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We study the possibility of radiative electroweak symmetry breaking where loop corrections to the mass
parameter of the Higgs boson trigger the symmetry breaking in various extensions of the Standard Model
(SM). Although the mechanism fails in the SM, it is shown to be quite successful in several extensions
which share a common feature of having an additional scalar around the TeV scale. The positive Higgs
mass parameter at a high energy scale is turned negative in the renormalization group flow to lower energy
by the cross couplings between the scalars in the Higgs potential. The type-II seesaw model with a TeV
scale weak scalar triplet, a two-loop radiative neutrino mass model with new scalars at the TeV scale,
the inert doublet model, scalar singlet dark matter model, and a universal seesaw model with an
additional Uð1Þ broken at the TeV scale are studied and shown to exhibit successful radiative electroweak
symmetry breaking.
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I. INTRODUCTION

Discovery of the Higgs boson as predicted by the
Standard Model (SM) by the ATLAS and the CMS
experiments became the moment of triumph for particle
physics [1,2]. Such a historic discovery together with
decades of eletroweak precision data have well established
the validity of SM up to accessible energies. However, there
is no verified explanation of the origin of the small neutrino
masses and no viable candidate for the dark matter in the
SM. Due to these unwavering issues, various extensions of
SM have been proposed. The secret of neutrino masses may
lie in some form of seesaw mechanism, where a SM singlet
right-handed neutrino with large Majorana masses cause
the light neutrino masses (type-I seesaw) [3] or a SM weak
scalar triplet with a tiny induced vacuum expectation value
(vev) generates the small neutrino masses (type-II seesaw)
[4]. If neutrino masses are generated as loop corrections,
the masses will naturally be suppressed and such exten-
sions of SM are both theoretically well motivated and
phenomenologically viable [5,6].
Searches for a stable dark matter candidate have also

been motivation for various extensions of the SM. Some
form of symmetry usually stabilizes the dark matter. Simple
discrete symmetries such as R-parity in supersymmetric
models [7] can perform an excellent job of preventing the
particle from decaying. Kaluza-Klein parity [8] in universal
extra dimension models and T-parity in the littlest Higgs
models [9] can stabilize the lightest particle, turning them
into promising dark matter candidates. A similar role is

played by a Z2 symmetry for the case of inert doublet
models [10] or scotogenic models [11]. SM extended by a
scalar singlet carrying a discrete Z2 parity is yet another
example for a simple dark matter model. Instead of being
an ad hoc symmetry, this Z2 symmetry can be a remnant of
the (B − L) generator of SOð10Þ grand unified theories
(GUTs) [12].
SOð10Þ GUTs provide one of the most lucrative frame-

works, where one can incorporate many of the aforemen-
tioned extensions of SM along with a beautiful unified
picture of SM gauge couplings. Among the classes of
SOð10Þ GUTs, supersymmetric versions have multiple
features such as successful unification of gauge couplings
and a natural dark matter candidate owing to an automatic
R-parity, while it solves the gauge hierarchy problem based
on the symmetry principle. In addition, supersymmetric
models offer a mechanism for triggering electroweak
symmetry breaking (EWSB) via radiative effects [13]. In
this scenario, the positive mass parameter of the Higgs
boson at high energy becomes negative at low energy due
to the renormalization group flow which dictates how the
parameters evolve with scale.
The purpose of this paper is to explore the possibility of

radiative EWSB breaking in nonsupersymmetric (non-
SUSY) extensions of the SM. Since this is an attractive
mechanism to trigger EWSB, checking its viability in non-
SUSY models is of great interest. As we argue below, such
a radiative EWSB may be necessary in certain unified
theories which have two stages of symmetry breaking. In a
general context a positive mass parameter for the Higgs
boson turning negative also enhances the available param-
eter space.
In some extensions of the SM, the Higgs boson is a part of

the larger multiplet, which breaks some higher symmetry.
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This occurs in trinification models based on SUð3ÞC ×
SUð3ÞL × SUð3ÞR gauge symmetry [14–16] broken by
two ð1; 3; 3�Þ Higgs multiplets. These multiplets contain
SM singlet components which acquire large vevs breaking
the gauge symmetry down to SM. The same ð1; 3; 3�Þ
multiplets also contain the Higgs boson of the SM which
should develop a negative squared mass to trigger EWSB.
Consistency of the high scale symmetry breaking, however,
would demand that all physical Higgs bosons, including the
SM Higgs, have positive squared masses at a high energy.
One could introduce new Higgs fields to break the electro-
weak symmetry in which case the model loses its minimality
and predictivity. For such class of models one might employ
radiative loop corrections to turn the Higgs mass param-
eter negative at low energy from the positive value it
obtained at high energy and thus cause electroweak
symmetry breaking. A second example is provided by a
class of SOð10Þ models with the symmetry breaking
sectors containing 126H along with either a 45H or a
210H [17] where flavor mixing is induced by vectorlike
fermions in the 16þ 16 representation. In such models,
the SM singlet from 126H acquires a GUT scale vev,
breaking SOð10Þ down to SUð5Þ. The 126H also contains a
SM Higgs doublet which must have positive squared
mass at the GUT scale. This positive mass term can turn
negative at low energy due to renormalization group
flow. Similar arguments can be applied for the case
where a SM singlet of 144 representation breaks
SOð10Þ down to the SM [18]. The Higgs doublet is also
part of 144, which should have a positive squared mass
at the GUT scale.
In this paper we explore the possibility of radiative

electroweak symmetry breaking in several popular exten-
sions of the SM. The mechanism fails in the SM, as
reviewed in Sec. II. In type-I seesaw models which includes
right-handed neutrinos to the spectrum of the SM, radiative
EWSB is not achieved—in fact the effect of νR fields is to
provide positive corrections to the Higgs mass parameter in
evolving from high to low energies. The situation is
different in type-II seesaw models which contain a weak
scalar triplet, if the mass of the triplet is around the TeV
scale. The key difference is the cross coupling between the
SM Higgs boson and an additional scalar field in the Higgs
potential. The need for this additional scalar field to be at
the TeV scale arises from the needed magnitude of the μ2ϕ
parameter: μ2ϕ ¼ −ð88 GeVÞ2. As the correction to μ2ϕ
from the scalar cross coupling grows as −ðm2

ΔÞ of the
new scalar, this scalar should not be much heavier than a
TeV, assuming that the quartic cross couplings are not
extremely weak.
Radiative mass generation is a popular mechanism for

neutrino masses where one assumes new scalars at the TeV
scale for lepton number violation. Such models are ame-
nable to radiative EWSB. Dark matter models employing a

scalar singlet or an inert doublet also exhibit radiative
EWSB. Finally, we propose and analyze a universal seesaw
model wherein a new Uð1Þ symmetry is broken at the TeV
scale, which also shows radiative EWSB.
In nonsupersymmtric extensions of the SM such as the

ones studied here, the gauge hierarchy problem has to be
somehow solved. One may address the issue by introducing
a classically scale invariant theory [19]. Here we simply
assume that this is done by fine-tuning. The dimensionful
parameters of the SM extensions are given by

LSM ¼ Λ4
cos þ Λ2μ2ϕ þ � � � ð1:1Þ

where the � � � donate mass parameters for additional scalar
fields that may be present and Λcos is the cosmological
constant. These dimensionful parameters may take, for
reasons not understood, special values, rather than their
“natural values” which are of order the Planck scale. Once
the scalar masses are set at these special (or fine-tuned)
values, we assume that the corrections to μ2ϕ arising from
other particles present in the model do not exceed the
physical mass of ϕ.
A positive mass parameter turning negative via

renormalization group equation (RGE) flow leads to
dimensional transmutation as can be seen in a
Coleman-Weinberg [20] analysis of the effective poten-
tial. The RGE evolution that we employ is in one-to-one
correspondence with the effective potential, where the
minimization is performed at a momentum scale close to
the mass of the Higgs scalar.
The outline of the paper is as follows. In Sec. II, we

discuss the absence of such radiative EWSB in the SM and
type-I seesaw model. Even though such a mechanism fails
for type-I seesaw models, in Sec. III we show that the
presence of a TeV scale weak triplet makes radiative EWSB
a success for the case of type-II seesaw models. In Sec. IV,
we show that for a two-loop neutrino mass model positive
Higgs mass parameter at a high energy scale turns negative
in the renormalization group flow to low energy. In Secs. V
and VI, we show that simple dark matter models such as the
inert doublet model and the scalar singlet dark matter
model also exhibit radiative EWSB when the models
have TeV scale scalar(s) coupled to the SM Higgs boson.
In Sec. VII, we study the radiative EWSB for a universal
seesaw model. Finally in Sec. VIII we conclude.

II. ABSENCE OF RADIATIVE EWSB IN SM
AND TYPE-I SEESAW MODELS

The mechanism of radiative EWSB occurs when the
renormalization group flow of the Higgs mass parameter
ðμ2ϕÞ receives enough negative contribution from various
parameters of the model turning the positive quantity into a
negative one while evolving from high to low energies.
Unfortunately such cannot be the case in the SM.
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The Higgs potential of the SM is given by

VðϕÞ ¼ μ2ϕϕ
†ϕþ λ

2
ðϕ†ϕÞ2:

And the RGE of mass parameter ðμ2ϕÞ is given by [21]

16π2
dμ2ϕ
dt

¼ μ2ϕ

�
6λþ 2Trð3Y†

uYu þ 3Y†
dYd þ 3Y†

eYeÞ

−
9

10
g21 −

9

2
g22

�
:

The evolution of the Higgs mass parameter ðμ2ϕÞ is
dominated by the gauge couplings and the top quark
Yukawa couplings. However, these corrections are propor-
tional to μ2ϕ itself, which implies that a positive μ2ϕ cannot
turn into negative μ2ϕ in RGE evolution making radiative
EWSB an impossibility within SM.
For type-I seesaw models, the additional Lagrangian is

given by

L ⊃ −ðYνÞijvνRiνjL − ðMRÞijνRiCνjR:

This part of the Lagrangian manages to contribute in the
renormalization group flow as it adds a new term to the
RGE of Higgs mass parameter:

16π2
dμ2ϕ
dt

¼ 16π2
�
dμ2ϕ
dt

�
SM

− 4TrðYνY
†
νM

†
RMRÞ

Unfortunately, the contributions coming from the νR fields
make the situation worse as they only strengthen the
positivity of the mass parameter as it evolves from high
to low energies. One should also notice that if we want to
use the criterion of naturalness, i.e. the correction to the
Higgs mass parameter ≲1 TeV2, the scale of the Majorana
mass of the right-handed neutrino should not exceed
7.4 × 107 GeV [22].
In supersymmetry, the radiative EWSB becomes suc-

cessful [13] as the scalar partners of the fermions
contribute significantly in the renormalization group flow
of the Higgs mass parameter in the right direction, making
the positive term negative as it evolves from high to low
energies. Similar incidents occur in other extensions of
SM such as type-II seesaw models where the TeV scale
particle(s) manages to dominate the renormalization
group flow and turn the positive value of the Higgs mass
parameter into negative value triggering radiative EWSB.
A common feature of these extensions is the presence of
new scalar(s) at the TeV scale as we show in the next five
sections.

III. RADIATIVE EWSB IN A TYPE-II SEESAW
NEUTRINO MASS MODEL

While the type-I seesaw model needs right-handed (RH)
neutrinos which are neutral under the Standard Model
gauge group with large Majorana masses, the minimal
type-II seesaw mechanism requires the existence of a weak
scalar triplet. The most natural source for such triplets is
provided by the left-right symmetric theories which can be
realized either at low energy or can be embedded in grand
unified theories such as SOð10Þ or E6. Here we study the
potential radiative EWSB scenario of the type-II seesaw
extension of the SM.

A. The model

We consider the possibility that the weak scalar triplet
Δð1; 3; 1Þ is the only low-energy remnant of the new
physics beyond the SM and the neutral component ðΔ0Þ
acquires a very small induced vev at low energy. The SM
electroweak doublet ϕð1; 2; 1

2
Þ and the electroweak triplet

Δð1; 3; 1Þ are denoted by

ϕ ¼
�
ϕþ

ϕ0

�
; Δ ¼ σiffiffiffi

2
p Δi ¼

 Δþffiffi
2

p Δþþ

Δ0 Δþffiffi
2

p

!
ð3:1Þ

where σi’s are the Pauli matrices. The most general
renormalizable tree-level scalar potential is

Vðϕ;ΔÞ ¼ μ2ϕϕ
†ϕþ λ1

2
ðϕ†ϕÞ2 þ μ2ΔTrðΔ†ΔÞ

þ λ2
2
ðTrðΔ†ΔÞÞ2 þ λ3

2
½ðTrðΔ†ΔÞÞ2

− TrðΔ†ΔΔ†ΔÞ� þ λ4ϕ
†ϕTrðΔ†ΔÞ

þ λ5ϕ
†½Δ†;Δ�ϕþ

�
μffiffiffi
2

p ϕTiσ2Δ†ϕþ H:c:
�
:

ð3:2Þ
The weak triplet also generates a Majorana mass term for
the neutrinos through the Yukawa Lagrangian (correspond-
ing Feynman diagram given in Fig. 1):

LY ⊃ −
ðYΔÞijffiffiffi

2
p lT

i Ciσ2Δlj þ H:c: ð3:3Þ

With the vev of the electroweak doublet hϕi ¼ v, an
effective dimension 5 operator generates the neutrino
masses through the small but nonzero induced VEV,

hΔi ¼ μv2ffiffi
2

p
μ2Δ

≪ v when v ≪ μΔ and/or μ is so small that

μv2 ≪ μ2Δ as the electroweak triplet decouples. The neu-
trino mass matrix is given by

mν ≃ YΔ
μv2

2μ2Δ
: ð3:4Þ
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Here one assumes μ2Δ > 0 so that hΔi is induced only after
hϕi ¼ v is generated.
One also needs to realize the fact that integrating out

the heavy scalar triplet in the tree-level approximation will
also have an effect on the SM Higgs quartic coupling.
The effective quartic coupling below the scale μr ¼ μΔ is
given by

λeff1 ¼ λ1 −
μ2

μ2Δ
: ð3:5Þ

This is the connecting formula for the Standard Model
quartic coupling λ1 at the scale μr ¼ μΔ.

B. The stability conditions for the Higgs potential
and the evolution of mass parameters

One needs to be careful while studying the solution to the
set of RGEs of the parameters of a model. The parameters
in the scalar potential have to satisfy certain conditions at
all energy scales which ensures that the potential is
bounded from below. For that purpose one must identify
the necessary and sufficient conditions for boundedness
of the potential. For type-II seesaw models, the stability
conditions for the potential to be bounded from below can
be derived to be

ðiÞ λ1 ≥ 0; λ2 ≥ 0; ð3:6Þ

ðiiÞ λ4 − jλ5j ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; 2λ2 þ λ3 ≥ 0; ð3:7Þ

ðiiiÞ 2λ4
ffiffiffiffiffi
λ2

p
þ 2λ2

ffiffiffiffiffi
λ1

p
þ λ3

ffiffiffiffiffi
λ1

p
≥ 0 or;

− 2λ1λ2λ3 − λ1λ
2
3 þ 2λ3λ

2
4 − 2ð2λ2 þ λ3Þλ25 ≥ 0:

ð3:8Þ

This is a compact set of constraints that is necessary and
sufficient as we show in Appendix A. For a less compact
set of constraints see Ref. [23]. The couplings of the
Lagrangian have to maintain these stability conditions up to
the energy scale of new physics such as GUTs.
Using vertex corrections and the wave function renorm-

alization factors, we can calculate the complete set of

β-functions and renormalization group equations. We have
also determined the RGEs for the mass parameters of the
model which are related to the anomalous dimensions ðγmÞ
of the scalar masses by

γm ≡ 1

2

d lnðm2Þ
dt

ð3:9Þ

where t ¼ ln μr and μr is the running scale. The set of
RGEs for the mass parameters is given by1

16π2
dμ2ϕ
dt

¼
�
−

9

10
g21 −

9

2
g22 þ 6λ1 þ 2T

�
μ2ϕ

þ 6λ4μ
2
Δ þ 6jμj2;

16π2
dμ2Δ
dt

¼
��

−
18

5
g21 − 12g22

�
þ 8λ2 þ 2λ3

þ 2TrðY†
ΔYΔÞ

�
μ2Δ þ 4λ4μ

2
ϕ þ 2jμj2;

16π2
dμ
dt

¼
�
λ1 þ 4λ4 − 8λ5 −

27

10
g21 −

21

2
g22

þ 2T þ TrðY†
ΔYΔÞ

�
μ; ð3:10Þ

where

T ¼ Tr½Y†
eYe þ 3Y†

dYd þ 3Y†
uYu�: ð3:11Þ

A complete set of RGEs for all the couplings of the
Lagrangian is given in the Appendix B. With this set of
RGEs we proceed towards its numerical solution. We can
already see that the contribution from the cubic coupling μ
and quartic couplings such as λ4 has the potential to drive

FIG. 1. Diagrammatic representation of type-II seesaw.

TABLE I. Quartic couplings and mass parameter values for the
sample point used for the type-II seesaw model in Fig. 2.

Quartic
couplings Values

Mass
parameters Values

λ1ðmZÞ 0.258 mtðmtÞ 162.25 GeV
λ1ðμΔÞ 0.1887 μ2ΔðμΔÞ 5002 ðGeVÞ2
λ2ðμΔÞ 0.15 vðmZÞ 174.10 GeV
λ3ðμΔÞ 0.45 μ2ϕð125 GeVÞ −ð88.91Þ2 ðGeVÞ2
λ4ðμΔÞ 0.19 μ2ϕðμΔÞ −ð89.59Þ2 ðGeVÞ2
λ5ðμΔÞ 0.10 μðμΔÞ 10−5 GeV

1We disagree with the signs of terms involving the couplings
λ4 and λ5 in the RGE of the mass parameter μ given in Eq. (17) of
Ref. [24]. We also disagree with the coefficient in front of the
mass parameter jμj in the RGE of μ2Δ given in Eq. (18) of
Ref. [24].
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the positive mass parameter μ2ϕ at high energy scale towards
a negative value at lower energy scale to trigger radiative
EWSB. For a TeV scale scalar triplet mass one realizes
that to get the correct order of neutrino mass, the cubic
parameter μ needs to be very small (∼10−5 GeV), which
makes the contribution of the μ term in the RGEs of
mass parameters irrelevant. This choice is natural, since
quantum corrections to μ are proportional to μ itself;
see Eq. (3.10).
One can expand the procedure and calculate the two-

loop corrections to the Higgs mass for the type-II seesaw
model [25]. Such corrections will always depend on the
mass of the Higgs triplet (μΔ). As the newly introduced
triplet mass is near or below the TeV scale, such corrections
will keep the Higgs bosons around TeV scale even at a high
energy scale and will neither spoil the radiative electroweak
symmetry breaking mechanism nor provide any new
contribution to the hierarchy problem that has been dis-
cussed earlier (in Sec. I). So, even though such corrections
may update the numerical value of the sample point of the
model determined in the next section (see Sec. III C) as any
higher loop correction does, such subleading corrections
were avoided for the sake of simplicity. One should also
note that this discussion and conclusion about a two-loop
correction of the Higgs mass is applicable to all the models
considered in this paper.

C. Solution to the RGEs

To analyze the evolution of the mass parameters, one
needs to solve the set of RGEs which in turn requires one to
define the relevant couplings at some energy scale [26]. In
this case, all the SM gauge couplings, Yukawa couplings,
and Higgs quartic couplings were evaluated at two-loop
level up to the energy scale corresponding to the scalar

triplet mass. At energies above the triplet mass, the gauge
couplings were evolved continuously but with the updated
RGEs given in the set of RGEs in Eq. (B3). The quartic
coupling of the SM electroweak doublet Higgs has a
discontinuity at the triplet mass scale due to the matching
condition of the parameter given in Eq. (3.5). Above the
energy scale μΔ, the full set of RGEs was used to evolve all
the parameters of the model.
To generate a sample case, we specified the values of the

quartic couplings and mass parameters of the model at the
low energy scale, μr ¼ μΔ, consistent with the stability
conditions given in the inequalities Eqs. (3.6), (3.7), and
(3.8). Also the masses of neutrinos put a natural limit on the
cubic coupling of the model because of Eq. (3.4) and this in
turn makes the discontinuity in the Higgs quartic coupling
λ1 ignorable. To illustrate the phenomenon of radiative
electroweak symmetry breaking in the type-II seesaw
model, a sample point is chosen as given in Table I. The
sample point satisfies all the stability conditions and
the mass parameter μ2ϕ runs with a positive slope with
the energy scale. Figure 2 shows that the mass parameter
becomes negative at low energy even though it is positive at
high energy scale. This turning occurs at μr ≈ 105 GeV,
when jμϕj plotted in Fig. 2(a) becomes zero. This analysis
shows that radiative electroweak symmetry breaking may
be successfully achieved in type-II seesaw models. The
mass of the triplet scalar should remain below about a few
TeV or else μ2ϕ becomes too negative.

IV. RADIATIVE EWSB IN A TWO-LOOP
NEUTRINO MASS MODEL

Even before the experimental discovery of neutrino
oscillation which is a clear indication of nonzero neutrino
masses and mixings, the subject of neutrino mass

FIG. 2. One-loop running of the parameters of type-II seesaw model from Planck scale down to weak scale. The black dashed line in
(a) corresponds to the scale, μr ¼ μΔ. In (a) the evolution of the absolute value of the SM Higgs mass parameter ðjμϕjÞ along with the
mass of the weak triplet scalar ðμΔÞ has been plotted. The point at which jμϕj touches the horizontal axis corresponding to mass ¼
0 GeV is the energy scale where radiative EWSB is triggered as the sign of the SM Higgs mass-squared parameter ðμ2ϕÞ switches from
positive to negative while evolving from high to low energies. Note that in this sample case, the radiative EWSB is prompted at around
an energy scale of 30 TeV. Figure 2(b) shows the evolution of all the quartic couplings of the type-II seesaw model from Planck scale
down to weak scale emphasizing the fact that the model remains perturbative all the way for the selected sample point.
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generation has been an active arena of research. An
interesting alternative to the type-I or type-II seesaw
mechanism is that the neutrino masses are generated by
loop corrections, hence the masses are suppressed by the
loop factors. In this scenario, the new particles responsible
for the neutrino mass generation should be relatively light
with the possibility that they show up at the Large Hadron
Collider in the near future.

A. The Model

We will consider the two-loop neutrino mass model
which introduces a doubly charged ðkþþÞ and a singly
charged ðhþÞ scalar along with the SM particles [6,27]. In
this model, the lepton number is explicitly broken and as a
result a tinyMajorana mass arises through the loop diagram
at the two-loop level. One of the salient features of the
model is that one of the three neutrino masses is very nearly
zero. The model admits both normal and inverted hierarchy
of neutrino masses and also has CP violation in neutrino
oscillations.
The new scalars under the SM gauge group SUð3ÞC ×

SUð2ÞL ×Uð1ÞY are denoted by

hþð1; 1; 1Þ; kþþð1; 1; 2Þ: ð4:1Þ

The gauge invariant Yukawa couplings that are allowed
involving the new scalars are

LY ⊃ fabli
al

j
bϵijh

þ þ habecaecbk
−− þ H:c: ð4:2Þ

Here a, b are generation indices, i, j are SUð2ÞL indices
with ϵij being the antisymmetric tensor. The Yukawa
coupling matrices f and h are antisymmetric and sym-
metric, respectively.
The scalar potential for the model is given by

Vðϕ; hþ; kþþÞ ¼ μ2ϕϕ
†ϕþ μ2hh

þh− þ μ2kk
þþk−−

− ðμhþhþk−− þ H:c:Þ þ λ1
2
ðϕ†ϕÞ2

þ λ2
2
ðhþh−Þ2 þ λ3

2
ðkþþk−−Þ2

þ λ4ðϕ†ϕÞðhþh−Þ þ λ5ðϕ†ϕÞðkþþk−−Þ
þ λ6ðhþh−Þðkþþk−−Þ: ð4:3Þ

Small neutrino mass matrix is generated by a two-loop
process involving the couplings f, h and μ—the simulta-
neous presence of these couplings break lepton number—
depicted in the Feynman diagram shown in Fig. 3. Neutrino
oscillation phenomenology of this model has been studied
extensively [27–29]. Our goal here is to study the renorm-
alization group flow of the Higgs mass parameter and

determine the possibility of radiative EWSB. While
performing such a study, one also needs to be certain that
the scalar potential of the model remains bounded
and also that the model remains perturbative.

B. The stability conditions for the Higgs potential
and the evolution of mass parameters

The necessary and sufficient boundedness conditions for
the Higgs potential which ensures that the potential is
bounded from below are given by [27]

ðiÞ λ1 ≥ 0; λ2 ≥ 0; λ3 ≥ 0;

ðiiÞ λ4 ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; λ5 ≥ −

ffiffiffiffiffiffiffiffiffi
λ1λ3

p
; λ6 ≥ −

ffiffiffiffiffiffiffiffiffi
λ2λ3

p
;

ðiiiÞ λ4
ffiffiffiffiffi
λ3

p
þ λ6

ffiffiffiffiffi
λ1

p
þ λ5

ffiffiffiffiffi
λ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1λ2λ3

p
≥ 0 or

det λ ≥ 0; ð4:4Þ

where

λ ¼

0
B@

λ1 λ4 λ5

λ4 λ2 λ6

λ5 λ6 λ3

1
CA: ð4:5Þ

It has been shown that the model maintains perturbativity
all the way to the Planck scale and boundedness for both
the normal and inverted case, if jhμμj < 0.45 and jfμτj <
0.34 [27]. For the antisymmetric Yukawa coupling matrix
f, the neutrino mixing angles provide two constraints,
reducing the number of free parameters to one. For the
case of normal neutrino mass hierarchy the relation is given
by [28]

ϵ ¼ tan θ12
cos θ23
cos θ13

þ tan θ13 sin θ23e−iδ;

ϵ0 ¼ tan θ12
sin θ23
cos θ13

− tan θ13 cos θ23e−iδ: ð4:6Þ

And for the inverted mass hierarchy we have

FIG. 3. Feynman Diagram responsible for neutrino mass
generation at the two-loop level.
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ϵ ¼ − sin θ23 cot θ13e−iδ; ϵ0 ¼ cos θ23 cot θ13e−iδ;

ð4:7Þ
where in both case ϵ and ϵ0 are defined as

ϵ≡ feτ
fμτ

; ϵ0 ≡ feμ
fμτ

: ð4:8Þ

Similar to the analysis of the type-II seesaw model in
Sec. III, we require the full set of RGEs for this model
which includes the evolution of the gauge couplings,
Yukawa couplings, quartic couplings, and the mass param-
eters of the Lagrangian. While the complete set of the
RGEs is listed in Appendix C, the RGEs for the mass
parameters of the Lagrangian are given by

16π2
dμ2ϕ
dt

¼ μ2ϕ

�
−

9

10
g21 −

9

2
g22 þ 2T þ 6λ1

�

þ 2λ4μ
2
h þ 2λ5μ

2
k;

16π2
dμ2h
dt

¼ μ2h

�
−
18

5
g21 þ 8Trðf†fÞ þ 4λ2

�

þ 4λ4μ
2
ϕ þ 2λ6μ

2
k þ 8μ2;

16π2
dμ2k
dt

¼ μ2k

�
−
72

5
g21 þ 4Trðh†hÞ þ 4λ3

�

þ 4λ5μ
2
ϕ þ 2λ6μ

2
h þ 4μ2;

16π2
dμ
dt

¼ μ

�
−
54

5
g21 þ 2λ2 þ 2λ6

þ 2Trðh†hÞ þ 8Trðf†fÞ
�
: ð4:9Þ

Note that the SM Higgs mass parameter ðμ2ϕÞ can be turned
negative proportional to μ2h and/or μ2k in going from high
energy to low energy as long as either λ4 or λ5 is positive.
Such a choice is consistent with the boundedness con-
ditions given in Eq. (4.4), thus enabling radiative EWSB
within the model.

C. Solution to the RGEs

To find the solution to the full set of RGEs, one requires
to completely specify the values of all the parameters of the
Lagrangian at some energy scale. We specify the sample
values at low energy scale while satisfying the necessary
and sufficient conditions for the boundedness of the scalar
potential in Table II.

TABLE II. Quartic and Yukawa coupling and mass parameter
values for the sample point used for the two-loop neutrino mass
model in Fig. 4.

Quartic,
Yukawa
couplings Values

Mass
paramters Values

λ1ðMZÞ 0.258 mtðmtÞ 162.25 GeV
λ1ðμ0Þ 0.1924 MhðmZÞ 125.1 GeV
λ2ðμ0Þ 0.20 vðmZÞ 174.10 GeV
λ3ðμ0Þ 0.50 μðμ0Þ 500 GeV
λ4ðμ0Þ 0.10 μ2hðμ0Þ 8002 ðGeVÞ2
λ5ðμ0Þ 0.15 μ2kðμ0Þ 4502 ðGeVÞ2
λ6ðμ0Þ −0.25 μ2ϕð125 GeVÞ −ð88.91Þ2 ðGeVÞ2
jfμτjðμ0Þ 0.013 μ2ϕðμ0Þ −ð89.55Þ2 ðGeVÞ2
jhμμjðμ0Þ 0.4

FIG. 4. One-loop running of the parameters of two-loop neutrino mass model from the Planck scale down to the weak scale. The black
dashed line corresponds to the scale μr ¼ μ0. Here μ0 is the energy scale corresponding to the lightest of the newly introduced particles.
In this sample point μo ¼ μk. In Fig. 4(a) the evolution of the absolute value of the SM Higgs mass parameter ðjμϕjÞ along with
μh, μk and cubic coupling μ has been plotted. The point at which jμϕj touches the horizontal line corresponding to mass ¼ 0 GeV is the
energy scale where radiative EWSB is triggered as the sign that the SM Higgs mass-squared parameter ðμ2ϕÞ switches from positive to

negative while evolving from high to low energies. Note that μ2ϕ turns negative around μr ≈ 105 GeV, while μ2k and μ2h remain positive.
Figure 4(b) shows the evolution of all the quartic couplings of the two-loop neutrino mass model from Planck scale down to weak scale
emphasizing the fact that the model remains perturbative all the way for the selected sample point.
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For the sample case, we selected the normal mass
hierarchy for no specific reason. A similar result can be
found if the hierarchy is inverted. We used the set of
two-loop RGEs for the SM case and ran up to the lightest
newly introduced scalar particle (in the sample point
μ0 ¼ μk). The full set of RGEs [given in Appendix C
along with Eq. (4.9)] was used to evolve the couplings
and the mass parameters from the energy scale μ0 up to the
Planck scale.
In Table II only the value of jfμτj is listed as the other

values of the Yukawa couplings f can be calculated using
Eq. (4.6) and the definitions in Eq. (4.8). For the case of the
Yukawa couplings h, we only kept the value of jhμμj
nonzero as in the fit to neutrino masses within this model,
jhμμj ≫ jhijj for all i, j ≠ 2, 2 [27].
Upon performing a numerical analysis to solve the full

set of RGEs for the model, we plot the evolution of all the
mass parameters and the quartic couplings of the model in
Fig. 4. The sample point satisfies all the necessary
and sufficient boundedness conditions given in Eq. (4.4)
and Fig. 4(b) ensures that all the quartic couplings stay
within the perturbative range up to the Planck scale. As we
have plotted the absolute value of the SM Higgs mass
parameter ðjμϕjÞ, the point at which the plot of jμϕj touches
the horizontal axis (i.e. mass ¼ 0 GeV) corresponds to
the energy scale where the positive mass-squared
parameter ðμ2ϕÞ turns negative at low energy, triggering
radiative EWSB. For the selected sample point, the
radiative correction manages to push the Higgs mass
parameter in such a way that it acquires a negative value
at the energy scale μr ≈ 105 GeV.

V. INERT DOUBLET MODEL

The inert doublet model is one of the simplest extensions
of the SM, which can be treated as a special case of the
more general two Higgs doublet model. In this model, the
Lagrangian has a Z2 symmetry that remains unbroken
by the vacuum structure. Even though it was introduced in
the 1970s [10], it received a new influx of attention when
the model was shown to be able to alleviate the issue of
nondiscovery of the Higgs boson up to a mass of 115 GeV
[30], address the issue of the smallness of the neutrino
masses either via the type-I seesaw mechanism or via one-
loop radiative mechanism (in a version referred to as the
Scotogenic model) [11], leptogenesis [31] by including
TeV scale right-handed neutrino, and most importantly
explain dark matter of the Universe [11]. It has been shown
that electroweak symmetry breaking can be induced by
loop effects due to the cross coupling between the SM
Higgs boson and the dark matter candidate of the model
[32]. We study the scotogenic version of inert doublet
model for completeness which contains a dark matter
candidate and generates a naturally suppressed neutrino

mass at one-loop level. Unlike the general inert doublet
model, in the scotogenic version the right-handed neutrinos
with sufficiently large masses can, via loop effect, turn the
mass parameter of the inert doublet scalar negative in going
from low to high energy, thus breaking the Z2 symmetry at
a high scale. In this situation, the model cannot have a dark
matter candidate and the neutrino masses are not naturally
suppressed any more [33]. We consider TeV scale right-
handed neutrino masses to avoid such an undesired
situation.

A. The model

The scotogenic version of the inert doublet model
requires three right-handed neutrinos ðNiÞ along with inert
scalar doublet (η) and the SM particles. All the newly
introduced particles are charged under the additional Z2

parity symmetry while all the SM particles are neutral
under this parity. The neutral component of the inert scalar
doublet is the only dark matter matter candidate for the
general inert doublet model while for the scotogenic case
the lightestZ2 odd particle—either a neutral scalar from the
doublet, or the right-handed neutrino—is a dark matter
candidate. The survival of the Z2 symmetry is crucial for
the model as this symmetry protects the DM candidate from
decaying and the same symmetry forbids the neutrinos
from acquiring masses at tree level.
In this model, the right-handed neutrinos get a direct

Majorana mass term 1
2
Ni

RMijN
jc

R þ H:c: which leads to
masses Mi’s (where i ¼ 1, 2, 3) upon diagonalization. As
the right-handed neutrinos are odd under the Z2 sym-
metry, the neutrino masses cannot be generated at tree
level. The Lagrangian contains a neutrino Yukawa cou-
pling involving the inert scalar doublet η and the right-
handed neutrinos in addition to the SM lepton doublets.
This term is given by

LY ⊃ −hijNi
R ~η

†lj
L þ H:c:; where ~η ¼ iσ2η�: ð5:1Þ

FIG. 5. Diagrammatic representation of neutrino mass gener-
ation in the scotogenic model.
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This additional Yukawa coupling along with the right-
handed neutrino Majorana mass term generates the loop
suppressed neutrino mass matrix (see Fig. 5).
The scalar potential of the model can be written as

Vðϕ; ηÞ ¼ μ2ϕϕ
†ϕþ μ22η

†ηþ λ1
2
ðϕ†ϕÞ2 þ λ2

2
ðη†ηÞ2

þ λ3ðϕ†ϕÞðη†ηÞ þ λ4ðη†ϕÞðϕ†ηÞ

þ λ5
2
½ðη†ϕÞ2 þ H:c:�: ð5:2Þ

In the potential, the mass parameters μ2i ði ¼ 1; 2Þ and the
couplings λi; ði ¼ 1�4Þ must be real. λ5 can also be taken
to be real without any loss of generality as the phase of
the coupling can be absorbed by the redefinition of the
η field.

B. The stability conditions and the evolution
of mass parameters

The parameters in the scalar potential have to satisfy the
boundedness conditions at all energy scales which ensures
that the potential is bounded from below all the way.
The conditions are given as

λ1 ≥ 0; λ2 ≥ 0; λ3 ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

λ3 þ λ4 − jλ5j ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð5:3Þ

One can also find the physical scalar mass spectrum as

m2
h ¼ 2λ1v2;

m2
� ¼ m2

2 þ λ3v2;

m2
R ¼ m2

2 þ v2ðλ3 þ λ4 þ λ5Þ;
m2

I ¼ m2
2 þ v2ðλ3 þ λ4 − λ5Þ; ð5:4Þ

where mh is the mass of the SM Higgs boson, m� is
the mass of the charged component of η doublet, and
mR and mI are respectively the masses of the real
and imaginary component of the neutral field inside the
η doublet. We choose the real part of neutral scalar η
as the DM candidate. For this scenario, the charged
component of the electroweak doublet η needs to be
heavier than the neutral component. Also by keeping
λ5 negative and small, we get a slightly heavier pseudo-
scalar.
To illustrate the radiative electroweak symmetry break-

ing mechanism, we study the RGEs for the mass param-
eters of the scotogenic version of the inert doublet model
which are given by [33]

16π2
dμ2ϕ
dt

¼ 6λ1μ
2
ϕ þ 2ð2λ3 þ λ4Þμ22

þ μ2ϕ

�
2T −

3

2
ðg21 þ 3g22Þ

�
;

16π2
dμ22
dt

¼ 6λ2μ
2
2 þ 2ð2λ3 þ λ4Þμ2ϕ

þ μ22

�
2Tν −

3

2
ðg21 þ 3g22Þ

�

− 4
X3
i¼1

M2
i ðhh†Þii; ð5:5Þ

where Tν ≡ Tr½h†h�.
The complete set of RGEs is given in Appendix D.

The last term of the RGE for the mass parameter for scalar η,
namely μ22, shows its dependency on the RH neutrino mass
term. For a larger value, this becomes the dominating term
and pulls down the mass parameter, ultimately making it
negative at higher energy. This in turns breaks the precious
Z2 symmetry spoiling the model completely. IfM2

i is of the
same order as μ22, this outcome will not be realized, and Z2

will remain unbroken even at higher energies.

C. Solution to the RGEs

A sample point (given in Table III) generates the running
of the mass parameters and the scalar quartic couplings
shown in Fig. 6. The sample point maintains all the
boundedness conditions at all energy scales. The decou-
pling of the three RH nautrinos was only considered for the
running of the mass parameter μ22. As for all the other cases
as the dependence on the RH neutrino mass is indirect, the
decoupling effect is negligible.
In Fig. 6(a), below the energy level corresponding to the

point where μ2ϕ ¼ 0, the electroweak symmetry is broken
and the masses of the components of the scalar doublet η
are split. For the energies below that point the running of
the masses of the charged and neutral components of the
scalar η is shown. Note that the split in the masses for
the sample point is very small ð≈6 GeVÞ. All the quartic
couplings remain in the pertubative range and the new
Yukawa couplings are chosen to be small hij ≲Oð:1Þ.

TABLE III. Quartic coupling and mass parameter values for the
sample point used for the inert doublet model in Fig. 6.

Quartic
couplings Values

Mass
parameters Values

λ1ðmZÞ 0.258 μ22ðμ2Þ 8002 ðGeVÞ2
λ1ðμ2Þ 0.173 M1 900 GeV
λ2ðμ2Þ 0.35 M2 1500 GeV
λ3ðμ2Þ 0.38 M3 2000 GeV
λ4ðμ2Þ −0.29 vðmZÞ 174.10 GeV
λ5ðμ2Þ −0.01 μ2ϕð125 GeVÞ −ð88.91Þ2 ðGeVÞ2

μ2ϕðμ2Þ −ð89.77Þ2 ðGeVÞ2
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VI. SCALAR SINGLET DARK
MATTER MODEL

Perhaps the simplest extension of the SM requires the
existence of a new heavy real scalar singlet of the SM gauge
group. An unbroken Z2 symmetry is assumed under which
the singlet scalar is odd and can serve as a candidate for
dark mater [34]. Dark matter annihilation occurs efficiently
in this model via Higgs portal interactions.

A. The model

In this simple extension of the SM, the added singlet can
be protected from decaying into SM particles by virtue of a
Z2 parity symmetry. This scenario can be well motivated
from some higher symmetry at the GUT scale where all the
other additional particles lie above some intermediate scale.
For example, such a stable dark matter can be easily
incorporated in SOð10Þ models [35]. In such cases, the
low scale scalar potential becomes

Vðϕ; sÞ ¼ μ2ϕϕ
†ϕþ μ2s

2
s2 þ λ1

2
ðϕ†ϕÞ2 þ λ2

8
s4

þ λ3
2
ðϕ†ϕÞs2: ð6:1Þ

Below the energy scale corresponding to the mass of the
singlet, the effective quartic coupling is given by

λeff1 ¼ λ1 −
λ23
λ2

: ð6:2Þ

And the mass of the observed Higgs particle is m2
h ¼

2λeff1 v2 and the matching condition Eq. (6.2) is needed
while one evolves the RGE for the Higgs quartic coupling.

B. The stability conditions and the evolution
of the mass parameters

The parameters of the scalar potential must obey the
boundedness constraints so that the potential remains
bounded from below. The conditions for this simple
potential are given as

λ1 ≥ 0; λ2 ≥ 0; λ3 ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð6:3Þ

For this extension of the SM, most of the RGEs of the SM
remain the same. But one should update the RGEs for the
Higgs quartic coupling (λ1) and the Higgs mass parameters
ðμ2ϕÞ along with the newly introduced quartic couplings
ðλ2; λ3Þ and mass parameter ðμ2sÞ. The full set of new and
updated RGEs is given in Appendix E. The RGEs of the
mass parameters are given as

16π2
dμ2ϕ
dt

¼
�
6λ1 þ 2T −

9

10
g21 −

9

2
g22

�
μ2ϕ þ λ3μ

2
s ;

16π2
dμ2s
dt

¼ 3λ2μ
2
s þ 4λ3μ

2
ϕ: ð6:4Þ

From the RGEs of the mass parameters, one immediately
notices that the coupling λ3 has the potential to turn the
mass parameter of the SM Higgs negative at low energy
while it remains positive at high energy. And one also
notices that one needs a lower bound on coupling λ3 to
perform such a mechanism. The quartic coupling λ3 is also
the coupling that keeps the dark matter in thermal equi-
librium. So a lower limit needed for the radiative electro-
weak symmetry breaking can be translated into a lower

FIG. 6. One-loop running of the parameters of scotogenic version of the inert doublet model from Planck scale down to weak scale.
The black dashed line corresponds to the scale, μr ¼ μ2. In Fig. 6(a) the evolution of the absolute value of the SM Higgs mass parameter
ðjμϕjÞ along with the masses of the components of the inert doublet has been plotted. The point at which jμϕj touches the horizontal line
corresponding to mass ¼ 0 GeV is the energy scale where radiative EWSB is triggered as the sign of the SM Higgs mass-squared
parameter ðμ2ϕÞ switches from positive to negative while evolving from high to low energies. Note that μ2ϕ turns negative around
μr ≈ 6 TeV, while μ22 remains positive all the way up to the Planck scale emphasizing the fact that the Z2 remains unbroken. As below
μr ≈ 3 TeV, electroweak symmetry has been broken, and the common mass parameter (μ2) for the components of inert doublet splits
intom�,mR, andmI . Figure 6(b) shows the evolution of all the quartic couplings of the model from the Planck scale down to weak scale.
Note that the model remains perturbative all the way for the selected sample point.
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limit on the dark matter mass if one assumes that the
thermal relic abundance of the dark matter is in agreement
with the observed density, ΩDMh2 ≃ 0.1186. Here ΩDM
is the critical mass density for dark matter and h is the
Hubble constant in units of 100 km.(s. Mpc). The mass
of the dark matter candidate is given by m2

s ¼ m2
DM ¼

λ3
2
v2 þ μ2s and also assuming standard thermal freeze-out,

we get mDM ≃ 3.3λ3 TeV.
Furthermore, according to Eq. (E1) the contribution of

the quartic couplings λ3 to the SMHiggs quartic coupling is
just perfect to make the electroweak vacuum stable all the
way to the Planck scale.

C. Solution to the RGEs

Like the previous cases, we evolved the SM couplings
and parameters at two-loop level up to the energy scale
corresponding to the mass of the singlet. From that point we
evolved the new set of RGEs at one loop level up to the
Planck scale.
We randomly took a sample point (given in Table IV) to

illustrate the radiative electroweak symmetry breaking
scenario for this extension of the SM. The running in
Fig. 7(a) is from the mass of the singlet to the Planck scale,
while Fig. 7(b) is from theweak scale to the Planck scale. To
show the evolution of the SM Higgs quartic coupling we
evolved the λeff1 up to the singlet mass using two-loop SM
RGEs and then used the matching condition in Eq. (6.2) and
the set of updated RGEs to run the coupling up to the Planck
scale (see Fig. 8). This figure also shows that the electroweak
vacuum is perfectly stable for the selected sample point.

VII. UNIVERSAL SEESAW MODEL
WITH VECTORLIKE FERMIONS

In universal seesaw models, one introduces a new set of
heavy vectorlike fermions which are responsible for the
masses for quarks and charged leptons via a generalized
seesaw mechanism [36]. Besides providing an explanation
of the smallness of the masses of fermions like u, d, e, etc.
in the context of left-right symmetry, a CP phenomenology
study has revealed that such a model also harbors a solution
for the strong CP problem as the θ̄ parameter of the strong
CP problem only has nonzero value ðθ̄ ∼ 10−12Þ at the
two-loop level [36–39]. Here we propose and analyze a
SM ×Uð1Þ based universal seesaw model without com-
menting on left-right symmetry. The strong CP problem

FIG. 7. One-loop running of the parameters of the scalar singlet dark matter model from the Planck scale down to the weak scale.
The black dashed line corresponds to the scale μr ¼ μs. In (a) the evolution of the absolute value of the SM Higgs mass parameter ðjμϕjÞ
along with the mass of the dark matter candidate has been plotted. The point at which jμϕj touches the horizontal line corresponding to
mass ¼ 0 GeV is the energy scale where radiative EWSB is triggered as the sign of the SMHiggs mass-squared parameter ðμ2ϕÞ switches
from positive to negative while evolving from high to low energies. Note that μ2ϕ turns negative around μr ≈ 1011 GeV, while μ2s remains
positive all the way up to the Planck scale emphasizing the fact that the Z2 that protects the dark matter candidate remains unbroken.
(b) shows the evolution of all the quartic couplings of the model from the Planck scale down to the weak scale. Note that the model
remains perturbative all the way for the selected sample point.

FIG. 8. Running of the SM Higgs quatic coupling in the
extension of the SM by a real scalar singlet. The discontinuous
shift in the plot at the renormalization energy scale ≈560 GeV
corresponds to the affect of the real scalar singlet. Below that
energy scale, the effective Higgs quartic coupling given by
Eq. (6.2) has been considered.
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may be solved via spontaneous CP violation [40].
The presence of new scalars needed for Uð1Þ symmetry
breaking enables us to realize radiative EWSB.

A. The model

The model under scrutiny uses the seesaw mechanism
for quarks and leptons and is based upon the assumption
that there exists a set of TeV scale vectorlike fermions. The
original version of the model was constructed in the context
of a left-right symmetric model [36]. Here we will study a
variant of the model which is based on an extension of the
SM gauge sector by an Uð1ÞX, where all the left-handed
fermions of the SM are neutral under the new gauge group
while the TeV scale vectorlike fermions are not. The model
requires two more additional scalar bosons ðS1 and S2Þ
along with the SM Higgs doublet with the quantum charge
assignment for all the particles of the model is listed in the
Table V. While one singlet scalar S1 or S2 is sufficient
for Uð1Þ symmetry breaking, both scalars are needed for
seesaw mass generation.
The vev of the singlet S2 gives masses to the vector-

like fermions and the vev of S1 along with the electroweak

vev mixes the right- and left-handed quarks (and leptons)
with the vectorlike quarks (and leptons) while the Uð1ÞX
symmetry forbids the bare mass terms of any of the
vectorlike fermions. Thus, this model is a natural frame-
work for the universal seesaw mechanism related without
left-right symmetry.
Note that the setup is anomaly free. As the added

fermions are vectorlike, most of the anomalies cancel
trivially. The only nontrivial cancellations are for the cases
Uð1ÞY ½Uð1ÞX�2, ½Uð1ÞY �2Uð1ÞX, and Tr½Uð1ÞX�. A straight-
forward calculation using Table V shows that the anomalies
for these three cases are all zero.
The Yukawa sector of the Lagrangian for this model is

given by

LY ¼ YuQUcϕþ FuUucS1 þGuUUcS2

− YdQDc ~ϕþ FdDdcS�1 þGdDDcS�2
− YeLEc ~ϕþ FeEecS�1 þGeEEcS�2 þ H:c: ð7:1Þ

where

YuQUcϕ ¼ ðYuÞijðuiUc
jϕ

0 − diUc
jϕ

þ
u Þ;

−YdQDc ~ϕ ¼ ðYdÞijðuiDc
jϕ

− þ diDc
j ϕ̄

0Þ;
−YeLEc ~ϕ ¼ ðYeÞijðνiEc

jϕ
− þ eiEc

j ϕ̄
0Þ; ð7:2Þ

and

ϕ ¼
�
ϕþ

ϕ0

�
; ~ϕ ¼

�
ϕ̄0

ϕ−

�
ð7:3Þ

When the electroweak doublet and scalar singlets both
get vevs, one acquires the fermion mass matrix Mf in the
seesaw form for both quark and lepton as

Mf ¼
�

0 1ffiffi
2

p Yfv

Ffvs1 Gfvs2

�
ð7:4Þ

where f ¼ u, d, e. For such a case the mass of the light

quark (or lepton) becomes mf ≈
YfFfvvs1ffiffi
2

p
Gfvs2

. Since these

masses scale quadratically with Yukawa couplings, fermion
mass hierarchy may be explained with only a mild
hierarchy ∼ð10−2–10−3Þ in the Yukawa couplings.
The scalar potential of the model can be written as

Vðϕ; S1; S2Þ ¼ μ2ϕϕ
†ϕþ μ21S

�
1S1 þ μ22S

�
2S2

− ðμS21S2 þ H:c:Þ þ λ1
2
ðϕ†ϕÞ2 þ λ2

2
ðS�1S1Þ2

þ λ3
2
ðS�2S2Þ2 þ λ4ðϕ†ϕÞðS�1S1Þ

þ λ5ðϕ†ϕÞðS�2S2Þ þ λ6ðS�1S1ÞðS�2S2Þ:
ð7:5Þ

TABLE IV. Quartic coupling and mass parameter values for the
sample point used for the extension of the SM by a real scalar
singlet in Fig. 7. Note that the mass parameter of the dark matter
candidate μ2s corresponds to the value needed for the right amount
of thermal relic abundance.

Quartic
couplings Values

Mass
parameters Values

λeff1 ðmZÞ 0.258 μ2s 5602 ðGeVÞ2
λeff1 ðμsÞ 0.1887 vðmZÞ 174.10 GeV
λ1ðμsÞ 0.247 μ2ϕð125 GeVÞ −ð88.91Þ2 ðGeVÞ2
λ2ðmsÞ 0.5 μ2ϕðμsÞ −ð89.63Þ2 ðGeVÞ2
λ3ðmsÞ 0.17

TABLE V. Particle content of the vectorlike fermion model.

Particle ðSUð3ÞC × SUð2ÞL ×Uð1ÞY × Uð1ÞXÞ
Q ð3; 2; 1

6
; 0Þ

L ð1; 2;− 1
2
; 0Þ

uc ð3̄; 1;− 2
3
;−2Þ

dc ð3̄; 1; 1
3
; 2Þ

ec ð1; 1;−1; 2Þ
U ð3; 1; 2

3
; 1Þ

Uc ð3̄; 1;− 2
3
; 1Þ

D ð3; 1;− 1
3
;−1Þ

Dc ð3̄; 1; 1
3
;−1Þ

E ð1; 1; 1;−1Þ
Ec ð1; 1;−1;−1Þ
ϕ ð1; 2; 1

2
;−1Þ

S1 (1,1,0,1)
S2 ð1; 1; 0;−2Þ
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Here μ can be taken as real without any loss of generality by
the redefinition of the complex scalar S2.
When the scalar S1 develops a vev vs1 via radiative

corrections (see below), the S2 develops an induced vev due

to the linear term in S2 in the potential. For such a case, the
imaginary part of the complex scalar S1 is absorbed by
the broken generator of Uð1ÞX and the mass matrix for the
scalar becomes

M2
s ¼

0
BBB@

2λ1v2 2λ4vvs1 0 0

2λ4vvs1 2λ2v2s1 −2μvs1 0

0 −2μvs1 λ5v2 þ λ6v2s1 þ μ22 0

0 0 0 λ5v2 þ λ6v2s1 þ μ22

1
CCCA: ð7:6Þ

Here the basis of the matrix M2
s is fmh;mS1 ; mS2R ; mS2Ig,

where mh is the SM Higgs, and mS1 is the mass of
the singlet S1 and the mS2R ; mS2I are the masses of the
real and imaginary part of the S2 scalar. From the
potential we find that the induced vev for the scalar S2
is given by

vs2 ¼
ffiffiffi
2

p
μv2s1

λ5v2 þ λ6v2s1 þ μ22
: ð7:7Þ

A small value of the coupling λ4 and vs1 around the TeV
scale will ensure a small mixing between the SM Higgs and
the singlet S1 while the mixing between S1 and S2 depends
on the cubic coupling parameter μ.

B. The stability condition and the evolution
of the mass parameters

From the stability point of view, the scalar potential of
the vectorlike fermion model and the two-loop neutrino
mass model are identical. So, the stability condition given
by Eq. (4.4) is applicable here too.
The RGEs for the mass parameters are found to be

16π2
dμ2ϕ
dt

¼ μ2ϕ

�
6λ1 −

9

10
g21 −

9

2
g22 − 6g24 þ 2T

�

þ 2λ4μ
2
1 þ 2λ5μ

2
2;

16π2
dμ21
dt

¼ μ21½4λ2 − 6g24 þ 2TF� þ 4λ4μ
2
ϕ þ 2λ6μ

2
2 þ 8μ2;

16π2
dμ22
dt

¼ μ22½4λ3 − 24g24 þ 2TG� þ 4λ5μ
2
ϕ þ 4λ6μ

2
1 þ 4μ2;

16π2
dμ
dt

¼ μ½2λ2 þ 2λ6 − 18g24 þ 2TF þ TG�: ð7:8Þ

The complete set of RGEs are given in Appendix F.

C. Solution to the RGEs

To find the solution of the set of RGEs, we took a more
simplified case where we kept all the Yukawa coupling F to
be small and negligible and Yukawa coupling G≃Oð1Þ.
The numerical solution was hunted for the case where one
of the eigenvalues of the scalar mass matrix Ms corre-
sponds to the SM Higgs boson and another one corre-
sponds to the scalar boson of mass ∼μs. Here, we used
μs ¼ 750 GeV just as an example as a similar universal
seesaw model [39] was used to explain apparent diphoton
excess [41] which eventually became statistically insig-
nificant [42]. The vectorlike fermion mass was kept
around the TeV scale where the mass is approximated
by ∼Gvs2. One such sample point is given by Table VI.
As the first new particle in this model is at μs ¼ 750 GeV,
the SM RGEs were evolved at the two-loop level up to the
scale μs and then the new set of RGEs was deployed due to
the evolution of the couplings and mass parameters.
Figure 9 shows that both the vevs (electroweak vev and
vev for the single S1) can be generated by radiative
correction.

TABLE VI. Quartic couplings and mass parameter values
for the sample point used for the vectorlike fermion model in
Fig. 9.

Quartic
couplings Values

Mass
parameters Values

λ1ðmZÞ 0.258 μ21ðμsÞ −ð1800Þ2 ðGeVÞ2
λ1ðμsÞ 0.175 μ22ðμsÞ ð2550Þ2 ðGeVÞ2
λ2ðμsÞ 0.25 μ2ϕðμsÞ −ð89.74Þ2 ðGeVÞ2
λ3ðμsÞ 0.24 μðμsÞ 850 GeV
λ4ðμsÞ 0.02 μ2ϕð125 GeVÞ −ð88.91Þ2 ðGeVÞ2
λ5ðμsÞ 0.1 ðGuÞiiðMzÞ∼

ðGdÞiiðMzÞ∼
ðGeÞiiðMzÞ

0.45

λ6ðμsÞ 0.09 vs1 3.60 TeV
μs 750 GeV vs2 2.26 TeV
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VIII. CONCLUSION

We have presented in this paper various extensions of the
SM where electroweak symmetry breaking is triggered by
the renormalization group flow. Even though such sym-
metry breaking fails to occur in the SM, the scalar extensions
are able to incorporate this attractivemechanism. Extensions
like type-II seesaw models, loop-induced neutrino mass
models, and scalar dark matter models all have this built-in
feature. A common shared feature of all models where
radiative EWSB is realized is the presence of new scalars at
the TeV scale. These TeV scale scalars may be detected in
the Large Hadron Collider in the near future.
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APPENDIX A: BOUNDEDNESS CONDITION
FOR TYPE-II SEESAW

The gauge transformation of the fields defined in
Eqs. (3.2)–(3.3) can be written as

l → Ul; Δ → UΔU† ðA1Þ
where U is a unitary matrix. Under this gauge trans-
formation the Yukawa term remains invariant:

LY ⊃ lTiσ2Δl → lTUTiσ2UΔU†Ul ¼ lTiσ2Δl: ðA2Þ

Let us define Δ̂ ¼ iσ2Δ:

Δ̂ ¼
� Δ0 − Δþffiffi

2
p

− Δþffiffi
2

p −Δþþ

�
: ðA3Þ

The gauge transformation of the field Δ̂ can be written as

Δ̂ → iσ2UΔU† ¼ U�Δ̂U†: ðA4Þ

Now, one can diagonalize Δ̂ by gauge transformation
and as TrðU�Δ̂U†Þ ≠ 0, we can write Δ̂ in such a basis as

Δ̂ ¼
�
a 0

0 beiα

�
; where a; b and α are real: ðA5Þ

Let us define the Higgs doublet as

ϕ ¼
�
ceiδ

deiγ

�
; where c; d; δ and γ are real: ðA6Þ

In terms of these real fields the quartic part of the scalar
potential [given in Eq. (3.2)] becomes

Vð4Þ ¼ λ1
2
u4 þ λ2

2
ða2 þ b2Þ2 þ λ3a2b2

þ λ4u2ða2 þ b2Þ þ λ5ða2 − b2Þ cos 2β ðA7Þ

where
c ¼ u cos β;

d ¼ u sin β: ðA8Þ

FIG. 9. One-loop running of the couplings and mass parameters of the vectorlike fermion model. The black dashed line corresponds to
the scale μr ¼ μs. In (a) the evolution of the absolute value of the SM Higgs mass parameter ðjμϕjÞ and jμ1j along with the mass
parameters μ2 and μ have been plotted. The point at which jμϕj touches the horizontal line corresponding to mass ¼ 0 GeV is the energy
scale where radiative EWSB is triggered as the sign of the SM Higgs mass-squared parameter ðμ21Þ switches from positive to negative
while evolving from high to low energies. For the sample point, this happens around TeVenergy scale. Note that the mass parameter of
the scalar S1 also turns negative around the renormalization energy scale ≈1015 GeV indicating that the Uð1ÞX symmetry also gets
broken radiatively. (b) shows the evolution of all the quartic couplings of the model from the Planck scale down to the weak scale.
Note that the model remains perturbative all the way for the selected sample point.
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The quartic couplings of the potential form a vector space
spanned by the real valued vector, xT ¼ ðu2; a2; b2Þ and the
quartic couplings of the scalar potential can be written as

V ¼ 1

2
xTλx; ðA9Þ

where

λ ¼

0
BB@

λ1 λ4 þ λ5 cos 2β λ4 − λ5 cos 2β

λ4 þ λ5 cos 2β λ2 λ2 þ λ3

λ4 − λ5 cos 2β λ2 þ λ3 λ2

1
CCA:

ðA10Þ
We use known results from the copositivity conditions of
real symmetric matrices [43,44] to determine the bounded-
ness conditions as

ðiÞ λ1 ≥ 0; λ2 ≥ 0; ðA11Þ

ðiiÞ λ4 þ λ5 cos 2β ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

λ4 − λ5 cos 2β ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

λ2 þ λ3 ≥ −λ2; ðA12Þ

ðiiiÞ 2λ4
ffiffiffiffiffi
λ2

p
þ 2λ2

ffiffiffiffiffi
λ1

p
þ λ3

ffiffiffiffiffi
λ1

p
≥ 0 or det λ ≥ 0;

ðA13Þ

where

det λ ¼ −2λ1λ2λ3 − λ1λ
2
3 þ 2λ3λ

2
4 − 2ð2λ2 þ λ3Þλ25 cos2 2β:

ðA14Þ

As this set of boundedness conditions need to be
satisfied for all values of β, this set of conditions reduces
to the set of inequalities (3.6), (3.7), and (3.8). Note that
all the conditions mentioned in inequalities (3.6) and
(3.7) and at least one of the conditions in inequality (3.8)
need to be satisfied for the potential to be bounded
from below.

APPENDIX B: COMPLETE SET OF RGES FOR
TYPE-II NEUTRINO MASS MODEL

The RGEs for the Yukawa couplings are given
by [24]

16π2
dYd

dt
¼ Yd

�
3

2
Y†

dYd −
3

2
Y†

uYu

�
þ Yd

�
T −

1

4
g21 −

9

4
g22 − 8g23

�
;

16π2
dYu

dt
¼ Yu

�
3

2
Y†

uYu −
3

2
Y†

dYd

�
þ Yu

�
T −

17

20
g21 −

9

4
g22 − 8g23

�
;

16π2
dYe

dt
¼ Ye

�
3

2
Y†

eYe þ
3

2
Y†

ΔYΔ

�
þ Ye

�
T −

9

4
g21 −

9

4
g22

�
;

16π2
dYΔ

dt
¼
�
1

2
Y†

eYe þ
3

2
Y†

ΔYΔ

�
T
YΔ þ YΔ

�
1

2
Y†

eYe þ
3

2
Y†

ΔYΔ

�
þ
�
−
3

2

�
3

5
g21 þ 3g22

�
þ TrðY†

ΔYΔÞ
�
YΔ: ðB1Þ

The RGEs for the quartic couplings of the Lagrangians are given by [24]

16π2
dλ1
dt

¼ 12λ21 − 3λ1

�
3g22 þ

3

5
g21

�
þ 3g42 þ

3

2

�
3

5
g21 þ g22

�
2

þ 4λ1T − 8H þ 12λ24 þ 8λ25;

16π2
dλ2
dt

¼ −
36

5
g21λ2 − 24g22λ2 þ

108

25
g41 þ 18g42 þ

72

5
g21g

2
2 þ 14λ22 þ 4λ2λ3 þ 2λ23 þ 4λ24 þ 4λ25

þ 4TrðY†
ΔYΔÞλ2 − 8TrðY†

ΔYΔY
†
ΔYΔÞ;

16π2
dλ3
dt

¼ −
36

5
g21λ3 − 24g22λ3 þ 12g42 −

144

5
g21g

2
2 þ 3λ23 þ 12λ2λ3 − 8λ25 þ 4TrðY†

ΔYΔÞλ3 þ 8TrðY†
ΔYΔY

†
ΔYΔÞ;

16π2
dλ4
dt

¼ −
9

2
g21λ4 −

33

2
g22λ4 þ

27

25
g41 þ 6g42 þ ½8λ2 þ 2λ3 þ 6λ1 þ 4λ4 þ 2T þ 2TrðY†

ΔYΔÞ�λ4 þ 8λ25;

16π2
dλ5
dt

¼ −
9

2
g21λ5 −

33

2
g22λ5 −

18

5
g21g

2
2 þ ½2λ2 − 2λ3 þ 2λ1 þ 8λ4 þ 2T þ 2TrðY†

ΔYΔÞ�λ5;
where T ¼ Tr½Y†

eYe þ 3Y†
dYd þ 3Y†

uYu�; H ¼ Tr½Y†
eYeY

†
eYe þ 3Y†

dYdY
†
dYd þ 3Y†

uYuY
†
uYu�: ðB2Þ

The RGEs for the mass parameters are given by Eq. (3.10).
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Beyond the energy scale corresponding to the mass of
the triplet ðμΔÞ, the SM gauge coupling evolution also
needs to be recalculated due to the triplet’s contribution.
While the weak triplet does not affect the evolution of the
SUð3ÞC gauge coupling evolution, it does change the RGEs
of the other gauge couplings. The RGEs for the gauge
couplings are given by

16π2
dgi
dt

¼ big3i ; ðB3Þ

where gi ¼ fg3; g2; g1g are the three gauge couplings with
the one-loop β-function coefficient bi ¼ f−7;− 5

2
; 47
10
g.

APPENDIX C: COMPLETE SET OF RGES FOR
TWO-LOOP NEUTRINO MASS MODEL

For the two-loop neutrino mass model, among the gauge
couplings only the hypercharge gauge coupling is modified
due the additional scalar particles. So, the RGEs for the SM
gauge couplings are given by

16π2
dgi
dt

¼ big3i ; ðC1Þ

where gi ¼ fg3; g2; g1g are the three gauge couplings with
the one-loop β-function coefficient bi ¼ f−7;− 19

6
; 51
10
g.

The RGEs for the Yukawa couplings are given by [27]

16π2
dh
dt

¼ 4ðhh†hÞ þ 4hTrðh†hÞ − 18

5
g21hþ 1

2
ðhY†

lYlÞ

þ 1

2
ðYT

lY
�
lhÞ;

16π2
df
dt

¼ 4ðff†fÞ þ 4fTrðf†fÞ þ 1

2
ðfYlY

†
lÞ þ

1

2
ðY�

lY
T
lfÞ

−
3

2
f

�
−
3

5
g21 þ g22

�
: ðC2Þ

The RGEs for the quartic scalar couplings are given
by [27,45]

16π2
dλ1
dt

¼ 12λ21 þ 2λ24 þ 2λ25 − λ1

�
9g22 þ

9

5
g21

�
þ 9

4
g42 þ

27

100
g41 þ

9

10
g22g

2
1 þ 4λ1T − 4H;

16π2
dλ2
dt

¼ 10λ22 þ 4λ24 þ 2λ26 −
36

5
λ2g21 þ

108

25
g41 þ 16λ2Trðf†fÞ − 32Trðf†fÞ2;

16π2
dλ3
dt

¼ 10λ23 þ 4λ25 þ 2λ26 −
144

5
λ2g21 þ

864

25
g41 þ 16λ3Trðh†hÞ − 64Trðh†hÞ2;

16π2
dλ4
dt

¼ 6λ1λ4 þ 4λ2λ4 þ 2λ5λ6 þ 4λ24 − λ4

�
9

2
g22 þ

45

10
g21

�
þ 27

50
g41 þ 2λ4½4Trðf†fÞ þ T� − 8Trðf†fY†

lYlÞ; ðC3Þ

16π2
dλ5
dt

¼ 6λ1λ5 þ 4λ3λ5 þ 2λ4λ6 þ 4λ25 − λ5

�
9

2
g22 þ

153

10
g21

�
þ 108

25
g41 þ 2λ5½4Trðh†hÞ þ T� − 8TrðY†

lYlh†hÞ;

16π2
dλ6
dt

¼ 4λ2λ6 þ 4λ3λ6 þ 4λ4λ5 þ 4λ26 −
90

5
λ6g21 þ

432

25
g41 þ 8λ6½Trðf†fÞ þ Trðh†hÞ�: ðC4Þ

The RGEs for the mass parameters are given by
Eq. (4.9).

APPENDIX D: COMPLETE SET OF RGES
FOR INERT DOUBLET MODEL

The one-loop RGEs for the inert doublet model have
already been computed. The SM gauge coupling RGEs are
given by

16π2
dgi
dt

¼ big3i ; ðD1Þ

where bi ¼ ð−7;−3; 21
5
Þ are the β-coefficients of the SM

gauge couplings updated with the added particles.

The quark sector of the model remains unchanged, while
the leptonic sector needs to be revisited. The RGEs for the
leptonic Yukawa couplings are [33]

16π2
dYe

dt
¼ Ye

�
3

2
Y†

eYe þ
1

2
h†hþ T −

9

4
g21 −

9

4
g22

�
;

16π2
dh
dt

¼ h

�
3

2
h†hþ 1

2
Y†

eYe þ Tν −
9

20
g21 −

9

4
g22

�
;

16π2
dM
dt

¼ fðhh†ÞMþMðhh†Þ�g: ðD2Þ

For the quartic scalar coupling we find the following set
of RGEs [46]:
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16π2
dλ1
dt

¼ 12λ21 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25 þ
3

4

�
9

25
g41 þ

6

5
g21g

2
2 þ 3g42

�
− 3λ1

�
3

5
g21 þ 3g22

�
þ 4λ1T − 4H;

16π2
dλ2
dt

¼ 12λ22 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25 þ
3

4

�
9

25
g41 þ

6

5
g21g

2
2 þ 3g42

�
− 3λ2

�
3

5
g21 þ 3g22

�
þ 4λ2Tν − 4T4ν;

16π2
dλ3
dt

¼ 2ðλ1 þ λ2Þð3λ3 þ λ4Þ þ 4λ23 þ 2λ24 þ 2λ25 þ
3

4

�
9

25
g41 −

6

5
g21g

2
2 þ 3g42

�
− 3λ3

�
3

5
g21 þ 3g22

�
þ 2λ3ðT þ TνÞ− 4Tνe;

ðD3Þ

16π2
dλ4
dt

¼ 2ðλ1 þ λ2Þλ4 þ 8λ3λ4 þ 4λ24 þ 8λ25 þ
9

5
g21g

2
2 − 3λ4

�
3

5
g21 þ 3g22

�
þ 2λ4ðT þ TνÞ þ 4Tνe; ðD4Þ

16π2
dλ5
dt

¼ λ5

�
2ðλ1 þ λ2Þ þ 8λ3 þ 12λ4 − 3

�
3

5
g21 þ 3g22

�
þ 2ðT þ TνÞ

�
;

where Tν ≡ Tr½h†h�; T4ν ≡ Tr½h†hh†h�; Tνe ≡ Tr½h†hY†
eYe�: ðD5Þ

The RGEs for the mass parameters are given by
Eq. (5.5). One notices from the set of RGEs that the
evolution of the Majorana mass ðMÞ, the new Yukawa
coupling ðhÞ, and the scalar quartic coupling λ5 are
proportional to the respective quantities themselves. The
upshot of this setting is that these parameters remain small
if they are small at any energy scale. This feature of the
model becomes self-explanatory upon realization that if
any of these parameters becomes zero, the neutrino

becomes massless and global Uð1Þ symmetry conserving
the lepton number is restored.

APPENDIX E: COMPLETE SET OF RGES FOR
SCALAR SINGLET DARK MATTER MODEL

While the RGEs for the mass parameters are given by
Eq. (6.4), the RGEs for the quartic couplings are given by

16π2
dλ1
dt

¼ 12λ21 − 3λ1

�
3

5
g21 þ 3g22

�
þ 3

2
g42 þ

3

4

�
g22 þ

3

5
g21

�
2

þ 4λ1T − 4H þ λ23
2
;

16π2
dλ2
dt

¼ 3λ22 þ
4

3
λ23;

16π2
dλ3
dt

¼ 6λ3ðλ1 þ λ2Þ: ðE1Þ

RGEs for the Yukawa couplings and the gauge couplings remain the same as the SM.

APPENDIX F: COMPLETE SET OF RGES FOR VECTORLIKE FERMION MODEL

The RGEs for the mass parameters are given by Eq. (7.8). The RGEs for the gauge couplings are given by

16π2
dgi
dt

¼ big3i ; ðF1Þ

where bi ¼ f−3; −19
6
; 105
10

; 259
3
g.
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The set of RGEs for all the Yukawa couplings is given by

16π2
dYu

dt
¼ Yu

�
3

2
ðY†

uYu − Y†
dYdÞ þ

1

2
G†

uGu þ T −
17

20
g21 −

9

4
g22 − 8g23 − 3g24

�
;

16π2
dYd

dt
¼ Yd

�
3

2
ðY†

dYd − Y†
uYuÞ þ

1

2
G†

dGd þ T −
1

4
g21 −

9

4
g22 − 8g23 − 3g24

�
;

16π2
dYe

dt
¼ Ye

�
3

2
Y†

eYe þ
1

2
G†

eGe þ T −
9

4
g21 −

9

4
g22 − 3g24

�
;

16π2
dFu

dt
¼ Fu

�
F†
uFu þ TF −

8

5
g21 − 8g23 − 15g24

�
þ 1

2
GuG

†
uFu;

16π2
dFd

dt
¼ Fd

�
F†
dFd þ TF −

2

5
g21 − 8g23 − 15g24

�
þ 1

2
GdG

†
dFd;

16π2
dFe

dt
¼ Fe

�
F†
eFe þ TF −

18

5
g21 − 15g24

�
þ 1

2
GeG

†
eFe;

16π2
dGu

dt
¼ Gu

�
G†

uGu þ Y†
uYu þ TG −

8

5
g21 − 8g23 − 6g24

�
þ 1

2
FuF

†
uGu;

16π2
dGd

dt
¼ Gd

�
G†

dGd þ Y†
dYd þ TG −

2

5
g21 − 8g23 − 6g24

�
þ 1

2
FdF

†
dGd;

16π2
dGe

dt
¼ Ge

�
G†

eGe þ Y†
eYe þ TG −

18

5
g21 − 6g24

�
þ 1

2
FeF

†
eGe: ðF2Þ

The RGEs for scalar quartic couplings are given by

16π2
dλ1
dt

¼ 12λ21 þ 2λ24 þ 2λ25 − 3λ1

�
3

5
g21 þ 3g22 þ 4g24

�
þ
�
27

100
g41 þ

9

4
g42 þ

9

10
g21g

2
2

�

þ 12g24 þ 6g22g
2
4 þ

18

5
g21g

2
4 þ 4λ1T − 4H;

16π2
dλ2
dt

¼ 10λ22 þ 4λ24 þ 2λ26 − 12λ2g24 þ 12g44 þ λ2TF − 4HF;

16π2
dλ3
dt

¼ 10λ23 þ 4λ25 þ 2λ26 − 48λ3g24 þ 48g44 þ 4λ3TG − 4HG;

16π2
dλ4
dt

¼ 6λ1λ4 þ 2λ2λ4 þ 2λ5λ6 þ 4λ24 − λ4

�
9

2
g22 þ

9

10
g21 þ 12g24

�
þ 12g44 þ 2λ4ðT þ TFÞ; ðF3Þ

16π2
dλ5
dt

¼ 6λ1λ5 þ 4λ3λ5 þ 2λ4λ6 þ 4λ25 − λ5

�
9

2
g22 þ

9

10
g21 þ 30g24

�
þ 48g44 þ 2λ5ðT þ TGÞ − 4HYG;

16π2
dλ6
dt

¼ 4λ2λ6 þ 4λ3λ6 þ 4λ4λ5 þ 4λ26 − 30λ6g24 þ 48g44 þ 2λ6ðTF þ TGÞ − 4HFG; ðF4Þ

where

T ¼ Tr½Y†
eYe þ 3Y†

dYd þ 3Y†
uYu�;

TF ¼ Tr½F†
eFe þ 3F†

dFd þ 3F†
uFu�;

TG ¼ Tr½G†
eGe þ 3G†

dGd þ 3G†
uGu�;

H ¼ Tr½Y†
eYeY

†
eYe þ 3Y†

dYdY
†
dYd þ 3Y†

uYuY
†
uYu�;

HF ¼ Tr½F†
eFeF

†
eFe þ 3F†

dFdF
†
dFd þ 3F†

uFuF
†
uFu�;

HG ¼ Tr½G†
eGeG

†
eGe þ 3G†

dGdG
†
dGd þ 3G†

uGuG
†
uGu�;

HYG ¼ Tr½Y†
eYeG

†
eGe þ 3Y†

dYdG
†
dGd þ 3Y†

uYuG
†
uGu�;

HFG ¼ Tr½F†
eFeG

†
eGe þ 3F†

dFdG
†
dGd þ 3F†

uFuG
†
uGu�: ðF5Þ
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