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Bumblebee models are effective field theories describing a vector field with a nonzero vacuum
expectation value that spontaneously breaks Lorentz invariance. They provide an alternative way of
exploring the similarities between theories with spontaneous Lorentz symmetry breaking and gauge
theories. The equivalence between bumblebee models with suitable conditions and standard electrody-
namics in a nonlinear gauge AμAμ þ b2 ¼ 0 is taken for granted; however, this point is very subtle and has
not yet been fully addressed. The main goal of this paper is to fill in this gap. More precisely, here we study
the relation between a bumblebee model, with a smooth potential of the form VðBμÞ ¼ VðBμBμ þ b2Þ, and
standard electrodynamics in the nonlinear gauge AμAμ þ b2 ¼ 0, both at the classical and quantum levels.
Using Dirac’s method we show that after introducing Dirac brackets with suitable initial conditions, the
classical dynamics of the bumblebee model corresponds to that of standard electrodynamics in the
aforementioned nonlinear gauge. In the quantum case we demonstrate that perturbative calculations of
Feynman amplitudes to any physical process in each model are indistinguishable. To do this, we show that
the Feynman rules and propagators of standard electrodynamics in the nonlinear gauge and those
describing the bumblebee model are the same.
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I. INTRODUCTION

Recently, Lorentz violation (LV) has attracted great
attention from both theoretical and experimental sides.
Strong motivation exists to study this subject. On the
theoretical front, some modern approaches suggest that
Lorentz invariance can be broken at high energies; and
from the experimental point of view, since Lorentz sym-
metry plays a fundamental role in our current and successful
theories (such as the StandardModel of particles physics and
general relativity), it must be experimentally tested.
Examples of the former include string field theory [1],
quantum gravity [2], brane-world scenarios [3], noncom-
mutative field theories [4], condensed matter analogues of
“emergent gravity” [5], aether theories [6], four-dimensional
spacetimes with a nontrivial topology [7], varying speed of
light cosmologies [8] and emergent gauge bosons [9], just to
name a few.
Among the schemes considering spontaneous Lorentz

symmetry breaking we can mention the so-called bumble-
bee models [10,11], which are vector field theories. They
have been extensively studied in curved and flat spacetimes
[12–17], including astrophysical and cosmological contexts
[18,19]. Bumblebee models are not gauge invariant and are

defined from different forms of the kinetic and the potential
terms for the vector field; also the coupling with matter
and gravity can be constructed in different ways [17].
A relevant feature of bumblebee models is that these allow
a detailed description of the spontaneous Lorentz symmetry
breaking, for example, the vacuum condition together with
the Goldstone bosons (GB) can be explicitly determined.
Likewise, the possibility of looking at these Goldstone
bosons in bumblebee models has been studied as an
alternative to photons in a gauge theory [17].
Usually, the origin of massless particles is associated

with gauge symmetry; in particular, the masslessness of the
photon and graviton is explained by the U(1) gauge
invariance and diffeomorphism invariance, respectively.
However, spontaneous symmetry breaking (SSB) can
provide an alternative way to understand massless particles
such as Goldstone bosons. This proposal dates back to the
earliest works of Bjorken and Guralnik [20,21] where the
pion interactions in the nonlinear sigma model were
characterized by spontaneous chiral symmetry breaking.
After these works, Nambu proposed to describe photons as
GB arising from a SSB of Lorentz invariance [22].
Bumblebee models also provide an alternative way of
exploring the similarities between theories with sponta-
neous Lorentz symmetry breaking and gauge theories. The
main challenge posed by this setting is to show the
conditions under which the violations of Lorentz symmetry,
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arising from a SSB, are unobservable, such that the
Goldstone bosons that appear can be interpreted as the
gauge particles of a standard gauge theory. In other words,
one tries to determine the conditions under which the
corresponding Lorentz-violating model is equivalent to a
standard gauge theory.
In this regard, the conditions for the equivalence between

Nambu models and standard electrodynamics, Yang-Mills
theory or gravitation have been studied in Refs. [23–25].
Conversely, the equivalence between bumblebee models
and gauge theories has not been fully addressed. In
Ref. [17] the authors performed a classical Hamiltonian
analysis of bumblebee models to study their stability,
equations of motion, degrees of freedom and constraints.
They also studied the relation between these models and
standard electrodynamics (ED) in a nonlinear gauge when
the phase space for the former is restricted to suitable initial
conditions. However, even at the classical level, some
issues should be addressed in order to prove the equiv-
alence. Particularly, in Ref. [17] the standard electrody-
namics in the proposed nonlinear gauge was not studied.
One of the main points requiring a further discussion is
related to the character of the conditions in both models; on
the one hand we will find a gauge-fixing condition in
standard electrodynamics, while on the other hand, in the
bumblebee model we will find a suitable initial condition
which preserves, via the bumblebee dynamics, its value for
all time. Since these conditions are of a different nature,
even when they have the same form, they are treated in
different ways; therefore, it is not straightforward to
establish that the contributions arising from these condi-
tions are the same in both models. Mainly, the consistency
in both theories has to be verified. The equivalence at the
quantum level, which was not explored in Ref. [17],
requires a similar analysis on the conditions in both models.
Unlike electrodynamics, the introduction of a potential

term in the bumblebee models drastically modifies the
structure and dynamics of the theory, so that the equiv-
alence between these theories cannot be established in a
simple way. A few significant differences between a
particular bumblebee model with the smooth quadratic
potential VðBμÞ ¼ κ

4
ðBμBμ þ b2Þ2 and standard electrody-

namics are (i) the bumblebee model only has second-class
constraints (there is no gauge invariance); (ii) the number of
degrees of freedom (d.o.f.) in the bumblebee model is 3,
while ED has only 2 d.o.f.; (iii) the equations of motion do
not match; and (iv) the current density conservation does
not hold in the bumblebee model.
The main goal of this paper is to study the relation

between a bumblebee model, with a smooth potential of the
form VðBμÞ ¼ VðBμBμ þ b2Þ, and standard electrodynam-
ics in the nonlinear gauge AμAμ þ b2 ¼ 0, both at the
classical and quantum levels. The novel feature of this
work, with respect to that in Ref. [17], is that we complete
the classical Hamiltonian analysis for the bumblebee model

and perform the study of standard electrodynamics in the
aforementioned nonlinear gauge. We also extend the results
for more general bumblebee potentials and study the
equivalence from the quantum approach.
We follow the usual Dirac method [26] to analyze both

theories classically. Imposing suitable initial conditions on
the bumblebee model, we construct the Dirac brackets to
demonstrate that it is consistent with standard electrody-
namics in a nonlinear gauge. The equivalence between
these models at the quantum level is more subtle. Here we
demonstrate that it is accomplished using a perturbative
approach. Once the required conditions for the bumblebee
model are introduced, we show that the propagators and
Feynman amplitudes for physical processes arising from
the bumblebee model and those stemming from the gauge-
fixed standard electrodynamics are the same. Therefore,
perturbative calculations of any physical process in each
model can be seen to be indistinguishable, proving in this
way their equivalence.
The outline of this work is as follows. In Sec. II the

bumblebee model is introduced and some of its main
properties are reviewed. We also discuss the conditions
which guarantee the equivalence between these bumblebee
models and standard electrodynamics in the nonlinear
gauge. In Sec. III we first work out their relation at the
classic level, while their equivalence at the quantum level is
studied in Sec. IV. Our summary and conclusions are
contained in Sec. V.
Here, Lorentz-Heaviside units are assumed (ℏ ¼ c ¼ 1);

the metric signature will be taken as ðþ;−;−;−Þ; and we
use the conventions of greek indices μ, ν ¼ 0, 1, 2, 3 and
latin indices i, j ¼ 1, 2, 3.

II. THE BUMBLEBEE MODEL

The bumblebee Lagrange density is defined by

LBðBμÞ ¼ −
1

4
BμνBμν −

κ

2
VðξÞ − BμJμ; ð1Þ

where ξ≡ BμBμ þ b2, with b2 a positive constant with
dimensions of ½mass�2, Bμν ¼ ∂μBν − ∂νBμ, κ a dimension-
less positive constant and Jμ an external current. Gauge
invariance is lost due to the potential term.
The equations of motion arising from the Lagrangian

density (1) are

∂μBμν − κV 0ðξÞBν ¼ Jν; ð2Þ

where the prime denotes derivative with respect to ξ. From
the above equation we can see that in the bumblebee model
the conservation of the current Jν does not follow as a
consistency condition from the equations of motion, as
happens in standard electrodynamics.
Hereafter we only consider potentials satisfying

the condition Vðξ ¼ 0Þ ¼ 0. We also assume that the
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potential VðξÞ has a degenerate minimumwith respect to its
argument, i.e. V 0ðξ ¼ 0Þ ¼ 0. This implies that the
potential is constrained to be zero by the relation
ðBμBμ þ b2Þjmin ¼ 0 in its minimum. This condition is
satisfied when the bumblebee field has a nonzero vacuum
expectation value (VEV)

hBμi ¼ Bμ; ð3Þ

where BμBμ ¼ −b2. This corresponds to the spacelike case
where we can write Bμ ¼ nμbwith nμnμ ¼ −1. Usually the
bumblebee potentials are taken to be of the form

VðBμÞ ¼
ðBμBμ þ b2Þn

n
; n ≥ 2; ð4Þ

where n ¼ 2 is the case most frequently used. Clearly the
potential (4) satisfies the required conditions Vðξ ¼ 0Þ ¼
V 0ðξ ¼ 0Þ ¼ 0. More general potentials can also be con-
sidered provided that the aforementioned conditions are
satisfied, for example, any potential which can be written as
a polynomial in powers of Eq. (4).
Notice that the vector Bμ in Eq. (3) defines a preferred

direction in spacetime, yielding to the spontaneous sym-
metry breaking of Lorentz invariance. The Goldstone
theorem [27] predicts the appearance of massless particles.
However, due to the bumblebee potential, which implies
the lack of gauge invariance, massive particles can also
arise in these models [17]. We can find the Goldstone
bosons from those Lorentz generators Gμ

ν that do not leave
the vacuum invariant δGBμ ¼ Gμ

νBν ≠ 0. Massive modes
should oscillate perpendicularly to these GB.
Given a basis of Lorentz transformation generators G ¼

fGig with i ¼ 1; 2;…; 6, it may happen that the number
of Gi satisfying the relation δGi

Bμ ≠ 0 is different depend-
ing of the chosen vacuum. For a nonzero Bμ, from the
calculation of f~cig ¼ fδGi

Bμ & i ¼ 1;…; 6g we can
expect to find one to six nonzero four-vectors; however,
it can be proved that the dimension of the spanned space by
the set f~cig is 3. This agrees with the particular cases in
Ref. [28] when the spontaneous Lorentz symmetry break-
ing is performed from the six-dimensional space SOð1; 3Þ
to the three-dimensional subspaces SOð3Þ and SOð1; 2Þ,
corresponding to Bμ timelike and spacelike, respectively,
and where the standard generators of Lorentz symmetry
have been considered to calculate f~cig.
The above reasoning implies that the number of GB

contained in the bumblebee model is 3. Notice that,
considering Lorentz invariance as a symmetry of the
Lagrange density, this result is valid for any model in
which the basic variable is a four-vector field with a
nonzero vacuum expectation value, which is the case for
most of the bumblebee models in flat spacetime.
It is worth mentioning that there is not a continuous limit

of this model to standard electrodynamics taking κ → 0.

For any κ ≠ 0 the canonical structure and dynamics of the
bumblebee model differ from those of ED.
Next we review the main properties of the bumblebee

model and point out the similarities and differences
with standard electrodynamics. Since the potential in the
Lagrange density Eq. (1) does not involve velocities, the
standard canonical momenta are unaffected:

∂LB

∂ _B0
¼ Π0 ¼ 0;

∂LB

∂ _Bj

¼ Πj ¼ ∂0Bj − ∂jB0: ð5Þ

The canonical bumblebee Hamiltonian density HB
c ¼

_BiΠi − LB is

HB
c ¼ 1

2
ðΠjÞ2 þ 1

4
ðBjkÞ2 −B0ð∂iΠi − J0Þ þ κ

2
VðξÞ þBiJi;

ð6Þ

with the canonical algebra given by the Poisson brackets

fBμ; Bνg ¼ 0; fΠμ;Πνg ¼ 0; fBμ;Πνg ¼ δμ
ν:

ð7Þ

Following Dirac’s method for systems with constraints, two
second-class constraints are identified:

ϕ1 ¼ Π0; ϕ2 ¼ ∂jΠj − κB0V 0ðξÞ − J0: ð8Þ

The above implies that the number of d.o.f. of the bumblebee
model is 3. Here we recall that the number of degrees of
freedom n is given by n ¼ ðnps − nscc − 2nfccÞ=2, where nps
is the number of variables in the phase space, and nscc and
nfcc are the number of first- and second-class constraints,
respectively. In the bumblebee model we have nps ¼ 8,
nscc ¼ 2 and nfcc ¼ 0, which produces n ¼ 3. This number
is larger than that of the corresponding standard electrody-
namics, which can be understood as a consequence of the
lost gauge invariance. The equivalence between both theo-
ries requires at least specifying an additional condition in the
bumblebee model to cut this extra degree of freedom.
To analyze the stability of the model, we rewrite the

canonical Hamiltonian density (6) with Ji ¼ 0 in the form

HB
c ¼ 1

2
ðΠjÞ2 þ 1

4
ðBjkÞ2 − κB2

0V
0ðξÞ þ κ

2
VðξÞ; ð9Þ

which is not positive definite over the full phase space due
to the terms involving the potential.
The time evolution of the canonical variables Bμ and Πν,

with Ji ≠ 0, is given by

_Bj ¼ Πj þ ∂jB0;

_Πj ¼ ∂k∂kBj − ∂j∂kBk þ κBjV 0ðξÞ − Jj; ð10Þ
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_B0 ¼
1

κðV 0ðξÞ þ 2B0V 00ðξÞÞ ½κ∂iðBiV 0ðξÞÞ

þ 2κB0BiV 00ðξÞ½Πi þ ∂iB0� − ∂μJμ�;
_Π0 ¼ ∂jΠj − κB0V 0ðξÞ − J0: ð11Þ

Up to here, we can numerate significant differences
between the bumblebee model and standard electrodynam-
ics: (i) the number of d.o.f. is different, (ii) the equations of
motion do not match and (iii) there is no gauge invariance
or current conservation in the bumblebee model.
Naively, under the condition ðBμðx;tÞBμðx;tÞþb2Þ¼0,

which implies Vðξðx; tÞÞ ¼ Vð0Þ ¼ 0 and V 0ðξðx; tÞÞ ¼
V 0ð0Þ ¼ 0, it can be seen that (i) the canonical Hamiltonian
density in Eq. (9) is positive definite and turns out to be the
corresponding canonical Hamiltonian density of standard
electrodynamics with the Gauss law strongly equal to zero,
(ii) the constraint ϕ2 in Eq. (8) becomes the standard Gauss
law and (iii) the time evolution ofBj andΠj in Eq. (10) is the
same as the one in ED. The authors in Ref. [17] noted these
particularities. Using the potential V ∼ ðBμBμ þ b2Þ2, they
analyzed at the classical level the bumblebee model and
proved that under the initial conditions ðBμBμ þ b2Þjt0 ¼ 0

and ∂μJμjt0 ¼ 0 the quantity ðBμðx; tÞBμðx; tÞ þ b2Þ
remains zero all time. They concluded that if the phase
space is restricted to those solutions satisfying the initial
condition ðBμBμ þ b2Þjt0 ¼ 0 together with current con-
servation, then the bumblebee model reproduces standard
electrodynamics in a nonlinear gauge ðAμAμ þ b2Þ ¼ 0.
However, the equivalence between bumblebee models and
ED is more subtle, and here we fill in this gap.
Our main goal here is to work on some issues about this

statement and we prove it for more general potentials and in
a more formal way. In particular, we clarify the following:
(a) At the classical level, in Ref. [17] standard electrody-
namics in a nonlinear gauge ðAμAμ þ b2Þ ¼ 0 was not
discussed. Fixing the gauge in the Hamiltonian approach,
following Dirac’s method, means imposing as many
suitable gauge constraints “by hand” as there are first-class
constraints (in this case we have 2); these gauge constraints
have to be admissible and convert the first-class constraints
into second-class constraints, and then we can introduce
Dirac brackets to study the dynamics of the model. In such
a way, to prove the equivalence between the bumblebee
model and standard electrodynamics, first it is necessary to
study the electrodynamics in the nonlinear gauge ðAμAμ þ
b2Þ ¼ 0 by finding the corresponding Dirac brackets, and
then to verify the compatibility of this procedure with the
bumblebee model when the initial condition ðBμBμ þ
b2Þ ¼ 0 is chosen. (b) At the quantum level the equivalence
has not been explored and requires making clear some
points. Fixing the gauge in any gauge theory requires the
introduction of ghost particles (via the Becchi-Rouet-Stora-
Tyutin (BRST) method [29], for example), which play a

fundamental role as internal particles when physical proc-
esses are calculated. Therefore, to prove the proposed
equivalence one should study their contributions. In this
case, a possible decoupling of such ghosts is by no means
clear, especially due to the nonlinear character of the
proposed gauge AμAμ þ b2 ¼ 0. If the ghosts have con-
tributions to physical processes in standard electrodynam-
ics when the nonlinear gauge AμAμ þ b2 ¼ 0 is used, then
the equivalence with the bumblebee model cannot be
accomplished. Since the bumblebee model is not gauge
invariant, ghosts’ contributions arising from the gauge-
fixing process will not be present. Also, for the bumblebee
model, it should be analyzed how to introduce the condition
ðBμBμ þ b2Þ ¼ 0 on the solutions in a consistent manner.
Likewise, the contributions arising from the potential VðξÞ
have to be studied (this is not present in standard
electrodynamics).

III. EQUIVALENCE AT CLASSICAL LEVEL

Before embarking into the bumblebee model, we first
discuss the Hamiltonian formulation of standard electro-
dynamics in the nonlinear gauge AμAμ þ b2 ¼ 0. The
Lagrange density of standard electrodynamics is given by

LEDðAμÞ ¼ −
1

4
FμνFμν − AμJμ; ð12Þ

where Fμν ¼ ∂μAν − ∂νAμ. The canonical momenta are

∂LED

∂ _A0
¼ Π0

ED ¼ 0;
∂LED

∂ _Aj

¼ Πj
ED ¼ ∂0Aj − ∂jA0;

ð13Þ

which satisfy the nonzero Poisson brackets

fAμðxÞ;Πν
EDðyÞg ¼ δμ

νδðx − yÞ: ð14Þ

The canonical Hamiltonian density can be written as

HED
c ¼ 1

2
ðΠj

EDÞ2 þ
1

4
ðFjkÞ2 − A0ð∂iΠi

ED − J0Þ þ AiJi:

ð15Þ

Two first-class constraints (FCC) are present:

~ϕ1 ¼ Π0
ED; ~ϕ2 ¼ ∂iΠi

ED − J0: ð16Þ

ApplyingDirac’s algorithm, the number of d.o.f. is 2. The cor-
responding gauge transformations generated from the FCC
are δAμðxÞ ¼ fAμðxÞ;

R ð− _ΛðyÞ ~ϕ1ðyÞ þ ΛðyÞ ~ϕ2ðyÞÞdyg ¼
−∂μΛðxÞ.
FCC imply unphysical degrees of freedom, which

must be removed to obtain the reduced phase space. To
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this end we introduce Dirac brackets after imposing the
gauge-fixing constraints. In our case, one of the gauge-
fixing constraints is ~ϕ3 ¼ AμAμ þ b2. This has to be
complemented with another suitable gauge-fixing con-
straint. We choose ~ϕ4 ¼ A0. It can be verified that the
set of constraints f ~ϕi; i ¼ 1; 2; 3; 4g is second-class.
In order to obtain the corresponding Dirac brackets

fA;BgD, we require the matrix constructed with the
Poisson brackets fA;Bg of the constraints ~ϕi, which is
given by

Mijðx; yÞ ¼ f ~ϕiðxÞ; ~ϕjðyÞg

¼

0
BBB@

0 0 −2A0 −1
0 0 −2∂iAi 0

2A0 2∂iAi 0 0

1 0 0 0

1
CCCAδðx − yÞ:

ð17Þ
The inverse matrix ðM−1Þij, such that

R
d3zMilðx; zÞ×

ðM−1Þljðz; yÞ ¼ δijδðx − yÞ, is

ðM−1Þijðx; yÞ ¼

0
BBBBB@

0 0 0 1

0 0 1
2∂iAi − A0∂iAi

0 − 1
2∂iAi 0 0

−1 A0

2∂iAi 0 0

1
CCCCCA
δðx − yÞ:

ð18Þ
Dirac brackets are defined as follows:

fAðxÞ;BðyÞgD
¼ fAðxÞ;BðxÞg

−
Z

d3ud3vfAðxÞ;ΦiðuÞgðM−1ÞijfΦjðvÞ;BðyÞg;

ð19Þ

where Φi denote any of the constraints ~ϕi, with i ¼ 1, 2, 3,
4. The above allows us to remove the variables ðA0;Π0

EDÞ
and work with the algebra for the remaining variables
ðAi;Π

j
EDÞ, which is given by

fAiðxÞ; AjðyÞgD ¼ 0;

fΠi
EDðxÞ;Πj

EDðyÞgD ¼ 0;

fAiðxÞ;Πj
EDðyÞgD ¼ δi

jδðx − yÞ − AjðyÞ
∂lAlðyÞ ∂yiδðx − yÞ:

ð20Þ

We can set strongly equal to zero the constraints ~ϕi and
describe the dynamics through Dirac brackets with the
Hamiltonian density

HF ¼ 1

2
ðΠj

EDÞ2 þ
1

4
ðFjkÞ2 þ AiJi: ð21Þ

At this point the Hamiltonian (21) together with the algebra
(20) is sufficient to determine the dynamics of standard
electrodynamics in the nonlinear gauge AμAμ þ b2 ¼ 0.
The time evolution for any quantity can be obtained as:

_QðAi;Π
j
EDÞ ¼ fQ;HFgD þ ∂Q

∂t : ð22Þ

To establish an equivalence at classical level between the
bumblebee model and standard electrodynamics in the
nonlinear gauge AμAμ þ b2 ¼ 0, we have to (i) prove that
from the bumblebee model it is possible to construct an
algebra with brackets alike to those in Eq. (20) and
(ii) obtain the same time evolution when the corresponding
algebra and bumblebee Hamiltonian HB, plus suitable
initial conditions, are used.
Let us explore the time evolution of the quantity

ðBμBμ þ b2Þ under the dynamics of the bumblebee model.
From Eqs. (10)–(12) we obtain

∂0ðB2
0 − B2

i þ b2Þ ¼ 1

κðV 0ðξÞ þ 2B2
0V

00ðξÞÞ
× ½2κB0∂i½BiV 0ðξÞ� − 2B0∂μJμ

− 2κV0ðξÞBjðΠj þ ∂jB0Þ�: ð23Þ

This equation together with Eq. (12) reveals that if the initial
conditions B0jt0 ¼ 0, ðBμBμ þ b2Þjt0 ¼ 0 and ∂μJμjt0¼0

are chosen, then the relations ðBμBμ þ b2ÞðtÞ ¼ 0 and
B0ðtÞ ¼ 0 remain valid for all time. Therefore, with these
particular initial conditions, the dynamics of the bumblebee
model can be restricted, without inconsistencies or extra
conditions, to the set of constraints fϕ1 ¼ Π0;ϕ2 ¼ ∂jΠj−
κB0V 0ðξÞ − J0;ϕ3 ¼ BμBμ þ b2;ϕ4 ¼ B0g. Using ϕ3 and
ϕ2 together with V 0ðξ ¼ 0Þ ¼ 0, we can rewrite the set of
constraints fϕig as the set fΛig, composed of

Λ1 ¼ Π0 ¼ 0; Λ2 ¼ ∂jΠj − J0 ¼ 0;

Λ3 ¼ BμBμ þ b2 ¼ 0; Λ4 ¼ B0 ¼ 0: ð24Þ

Note that these constraints have the same structure as those
that appear in standard electrodynamics in the nonlinear
gauge AμAμ þ b2 ¼ 0. We can use Dirac brackets to define
an algebra in which the constraints Λi are preserved. This
ensures that the dynamics does not leave the constraint
surface. The construction of these brackets proceeds in the
same way as in Eqs. (17)–(19). Consequently, the brackets
in Eq. (20) describe the algebra of the bumblebee model
with initial conditions B0jt0 ¼ 0, ðBμBμ þ b2Þjt0 ¼ 0 and
∂μJμjt0 ¼ 0. Certainly all constraints, under Dirac brackets,
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satisfy fΛi;BgD ¼ 0 for any quantity B; in particular, _Λi ¼
fΛi; HBgD ¼ 0.
We have to point out that in the last procedure the

fundamental property is that, under the aforementioned
initial conditions, the relations B0 ¼ 0 and ðBμBμ þ b2Þ ¼
0 remain valid for all time, which are derived from the
dynamics of the bumblebee model. If this property is not
fulfilled, then Dirac brackets are not well defined, because
in this case we would need more constraints to ensure that
the dynamics does not leave the constraint surface given by
the set fΛig. Dirac brackets constructed with more con-
straints than fΛig would not correspond with those in
Eq. (20). In other words, we have started on a surface of the
phase space where the bumblebee potential does not have
contributions and we have proved that the dynamics of the
bumblebee model by itself evolves just on this surface,
without having to impose extra conditions.
After introducing Dirac brackets together with the

imposition of constraints that are strongly zero ðΛi ¼ 0Þ,
the bumblebee Hamiltonian density HB

c in Eq. (9) reduces
to the Hamiltonian density HF of electrodynamics in
Eq. (21).
In this way, the dynamics of the bumblebee model

with initial conditions B0jt0 ¼ 0, ðBμBμ þ b2Þjt0 ¼ 0 and
∂μJμjt0 ¼ 0, which is derived from the algebra in Eq. (20)
and Hamiltonian in Eq. (21), corresponds to the dynamics
of standard electrodynamics in the nonlinear gauge
(AμAμ þ b2).1

It is worth mentioning that, unlike standard electrody-
namics, the extra degree of freedom appears as a massive
excitation V 0ðξ ¼ BμBμ þ b2Þ ≠ 0 away from the potential
minimum. The constraint ϕ2 in Eq. (8) yields to a modified
version of Gauss’s law, showing that the massive mode acts
as a source of charge density. When the particular initial
conditions are chosen the dynamics only evolves over the
surface where ðBμBμ þ b2Þ ¼ 0; therefore V 0ðξ ¼ BμBμ þ
b2Þ ¼ 0 for all time, which guarantees that the massive mode
never appears [17]. Also, the relation B0ðtÞ ¼ 0 avoids
possible ambiguities such as those mentioned in Ref. [30].
Notice that the subsequent emergence of standard

electrodynamics, after imposing the initial conditions,

guarantees current conservation for all time, as a conse-
quence of the equations of motion.

IV. EQUIVALENCE AT QUANTUM LEVEL

In this section we study from a quantum perturbative
perspective both standard electrodynamics and the bumble-
bee model. The aim is to compare the Feynman rules and
propagators of these theories.

A. The quantum approach of standard
electrodynamics in the nonlinear

gauge AμAμ + b2

The quantum analysis of standard electrodynamics in the
nonlinear gauge AμAμ þ b2 was recently studied by one of
us in Ref. [25]. In the following we summarize the main
results.
In this case, the BRST quantization formalism [29]

provides an appropriate method to address the gauge-fixing
process in standard electrodynamics. To this end, the
fermionic nilpotent transformation ~δ is introduced, together
with the fields c, c̄ and b̌, satisfying

~δAμ ¼ ∂μc; ~δc ¼ 0; ~δ c̄ ¼ ib̌; ~δ b̌ ¼ 0: ð25Þ

The BRST invariant Lagrange density is written as

LBRST
ED ðAμÞ ¼ −

1

4
FμνFμν − AμJμ

þ i~δ

�
c̄

�
ðAμAμ þ b2Þ þ b̌

2α

��
; ð26Þ

where the gauge-fixing condition ðAμAμ þ b2Þ ¼ 0 is

explicitly introduced. After the ~δ variation and eliminating
b̌ from its equation of motion, the Lagrange density
becomes

LBRST
ED ðAμÞ ¼ −

1

4
FμνFμν − AμJμ −

α

2
ðAμAμ þ b2Þ2

− 2Aμic̄∂μc; ð27Þ

which plainly shows the contributions from the fixing term
αðAμAμ þ b2Þ2=2 and the Faddeev-Popov ghosts c and c̄.
At this stage it is convenient to employ the parametriza-

tion proposed in Ref. [23],

AμðaρÞ ¼ aμ − nμðb2 þ a2Þ1=2; ð28Þ

where nμ is a unit spacelike vector. An important conse-
quence of this field redefinition is the relation

ðAμAμ þ b2Þ2 ¼ 4ðn · aÞ2ðb2 þ a2Þ: ð29Þ

1A different option to introduce the condition BμBμ þ b2 ¼ 0
can be by means of the term λðBμBμ þ b2Þ in the bumblebee
Lagrange density, with λ being a Lagrange multiplier. The
equation of motion for λ gives the condition ðBμBμ þ b2Þ ¼ 0
in a natural way; however, to establish the equivalence with the
standard electrodynamics we would need to restrict the model to
values with λ ¼ 0, which can be done by calculating its time
evolution and taking the suitable initial conditions. Namely, with
the introduction of the Lagrange multiplier it is not necessary to
choose the initial condition BμBμ þ b2 ¼ 0 but it requires the
initial condition λ ¼ 0. It is in this sense that there is no
improvement for our purposes if we introduce the Lagrange
multiplier.

C. A. ESCOBAR and A. MARTÍN-RUIZ PHYSICAL REVIEW D 95, 095006 (2017)

095006-6



When the parametrization in Eq. (28) is substituted into the
Lagrange density LBRST

ED ðAμÞ in Eq. (27) we obtain a
complicated nonlinear expression LBRST

ED ðAμðaρÞÞ in terms
of the aμ field; however, this one still corresponds to the
Lagrange density of standard electrodynamics, written in a
very unconventional form. For example, the electromag-
netic stress tensor becomes

Fμν ¼ fμν − ðnν∂μ − nμ∂νÞðb2 þ a2Þ1=2; ð30Þ

where

fμν ¼ ∂μaν − ∂νaμ: ð31Þ

In terms of the aμ field we rewrite Eq. (27) as

LBRST
ED ðaμÞ ¼ LEDðAμðaρÞÞ − 2αb2ðn · aÞ2 − 2αa2ðn · aÞ2 − 2ðaμ − nμðb2 þ a2Þ1=2Þic̄∂μc; ð32Þ

where LEDðAμðaρÞÞ corresponds to the standard Lagrange density of electrodynamics in Eq. (12) rewritten in terms of the
aμ field. Expanding LEDðAμðaρÞÞ in powers of ða2=b2Þ < 1 we get

LEDðAμðaρÞÞ ¼ −
1

4
fμνfμν þ

b
2
fμνðnν∂μ − nμ∂νÞ

�X∞
l¼1

�
1=2

l

��
a2

b2

�
l
�

−
b2

4
ðnμ∂ν − nν∂μÞ

�X∞
l¼1

�
1=2

l

��
a2

b2

�
l
�
ðnμ∂ν − nν∂μÞ

�X∞
m¼1

�
1=2

m

��
a2

b2

�
m
�

− aμJμ þ bnμJμ
�X∞
l¼0

�
1=2

l

��
a2

b2

�
l
�
; ð33Þ

where in the first three summations we have started the
series from l ¼ 1 given that the contribution from l ¼ 0
produces a constant term, which vanishes with the partial
derivative in the brackets. This shows that the only
quadratic terms in LBRST

ED ðaμÞ, that are not coupled to the
ghost or the external current, are given by

LBRST
EDquad

ðaμÞ ¼ −
1

4
fμνfμν − 2αb2ðn · aÞ2: ð34Þ

The remaining terms are cubic and higher orders in powers
of the field aμ. Notice that the condition −2αb2ðn · aÞ2
coincides with the choice of an axial gauge in standard
electrodynamics, while −2αa2ðn · aÞ2 and the higher order
terms in Eq. (33) can be interpreted as extra Yang-Mills-
type interactions. Namely, the parametrization in Eq. (28)
allows us to interpret the aμ field as photons in the gauge
ðn · aÞ ¼ 0 with nonlinear interactions. The propagator in
the axial gauge, which arises from the quadratic terms in
Eq. (34), can be read off from Refs. [25,31] as

DED
μν ðkÞ ¼

−i
k2 þ iϵ

�
ημν −

kμnν þ nμkν
ðn · kÞ þ kμkν

n2 þ k2

4αb2

ðn · kÞ2
�
;

ð35Þ

satisfying

kμDED
μν ðkÞ ¼ 0; nμDED

μν ðkÞ ¼
−i

k2 þ iϵ

�
k2kν

4b2ðn · kÞ
�
1

α
:

ð36Þ

Now we take the so-called pure (homogeneous) axial
gauge, defined by α → ∞. In this gauge the above
expressions reduce to

DED
μν ðkÞ¼

−i
k2þ iϵ

�
ημν−

kμnνþnμkν
ðn ·kÞ þkμkν

n2

ðn ·kÞ2
�
;

kμDED
μν ðkÞ¼0; nμDED

μν ðkÞ¼0: ð37Þ

Next we deal with the contributions to physical pro-
cesses arising from the fixing terms −2αb2ðn · aÞ2 and
−2αa2ðn · aÞ2 in Eq. (32), which do not depend on the
Faddeev-Popov ghosts and are not present in the bumble-
bee model. The proportional term to a2ðn · aÞ2 produces a
four-photon vertex Vαβμν,

Vαβμν ∼ αðηαβnμnν þ permÞ: ð38Þ

When we attach external on-shell photons to Vαβμν, via
the corresponding propagators, the conditions nμDED

μν ðkÞ ¼
0 ¼ kμDED

μν ðkÞ lead to a zero contribution to any physical
process. Also, these conditions imply that their polarization
vectors ϵμðkÞ must satisfy nμϵμðkÞ ¼ 0 together with the
transversality condition kμϵμðkÞ ¼ 0 [22,25]. In turn, for
internal photon lines attached to Vαβμν the vertex has two
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contributions of the type nμDμν, producing a factor of 1=α2,
with a net result going like 1=α, which is zero in the limit
α → ∞. The same argument can be applied to the gauge-
fixing term proportional to ðn · aÞ2. In this way, the terms
involving ðn · aÞ just implement the gauge condition
ðn · aÞ ¼ 0.
Consequently the gauge-fixed Lagrange density

LBRST
ED ðaμÞ for electrodynamics, in the pure axial gauge,

reads

LBRST
ED ðaμÞ ¼ LEDðAμðaρÞÞ þ LGHOST; ð39Þ

where LGHOST corresponds to the contribution involving
the Faddeev-Popov ghosts. One of the main results in
Ref. [25] is precisely to prove that, using the parametriza-
tion (28) and for any physical process, the ghosts decouple
in the nonlinear gauge AμAμ þ b2 ¼ 0, or equivalently in
the axial gauge ðn · aÞ ¼ 0 plus added nonlinear inter-
actions; therefore, there are no contributions arising from
the LGHOST.
In this way, the contributions to Feynman ampli-

tudes for any physical process of the gauge-fixed Lagrange
density LBRST

ED ðaμÞ in Eq. (32) are constructed only from
LEDðAμðaρÞÞ. The corresponding Feynman rules for
LEDðAμðaρÞÞ are given in Ref. [23]. Since the free part of
the bumblebee model (1) can be seen as LEDðAμÞ supple-
mentedwith a potential of form (4), the Feynman rules arising
from LEDðAμÞ will also emerge in the bumblebee model.

B. The quantum approach of the bumblebee model

Now we switch to the bumblebee model. We are inter-
ested in studying its quantum equivalence with the fixed-
gauge standard electrodynamics analyzed in Sec. IVA. To
this end, we focus on the bumblebee model with solutions
restricted to the condition BμBμ þ b2 ¼ 0. Regarding the
quantization of the unrestricted bumblebee model, the
introduction of the aforementioned condition allows some
simplifications in the quantum approach.
The quantization of the bumblebee model was performed

in Ref. [16] following the Stueckelberg method [32], which
consists of the introduction of a local symmetry in the
Lagrangian density by the enlargement of the field content
to turn second-class constraints to first-class. The quanti-
zation of the resulting theory with first-class constraints
is achieved following the standard methods of gauge
theories, such as the Faddeev-Popov method [33] or
BRST method [29].
Even though the Stueckelberg method allows us to study

the quantization of the bumblebee model, and other proper-
ties as stability, the possible equivalence with standard
electrodynamics is not completely clear under this scheme.
The introduction of auxiliary fields, due to the Stueckelberg
method, and the perturbative approach employed do not

allow us to establish a direct connection with standard
electrodynamics.
In the present work we apply a different process. The

strategy we follow is to employ the parametrization in
Eq. (28) and to obtain the ingredients for the construction of
Feynman amplitudes, i.e. the Feynman rules and propaga-
tor. Then we compare these with those stemming from the
fixed-gauge electrodynamics.
We start from the Lagrange density of the bumblebee

model in Eq. (1). With the replacement Aμ → Bμ in the
parametrization (28) we can rewrite the bumblebee
Lagrange density as

LBðaμÞ ¼ LBf
ðaμÞ −

κ

2
Vð2ðn · aÞðb2 þ a2Þ12Þ; ð40Þ

where the first term LBf
ðaμÞ corresponds to the free part

− 1
4
BμνBμν − BμJμ and the second term to the potential

V ¼ VðBμBμ þ b2Þ, both rewritten in terms of the aμ field.
To make contact between the parametrization in Eq. (28)
and the nonzero vacuum expectation value of the bumble-
bee model, we can express the VEV, hBμi ¼ Bμ, in
Eq. (3) as

Bμ ¼ nμb: ð41Þ

Under this description nμ defines the direction of the
vacuum, and b its magnitude. Notice that the condition
BμBμ ¼ −b2 is automatically satisfied.
Next we address the incorporation of the condition

BμBμ þ b2 ¼ 0. According to Eq. (29), this condition
can be translated to

ðn · aÞ ¼ 0; ð42Þ

when the field redefinition (28) is employed. The aμ fields,
satisfying the condition in Eq. (42), define the three d.o.f. of
the bumblebee model and they are orthogonal to the
vacuum direction nμ, so that they describe the Goldstone
bosons of the model.
The propagator satisfying the condition (42) can be

constructed from the bumblebee Lagrange density with
solutions restricted to ðn · aÞ ¼ 0, which we write as

LBjððn·aÞ¼0Þ ¼ LBðaμÞ þ λðnμaμÞ; ð43Þ

where λ is a Lagrange multiplier and LBðaμÞ is the
Lagrange density in Eq. (40). The additional contribution
with the Lagrange multiplier cannot be interpreted as a
gauge-fixing term (there is no gauge to fix in the bumblebee
model) and only implements the condition ðBμBμþb2Þ¼0,
or nμaμ ¼ 0 in terms of the aμ fields, in a covariant way.
Note that we do not make ðBμBμ þ b2Þ strongly equal to
zero at the level of the Lagrange density, which would
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mean considering zero as the bumblebee potential. Instead
we include the condition over the solutions of the model
through the Lagrange multiplier.
To go further we consider potentials as in Eq. (4) and

identify the quadratic terms in the bumblebee Lagrange
density. The relation

ðBμBμ þ b2Þm
m

¼ ð−2Þmðn · aÞmðb2 þ a2Þm2
m

ð44Þ

allows us to classify the cases: (i)m ¼ 2 and (ii)m > 2. For
the case with m ¼ 2, the propagator is defined by the terms

LB
KIN ¼ − 1

4
fμνfμν þ κb2ðn · aÞ2 þ λðn · aÞ − Jμaμ; ð45Þ

leading to the equations of motion

∂μfμν þ ðλþ κb2ðn · aÞÞnν ¼ Jν; n · a ¼ 0: ð46Þ
After solving for the quantity ðλþ κb2ðn · aÞÞ by multi-
plying the first equation in (46) by nν and inserting the
result into the same equation, we get

�
∂2ηνγ −

�
δνα −

nνnα
n2

�
∂α∂γ

�
aγ ≡Oνγaγ

¼
�
δνα −

nνnα
n2

�
Jα ¼ ~Jν; ð47Þ

which defines the operator Oνγ to be inverted. Since we
have nνOνγaγ ¼ 0, we must find the bumblebee propagator
DB

γρ in the subspace orthogonal to nν by demanding

OνγDB
γρ ¼

�
δνρ −

nνnρ
n2

�
; ð48Þ

where the lhs is the unit in that subspace. Writing the most
general form of DB

γρ as

DB
γρðkÞ ¼ −

i
k2 þ iϵ

�
ηγρ þ

A
ðn · kÞ ðnγkρ þ kγnρÞ

þ B
k2

kγkρ þ C
nγnρ
n2

�
ð49Þ

and imposing the conditions (48) we obtain

DB
γρðkÞ ¼ −

i
k2 þ iϵ

�
ηγρ −

nγkρ þ kγnρ
ðn · kÞ þ n2kγkρ

ðn · kÞ2
�
; ð50Þ

which naturally incorporates the condition nγDB
γρ¼0. Trans-

versality on kμ on-shell vectors, kγDB
γρðkÞ¼0, is also fulfilled.

In the case (ii) with m > 2 the potential does not
contribute to the calculation of the propagator; however,
the above process can be applied again, giving the same
propagator as in Eq. (50). Notice that the propagatorDB

γρðkÞ
is the same one that appears in Eq. (37) for the fixed-gauge
electrodynamics. Thus, the condition ðn · aÞ ¼ 0 is

implemented in the same way for each model in terms of
the propagator. The requirement ðn · aÞ ¼ 0 holds in both
cases; however, it is for different reasons: it is a gauge
condition in ED, while it corresponds to a restriction,
introduced by a Lagrange multiplier, over the solutions of
the bumblebee model. The transversality condition
kμϵμðkÞ ¼ 0 on kμ on-shell photons, derived from the pro-
pagator satisfying kγDB

γρðkÞ ¼ 0, implements Gauss’s law in
the bumblebee model à la Dirac upon the initial states. The
current Jμ is conserved, as it is aNoether current arising from
the gauge invariance derived from Gauss’s law, which is
only valid on the states with the condition ðn · aÞ ¼ 0. Note
that the introduction of the condition ðn · aÞ ¼ 0 through the
Lagrange multiplier in Eq. (43), which leads to the con-
ditions nγDB

γρ ¼ 0 and kγDB
γρðkÞ ¼ 0 for on-shell photons,

implies that the physical states jΨiphys of the bumblebee
model are defined by the condition ðn · aÞjΨiphys ¼ 0.
Since the interaction terms κðn · aÞnðb2 þ a2Þn2 in Eq. (40)

produce the vertices ~V1n
μν ∼ κðnμnνÞn, ~V2n

μναβ ∼ κðημνnαnβþ
permÞn2, which are similar to Vμναβ in Eq. (38), the con-
tributions to Feynman amplitudes from the potential in the
bumblebee model cancel out due to the fact that the
conditions nγDB

γρ ¼ 0 and kγDB
γρðkÞ ¼ 0 are satisfied.

In this way, the Feynman rules for the bumblebee model,
with solutions restricted to ðn · a ¼ 0Þ, arise only from the
free part LBf

ðaμÞ. Let us emphasize that the LBf
ðaμÞ in

Eq. (40) is the same Lagrange density LEDðAμðaρÞÞ that
defines the fixed-gauge electrodynamics in Eq. (32); there-
fore, Feynman rules, propagators and interactions of the
bumblebee model, restricted to the condition ðn · a ¼ 0Þ,
correspond with those in the fixed-gauge standard electro-
dynamics. Also, as we previously mentioned, the condition
ðBμBμ þ b2Þ ¼ 0 rewritten as ðn · aÞ ¼ 0 prevents the
emergence of the massive mode in the bumblebee model.

V. SUMMARY

Since many approaches of quantum gravity suggest or
have processes in which Lorentz invariance is broken,
Lorentz violation has become an active and rich line of
research [1–9]. Among the mechanisms to introduce LV in
our current theories, spontaneous symmetry breaking is an
appropriate approach to break Lorentz invariance. For
example, the Standard Model extension (SME) [34], the
most used framework to parametrize deviations of Lorentz
symmetry, arises from this concept. Close to the SME we
find the so-called bumblebee models, which are effective
field vector theories with a nonzero vacuum expectation
value that spontaneously breaks Lorentz symmetry. Due to
the manageability of these models, phenomenological
and theoretical relevant properties of Lorentz violation
and spontaneous symmetry breaking can be analyzed and
disentangled. Also, they have been proposed as an alter-
native to standard electrodynamics where the photons are
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identified as Goldstone bosons arising from the sponta-
neous symmetry breaking of Lorentz invariance. The above
idea was investigated in Ref. [17] for some bumblebee
models at the classical level, and the key point was the
restriction of the phase space to solutions whose dynamics
reproduces the equations of motion of standard electrody-
namics. A Hamiltonian analysis was performed in order to
study such an equivalence; however, there remain some
issues to fully prove it. To complete all the remaining
missing pieces constitutes the main motivation of this work,
particularly at the quantum level and for more general
potentials.
To establish an equivalence between bumblebee models

and standard electrodynamics (ED), first we must find the
conditions under which the effects of Lorentz violation are
unobservable, and second we must verify that dynamics
and calculations of physical processes are identical in
both theories. In the present work, we have analyzed
the bumblebee model with a potential of the form
VðBμÞ ¼ VðBμBμ þ b2Þ. The main result was to prove
that after imposing suitable conditions, the resulting theory
is equivalent to standard electrodynamics in a nonlinear
gauge AμAμ þ b2 ¼ 0, both at classical and quantum levels.
We point out that the equivalence is accomplished only
after fixing the gauge in standard electrodynamics and the
choice of suitable conditions in the bumblebee model,
which means that the equivalence is between the electric Ei

and magnetic Bi ¼ − 1
2
ϵijkFjk fields of standard electro-

dynamics with their corresponding fields in the bumblebee
model. We emphasize the above because the Aμ field is not
a physical observable in electrodynamics, while its corre-
spondingBμ field in the bumblebee model can be a physical
observable due to the lack of gauge invariance.
We begin by summarizing the fundamental properties of

the bumblebee model and by indicating the differences with
standard electrodynamics, which are (i) the number of
degrees of freedom is different, (ii) the equations of motion
do not match and (iii) there is no gauge invariance or
current conservation in the bumblebee model. According to
Ref. [17] the bumblebee model reproduces standard
electrodynamics when its phase space is restricted to
solutions satisfying the initial condition BμBμ þ b2 ¼ 0.
We completed the above statement by studying how to
introduce this condition at both classical and quantum
levels, in a consistent manner and by comparing the
resulting model with standard electrodynamics in a non-
linear gauge AμAμ þ b2 ¼ 0.
At the classical level, we performed a Hamiltonian

analysis to standard electrodynamics in the fixed gauge
AμAμ þ b2 ¼ 0. We constructed the Dirac brackets in
Eq. (20) and wrote down the Hamiltonian in Eq. (21) from
which the dynamics, of ED in the fixed gauge, is derived.
After that, we employed Dirac’s method to study the
bumblebee model. Imposing the initial conditions

B0jt0 ¼ 0, ðBμBμ þ b2Þjt0 ¼ 0 and ∂μJμjt0 ¼ 0 we con-
structed a consistent algebra, in which the condition
BμBμ þ b2 ¼ 0 is included and preserved for all times.
This algebra and the restricted Hamiltonian to such initial
conditions correspond to those stemming from the gauge-
fixed standard electrodynamics in Eqs. (20)–(21), respec-
tively. Thus, the time evolution, arising from the algebra
and the Hamiltonian, is the same in both theories. We also
verified that there are no inconsistencies or additional
constraints when the required initial conditions in the
bumblebee model are imposed.
To prove the equivalence at the quantum level, the

strategy followed was to prove that, after imposing the
condition BμBμ þ b2 ¼ 0 on the solutions of the bumble-
bee model, the Feynman rules and propagators of standard
electrodynamics in the fixed gauge AμAμ þ b2 ¼ 0 and
those describing the bumblebee model are the same. In this
way, perturbative calculations of Feynman amplitudes to
any physical process in each model are indistinguishable.
To this end, we begin by analyzing standard electrody-
namics employing the BRST method to fix the nonlinear
gauge AμAμ þ b2 ¼ 0. After employing a very convenient
parametrization Aμ → aμ defined in Eq. (28), which allows
us to translate the nonlinear relation AμAμ þ b2 ¼ 0 to the
expression ðn · aÞ ¼ 0, the Feynman rules and propagators
are obtained. In the fixed-gauge Lagrange density of
standard electrodynamics in Eq. (32) we can identify three
different kinds of contributions: (a) those arising from the
free part (− 1

4
FμνFμν − AμJμ rewritten in terms of the aμ

field redefinition), (b) gauge-fixing terms and (c) the
Faddeev-Popov ghosts. Using the results of Ref. [25], it
can be proved that the contributions from (b) and (c) cancel
out. The above implies that the Feynman amplitudes of
standard electrodynamics in the nonlinear gauge are only
constructed from the Feynman rules derived from the free
part plus the corresponding propagator. Next we turn to the
quantum description of the bumblebee model, in which we
used the same parametrization in Eq. (28). The relation
BμBμ þ b2 ¼ 0 translated to ðn · aÞ ¼ 0 allows us to
identify the aμ fields as the pure Goldstone bosons of
the model that are orthogonal to the direction nμ of the
vacuum inducing the spontaneous Lorentz symmetry
breaking. Also, it allows us to work only with the three
degrees of freedom of the model. The restriction over the
solutions of the bumblebee model satisfying ðn · aÞ ¼ 0 is
effectively incorporated in the calculations through the
propagator DB

μνðkÞ given in Eq. (50) and satisfying
nμDB

μνðkÞ ¼ 0 together with kμDB
μνðkÞ ¼ 0 for on-shell

Goldstone bosons. This propagator DB
μνðkÞ is identical to

the propagator DED
μν ðkÞ in Eq. (37) of standard electrody-

namics in the nonlinear gauge. The on-shell transversality
of DB

μνðkÞ guarantees that Gauss’s law is imposed, à la
Dirac, upon the physical states [22,25]. Gauge invariance,

C. A. ESCOBAR and A. MARTÍN-RUIZ PHYSICAL REVIEW D 95, 095006 (2017)

095006-10



generated by Gauss’s law, is satisfied on the states with
ðn · aÞ ¼ 0. The contributions to Feynman amplitudes
arising from the bumblebee potential cancel out under the
aforementioned requirements; in such a way, the Feynman
amplitudes are constructed just from the free part, as it
happens in standard electrodynamics in the nonlinear gauge.
Therefore, standard electrodynamics in the nonlinear gauge
AμAμ þ b2 ¼ 0 and the bumblebee model with solutions
restricted to the condition BμBμ þ b2 ¼ 0 are described by
identical Feynman rules and propagators, making both
theories equivalent. Note that the massive mode in the
bumblebee model never appears given that the condition
ðBμBμ þ b2Þ ¼ 0 over the solutions is satisfied in both the
classical and quantum approaches. It is worth mentioning
that the interpretations of particles and constraints are
different; the masslessness of photons is explained by gauge
symmetry in standard electrodynamics, while in the bumble-
bee model it is derived from the nature of Goldstone bosons

arising from a spontaneous symmetry breaking of Lorentz
invariance. The constraints AμAμ þ b2 ¼ 0 and BμBμ þ
b2 ¼ 0 have the same structure; however, they have different
origins: it is a gauge-fixing condition in standard electro-
dynamics, while in the bumblebee model it is just a
restriction over its solutions.
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