2iδuL; uR → e2iδuR ð17Þ

we can get the standard parametrization of CKM matrix

K→K¼K23

0
B@
e−iδ 0 0

0 1 0

0 0 1

1
CAK13

0
B@
eiδ 0 0

0 1 0

0 0 1

1
CAK12: ð18Þ

We conclude that spontaneous generation of the CP
violating phase in the CKM matrix can be achieved in
model described in this article. We use an explicit example
to show this possibility. In particular, we show that
spontaneous generation of the CP violating phase in the
CKM matrix can be achieved using matrices of Yukawa
couplings with rank less than three.

III. FCNC AND STRONG θ TERM WITH
SPONTANEOUS GENERATION

OF CP VIOLATION

In this section we show how FCNC can be suppressed in
the model presented in the present article. We then show
how the strong CP problem is avoided.
One of the main problems associated with (6) is the that

unitary transformations that diagonalize the mass matrix (6)
do not necessarily diagonalize the Higgs couplings to
quarks in (5). So tree level FCNC could be present and
this type of theory of spontaneous generation of CP
violation may encounter difficulty in this aspect, as pointed
out in [12] for model presented in [8].
We show how dangerous FCNC can be avoided. Taking

Mu;d ¼ Mu;d
1 þMu;d

2 ð19Þ

where Mu
1;2 ¼ Yu

1;2v1;2 and Md
1;2 ¼ Yd

1;2v
�
1;2, we assume

Mu;d
2 is the dominant contribution to Mu;d, i.e.

jjMu;d
1 jj ≪ jMu;d

2 jj: ð20Þ

Note that M1 or M2 is proportional to real matrix Y1 or Y2

and diagonalizing M1 or M2 does not need complex
matrices. So diagonalizing M1 or M2 does not change
strong θ and we can work in a base that one of M1 and M2

is diagonalized. In this base nonzero elements of Mu;d
1 can

be taken at most at order ofmu;d withmu;d being the masses
of up and down quarks.
TakingMu;d

2 as rank two and working in the base thatMu
2

is diagonalized

Mu
2 ¼ diagf0; x2; x3g ð21Þ

we can write

Mu ¼

0
B@

x11 x12 x13
x21 x22 þ x2 x23
x31 x32 x33 þ x3

1
CA; ð22Þ
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where xij comes fromMu
1 . In this form of mass matrix, (20)

means jxijj ≪ x2;3 for Mu
1 and Mu

2 . In particular, nonzero
xij would be at most of ordermu. x2 ≈mc and x3 ≈mt with
mc;t being the masses of charm and top quarks.
If xij ¼ 0 except x11, (22) is already diagonalized and no

extra flavor mixing is needed. In this case, Mu
1 and Mu

2 can
be diagonalized simultaneously. In general, off-diagonal
matrix element xij may not be zero, andMu

1 andM
u
2 cannot

be diagonalized simultaneously. So tree level FCNC can be
present. However, for jxijj ≪ x2;3 the matrices VL and VR

that further diagonalize Mu in (22) are all close to unit
matrix. More specifically, we can write Mu ¼ VLmuV†

R
where mu is the diagonalized mass matrix of up-type
quarks with real eigenvalues m1;2;3 and possible Uð1Þ
factors, which do not change the conclusion about
FCNC, have been suppressed. To first order we find

VL ≈

0
B@

1 a12 a13
−a�12 1 a23
−a�13 −a�23 1

1
CA;

VR ≈

0
B@

1 b12 b13
−b�12 1 b23
−b�13 −b�23 1

1
CA; ð23Þ

where aij and bij satisfy jaijj ≪ 1 and jbijj ≪ 1. aij and bij
are found to be

aij¼
xijmjþx�jimi

m2
j−m2

i
; bij¼

xijmiþx�jimj

m2
j−m2

i
; for i < j: ð24Þ

For eigenvalues in mu, we have m2;3 ≈ x2;3 and m1 ≈ x11.
Since mj ≫ mi for j > i, we can find aij ≈ xij=mj and
bij ≈ x�ji=mj. We can see that nonzero off-diagonal ele-
ments in VL;R are either of ordermu=mc or of ordermu=mt.
After diagonalizing the mass matrix Mu, the coupling of

ϕ1 with up-type quarks, which originally mixes flavors, still
mixes flavors. The strength of this FCNC coupling is
xij=jv1j ∼mu=jv1j. After diagonalizing the mass matrix
Mu, the coupling of ϕ2 with up-type quarks, which is
originally flavor diagonal, gives rise to new FCNC cou-
plings. For example, a flavor diagonal coupling
ðxi=v2ÞūiLuiRϕ0

2, with ϕ0
2 being the neutral component of

ϕ2, becomes ðxi=v2ÞðVLÞ�ijðVRÞikūjLukRϕ0
2 after field redefi-

nition using VL;R. At first order, it gives rise to FCNC
couplings ðxi=v2ÞðVLÞ�ijūjLuiRϕ0

2 and ðxi=v2ÞðVRÞijūiLujRϕ0
2

for j ≠ i. As shown above, the off-diagonal matrix ele-
ments ðVLÞij and ðVRÞij with i ≠ j all have a strength
∼jxijj=maxðmi;mjÞ or ∼jxjij=maxðmi;mjÞ. So we can find
that these FCNC couplings induced in couplings with ϕ2

have strength ∼xi=v2 × ðjxijj or jxijjÞ=maxðmi;mjÞ≲
mu=v2. Summarizing these two cases, the strengths of the

FCNC couplings with up-type quarks are suppressed to
be ≲mu=jv1j.
Similarly, one can show that possible FCNC interactions

of Higgs with down-type quarks are also suppressed to be
less than order md=jv1j if taking Md

2 as the dominant
contribution to Md. If magnitude of v1 is not extremely
small, FCNC couplings given by Yukawa couplings in (5)
can be safely neglected. For example, if jv1j ∼ 0.1 × v,
FCNC Higgs coupling with up-type quarks would be at
most at order 10−4. Any possible FCNC processes induced
by these couplings would be suppressed by the square of
this FCNC amplitude, i.e. suppressed by a factor of order
10−8. However, if the magnitude of v1 is extremely small,
e.g. jv1j ∼ 10−3v, the magnitude of Y1 would be large and
there could be dangerous FCNC couplings arising from it.
To avoid possibly large FCNC couplings a hierarchy
between Y1 and Y2 is preferred. This implies that jv1j
should not be very small. We assume jv1j > 0.01v.
We note that our arguments for suppressing FCNC are

based on the assumption that a hierarchy can exist in Y1 and
Y2. For this assumption to hold, radiative corrections
should not change the hierarchy. In fact, the radiative
correction to Y1 from couplings of ϕ2 will be proportional
to elements of Y1, so that the hierarchy between Y1 and Y2

is not affected by the radiative corrections. This means that
the suppression of FCNC is robust against quantum
correction. This is because we have taken Yu;d

2 as rank
two and if setting Yu;d

1 ¼ 0 there is a chiral symmetry
appearing in the Lagrangian which protects the hierarchy.
Now we come to explain that the strong θ is naturally

zero in this model. Using (6) one can easily show that the
determinant detðMuMdÞ is real and zero correction to θ can
be achieved if taking the rank of Y1 and Y2 both less than 3.
For example, if taking Y1 or M1 as rank one and Y2 or M2

as rank two we can write them as

M1 ¼

0
B@

xu11v1 xu12v1 xu13v1
auxu11v1 auxu12v1 auxu13v1
buxu11v1 buxu12v1 buxu13v1

1
CA; ð25Þ

M2 ¼ diagf0; yu2v2; yu3v2g; ð26Þ

where xuij, y
u
i , au and bu are all real numbers and yu2;3 are

eigenvalues of Yu
2. We can find

detðMuÞ ¼ detðMu
1 þMu

2Þ ¼ xu11y
u
2y

u
3v1v2v2: ð27Þ

A similar expression holds for Md

Md ¼ Yd
1v

�
1 þ Yd

2v
�
2: ð28Þ

and we get

WEI LIAO PHYSICAL REVIEW D 95, 095020 (2017)

095020-4



detðMdÞ ¼ xd11y
d
2y

d
3v

�
1v

�
2v

�
2: ð29Þ

So we get

detðMuMdÞ ¼ xu11y
u
2y

u
3x

d
11y

d
2y

d
3jv1j2jv2j4: ð30Þ

(30) is real and argðdetðMuMdÞÞ ¼ 0. So the correction to θ
is zero as can be seen in (3). This statement relies on the fact
that Y1 and Y2 all have ranks less than three, and in
particular the sum of the ranks of Y1 and Y2 equals to three.
Radiative corrections can change this feature and give rise
to nonzero correction to θ.
We conclude that in model presented in this article the

QCD θ is zero at tree level after spontaneous generation of
the CP violating phase in the CKM matrix and FCNC can
be naturally suppressed. In the model presented here we
have assumed that the two matrices of Yukawa couplings
both have rank less than three, and the sum of the ranks of
two matrices of Yukawa couplings equals to three. So the
two Higgs doublets complement to each other in the sense
that they together give rise to the complete quark mass
matrices and none of them is enough without the help of
other Higgs doublet. In this sense, we can call this model of
two Higgs doublets as the complementary two Higgs
doublet model (C2HDM).
As discussed in the previous section, spontaneous

generation of the CP violating phase in the CKM matrix
can be achieved using matrices of Yukawa couplings with
rank less than three and in particular in C2HDM.Moreover,
the Yukawa couplings used in the last section, (8) and (9),
satisfy the assumption in this section and indeed lead to
zero contribution to θ at tree level.
Since the discussion on strong θ in this section depends

on the assumption of Yukawa couplings, it is natural to ask
what is the effect of radiative correction on the assumed
Yukawa couplings and what is the effect on the size of the
induced strong θ. In the next section we will study this
question.

IV. RADIATIVE CORRECTION TO YUKAWA
COUPLING AND STRONG θ

In this section we study radiative correction to Yukawa
couplings and the correction to θ term arising from it.
A general discussion on the correction to θ term seems very
complicated. We are not going to do a general discussion,
but rather to show that the radiative correction to (8) and (9)
would lead to a correction to strong θ at order 10−12 ∼ 10−10

at one-loop level. With this example, we illustrate that a
small enough strong θ, being consistent with experimental
bound, can be achieved in model of spontaneous generation
of the CP violating phase in the CKM matrix.
One-loop radiative correction to Yukawa couplings can

be read out in their renormalization group equation (RGE)
as shown in (A1) and (A2). Yukawa couplings in (8) and (9)
have a nice feature

Tr½Yu
i Y

u†
j � ¼ Tr½Yd

i Y
d†
j � ¼ 0; for i ≠ j: ð31Þ

If we further assume Yl
i, the Yukawa coupling of charged

leptons, also has a similar feature

Tr½Yl†
i Y

l
j� ¼ 0; for i ≠ j; ð32Þ

RGEs in (A1) and (A2) can be simplified. In particular, the
second term in (A1) or (A2) can be combined with the first
term and part of the last term can be combined with the
third term. Moreover, in this case Yl

i would appear in factor
Au;d
i and can be omitted in future discussion. So we arrive at

(A4) and (A5).
Using (A4) and (A5) we can see that the one loop

corrected Yukawa couplings are

Y 0u
1 ¼ Yu

1 þ ϵ½−Au
1Y

u
1 þ Bu

1Y
u
1 þ Yu

1C
u − 2Yd

2Y
d†
1 Yu

2�; ð33Þ

Y 0u
2 ¼ Yu

2 þ ϵ½−Au
2Y

u
2 þ Bu

2Y
u
2 þ Yu

2C
u�; ð34Þ

Y 0d
1 ¼ Yd

1 þ ϵ½−Ad
1Y

d
1 þ Bd

1Y
u
1 þ Yd

1C
d�; ð35Þ

Y 0d
2 ¼ Yd

2 þ ϵ½−Ad
2Y

d
2 þ Bd

2Y
d
2 þ Yd

2C
d�; ð36Þ

where we have used (B2) and ϵ ¼ logðμ=ΛÞ=ð16π2Þ. ϵ is a
small number and ϵ2 would be smaller than around 10−3 for
Λ lower than around 105 GeVwhichmeans the new physics
scale is no more than three orders of magnitude higher than
the electroweak scale. Yd

2Y
d†
1 Yu

2 in (33) is found to be rank
one and is given in (B1). Other Yd

i Y
d†
j Yu

i and Y
u
i Y

u†
j Yd

i terms
in (A4) and (A5) are found to be zero. The mass matrices of
up-type and down-type quarks are obtained as

M0u ¼ Y 0u
1 v1 þ Y 0u

2 v2

¼ Xu
1Y

u
1v1 þ ϵYu

1C
uv1 þ Xu

2Y
u
2v2 þ ϵYu

2C
uv2

− 2ϵYd
2Y

d†
1 Yu

2v1; ð37Þ
M0d ¼ Y 0d

1 v
�
1 þ Y 0d

2 v
�
2

¼ Xd
1Y

d
1v

�
1 þ ϵYd

1C
dv�1 þ Xd

2Y
d
2v

�
2 þ ϵYd

2C
dv�2; ð38Þ

where Xu;d
i ¼ 1 − ϵAu;d

i þ ϵBu;d
i (i ¼ 1, 2) are real matrices

with rank three.
Now we can compute the determinant of M0u and M0d.

The leading term of detðM0uÞ is proportional to v1v22 and is
v1v22g

u
1h

u
2h

u
3 . Possible corrections to the v1v22 term do not

change the conclusion of the discussion below and will be
omitted. Subleading terms in detðM0uÞ can be proportional
to v31, v

2
1v2 or v

3
2. The term proportional to v32 comes from

detðv2Xu
2Y

u
2 þ ϵv2Yu

2C
uÞ and as shown in Appendix B it is

zero. Similarly, one can show that the term proportional to
v31 vanishes. The leading nonzero correction is the term
proportional to v21v2 as given in (B7) and (B8). Thus, we
obtain detðM0uÞ as
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detðM0uÞ ¼ v1v22g
u
1h

u
2h

u
3

− 3ϵ2v21v2ðgd2hd2 − gd1h
d
1Þs13c12s12c23s23

× ½ðhu3Þ2 − ðhu2Þ2�gu1hu2hu3; ð39Þ
where the smaller correction in (B8) has been neglected.
The leading term of detðM0dÞ is proportional to v�1ðv�2Þ2

and is v�1ðv�2Þ2gd1hd2hd3 . Possible corrections to the v�1ðv�2Þ2
term do not change the conclusion of the discussion below
and will be omitted. Subleading terms in detðM0dÞ can be
proportional to ðv�1Þ3, ðv�1Þ2v�2, or ðv�2Þ3. The term propor-
tional to ðv�1Þ3 comes from detðv�1Xd

1Y
d
1 þ ϵv�1Y

d
1C

dÞ and as
shown in Appendix B it is zero. Terms proportional to ðv�2Þ3
and ðv�1Þ2v�2 are calculated in (B10) and (B11). Combining
these results we can get

detðM0dÞ ¼ v�1ðv�2Þ2gd1hd2hd3
þ 1

2
ϵ2½ðv�2Þ3 þ ðv�1Þ2v�2�s13c12s12c23s23gd1hd2hd3

× ½ðhu3Þ2 − ðhu2Þ2�ðgd2hd2 − gd1h
d
1Þ: ð40Þ

A common factor in (39) and (40) is s13c12s12c23s23ðgd2hd2−
gd1h

d
1Þ∼10−5ðms=vÞ2ðv2=jv1v2jÞ∼10−11×ðv2=jv1v2jÞ. One

can see that for jv1j ≪ jv2j correction in (39) is of order
10−11ϵ2 and correction in (40) is of order 10−11ðv2=jv1j2Þϵ2.
So we have

detðM0uM0dÞ ¼ jv1j2jv2j4gu1hu2hu3gd1hd2hd3
×

�
1þOð10−11Þ × v2

jv1j2
× ϵ2

�
: ð41Þ

We can see that the radiative correction to the determinant
ofMuMd is of order 10−12 for jv1j ∼ 0.1v and for ϵ2 ≈ 10−3

which corresponds to the new physics scale being three
orders of magnitude higher than the electroweak scale. The
radiative correction would be smaller if new physics scale is
closer to the electroweak scale. One can also see that if jv1j
is too small, e.g. jv1j≲ 10−2 v, the radiative correction
would be too large and it could give rise to a strong θ
reaching the experimental bound. Since the Yukawa cou-
plings of the first generation fermions are proportional to
1=v1, jv1j should not be too small as argued for naturally
suppressing possible FCNC couplings. In particular
we have assumed that jv1j > 0.01 v. We can conclude that
for reasonable values of parameters, the radiative correction
to the determinant of MuMd is smaller than order of
10−12 ∼ 10−10. So its correction to strong θ is also smaller
than order 10−12 ∼ 10−10.
Combining the conclusions in the last section and this

section, we can see that in the scenario discussed in this
article, i.e. with (8) and (9), strong θ is zero at leading order
and can be generated at one-loop level, but is smaller than
around 10−12 ∼ 10−10. This prediction can be tested in
future EDM experiment [13].

V. CONCLUSION

In summary, we have presented a model of spontaneous
CP violation. CP symmetry is exact before the sponta-
neous symmetry breaking. The CP violating phase in the
CKM matrix is generated spontaneously in this model. We
show that it is possible to achieve a zero strong θ even after
the spontaneous breaking of CP symmetry in such kind
of model.
We show that zero strong θ term can be achieved if the

two Higgs doublets involved in the setup are complementary
in the sense that they are both needed to describe the quark
masses and none of them is enough. To be specific, the ranks
of the two Yukawa couplings with a specific type of quark,
say up-type quark or down-type quark, can be rank two and
rank one and their sum is three. We have called this kind of
model of two Higgs doublets as C2HMD, the complemen-
tary 2HDM. It is straightforward to show that similar
conclusion can be achieved if there are three Higgs doublets
and each them couple to the quark fields with a rank one
Yukawa coupling, similar to the case that each Higgs doublet
coupled with one generation of quarks.
In a specific model with specific Yukawa couplings, we

have studied the radiative correction to the assumed
Yukawa couplings and have discussed the robustness of
the above statement on strong θ. We find in this example
that correction to strong θ can vary from 10−12, much
smaller than the experimental bound, to 10−10 reaching the
experimental bound, depending on the Yukawa couplings
of the first generation quarks. Using this example, we
demonstrate that it is possible to have a very small strong θ
term in model of spontaneous generation of the CP
violating phase in the CKM matrix even if radiative
correction to the assumed scenario is considered into
account. A general discussion on this part seems compli-
cated and we have left it to future study.
We have shown that in the setup discussed in the present

article, say C2HDM, not only the CP violating phase in
CKM matrix can be generated spontaneously and strong θ
is naturally zero or very small, but also the dangerous
FCNC can be naturally suppressed. The point is that one of
the Higgs doublets in the complementary pair of the two
Higgs doublets can be the dominant one and FCNC would
naturally vanish without the other complementary Higgs
doublet. So the appearance of FCNC coupling would be
proportional to the strength of the other Yukawa coupling
and is suppressed by quantities ∼mu=jv1j or md=jv1j.
We note that one interesting consequence of the model is

that the Yukawa coupling of the first generation is around
∼mq=jv1j which can be much larger than the corresponding
Yukawa couplings in the SM. For example, the Yukawa
couplings of the first generation quarks can be ten times
larger than that in the SM if jv1j ∼ 0.1v, or even larger if
jv1j is even smaller. The strength of the coupling of the light
neutral Higgs with first generation quarks would be
proportional to ∼ sin αmq=jv1j with α being the mixing
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angle of neutral Higgs field. The strength of the coupling of
the heavy neutral Higgs would be proportional to
∼ cos αmq=jv1j. They both have a possibility to be much
larger than what usually expected in 2HDMs. This may
give rise to interesting implications for Higgs phenom-
enology. Since the radiative correction to strong θ also
depends on the Yukawa couplings of the first generation
quarks, measuring and testing the Yukawa couplings seem
to be a very interesting subject to study.
We note that the SM cannot give a successful explanation

of the baryon-number generation in the universe. Physics
beyond the SM and a new source of CP violation are
needed to implement a baryon-number generation in the
early universe. Since CP symmetry is broken spontane-
ously in our model, sufficient baryon-number generation
should also be implemented by the model. Some other
interesting topics include the CP violating phase in the
leptonic sector and the impact to neutrino mixings [14]. In
the present paper we do not discuss all these related issues
and leave them to future research.
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APPENDIX A: RGE OF YUKAWA
COUPLINGS FOR 2HDM

RGEs for Yukawa coupling Yu
i and Y

d
i for a general two-

Higgs doublet model are [15]:

16π2
d

dlnμ
Yu
i

¼ −AuYu
i þ

X
j

Tr½NcðYu
i Y

u†
j þ Yd

jY
d†
i Þ þ Yl†

i Y
l
j�Yu

j

þ 1

2

X
j

ðYu
jY

u†
j þ Yd

jY
d†
j ÞYu

i

þ Yu
i

X
j

Yu†
j Yu

j − 2
X
j

Yd
jY

d†
i Yu

j ; ðA1Þ

16π2
d

dlnμ
Yd
i

¼ −AdYd
i þ

X
j

Tr½NcðYd
i Y

d†
j þ Yu

jY
u†
i Þ þ Yl

iY
l†
j �Yd

j

þ 1

2

X
j

ðYu
jY

u†
j þ Yd

jY
d†
j ÞYd

i

þ Yd
i

X
j

Yd†
j Yd

j − 2
X
j

Yu
jY

u†
i Yd

j ; ðA2Þ

where Yl
i is the Yukawa coupling of charged lepton,

Nc ¼ 3, and

Au ¼ 8g23 þ
9

4
g22 þ

17

12
g21; Ad ¼ 8g23 þ

9

4
g22 þ

5

12
g21

ðA3Þ

with g1;2;3 the gauge couplings of Uð1ÞY , SUð2ÞL, and
SUð3ÞC groups respectively.
With assumption of (31) and (32), (A1) and (A5) can be

written as

16π2
d

dlnμ
Yu
i ¼ −Au

i Y
u
i þ Bu

i Y
u
i þ Yu

i C
u − 2

X
j≠i

Yd
jY

d†
i Yu

j ;

ðA4Þ

16π2
d

dlnμ
Yd
i ¼ −Ad

i Y
d
i þ Bd

i Y
d
i þ Yd

i C
d − 2

X
j≠i

Yu
jY

u†
i Yd

j ;

ðA5Þ

where using (8) and (9) Au;d
i , Bu;d

i , and Cu;d
i are given as

Au;d
i ¼ Au;d − Tr½NcðYu

i Y
u†
i þ Yd

i Y
d†
i Þ þ Yl

iY
l†
i �; ðA6Þ

Bu
1 ¼ B − 2K13diagfgd1Þ2c212 þ ðgd2Þ2s212; 0; 0gK†

13; ðA7Þ

Bu
2 ¼ B − 2K13diagf0; ðhd1Þ2s212 þ ðhd2Þ2c212; ðhd3Þ2gK†

13;

ðA8Þ

Bd
1 ¼ B − 2K†

23diagfðgu1Þ2; 0; 0gK23; ðA9Þ

Bd
2 ¼ B − 2K†

23diagf0; ðhu2Þ2; ðhu3Þ2gK23; ðA10Þ

where

B ¼ 1

2
K†

23diagfðgu1Þ2; ðhu2Þ2; ðhu3Þ2gK23

þ 1

2
K13diagfðgd1Þ2c212 þ ðgd2Þ2s212; ðhd1Þ2s212

þ ðhd2Þ2c212; ðhd3Þ2gK†
13; ðA11Þ

and

Cu ¼ diagfðgu1Þ2; ðhu2Þ2; ðhu3Þ2g; ðA12Þ

Cd¼

0
B@

ðgd1Þ2c212þðhd1Þ2s212 ðgd1gd2−hd1h
d
2Þs12c12 0

ðgd1gd2−hd1h
d
2Þs12c12 ðgd2Þ2s212þðhd2Þ2c212 0

0 0 ðhd3Þ2

1
CA:

ðA13Þ

APPENDIX B: CORRECTION TO
DETERMINANT OF QUARK MASS MATRIX

Using (8) and (9) one can find that the last terms in (A4)
and (A5) are
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Yd
2Y

d†
1 Yu

2 ¼

0
B@

0 0 0

0 0 −sd
0 0 0

1
CAK†

23h
u; ðB1Þ

where sd ¼ s13c12s12ðhd2gd2 − hd1g
d
1Þ, and

Yd
1Y

d†
2 Yu

1 ¼ Yu
1Y

u†
2 Yd

1 ¼ Yu
2Y

u†
1 Yd

2 ¼ 0: ðB2Þ

One can also find from ðYu
2Þ1i ¼ ðYu

2Þi1 ¼ 0 that

ðYu
2C

uÞ1i ¼ ðYu
2C

uÞi1 ¼ ðXu
2Y

u
2Þi1 ¼ 0; i¼ 1;2;3: ðB3Þ

Determinant of M0u in (37) is calculated as follows.
(1) v32 term in detðM0uÞ comes from detðXu

2Y
u
2v2þ

ϵYu
2C

uv2Þ. Using the fact that Yu
2 is rank two and

ðYu
2C

uÞ1i ¼ 0 we can get

detðXu
2Y

u
2v2 þ ϵYu

2C
uv2Þ

¼ v32ε
ijk½ϵðXu

2Y
u
2Þ1iðXu

2Y
u
2Þ2jðYuCuÞ3k

þ ϵðXu
2Y

u
2Þ1iðYuCuÞ2jðXu

2Y
u
2Þ3k

þ ϵ2ðXu
2Y

u
2Þ1iðYuCuÞ2jðYuCuÞ3k�: ðB4Þ

Since one of the i, j, k has to be 1, according to (B3),
none of the three terms in (B4) is nonzero. So the
term proportional to v32 is zero.

(2) v31 terms in detðM0uÞ comes from detðXuYu
1v1þ

ϵYu
1C

uv1 − 2ϵYd
2Y

d†
1 Yu

2v1Þ. Since ðYd
2Y

d†
1 Yu

2Þ1i ¼
ðYd

2Y
d†
1 Yu

2Þ3i ¼ 0 as shown in (B1), we can get

det½Xu
1Y

u
1v1 þ ϵYu

1C
uv1 − 2ϵYd

2Y
d†
1 Yu

2v1�
¼ −2ϵ2v31εijk½ðXu

1Y
u
1Þ1iðYu

1C
uÞ3k

þ ðYu
1C

uÞ1iðXu
1Y

u
1Þ3k�ðYd

2Y
d†
1 Yu

2Þ2j: ðB5Þ

Since ðYu
1C

uÞ3k ¼ 0, ðXu
1Y

u
1Þ3k ¼ 0 for k ¼ 2 or 3

and ðYu
1C

uÞ1i ¼ 0 for i ¼ 2 or 3, we can see that
(B5) is zero.

(3) v21v2 term detðM0uÞ have two factors of v1. Similar to
discussion above for (B5), we can find that
εijkðXu

1Y
u
1ÞaiðYu

1C
uÞbj ¼ 0 and these two factors of

v1 cannot both come from Xu
1Y

u
1 þ ϵYu

1C
u. One can

find that the v21v2 term is

− 2ϵv21v2ε
ijk½ðXu

1Y
u
1 þ ϵYu

1C
uÞ1iðYd

2Y
d†
1 Yu

2Þ2jðXu
2Y

u
2 þ ϵYu

2C
uÞ3k

þ ðXu
2Y

u
2 þ ϵYu

2C
uÞ1iðYd

2Y
d†
1 Yu

2Þ2jðXu
1Y

u
1 þ ϵYu

1C
uÞ3k�: ðB6Þ

Using ðYd
2Y

d†
1 Yu

2Þ2j ¼ sdðYu
2Þ3j as shown in (B1), the first term in (B6) can be found to be

− 2ϵv21v2ε
ijkðXu

1Y
u
1 þ ϵYu

1C
uÞ1isdðYu

2Þ3j½ð1 − ϵAu
2ÞYu

3k þ ðϵBu
2Y

u
2 þ ϵYu

2C
uÞ3k�

¼ −2ϵ2v21v2εijkðXu
1Y

u
1 þ ϵYu

1C
uÞ1isdðYu

2Þ3jðBu
2Y

u
2 þ ϵYu

2C
uÞ3k

≈ −2ϵ2v21v2sdεijkðYu
1Þ11δi1ðYu

2Þ3j½ðBu
2Þ32ðYu

2Þ2k þ ðYu
2Þ3kðCuÞkk�

¼ −2ϵ2v21v2sdðBu
2Þ32ðYu

1Þ11½ε1jkðYu
2Þ3jðYu

2Þ2k þ ðYu
2Þ32ðYu

2Þ33ððCuÞ33 − ðCuÞ22Þ�
¼ −3ϵ2sdv21v2½ðhu3Þ2 − ðhu2Þ2�gu1hu2hu3c23s23; ðB7Þ

where sd is given after (B1). The second term in (B6) can be
found to be

− 2ϵ3v21v2ε
ijksdðBu

2Y
u
2 þ Yu

2C
uÞ1iðBu

1Y
u
1 þ Yu

1C
uÞ3k

¼ −2ϵ3v21v2εijksdðBu
2Þ12ðBu

1Þ31
× ðYu

2Þ2iðYu
2Þ3jðYu

1Þ11δk1
¼ −2ϵ3v21v2sdðBu

2Þ12ðBu
1Þ31gu1hu2hu3; ðB8Þ

where we have used ðYu
1Þ3k ¼ ðYu

2Þ1i ¼ 0. Comparing with
(B7), (B8) is at higher order and can be neglected.
Determinant of M0d in (38) is calculated as follows.

detðM0dÞ can be computed using M̂0d ¼ K†
13M

0d

M̂0d ¼ X̂d
1Ŷ

d
1 þ ϵŶd

1C
dv�1 þ X̂d

2Ŷ
d
2v

�
2 þ ϵŶd

2C
dv�2; ðB9Þ

where X̂d
1;2 ¼ K†

13X̂
d
1;2K13 ¼ 1 − ϵAd

1;2 þ ϵB̂d
1;2 with B̂d

1;2 ¼
K†

13B
d
1;2K13, Ŷd

1;2 ¼ K†
13Y12. As can be seen in (9), we

would have ðŶd
1Þ2i ¼ ðŶd

1Þ3i ¼ ðŶd
1Þ13 ¼ 0 and ðŶd

2Þ1i ¼
ðŶd

2Þ23 ¼ ðŶd
2Þ31 ¼ ðŶd

2Þ32 ¼ 0.
(4) ðv�1Þ3 term in detðM̂0dÞ comes from

detðv�1X̂d
1Ŷ

d
1 þ ϵv�1Ŷ

d
1C

dÞ. Two matrices appearing
in it are both rank one. So the determinant of this
3 × 3 matrix must be zero.
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(5) ðv�1Þ2v�2 term in detðM̂0dÞ should have contributions from both v�1X̂
d
1Ŷ

d
1 and ϵv�1Ŷ

d
1C

d since they are both rank one.
Since ðŶd

1C
dÞ2i ¼ ðŶd

1C
dÞ3i ¼ 0 and ðŶd

1Þ13 ¼ ðŶd
2Þ23 ¼ ðŶd

1C
dÞ13 ¼ 0, this part of the determinant is

ϵðv�1Þ2v�2εijkðŶd
1C

dÞ1i½ðX̂d
1Ŷ

d
1Þ2jðX̂d

2Ŷ
d
2 þ ϵŶd

2C
dÞ3k þ ðX̂d

2Ŷ
d
2 þ ϵŶd

2C
dÞ2jðX̂d

1Ŷ
d
1Þ3k�

¼ ϵ2ðv�1Þ2v�2εijkðŶd
1C

dÞ1i½ðB̂d
1Þ21ðŶd

1Þ1jðX̂d
2Ŷ

d
2 þ ϵŶd

2C
dÞ3k þ ðX̂d

2Ŷ
d
2 þ ϵŶd

2C
dÞ2jðB̂d

1Þ31ðŶd
1Þ1k�

≈ ϵ2ðv�1Þ2v�2εijkðŶd
1C

dÞ1i½ðB̂d
1Þ21ðŶd

1Þ1jðŶd
2Þ3k þ ðŶd

2Þ2jðB̂d
1Þ31ðŶd

1Þ1k�
¼ ϵ2ðv�1Þ2v�2εijkðB̂d

1Þ21½ðŶd
1C

dÞ11ðŶd
1Þ12 − ðŶd

1C
dÞ12ðŶd

1Þ11�ðŶd
2Þ33

¼ 1

2
ϵ2ðv�1Þ2v�2s23c23s13s12c12hd3hd2gd1ðgd2hd2 − gd1h

d
1Þ½ðhu3Þ2 − ðhu2Þ2�: ðB10Þ

In the fourth line in (B10) we have used the fact that the factors times ðB̂d
1Þ31 is zero since if any one of the i, j, k

indices equals to 3, an associated factor would be zero.
(6) ðv�2Þ3 term comes from detðv�2X̂d

2Ŷ
d
2 þ v�2ϵŶ

d
2C

dÞ. The leading term in it is det½ð1 − ϵAd
2ÞŶd

2 þ ϵŶd
2C

d� ¼
det½Ŷd

2ð1 − ϵAd
2ϵC

dÞ� ¼ detðŶd
2Þ detð1 − ϵAd

2 þ ϵCdÞ ¼ 0. Since ðŶd
2Þ1i ¼ 0, ðŶd

2Þ31 ¼ ðŶd
2Þ32 ¼ 0 and ðŶd

2C
dÞ31 ¼

ðŶd
2C

dÞ32 ¼ 0, the leading nonzero term is

ϵ2ðv�2Þ3εijkðB̂d
2Ŷ

d
2Þ1i½ðŶd

2Þ2jðŶd
2C

dÞ3k þ ðŶd
2C

dÞ2jðŶd
2Þ3k�

¼ ϵ2ðv�2Þ3εijk½ðB̂d
2Þ13ðŶd

2Þ3iðŶd
2Þ2jðŶd

2C
dÞ3k þ ðB̂d

2Þ12ðŶd
2Þ2iðŶd

2C
dÞ2jðŶd

2Þ3k�
¼ ϵ2ðv�2Þ3εijk½ðB̂d

2Þ13ðŶd
2C

dÞ3k þ ðB̂d
2Þ12ðŶd

2C
dÞ2k�ðŶd

2Þ3iðŶd
2Þ2j

¼ ϵ2ðv�2Þ3ε3jkðB̂d
2Þ12ðŶd

2Þ2k0 ðCdÞk0kðŶd
2Þ33ðŶd

2Þ2j
¼ 1

2
ϵ2ðv�2Þ3s13c12s12c23s23gd1hd2hd3½ðhu3Þ2 − ðhu2Þ2�ðgd2hd2 − gd1h

d
1Þ; ðB11Þ

where in the fourth line we have used εijkðŶd
2C

dÞ3kðŶd
2Þ3i ¼ 0.
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