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From the LHC runs we know that, with increasing collider energy, weak-boson-fusion Higgs production
dominates as an environment for precision measurements. We show how a future hadron collider performs
for three challenging benchmark signatures. Because all of these measurements rely on the tagging jet
signature, we first give a comprehensive analysis of weak-boson-fusion kinematics and a proposed
two-step jet veto at a 100 TeV hadron collider. We then find this machine to be sensitive to invisible Higgs
branching ratios of 0.5%, a second-generation muon Yukawa coupling of 2%, and an enhanced total Higgs
width of around 5%, the latter with essentially no model dependence. This kind of performance crucially
relies on a sufficient detector coverage and a dedicated weak-boson-fusion trigger channel.
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I. INTRODUCTION

After the discovery of a light and likely fundamental
Higgs boson [1,2], one of the main goals of particle physics
is to test how well the standard model describes this particle
and its different properties [3]. Beyond the LHC time scale,
searches for new physics in the newly discovered Higgs
sector are one of the main driving forces behind new
colliders. While the expected precision of an eþe− Higgs
factory has been studied in some detail [4], the correspond-
ing results for a future hadron collider [5,6] is not yet
available. One reason for this is that we expect precision
measurements in essentially all standard Higgs channels to
be limited by experimental systematics and theoretical
uncertainties. A global analysis would simply translate
guesses on these two inputs into a highly speculative
estimate of the physics reach. On the other hand, we can
identify a set of benchmark channels which are not entirely
theory or systematics limited. For some of these channels
we will illustrate the power of a future hadron collider in
Higgs precision studies in this paper.
The physics goals and opportunities of a 100 TeV hadron

collider [5–8] with an integrated luminosity around 20 ab−1
[9] are currently under intense investigation. A leading
pillar of its physics program will be studies of weakly
interacting thermal dark matter [10]; it will, for example, be
complemented by searches for heavy Higgs bosons [11],
studies of the electroweak gauge sector at high energies
[12], and tests of the nature of the electroweak phase
transition [13]. In the Higgs sector two crucial measure-
ments, which can be reliably studied, are of the top Yukawa
coupling [14] and of the triple Higgs coupling [15,16].
We will ask three additional questions, all of which

are related to weak boson fusion production of a SM-like
Higgs [17]. This production process is known to be highly
efficient at the LHC when combined with standard
Higgs decays to tau leptons [18] or to W-bosons [19].

Its theoretical description is more precise than almost any
other process at the LHC [20]. The only reason why it
played hardly any role in the Higgs discovery was the
reduced LHC energy during Run I. Moreover, with these
signatures it has been, from the very beginning, at the heart
of Higgs precision analyses [21]. A critical ingredient to the
success of weak boson fusion as a Higgs production
channel is the central jet veto [22]. This removes a large
proportion of the QCD backgrounds, which would other-
wise overwhelm any analysis. We will discuss it in detail
in Sec. II.
First, an invisible Higgs decay to a pair of dark matter

particles is not only an obvious channel to search for, it is
also very well motivated for example in Higgs portal
models [23] and in supersymmetric extensions of the
standard model [24]. At the LHC we will be able to probe
invisible Higgs branching ratios in the few percent range
[25,26], and in Sec. III we will see how much better a future
hadron collider will be able to do in this decay channel.
Second, the LHC will firmly establish that the Higgs

couples to the fermions of the third generation, but the size
of the Higgs couplings to the second generation fermions
will remain largely unknown. While there are new ideas to
measure the Yukawa couplings to second-generation
quarks [27], the obvious task is to measure the Higgs
branching ratio to muons [28]. Wewill show in Sec. IV how
a 100 TeV collider will turn a proof of the existence of
such a coupling into a precise measurement.
Finally, one of the main drawbacks of a hadron collider

has always been that it does not allow for a direct
measurement of the Higgs width. This changes when we
include off-shell Higgs production, for example in the four-
lepton final state [29]. The problem with this measurement
in gluon fusion is that it relies on the assumption that the
effective Higgs-gluon coupling has an energy scaling like
in the standard model [30]. At a 100 TeV collider we can
instead use weak-boson-fusion production with the known,
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logarithmic scaling given by the renormalization group
running of the weak coupling, as we will discuss in Sec. V.
A comprehensive analysis of Higgs pair production in weak
boson fusion will not be part of our analysis, but can be
found in Ref. [16].

II. TAGGING JETS AND JET VETO

A proper understanding and use of the two tagging jets
is crucial to any weak boson fusion (WBF) analysis at the
LHC or at a future hadron collider. The signal(s) and at
least some irreducible backgrounds are independent of the
Higgs decay channel, as shown in the representative
sample of Feynman diagrams in Fig. 1. Unless otherwise
noted, we generate all signal and background events with
Sherpa2.2.0 [31], merged up to three jets, including the two
jets from WBF, through the CKKW algorithm [32], and
accounting for hadronization effects. The two tagging jet
candidates are defined as the two hardest anti-kT jets with
R ¼ 0.4 and pT;j > 40 GeV, obtained with FASTJET [33].
The full top-mass dependence for gluon-fusion Higgs
production is included through reweighting the effective
field theory to the full calculation at each phase-space
point. The loop contributions are provided by
OpenLoops1.3.1 [34]. The scales are set according to the
SHERPA METS scale setting algorithm [31].

First, we determine what the WBF signal requirements
for the two tagging jets j1;2 are [35,36]. The signal is
defined by two high-energetic forward jets going into
different hemispheres,

ηj1 · ηj2 < 0: ð1Þ
The effect of increasing the collider energy from 14 TeV
LHC to 100 TeVon the more forward jet rapidity and on the
rapidity difference is shown in Fig. 2. The leading jets in pT
are chosen as the tagging jets. Although it would be
beneficial to extend the detector coverage from jηjj < 5

to jηjj < 6 [7,16], we only require

jηjj < 5 ð2Þ

and indicate a possible improvement from extending the
detector for larger rapidities. In Fig. 2, we observe a shift in
the peak of the rapidity difference from Δηj1j2 ¼ 4.5 at the
LHC to Δηj1j2 ¼ 5 for a 100 TeV collider with limited
coverage, and toΔηj1j2 ¼ 5.5 for all events at larger energy.
We will require

jηj1 − ηj2 j > 5; ð3Þ

instead of the standard choiceΔηj1j2 > 4.2 at the LHC [25].

FIG. 1. Representative set of Feynman diagrams for the WBF Higgs signal, the contribution from gluon fusion Higgs production,
and the two Z þ jets backgrounds.
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FIG. 2. Leading tagging jet rapidity jηjjmax (left) and rapidity difference Δηj1j2 (right) for the WBF signalHjjEW, evaluated at 14 TeV
LHC and 100 TeV collider energy. We illustrate the effect of the detector cut jηjj < 5 on Δηj1j2 .
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As the second key observable, we show the transverse
momenta of the tagging jets in Fig. 3. In contrast to the
naive paradigm that a larger hadronic collider energy leads
to more and more energetic jets from valence quark
scattering, we only observe a modest enhancement on
pT;j when we go from LHC energy to 100 TeV. The reason
for this is that the typical tagging jet transverse momentum
is set by theW and Z-masses and the massive gauge boson
splitting kernel. Given a quark with energy E, the prob-
ability of finding a collinear jet-boson pair with a boson
energy xE and a transverse momentum pT is given by
[37,38]

PTðx; pTÞ ∝
1þ ð1 − xÞ2

x
p3
T

ðp2
T þ ð1 − xÞm2

VÞ2
;

PLðx; pTÞ ∝
ð1 − xÞ2

x
m2

VpT

ðp2
T þ ð1 − xÞm2

VÞ2
; ð4Þ

where TðLÞ stands for the transverse (longitudinally)
polarized gauge boson V. While for pT ≪ mV the trans-
verse splitting probability, PTðxÞ, is suppressed, for pT ≫
mV the longitudinal splitting probability, PLðxÞ, decreases
faster with increasing pT . Altogether, this means that
kinematic differences between the LHC and a 100 TeV
collider are largely limited to the tagging jet rapidities.
The defining feature of any WBF signal at hadron

colliders is the suppressed central jet radiation, as compared
to the QCD processes illustrated in Fig. 1 [22]. Beyond the
usual perturbative QCD arguments, the fundamental reason
is the different Poisson vs staircase pattern in the number
of radiated jets [39]. In the left panel of Fig. 4, we see how
this leads to a reduced jet activity in the signal and can be
exploited by a simple jet veto to enhance the signal-to-
background ratio to the level of all-electroweak signal and
background processes. The samples assume stable Higgs
and Z-bosons, and all jets are defined as anti-kT jets [33]
with R ¼ 0.4, pT;j > 20 GeV, and jηjj < 5. The WBF
event selection includes Eqs. (1) and (3), as well as

pT;j1;2 > 40 GeV and mj1j2 > 1200 GeV; ð5Þ

for the two tagging jets. An obvious question is howmuch a
dedicated analysis of the third jet kinematics can improve
over the simple veto [26]. We require this third jet to have a
minimum transverse momentum with a default value of

pT;j3 > pT;veto ¼ 20 GeV: ð6Þ

In Fig. 4 we also show the relevant kinematic variable, η�j3 ,
for which we require

jη�j3 j ¼
���ηj3 − ηj1 þ ηj2

2

��� > 3: ð7Þ

While the electroweak signal and backgrounds show a
suppression for η�j3 ¼ 0, the QCD background and QCD
Higgs production are centered there. We explore these
features by defining 2-jet and 3-jet samples by
(1) vetoing a third jet for pT;j3 > pT;veto;
(2) requiring a third jet with pT;j3 > pT;veto and

jη�j3 j > 3, vetoing a fourth jet for pT;j4 > pT;veto.
For this two-step strategy it is crucial that we order the jets
according to their transverse momenta, i.e. the two hardest
jet fulfilling our tagging jet criteria are marked as tagging
jets. A third, softer jet can then, in principle, be more
forward than either of the tagging jets. Interestingly, the
suppression of the central jet activity is even more
pronounced at 100 TeV than at the LHC, as shown in
the right panel of Fig. 4. Following Fig. 2 the tagging jets
have larger rapidities at larger collider energies, so the third
jet will follow the tagging jets towards larger rapidities.
The scale above which a fourth jet is vetoed clearly

impacts the signal-to-background ratio and on the signifi-
cance of any Higgs signal. The expectation is for S=B and
S=

ffiffiffiffi
B

p
to decrease with increasing veto scale, because the

QCD-dominated background and signal benefits largely
from the increased phase space for additional radiation,
whereas the WBF signal does not. Figure 5 shows the
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FIG. 3. Tagging jet transverse momenta pT;j1 (left) and pT;j2 (right) for the WBF signal HjjEW.
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signal-to-background ratio for both, the gluon fusion and
WBF channels, against the combined QCD and EW Zjj
backgrounds. For the WBF signal the ratio decreases as
the veto scale is increased [36]. This behavior can be seen
in both the 2-jet and the 3-jet channels. The gluon fusion
channel behaves very differently. Because it is a QCD
process with Poisson scaling [36], increasing the veto scale
increases the sensitivity of the channel. This is a linear
increase with the veto scale for the 2-jet channel, while the
contribution from the 3-jet channel begins to decrease as it
approaches high veto scales. This is because the two
leading jets are required to have pT > 40 GeV, so as the
third jet pT is forced to approach this limit there is a
reduced phase space for its emission. At this point, with a
veto on the fourth jet above pT;j > 40 GeV, the signal
sample consists of 1=3 gluon fusion events, even after
WBF cuts.
In the right panel of Fig. 5 we show the signal-to-

background ratio for the combined Higgs signal. The 2-jet
channel shows a flattening behavior at veto scales above

30 GeV. The 3-jet channel behaves more in line with
expectations, and the signal-to-background ratio slowly
decreases with veto scale. Combining the two channels
leads to a decrease in the ratio in the range we study.
Throughout this paper we use a default veto scale of
pT;veto ¼ 20 GeV. This choice of veto scale is identical to
the scale which separates the 2-jet and 3-jets samples, as
defined in Eq. (6). If the pT requirement for the tagging jets
were higher and the 3-jet significance for the gluon fusion
channel did not fall off so quickly, the sensitivity in the high
veto scale region could even increase. This effect is also
present, and to a slightly larger extent, in a signal over
square-root background analysis.
In Fig. 6 we show how the fraction of gluon fusion

events in the Higgs signal changes with the jet veto scale,
after applying the usual WBF cuts. The range of veto scales
is limited by the tagging jet requirement pT;j1;2 > 40 GeV.
The exclusive 3-jet rate with our two-step veto strategy
dominates the analysis power and for realistic veto scales
of pT;veto ¼ 20…35 GeV, the gluon fusion contamination
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FIG. 4. Exclusive number of jets (left) and η�j3 (central and right) distributions for the WBF and the two Zjj backgrounds at 100 TeV
collider. In the right panel, we compare the results between 14 TeV and 100 TeV colliders. We do not apply any cut on jηj1;2 j on the
latter plot.

FIG. 5. Signal-to-background ratio for WBF production (left), gluon-fusion production (center), and the combined Higgs signal (right)
vs dominant QCD and EW Zjj backgrounds at 100 TeV. The jet multiplicities are exclusive.
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varies between 15% and 30% for the 2-jet channel and
between 35% and 60% for the 3-jet channel. This kind of
analysis should eventually allow us to reduce our depend-
ence on Monte Carlo predictions and separate the two
Higgs production processes based on data.

III. HIGGS TO INVISIBLES

For a first analysis making use of tagging jets at a
100 TeV collider, we turn to Higgs decays to invisible
particles [25,26,40], where the corresponding branching
ratio BRðH → invÞ is part of modern global Higgs cou-
pling analyses [41]. The main backgrounds are Zjj and
Wjj production, with Z → νν and W → lνðl ¼ e; μ; τÞ, as
illustrated in Fig. 1. At the level of our analysis detector
effects, aside from acceptance cuts, should not play any
noticeable role. The only exception is the missing trans-
verse momentum measurement, for which we include a
Gaussian smearing of ΔET ¼ 20 GeV.
We start our analysis requiring two tagging jets with

ηj1 · ηj2 < 0 pTj1;2 > 40 GeV jηj1;2 j < 5 Δηj1j2 > 5:

ð8Þ

Following the original analysis [25] we apply an additional
cut on the azimuthal angle between the tagging jets

Δϕj1j2 < 1; ð9Þ

which is sensitive to the Lorentz structure of the hard
interaction [42].
Our two-step central jet veto is based on Eqs. (6) and (7).

In addition, we veto any isolated lepton where the isolation
criterion requires less than 20% of hadronic activity in a
radius R ¼ 0.2 around the lepton. This requirement is
shown to be very efficient in suppressing the W þ jets
background.

In Fig. 7, we display the normalized ET distributions for
the two Higgs channels and the backgrounds. In the bottom
panel we show how the heavy-top approximation for this
channel fails towards large missing energies ET ≳mt
[43,44]. Clearly, any measurement including a missing
transverse energy cut needs to account for the full top mass
dependence. Because both backgrounds peak around ET ¼
40 GeV and the gluon fusion Higgs channel peaks around
ET ¼ 60 GeV, for the extraction of the WBF signal we
require

ET > 100 GeV: ð10Þ

After applying all cuts we arrive at the invariant mass
distributions of the tagging jets shown in Fig. 8. While we
have confirmed that the transverse momentum spectrum
does not significantly change when we go from the LHC to
100 TeV, this is obviously not true for the longitudinal
momenta or the invariant mass of the tagging jets. The
regime sensitive to the WBF Higgs signal at 100 TeV starts
only around mj1j2 ≳ 7 TeV, indicated by a signal-to-back-
ground ratio around one. For our estimate of the collider
reach we rely on the three kinematic observables

fET;mj1j2 ; Njg; ð11Þ
within their allowed range ET > 100 GeV and Nj ¼ 2, 3.
They are chosen to include information on the tagging jets
(mj1j2 , Nj), as well as everything we know about the Higgs
momentum (ET).
To estimate the constraining power on BRðH → invÞ, we

perform a three-dimensional binned log-likelihood analysis
for CLs based on the vector of kinematic distributions
shown in Eq. (11). It exploits the rate and the shape

FIG. 6. Fractions of gluon fusion events in the Higgs signal
after WBF cuts, as a function of the veto scale for the fourth jet at
100 TeV.

50 100 150 200 250 300 350 400

-410

-310

-210 EW
H(inv)jj

QCD,mt
H(inv)jj

QCD+EW
Zjj

QCD+EW
Wjj

-1GeV
TEd

σd
σ
1

 [GeV]TE
0 100 200 300 400
1

1.5

2
QCD,mt

/H(inv)jj
QCD,HEFT

H(inv)jj

FIG. 7. Missing transverse energy distribution ET for signal and
backgrounds. The bottom panel displays the ratio between the
heavy-top approximation and the correct result for the QCD
Higgs production process.

WEAK BOSON FUSION AT 100 TEV PHYSICAL REVIEW D 95, 095011 (2017)

095011-5



information in the two panels of Fig. 8, combined with the
ET dependence. For an early running with an integrated
luminosity of 10 fb−1 we use the systematic uncertainties
from the CMS mono-jet search [45], where the systematics
for Z → νν andW → lν backgrounds range around 5% on
the background rate. These uncertainties are modeled as
nuisance parameters. For the target luminosity of 20 ab−1
we assume these uncertainties to reach 0.5%, hoping for
a better understanding of the systematic uncertainties with
more data. This is significantly worse than the scaled
luminosity would suggest, so all of our results will be
systematics limited.
In the left panel of Fig. 9 we show the expected 95%

CL bound on BRðH → invÞ as a function of the minimum
transverse energy of the third jet, keeping the two tagging
jets at pT;j1;2 > 40 GeV and the detector coverage at
jηjj < 5. A reduced third jet threshold will enhance the
effect of our analysis of the third jet kinematics [26].

Even using track jets or even objects without a jet
reconstruction, we do not expect to be able to go below
10 GeV, because of underlying event and pile-up. The
experimental challenge in searching for invisible Higgs
decays turns out to be the same as for dark matter searches
[10]; we need to increase the collider energy while at the
same time keeping the detector thresholds as low as
possible.
In the right panel of Fig. 9, we estimate the impact of the

rapidity coverage for the two tagging jets. The threshold for
the third jet is kept at pT;j3 > 30 GeV. As expected from
Fig. 2, there are only minor gains if we extend the detector
range past jηjj ∼ 6. Altogether, we find that with an
excellent detector performance and similarly good control
of the systematics a reach of

BRðH → invÞ ≲ 0.5% ð12Þ

 [GeV]jjm
2000 4000 6000 8000 10000 12000

-110

1

10

EW+QCD
H(inv)jj

QCD+EW
Zjj

QCD+EW
Wjj

GeV
fb

jjdm
σd

2-jet exclusive

 [GeV]jjm
2000 4000 6000 8000 10000 12000

-210

-110

1

EW+QCD
H(inv)jj

QCD+EW
Zjj

QCD+EW
Wjj

GeV
fb

jjdm
σd

3-jet exclusive

FIG. 8. Stacked invariant mass distribution mj1j2 for the two tagging jets, separated for the exclusive 2-jet (left) and 3-jet (right)
samples.

 [GeV]
T,veto

p
10 15 20 25 30 35 40

   
95

%
 C

L
S

M
σ

 in
v)

/
→

 B
R

(H
×

σ 0.01

0.1

1

σ2±
σ1±

Expected

)
j

,NTE,
jj

limits based on (m

-1L=10 fb

-1L=20 ab

|
j

η|
4 4.5 5 5.5 6 6.5 7 7.5 8

   
95

%
 C

L
S

M
σ

 in
v)

/
→

 B
R

(H
×

σ

0.01

0.1

1

σ2±
σ1±

Expected

)
j

,NTE,
jj

limits based on (m

-1L=10 fb

-1L=20 ab

FIG. 9. Expected 95% CL bound on the invisible Higgs branching ratio, based on a log-likelihood analysis of the three-dimensional
distribution fET;mj1j2 ; Njg. We vary the pT;veto with pT;j3 > pT;veto (left) and the maximum rapidity jηjj (right).

GONÇALVES, PLEHN, and THOMPSON PHYSICAL REVIEW D 95, 095011 (2017)

095011-6



for a standard model production rate appears to be realistic
at a 100 TeV machine. However, as mentioned before, any
number below one percent strongly relies on our assump-
tions on background systematics. Furthermore, the trans-
lation of this model independent bound to some specific
Higgs portal like model H decay width [23] would require
additional improvements in the current theoretical uncer-
tainty estimates for the latter, that are of order 0.5% [46].

IV. HIGGS TO MUONS

As a second benchmark process to illustrate WBF Higgs
production at 100 TeV, we consider the decay to second-
generation leptons H → μþμ−. This decay channel will
barely be observable at the LHC, and will hardly lead to a
precise measurement of the muon Yukawa coupling in the
standard model [28,47]. The dominant Zjj backgrounds
are illustrated in Fig. 1. In addition, we consider off-shell
di-boson and tt̄ backgrounds, denoted as μþμ−νν̄jj. Their
effect is very small.

We employ a very similar analysis to the invisible Higgs
search. The tagging jets are defined according to Eqs. (8)
and (9) and combined with the two-step jet veto defined in
Eqs. (6) and (7) to control the tt̄ and QCD Zjj back-
grounds. In addition, we require a maximum amount of
missing transverse energy, ET < 40 GeV. For the exclusive
2-jet and 3-jet samples we show the transverse momentum
of the muon pair in Fig. 10, as one example distribution. It
illustrates how, just based on a few kinematic cuts, we will
not be able to extract the Higgs signal efficiently [28]. Even
at a 100 TeV collider, the search for Higgs decays to muons
will be a multivariate problem.
One of the ingredients to our analysis will still be a

data-driven side band analysis of the mμμ distribution,
searching for a narrow Higgs peak. The stacked signal
and background distribution is shown in Fig. 11, for
two hypothetical experimental resolutions on the muon
transverse momentum, δpTμ=pTμ ¼ 0.5% and 1%.
The muon energy scale uncertainty directly impacts in
the invariant mass resolution. At the LHC, the typical

FIG. 10. Stacked transverse momentum distribution for the μμ system for the exclusive 2-jet (left) and 3-jet (right) samples. We require
an invariant mass window jmμμ −mHj < 5 GeV.

FIG. 11. Stacked invariant mass distribution mμμ for the 2-jet (left) and 3-jet (right) exclusive samples. We display results for two
uncertainties δpTμ=pTμ ¼ 0.5% and 1%.
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transverse momentum uncertainty is δpTμ=pTμ ≈ 1…2%

for pTμ ¼ 20…100 GeV [48].
As for the invisible Higgs, we again derive the sensitivity

of a 100 TeV collider in the exclusive 2-jet and 3-jet bins
shown in Fig. 11. Similar to Eq. (11), we exploit the three
kinematic observables

fmμμ; mj1j2 ; Njg; ð13Þ

where the information on the Higgs resonance is encoded in
mμμ. We show the resulting 95% CL sensitivity as a
function of the integrated luminosity in Fig. 12. To quantify
the possible gains in sensitivity from a better muon
momentum resolution, we again display two hypothetical
experimental uncertainties on the muon transverse momen-
tum, δpTμ=pTμ ¼ 0.5; 1%, to be achieved at a 100 TeV
collider. We conclude that it is possible to see the H →
μþμ− channel at 95% CL with L≲ 40 fb−1 for both
uncertainty scenarios. Moreover, we will be able to
measure the muon coupling to

ΔgμμH
gSMμμH

≲ 2%; ð14Þ

assuming a standard model production rate and an inte-
grated luminosity of L ¼ 20 ab−1.

V. OFF-SHELL HIGGS

Measuring off-shell production rates for a Higgs boson
decaying to four fermions targets a major shortcoming
of any hadron collider by giving us a handle on the
total Higgs width [29,49]. The dominant LHC channel,
gg → H� → 4l, is not well-suited for such a measurement,

because the gluon-Higgs coupling is loop-induced.
This implies that the dependence of the coupling has a
complex dependence on the incoming and outgoing
momenta, determined by the underlying particle content
[30]. Any global analysis using off-shell rate measure-
ments has to be based on a well-defined hypothesis [41].
If we define such a hypothesis for the Higgs–top–gluon
Lagrangian the off-shell measurements can be naturally
combined with boosted Higgs production [44].
The WBF production channel involves only renor-

malizable tree-level Higgs couplings, which we know
run logarithmically using the usual renormalization
group equation. Unlike the two WBF Higgs signatures
discussed before, off-shell production in weak boson
fusion is unlikely to be seen at the LHC altogether
[29,30].
At a 100 TeV collider we expect a sizeable event sample

for pp → HjjEW → ð4lÞjj, even for off-shell Higgs pro-
duction with m4l ≫ mH. The dominant backgrounds are
ZZjjQCD and ZZjjEW production, illustrated in Fig. 13.
There is an interference between the EW and QCD
amplitudes, but it is color suppressed and has been shown
to be negligible for total rates and for distributions after the
WBF cuts [50]. As always, the QCD background can be
suppressed by the standard WBF cuts and a central jet veto.
Unlike for on-shell Higgs decays, the EW background
helps our analysis through its interference with the Higgs
diagrams. We generate the signal and background samples
with MadGraph5+Pythia8 [51,52] and observe good agreement
with MCFM [53]. Spin correlations and off-shell effects are
fully accounted for, including the Z-decays.
We start by requiring four isolated leptons with less

than 15% of the hadronic activity within a radius of
R ¼ 0.2. The kinematic selection follows the CMS
analysis [49],
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pTl > 5 GeV jηlj < 2.5 m4l > 100 GeV

mll0 > 4 GeV mll;1 ¼ ½40; 120� GeV
mll;2 ¼ ½12; 120� GeV: ð15Þ

The two mll ranges define a leading and a subleading
flavor-matched lepton pair. For the tagging jets we again
require Eq. (8), combined with mj1j2 > 600 GeV and our
two-step jet veto based on Eqs. (6) and (7).
Building on the tagging jet kinematics discussed in

Sec. II, we show the tagging jet rapidities for three slices
of m4l in Fig. 14. For more off-shell Higgs production,
the tagging jets move further into the forward region.
This behavior is related to gauge boson scattering,
VV → VV, at high energies. The off-shell phase space
region provides the ideal setup for the effective W=Z-
approximation, where the vector boson parton picture
requires a hierarchy of energy scale,

ffiffiffi
s

p
≫ m4l ≫ mV .

Here, the longitudinal and transverse scattering ampli-
tudes scale as ALL=ATT ∼m2

4l=m
2
V . This feature is more

prominent at 100 TeV than at 14 TeV collider energy
because at larger scattering energies we produce a greater
fraction of longitudinal gauge boson even at the Higgs
pole [38], see Fig. 2. We can use this feature by increasing
the Δηj1j2 cut for the off-shell analysis, indicating that a
detector coverage to rapidities larger than jηjj ¼ 5 will be
even more important than in other WBF channels.
In what follows, we will assume that the Higgs couplings

to W and Z gauge bosons change simultaneously as
gZZH=gSMZZH ¼ gWWH=gSMWWH, respecting custodial sym-
metry. We can then write the ZZjjEW amplitude as the
sum of the ZZjjEW;only-H and ZZjjEW;only-H contributions,

AEW ¼
�
gZZH
gSMZZH

�
2

AH þAB; ð16Þ

where AH corresponds to Fig. 13(a) and AB corresponds
to Fig. 13(b). Following this notation, any observable
distribution can be decomposed as

dσEW
dO

¼
�
gZZH
gSMZZH

�
4 dσHH

dO
þ
�
gZZH
gSMZZH

�
2 dσHB

dO
þ dσBB

dO
: ð17Þ

While any measurement of an on-shell Higgs signal rate
has a flat direction if we vary the involved Higgs couplings
together with the total Higgs width, the above measurement
will allow us to break this degeneracy and derive a bound
on ΓH.
In Fig. 15 we show them4l distribution for the signal and

backgrounds at 14 TeV (left) and 100 TeV (right). First, we
observe that the QCD background, ZZjjQCD, is depleted by
our selections, leaving ZZjjEW as the leading background.
Second, the interference between the ZZjjEW;only-H signal
and the background ZZjjEW;no-H is large and destructive.
This leads to a smaller full ZZjjEW;full rate than the Higgs
signal alone in the far off-shell regime. Finally, the signal
distribution at 100 TeV presents a significantly smaller
slope than at the LHC, related to the stronger longitudinal
gauge boson polarization at larger energies.
Again, we derive our bound on the measured total Higgs

with in terms of ΓH=ΓSM
H through a log-likelihood analysis.

While the Higgs width can be either smaller or larger than
the SM prediction, the more interesting question is how we
can constrain additional, unobserved Higgs decay chan-
nels, leading to an increase in the width, ΓH=ΓSM

H > 1.
Because the signal and the leading background are both
electroweak, we do not need to include Nj as part of this
analysis. In addition, following the above arguments we
replace mj1j2 from the previous analyses in Eq. (11)
and (13) by Δηj1j2, giving us a likelihood distribution over

fm4l;Δηj1j2g: ð18Þ

(a) (b) (c)

FIG. 13. Representative set of Feynman diagrams for WBF ZZjj production through a Higgs (left), in an electroweak process (center),
and including the strong interaction (right).
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For consistency, we discard events with m4l > 2 TeV to
avoid gathering sensitivity from unitarity-violating theory
predictions [54]. Our projected reach and the associated
uncertainties are displayed as a function of the rapidity
coverage in Fig. 16. We find that a 100 TeV collider will be
sensitive to

ΓH

ΓSM
H

>

�
1.08 for jηjj < 5

1.04 for jηjj < 6.5;

assuming a standard model production rate and an inte-
grated luminosity of L ¼ 20 ab−1.
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VI. SUMMARY

We have systematically studied Higgs production in
weak boson fusion at a future 100 TeV hadron collider.
This signature is crucial for global analyses of the Higgs
sector and gives us access to nontrivial Higgs properties.
We started with an analysis of the tagging jet kinematics,
indicating that it would be beneficial to extend the
calorimeter coverage to rapidities ηj ≈ 6. A central jet
analysis significantly reduced all QCD backgrounds and
ensured that the dominant Higgs signal at a 100 TeV hadron
collider is from weak boson fusion. We advertize a two-step
veto, where a third jet in between the two tagging jets
is kinematically analyzed, while a fourth jet is vetoed.
The details of the tagging jet kinematics and the rate
dependence on the jet veto scale will allow us to reduce the
dependence of WBF rate measurements from Monte Carlo
simulations.

Instead of a global Higgs couplings analysis, where most
underlying rate measurements at 100 TeV will be system-
atics or theory limited and the quantitative results will be
just guess work, we studied three particularly challenging
WBF benchmark signatures.
First, we studied Higgs decays to invisible states, for

example dark matter candidates in Higgs portal models. We
found that, depending on experimental systematics, we can
test invisible Higgs decays with a branching ratio from one
percent to one per-mille at a 100 TeV collider with an
integrated luminosity of 20 ab−1. The key challenge in this
analysis, as well as in the corresponding HL-LHC analysis,
is our understanding of the central hadronic activity [26].
Next, we determined the reach of a 100 TeV collider

in measuring the muon Yukawa coupling. This analysis
rests on our ability to separate the kinematically similar
Z-decays to muon pairs from the Higgs signal. A precision
measurement of the muon Yukawa coupling, assuming a
standard model production cross section, should be at the
level of 2%.
Finally, we considered a measurement of the total Higgs

width through off-shell Higgs production in weak boson
fusion. Unlike gluon fusion production, this signature does
not have a significant model dependence, because the
underlying coupling appears at tree level and is therefore
renormalizable. We find that a 100 TeV will be able to
detect an enhancement of the total Higgs width by
around 5%.
All of these Higgs precision analyses will hugely benefit

from dedicated WBF triggers and an increased tagging jet
rapidity coverage at a 100 TeV collider. Under realistic
assumptions the WBF processes should allow us to
systematically study electroweak processes at an energy-
frontier hadron collider.
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