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We perform an in-depth analysis of the Higgs sector in the minimal left-right symmetric model and
compute the scalar mass spectrum and associated mixings, offering simple physical and symmetry
arguments in support of our findings. We identify the tree-level quartic and cubic potential couplings in
terms of the physical states and compute the quantum corrections for the latter ones. The deviations from
the standard model prediction of the cubic Higgs doublet coupling are considered. Moreover we discuss the
possible implications concerning the stability of the potential under the renormalization-group-equations
evolution. In particular we examine three possible energy scales of parity restoration: LHC reach, next
hadronic collider and very high energy relevant for grand unification.

DOI: 10.1103/PhysRevD.95.095004

I. INTRODUCTION

There has been a great deal of interest in the left-right
symmetric electroweakgauge theory [1,2] in recent years due
its potential accessibility at the LHC. After more than four
decades since its birth, there is finally hope that experiment
could confirm it. Moreover, it has emerged [3] that the
minimal suchmodel is a self-contained and predictive theory
of neutrino mass in full analogy with the standard model
(SM) for the Higgs origin of charged fermions masses. We
can say that what seemed originally its curse, the prediction
of massive neutrino, over the years turned into a great
blessing. In this, the crucial role was played by the seesaw
mechanism [4–6] which not only suggestively accounts for
small neutrino mass, but moreover makes it be of Majorana
nature. This implies lepton number violation (LNV) both at
low energies through the neutrinoless double beta decay [7]
and at high energies through a production of same sign
charged lepton pairs at hadronic colliders [8]. In the minimal
left-right symmetric model (LRSM) there is a deep con-
nection between these processes [9].
There has recently been another important advancement in

the minimal LR model, the analytic expression for the right-
handed (RH) quark mixing matrix, in all of the parameter
space [10]. It showed that the left- and right-handed mixing
angles are remarkably close to each other in spite of near
maximal parity violation in low energy weak interactions.
The LR symmetric theory is the simplest realization of the

idea of the restoration of parity at the fundamental level. LR
symmetry is broken spontaneously, and parity violation is
supposed to be a low energy accident. Since it was known

fairly early that the RH charged gauge boson WR had to be
very heavy due to its impact on theKL − KS mass difference,
on the order of few TeV [11–13], one had to wait for the
advent of LHC in order to study it experimentally. This limit
has been revisited in recent years [14] and definitively
estimated to lie in the full LHC reach [15,16], which ranges
up to ∼6 TeV for theWR mass [17]. This value would make
neutrinoless double decay likely to be seen, even if itwere not
due to neutrino mass. The LHC is slowly but surely getting
there [18], with the limitMWR

≳ 3 TeV in a large portion of
the parameter space of RH neutrino masses.
It is then important to study carefully the LRSM in its full

glory, including theHiggs sector. The original analysis of the
Higgs sector goes back almost forty years [2], and it had
cleared some essential features of the LR theory, such as the
issue of flavor violation in the neutral scalar sector. It was
quite comprehensive, but it had to do with the outdated
version of the theory with Dirac neutrinos. The changes are
not dramatic, basically they reduce to the existence of doubly
charged scalars. They are important though to be taken into
account andwere discussed first in [19–22] andmost recently
in [23–25].
The previous studies lacked the computation of the

masses and mixings of scalar particles in the whole
(phenomenologically relevant) parameter space. It is not
the only reason that drove us to go through this not very
inspiring task plagued by computational tedium, although
we believe that this by itself ought to suffice. The main
issue for the low scale LRSM, the one accessible at the
LHC, is the issue of stability and perturbativity of the
potential at higher energies. Namely, the low energy
constraints from meson mixing, the same that drive WR
to be heavy, imply a stringent limit [13,15,26] on the mass
of the additional Higgs doublet necessarily present in the
minimal model on the order of 20 TeV [16], which leads to
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a worry of possibly too large couplings in the Higgs
potential. This was recently studied in [24], where it was
deduced that the theory can be perturbative for the LHC
scale of symmetry breaking, but that it lives dangerously.
We discuss this issue further, and in particular address the
question of the cutoff scale where the theory ceases to
work. We show that the closeness of the cutoff to the LR
symmetry breaking scale brings important consequences on
the parametric space of the model.
There is more to it. After all, the LR scale is not predicted

by theory and strictly speaking it can be anywhere between
TeV and the Planck scale. Obviously, the LHC reach is of
great importance but one should be getting ready for future
hadronic colliders, now being planned. There have already
been studies devoted to this possibility, such as [25], with
a hope of reaching the LR scale around 20 TeV. We find
that in this case the theory is perfectly perturbative and
the cutoff can be far from the mass of WR, allowing for a
natural suppression of ultraviolet (UV) nonrenormalizable
operators.
Another important scale is the one suggested by the

minimal SOð10Þ grand unified theory (GUT), around
1010 GeV. We run the whole parametric space of the
model in order to check if the scalar sector remains
perturbative preserving the picture of the two step sym-
metry breaking. As a result, we get the generic constraint
that the quartic couplings have to be of order of few percent,
favoring marginally light scalars.
The rest of the paper is organized as follows. In the next

section we review briefly the essential features of the
minimal left-right symmetric model. In Sec. III we give the
scalar mass spectrum and the relevant mixings. We offer
simple symmetry arguments behind our results in order to
facilitate the reading of the paper and as a check of our
computations. We also give the physical quartic and cubic
couplings and discuss the deviations from the SM results.
In Sec. IV we apply our results to the question of stability
and perturbativity of the potential. We pay special attention
to the issue of the cutoff which signals the breakdown of
perturbativity at higher energies. In Sec. V we consider the
vertex renormalization, explicitly showing where the rel-
evant vertices vary from the tree-level ones. Finally, in
Sec. VI we offer a summary and outlook of our results. The
paper is completed by three Appendices where we give
some of the more technical details.

II. SALIENT FEATURES OF THE MINIMAL
LEFT-RIGHT SYMMETRIC MODEL

Gauge group and field content.—The minimal LR
symmetric theory is based on the GLR ≡ SUð2ÞL ×
SUð2ÞR ×Uð1ÞB−L gauge group (suppressing color) and
a symmetry between the left and the right sectors. Quarks
and leptons come in LR symmetric representations

QL;R ¼
�
u

d

�
L;R

; lL;R ¼
�
ν

e

�
L;R

: ð1Þ

The formula for the electromagnetic charge becomes [27]
Qem ¼ I3L þ I3R þ B−L

2
which trades the hard to recall

hypercharge of the SM for B − L, the physical anomaly-
free global symmetry of the SM, now gauged. Both LR
symmetry and the gaugedB − L require the presence of RH
neutrinos.
The Higgs sector consists of the following multiplets

[4,5,28]: the bidoublet Φ ∈ ð2L; 2R; 0Þ and the SUð2ÞL;R
triplets ΔL ∈ ð3L; 1R; 2Þ and ΔR ∈ ð1L; 3R; 2Þ

Φ ¼
�
ϕ0
1 ϕþ

2

ϕ−
1 −ϕ0�

2

�
;

ΔL;R ¼
�
δþ=

ffiffiffi
2

p
δþþ

δ0 −δþ=
ffiffiffi
2

p
�
L;R

: ð2Þ

We denote the bidoublet as two SM model Y ¼ −1
doublets ϕi as in [23]

Φ ¼ ½ϕ1; ϵϕ�
2�; ϕi ¼

�
ϕ0
i

ϕ−
i

�
; i ¼ 1; 2; ð3Þ

with ϵ ¼ iσ2. This manifest SM notation allows one to
make direct comparison between the LR theory and the SM
with two Higgs doublets.
Symmetry breaking.—The symmetry breaking proceeds

through two steps. First, at high scale with the breaking of
SUð2ÞR ×Uð1ÞB−L → Uð1ÞY through the vacuum expect-
ation values (VEVs) [28]

hδ0Ri≡ vR; hδ0Li≡ vL ¼ 0; ð4Þ
which is responsible for the masses of new gauge bosons
WR, ZR

M2
WR

≃ g2Rv
2
R; M2

ZR
≃ ð2g2R þ g2B−LÞv2R; ð5Þ

where gR; gB−L are the gauge couplings of the SUð2ÞR;
Uð1ÞB−L groups. Moreover, vR gives large masses to RH
neutrinos νR, denoted N hereafter.
Next, at low scale with the usual SM symmetry breaking

through (from here on we use the notation sin γ ¼
sγ; cos γ ¼ cγ; tan γ ¼ tγ for any angle γ)

hΦi ¼ vdiagðcβ;−e−iasβÞ; ð6Þ
which gives the mass to the LH charged gauge boson
M2

W ¼ g2L=2v
2. In turn, this in general produces a small

VEV for the left-handed triplet vL, with vL ∝ v2=vR [28],
ensuring the usual dominant doublet symmetry breaking of
the SM symmetry. The oblique parameters impose a bound
vL ≲ 5 GeV, however in the seesaw picture that we follow,
this bound becomes much more stringent since vL directly
contributes to neutrino mass.
Parity restoration: P or C.—The discrete LR symmetry

can be shown to be either a generalized parity P or a
generalized charge conjugation C [15]. Under these, the
fields transform as follows:
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P∶

8<
:

fL ↔ fR
Φ ↔ Φ†

ΔL ↔ ΔR

C∶

8<
:

fL ↔ ðfRÞc
Φ ↔ ΦT

ΔL ↔ Δ�
R

ð7Þ

where ðfRÞc ¼ Cγ0f�R is the usual charge-conjugate spinor.
These symmetries imply gL ¼ gR ≡ g and strongly char-
acterize the form of the scalar potential that we are going to
discuss.

III. THE HIGGS SCALAR SECTOR: MASSES,
MIXINGS AND COUPLINGS

A. The Higgs potential

The most general potential consistent with the GLR gauge
group, without assuming any discrete LR symmetry, is
given in [29]. It is too messy to be presented here. After all,
if one does not believe in LR symmetry, why assume the
existence ofΔL ifΔR suffices by itself? Let us focus instead
on the part of the potential containing only the bidoublet,
since it is quite instructive and will ease the reader’s pain in
facing the full potential. Its general form is given by

VΦ ¼ −μ2ΦTrðΦ†ΦÞ − ~μ2Φ½Trð ~Φ†ΦÞ þ H:c:�
þ λ1½TrðΦ†ΦÞ�2 þ λ2½eid2Tr2ð ~ΦΦ†Þ þ H:c:�
þ λ3½Trð ~ΦΦ†ÞTrð ~Φ†ΦÞ�
þ λ4TrðΦ†ΦÞ½eid4Trð ~ΦΦ†Þ þ H:c:�; ð8Þ

where ~Φ ¼ ϵΦ�ϵ ¼ ½ϕ2; ϵϕ�
1� simply amounts for the inter-

change of the two SUð2ÞL doublets ϕ1 and ϕ2, yet another
advantage of using the notation used in (3). We have used
the phase freedom of Φ to make the mass term ~μΦ real. The
potential has two real mass parameters and six real quartic
couplings. It is instructive to compare it with the two-Higgs
doublet model case in SUð2ÞL ×Uð1Þ, where one has three
real mass terms and ten real quartic couplings [30]. In spite
of being much more restricted, the above potential still
allows for a spontaneous violation of CP as shown
originally in [2], however the generated phase would be
too small due to the large mass of the second doublet, to be
discussed below.
Clearly, the SUð2ÞR gauge symmetry plays an important

role in restricting the number of parameters. We will see
that the generalized charge conjugation as LR discrete
symmetry makes no further restriction whatsoever on this
part of the potential, as opposed to generalized parity that
makes the couplings real. Of course, both of these LR
symmetries connect the couplings of the LH and RH
triplets ΔL;R and simplify the potential considerably.
Case C.—We start with case of the generalized charge

conjugation C as the LR symmetry, since the case P is
simply obtained in the limit of some vanishing phases (see
below). This further restricts the numbers of the parameters
in the potential which now reads as [23,31]

VC ¼−μ2ΦTrðΦ†ΦÞ− ~μ2Φ½Trð ~Φ†ΦÞþH:c:�−μ2Δ½TrðΔLΔ
†
LÞþTrðΔRΔ

†
RÞ�þ λ1½TrðΦ†ΦÞ�2

þ λ2½eid2Tr2ð ~ΦΦ†ÞþH:c:� þ λ3½Trð ~ΦΦ†ÞTrð ~Φ†ΦÞ�þ λ4TrðΦ†ΦÞ½eid4Trð ~ΦΦ†ÞþH:c:�þ ½ρ1Tr2ðΔLΔ
†
LÞ

þ ρ2TrðΔLΔLÞTrðΔ†
LΔ

†
LÞþL→R� þ ρ3TrðΔLΔ†

LÞTrðΔRΔ†
RÞþ ρ4½eir4TrðΔ†

LΔ
†
LÞTrðΔRΔRÞþH:c:�

þ ½α1TrðΦ†ΦÞþα2ðeicTrð ~ΦΦ†ÞþH:c:Þ�½TrðΔLΔ†
LÞþTrðΔRΔ†

RÞ�þα3½TrðΦΦ†ΔLΔ†
LÞþTrðΦ†ΦΔRΔ†

RÞ�
þ ½β1eib1TrðΦΔRΦ†Δ†

LÞþ β2eib2Trð ~ΦΔRΦ†Δ†
LÞþ β3eib3TrðΦΔR

~Φ†Δ†
LÞþH:c:ðβi ¼ 0 in the seesaw pictureÞ�: ð9Þ

The potential appears messy, simply because we have
more than one same type couplings: the bidoublet self-
couplings λi, the triplet self-couplings ρi and mixed
couplings αi and βi. It turns out that in the seesaw limit
the β terms can be safely ignored as we discuss now.
What helps is the separation of the two scales of symmetry

breaking, and the fact that for the physically interesting
seesaw picture of neutrino mass one can safely ignore the
small vL. Namely, its contribution to neutrino mass matrix
has the form [28] Mν ∝ vL=vRMN , where MN denotes the
mass matrix of RH neutrinos N. Thus for a large portion of
RH neutrino mass parameter space, vL must be quite small.
For example, even in the case when N are light and the
lightest one provideswarm darkmatter [32]withmN ≃ keV,
one has vL ≲ 10−6 GeV which can be safely ignored in the
analysis of the potential. In the scenario where RH neutrinos

can be actually seen at the colliders, mN ≳ 10 GeV, vL
becomes completely negligible.
In what follows we thus work in the limit vL ¼ 0 (or

equivalently β ¼ 0). The question is whether it is techni-
cally natural. The positive answer was given already in the
original work [28] but we go through it once again for the
sake of completeness. It is easy to see that vL is generated
by the β terms in the potential, and the smallness of vL is
directly controlled by the smallness of βi couplings. It is
equally easy to see that in the limit βi ¼ 0 there is more
symmetry in the potential, e.g. ΔL → −ΔL which guaran-
tees its stability to all orders in perturbation theory. This
symmetry is broken only by the Yukawa couplings of ΔL,
the same ones that lead to the seesaw picture since ΔL;R

have the same couplings because of the LR symmetry. In
short, vL is naturally small in the technical sense, and in
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principle its effect can be subdominant to the usual seesaw
contribution of RH neutrinos to neutrino mass.
This said, it is fair to admit that an extremely small β, as

does the smallness of neutrino mass itself, points to the
possible large LR scale, which is natural in the context of
the SOð10Þ grand unified theory. Namely, in the minimal
model one predicts vR ≃ 1010 GeV [33]. For this reason,
we also include here a section dedicated to the SOð10Þ
embedding of the LRSM.
Since the LR-scale on the order of TeV is still perfectly

acceptable, both theoretically and phenomenologically, one
may wonder whether there is a more natural alternative to
small β. Indeed, it is sometimes claimed that this can be
achieved by decouplingΔL from the theory in order to have
its VEV small. We disagree with this for a number of
reasons that we now go through.
First, unlike small protected dimensionless couplings,

large scales are not technically natural because they bring
in the usual hierarchy problem. Second, in order to decouple
ΔL in the context of the spontaneous symmetry breaking one
needs to break the discrete LR symmetry at a large scale by
theGLR gauge singletVEV [34].Notice that keepingΔR light
while decouplingΔL requires the usual fine-tuning between
the original symmetric mass terms and the corrections
induced by the singlet VEV. Unlike in the case of small β,
there is no protective symmetry here.Moreover, a decoupled
ad hoc singlet is physically equivalent to the soft, non-
spontaneous, breaking, and thus not well motivated.
If the LRSM is embedded in the SOð10Þ theory however,

the GLR parity odd singlets are often automatically present
[34], but then, as mentioned above, MWR

is predicted to be
huge, around 1010 GeV [33], and one is left basically with
the SM at low energies (and massive neutrinos). One may
find ways to lower MWR

, but in that case one loses all the
predictivity of grand unification.
Imagine for a moment that in any case one does invoke

the GUT fields to argue in favor of a parity odd GLR gauge
singlet field. In this case the LR theory has to remain
perturbative and consistent all the way to the GUT scale.
We will show in the following section that for the LR scale
accessible at the LHC, the theory breaks down quite
quickly. It helps to raise the LR scale to the one reachable
at the future colliders, but it is still not enough, the quartic
couplings become large well below the GUT scale.
Still, one can opt for the parity odd GLR gauge singlet and

claim that this helps the domain wall problem since the
domain walls can be washed by the subsequent inflation.
However, the domain wall problem is not so serious, for it
may be solved by tiny Planck scale induced gravitational
effects [35] or through [36] the symmetry nonrestoration at
high temperature [37]. All this said, it is perfectly legitimate
to decoupleΔL, but the naturalness argument is not the right
one to use.
Bottom line: in the LR-symmetric seesaw picture that we

employ, it is natural, both physically and technically, to
work in the limit of vanishing vL and the βi couplings.

Case P.—We do not write down explicitly the potential
in the case of P. It is enough to say that this case, being
more constrained, is obtained from that of C by requiring
most of the couplings in the potential in (9) to be real. More
precisely, a number of phases must vanish and the potential
can be obtained from the one in the case C

VP ¼ VCðd2 ¼ d4 ¼ r4 ¼ b1 ¼ b2 ¼ b3 ¼ 0Þ
− 2iα2scTrð ~ΦΦ† − ~Φ†ΦÞTrðΔLΔ

†
LÞ: ð10Þ

We should add that in this case the mass term ~μΦ is
automatically real, unlike in the case of C which required a
phase redefinition of Φ.

B. Scalar spectrum

Before we go into the gory detail, it is instructive to
anticipate the results on physical grounds, at least in the
decoupling limit of large MWR

when the spectrum reduces
to the SM Higgs boson h with the usual relation for its
mass, the heavy triplets ΔL;R with m2

Δ ∝ ρv2R couplings
(where ρ stands for the appropriate combination the
couplings ρi) and of the heavy flavor violating doublet
from the bidoublet with the mass squared proportional to
α3v2R. These essential features get complicated by the
possible mixings in the case of accessible scale MWR

,
but most of them can be understood by symmetry argu-
ments which we present below.
The only relevant relation coming from the first-

derivative minimization conditions is for a generic tβ [22]

t2βsa ≃ −4
α2
α3

sc; ð11Þ

which holds for both the LR symmetries P and C. There is
an important distinction though. In the case of P, one has
t2βsa ≤ 2mb=mt [10], which from (11) implies

j2α2=α3scj ≤ mb=mt: ð12Þ

In the case of C the parameter t2βsa is unconstrained and no
further restriction emerges from (11). In both cases, as seen
from (11), there is no possibility for spontaneous CP
violation as opposed to the generic two-Higgs doublet
situation; the phase a vanishes in the limit of explicit CP
conservation (c ¼ 0). The reason for this is phenomeno-
logical, not structural, as we can explain below.
Let us define the following couplings that are useful for

the discussion below:

λΦ ≡ λ1 þ s22βð2λ2cd2þ2a þ λ3Þ þ 2s2βλ4cd4þa;

α≡ α1 þ 2α2s2βcaþc þ α3s2β;

~α≡ α2s2βsasc ≃ −4α3c2βðt2βsaÞ2; ð13Þ
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where λΦ is the quartic coupling of the SM Higgs if the
mixing withΔR fields is neglected, α is the quartic coupling
that mixes the SM Higgs with the new Higgs boson in ΔR
and finally ~α is the effective quartic responsible of the
electroweak corrections to the masses of the ΔL multiplets.
Notice that ~α is negative since β is limited due to the
perturbativity of Yukawa couplings [38], and is controlled
by the physical parameters as we discuss below.
As usual, the next step is to write down the mass matrix

through the Hessian of the potential. It is useful to
diagonalize it in two steps: in the first one, we neglect
the mixing of the Φ with ΔR; in the second one, we
consider the whole matrix. Thus we first introduce

ϕSM ¼ ðcβϕ1 þ sβe−iaϕ2Þ ¼
�
hSM þ iG

G−

�
; ð14Þ

and

ϕFV ¼ ð−sβeiaϕ1 þ cβϕ2Þ ¼
�
H þ iA

H−

�
; ð15Þ

where ϕSM is the SM doublet and FV stands for the tree-
level flavor violating interactions in which the heavy scalar
doublet ϕFV takes part (ϕSM is the doublet with a non-
vanishing VEV, while ϕFV has a zero VEV). In the generic
two SM Higgs doublet case these doublets would mix, but
here they are eigenstates to a great precision, since ϕFV has
to be extremely heavy, on the order of 20 TeV. This allows
us to ignore the electroweak contribution of order v to the
mass of ϕFV . Moreover, this scalar doublet is basically
decoupled, which is why there can be no observable
spontaneousCP violation, which as is well known, requires
two Higgs doublets with masses at the electroweak scale
[39]. Sincem2

ϕFV
∝ α3v2R (see Table I), in order to break CP

spontaneously one would need α3 ≃ ðv=vRÞ2, clearly in
contradiction with the limit on the ϕFV mass. This is made
explicit in [22].
There are possible mixings though with the ΔR compo-

nents (see Appendix A), in particular the mixing between
hSM and ℜeðδ0RÞ is approximatively given by

θ≃ α

2ρ1

v
vR

�
1þO

�
v2

v2R

��
; ð16Þ

or more precisely as in Appendix A. This mixing is only
relevant when the mass of δR in Table I is not far from the
electroweak scale (small ρ1). Recent limits from electro-
weak precision tests allow a fairly large sθ as a function of
the mass of the new Higgs [40,41], up to sθ ≲ 0.4.
In general, the relevant mixing terms among the neutral

scalars appearing in Table I can be found in Appendix A.
Using the constraint in (12), the expressions in the mass
matrix (A1) get somewhat simplified for the case P, which
is reflected in the results given in Table I.
We should comment on the results presented above.

What is new in Table I is the β dependence, ignored in the
literature by assuming tan β≃ 0. It particularly affects
the SM Higgs mass. The β dependence enters in the rest
of the table mainly through the electroweak corrections, but
it can be important, especially for δR in case it is light, as
discussed in Sec. III C.
Notice also an interesting fact regarding the sum rule for

the masses in the LH triplet, compared to the usual situation
of the simple type II seesaw case [42]. The arbitrary sign of
the mass splitting is now fixed since α3 must be positive,
being responsible for the mass of the heavy FV doublet in
the bidoublet.
Understanding the spectrum: Symmetry arguments. Let

us try to make sense out of the above Table I by offering
simple symmetry considerations; we believe they ease the
reader’s pain.

(i) Notice that in the limit ρ2 ¼ ρ4 ¼ c ¼ α3 ¼ 0, ρ3 ¼
2ρ1 the masses of the Δ states vanish, except for
Reδ0R. It is easy to understand why this is so, since in
this limit the potential exhibits an accidental global
SOð12Þ symmetry which involves 12 real fields in
ΔL;R multiplets. The SOð12Þ is broken down to
SOð11Þ through the vR (assuming vL ¼ 0). Hence
11 Goldstone bosons, the three of them eaten by the
heavy gauge fields ZR and WR. In the α3 ¼ 0 limit

TABLE I. Physical scalar content of the LRSM and the associated mass spectrum. In the case of P we discard small terms ofOðt2βsaÞ
for both heavy and light scalars, and in general terms of Oðv2Þ for the heavy flavor changing doublet ϕFV . We also ignore small v=vR
corrections which imply that the would-be Goldstone bosons from the light and heavy sectors do not mix. The only phenomenological
exception is the mixing θ which may be non-negligible for light δR, in spite of being of order v=vR. Further details on the spectrum and
particle mixings are discussed in Appendix A.

Physical Scalars Mass2 (case C) Mass2 (case P)

h≃ cθhSM − sθℜeðδ0RÞ 4ðλΦ − α2

4ρ1
Þv2 The same with the restrictions in (10).

δR ≃ cθℜeðδ0RÞ þ sθhSM 4ρ1v2R þ α2

ρ1
v2 The same with the restrictions in (10).

ϕFV (FV heavy doublet) α3
c2β

v2R
α3
c2β

v2R
δL ¼ ℜeðδ0LÞ ∼ ℑmðδ0LÞ ðρ3 − 2ρ1Þv2R þ 4~αv2 ðρ3 − 2ρ1Þv2R
δ−L ðρ3 − 2ρ1Þv2R þ ð1

2
α3c2β þ 4~αÞv2 ðρ3 − 2ρ1Þv2R þ 1

2
α3c2βv2

δ−−L ðρ3 − 2ρ1Þv2R þ ðα3c2β þ 4~αÞv2 ðρ3 − 2ρ1Þv2R þ α3c2βv2

δ−−R 4ρ2v2R þ α3c2βv2 4ρ2v2R þ α3c2βv2
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the mass of the heavy doublet vanishes too, but it is
not due to the SOð12Þ symmetry arguments. Simply,
it is only the α3 that can split the doublets in the
bidoublet since the terms of type TrðΔ†

RΔRÞ do not
affect the Φ sector. This is what makes the heavy
doublet live at the MWR

scale [2] and what cures the
usual problem of flavor violation in two-Higgs
doublet models [38].

(ii) In the ΔR sector there is a global SOð6Þ symmetry
when ρ2 ¼ α3 ¼ 0 and once again the SOð6Þ sym-
metry is broken down to SOð5Þ by vR ≠ 0. There are
then 5 Goldstone bosons, three of them are eaten by
the gauge fields ZR and W�

R and the other two
correspond to δþþ

R , which is manifestly massless in
that limit. Notice that this is independent of the
quartic coupling α2 which explains why α2 contri-
bution is absent in the masses of the ΔR triplet
whereas it appears as a common contribution in all
the fields that belongs to ΔL.

(iii) It is also instructive to consider the limit vR ¼ 0 in
which case only v gives mass to the scalars. It gives
mass also to bothW andWR (aswell the neutral gauge
bosons), thus one expects doubling of the Goldstone
bosons compared to the SM situation, and it is
confirmed by looking at the Table I since only the
real components of the neutral fields in the bidoublet
pick up masses. There is an interesting exception:
tβ ¼ 1 (only a mathematical limit, physically not
reachable). In this case only one linear combination
of the twoW’s getmassive and thuswe expect halving
the number of Goldstone bosons in the bidoublet. An
explicit computation confirms it, with ϕFV becoming
massive. The limit must be studied apart, it is not
smooth.

C. The Higgs self-couplings: A window to new physics

In the SM the Higgs mass is given in terms of the quartic
coupling appearing in the Higgs potential and therefore its
determination is a crucial test of the Higgs mechanism.
Several studies have been proposed in order to probe the
Higgs self-couplings at the LHC and future colliders
[43–50]. In particular in [45,48] the LHC reach is studied
in the context of the scalar singlet extension of the SM,
which is effectively the situation encountered in the LRSM
for the light δR Higgs scalar.
In Table II we give relations between the physical and the

original quartic couplings that enter in the scalar masses in
Table I. We drop the ∼θ2 corrections in the first two lines,
since the forthcoming experiments will not be very sensi-
tive to these interactions.
The LHC is more sensitive to the triple coupling λhhh,

since it can be probed in Higgs pair production at the LHC,
the reason being that the gluon fusion pair production is the
dominant channel (the order of 30 fb at

ffiffiffi
s

p ¼ 14 TeV
[43]). The other channels, such as vector-boson fusion and

associated production with gauge bosons and heavy quarks
are generically a factor 10–30 smaller. In Table III we show
the expressions for the relevant trilinear couplings in term
of the scalar masses using the relations presented in the
Appendix A. A detailed study of the LHC sensitivity to the
trilinear coupling [43] concluded that the LHC with an
integrated luminosity of 3000 fb−1 could see the Higgs pair
production through the scalar couplings at significant rates.
In contrast to the trilinear coupling, the quartic one needs
the production of three Higgs bosons in the final state; it is
therefore suppressed and probably it cannot be determined
at the LHC.
Using the expressions in Table III for a quite light δR, the

trilinear coupling λhhh can be written as [45]

λhhh ≃ m2
h

2
ffiffiffi
2

p c3θ
v
: ð17Þ

It is instructive to compare it to the SM trilinear coupling,

which is λSMhhh ¼ 1

2
ffiffi
2

p m2
h
v and it gives a deviation with respect

the standard model expectation of the form

Δλhhh ≡ λSMhhh − λhhh
λSMhhh

≃ 3=2θ2: ð18Þ

Therefore a deviation of around 20% can result for a
fairly large θ (order ∼0.4 [40]). We shall see in Sec. V
that this deviation may be much larger once quantum

TABLE II. Relations among the quartic couplings in the
potential and the physical quartic couplings. Small terms of
order θ2 are ignored in the first two lines.

Physical Couplings Quartic Couplings

λhhhh λΦ=4
λδRδRδRδR ρ1=4
λδþþ

R δþþ
R δ−−R δ−−R

ρ1
λδþL δ−LδþL δ−L − λδþþ

R δ−−R δþþ
R δ−−R

ρ2
λδþþ

R δþþ
R δ−−L δ−−L

ρ3
4λϕ†

FVϕFVδ
�
LδL

− λϕ†
FVϕFVδ

þþ
R δ−−R

c2βα3

TABLE III. Triple scalar couplings in the LR model. We used
the relations in the Appendix A to express the trilinear couplings
in terms of the scalar masses. Due to the LHC sensitivity of these
couplings, we do not ignore leading v=vR terms.

Trilinear Couplings Expression

λhhh m2
h

2
ffiffi
2

p c3θ
v

λδRδRδR m2
δR

2
ffiffi
2

p ðs3θv þ
c3θ
vR
Þ

λhhδR s2θcθðm2
δR
þ2m2

hÞ
4
ffiffi
2

p
v

λhδRδR s2θð2m2
δR
þm2

hÞ
4
ffiffi
2

p ðsθv − cθ
vR
Þ
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corrections are included.1 This is encouraging, since at the
LHC program with 3000 fb−1 of integrated luminosity, the
trilinear coupling is expected to be measured with �30%

20% of
accuracy [49].
The prospects for future hadron colliders are even better.

For instance, in [48] it is found that a deviation of 13% can
be measured in a 100 TeV collider for 3 ab−1 of integrated
luminosity, so it is clear that a deviation with respect to the
SM values can be found in the present and the next
generation of hadron colliders. Notice that this is comple-
mentary to the LNV Higgs decays first considered in [52]
and phenomenologically investigated within an effective
approach in [53]. Recently an in-depth collider study,
including displaced vertices, has been provided in [54]
within the LRSM, where this decay is explicitly linkable to
the SM deviation of the Higgs boson self-coupling through
θ. Furthermore, even if δR is too heavy to be seen at the
LHC, formδR ≳ 2MW [55], the above deviation may be still
present for δR below TeV.
Scalar masses and naturalness. As discussed above, one

can relate directly the scalar masses to the relevant
interaction couplings, a general feature of spontaneous
broken gauge theories. Trouble occurs for very low scale
LRSM though. AWR in the reach of LHC would require an
effective potential beyond tree level because of the large α3.
The issue is analyzed in [24] and further discussed in the
next sections.
What about the mass scales of various scalar states? First

of all, as repeatedly stated the second SM doublet ϕFV is
rather heavy, above 20 TeVor so, due to its flavor violating
couplings in the quark sector. The left-handed triplet ΔL
could be light, but for WR accessible at the LHC it ends up
being too heavy to be observed (just as δþþ

R ), as we discuss
in the next section. Ironically, by increasing MWR

the
constraints on ΔL and δþþ

R masses go away, allowing them
to be light, close to the electroweak scale. Of course, this
become less and less natural as the WR mass keeps
growing. The last remaining state, the RH neutral δR scalar
can be as light as one wishes, although again its lightness
certainly violates naturalness expectations.
Avery light δR, with a mass close to the electroweak scale

(and thus decoupled from the RH scale) becomes effectively
a SM singlet. This implies a tiny ρ1, so that one loses a direct
relation between masses and associated vertices because the
latter would be dominated by the Coleman-Weinberg poten-
tial [56]. In order to have a predictive theory, onewould need
the full effective potential, beyond the one in [24] that is
focused on the leading quantum corrections related to α3.
This is explicitly discussed for the relevant trilinear couplings
above in Sec. V.

The decoupling limit. It is worth noticing that in the limit
of θ → 0 (mδR → ∞), the expression for the quartic
coupling λhhhh in Table II does not coincide with the
effective quartic coupling appearing in the Higgs mass,
with an apparent mismatch with the expected decoupling.
The well-known reason is that one must include the
reducible diagram hh → hh with an intermediate δR.
Since the relevant trilinear coupling can be expanded from
Table III as λhhδR ≃ 1=

ffiffiffi
2

p
αvR, in the decoupling limit one

obtains for the Higgs effective quartic interaction

1

4

�
λΦ −

α2

4ρ1

�
h4 ≡ 1

4
λhh4: ð19Þ

This is precisely the same effective quartic entering in the
Higgs mass m2

h ¼ 4λhv2 in Table I, where λΦ and α are
defined in (13).

IV. THE SCALAR POTENTIAL AT WORK

In this section we examine the behavior of the potential
under the running in the whole parametric space of the
model for three different LR scales: LHC reach, next
collider reach (i.e.∼20 TeV) and very high energy
(109 − 1011 GeV). The complete renormalization group
equations (RGE) for the quartics were first provided by
[57] and recently revisited in [58], where some constraints
on the parametric space are derived.
For low LR scale one has to deal with a large α3 required

by the heaviness of the doublet ϕFV . Then the finite one-
loop contributions to the generation of the quartics at vR
due to the large α3 coupling were taken systematically into
account in [24]. Here we consider the divergent loop
contributions and the running of the couplings by choosing
randomly the initial quartics (consistently with the expres-
sion for the masses). Moreover, we allow the possibility of
tβ ≠ 0 since it enters directly in the RGEs and more
important, it changes drastically the matching conditions
of the starting quartics with the scalar masses in Table I. It is
not justified to set the initial values of λ2;3;4 to zero as in the
present literature since these couplings contribute to the
Higgs mass mh as clear from Table I and (13) and
furthermore they are not self-renormalizable.
We extend the analysis for the LR scale at next collider

generation, where the LRSM is less constrained, showing
that the theory becomes completely natural and remains
perturbative all the way to high scales. Finally, we consider
the case of very high energy RH scale, relevant for the two
step symmetry breaking of the SOð10Þ GUT. It is crucial to
make sure that the theory remains perturbative in the energy
regime between the intermediate LR breaking scale and the
scale of grand unification. As we shall see, this can be
satisfied as long as the scalar states tend to live below the
LR scale.

1A complete analysis on the one-loop corrections to the cubic
Higgs couplings in the singlet extension of the SM can be found
in [51].
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A. Left-right symmetry at LHC

Let us start our discussion on RGEs in the phenomeno-
logically most relevant case of low RH scale. As already
remarked above, in this case the scalar potential is strongly
affected by the large α3 and its induced quantum effects.
The evaluation of the self-induced α3 at one-loop and at vR
scale yields [24] αð1Þ3 =α3 ¼ 3α3=ð8π2Þ, which means a
perturbativity of ∼10% for MWR

≃ 6 TeV (the value for
which the perturbativity issue is maximally alleviated,
while WR is still detectable at LHC [17]). Therefore we
focus exactly on this portion of parameter space of the
model, which means α3 ≲ 5 [16,24]. Taking the lower limit
as an input and choosing the other quartics randomly within
the range2 (0,0.1) but consistently with the spectrum,
several couplings become nonperturbative above 105 GeV.
The running of λ1, α3 is shown in Fig 1 (left). The result

depends on the random choice of the initial quartics while
being quite insensitive to tβ. Increasing the range to be
(0,1), the situation worsens and the Landau pole of the
theory gets too low. The cutoff from Fig. 1 (left) is lower
than the one shown in [58], due to the larger initial α3.
In the running, the threshold effects are taken into
account, the light scalars start to run below vR at their
own mass values.
Other important results of the RGEs of the scalar sector

with theRH scale at LHC are represented by in Fig. 1 (center,
right). The combination ρ3 − 2ρ1 provides the leading mass
term of the ΔL components (see Table I). The parameter
ρ3 − 2ρ1 can become negative as in Fig. 1 (center), desta-
bilizing the potential below the limits from perturbativity in
Fig. 1 (left). In order to get the cutoff (defined as the point
where this parameter vanishes) as far as possible aboveMWR

,
one has to choose those configuration where the initial ρ3 −
2ρ1 is large enough, without worsening significantly the
perturbative limit (Landau pole).

Theoretical limits on the masses of the triplet compo-
nents. In terms of the masses of ΔL triplet, for the chosen
value MWR

¼ 6 TeV, this arguments reads from the Fig. 1
(center) as

cutoff ≳ 10MWR
⇒ mδL;δ

þ
L ;δ

þþ
L

≳ 9 TeV: ð20Þ

This is not the actual limit on the masses of ΔL. It only
applies to the WR accessible at LHC, while for a WR mass
above roughly 20 TeV, it goes away completely, as we
discuss in the next subsection. Physically, it says that if the
WR were to be discovered at the LHC, ΔL should not
be seen.
Exactly the same discussion applies for Fig. 1 (right) that

shows the running of the quartic ρ2, related to the leading
mass term of δþþ

R . One has to choose the initial ρ2 ≳ 0.35
consistently with the cutoff in Fig. 1 (right) and without
spoiling significantly the Landau pole in Fig. 1 (left), thus

mδþþ
R

≳ 12 TeV: ð21Þ

These LHC constraints are stronger than the phenomeno-
logical ones from the oblique parameters in [24], and larger
than the benchmark values considered in [59].
We believe that a cutoff as in (20) is the smallest value

for living safe, just enough to suppress nonrenormalizable
operators from a new physics scale, at least in those
configurations with cutoff ≳ 10MWR

. The model requires
though a UV completion already in the reach of the next
collider generation, which can be seen as a challenge. Still,
the conclusion is that the entire scalar content of the LRSM
has to be heavy, except for δR that remains unconstrained.
This is crucial in relation with the discussions encountered
in Sec. III C. We should stress that by lowering the WR
mass, the cutoff goes down, below the order of magnitude
limit we used as a definition of a sensible renormalizable
theory. This implies MWR

≳ 6 TeV, whereas, as remarked
before, the LHC reach requires [17] MWR

≲ 6 TeV—at the
LHC the theory lives at the edge.
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FIG. 1. Left: Running of λ1, α3 (the other λ and α couplings exhibit a similar behavior), they become nonperturbative around 105 GeV.
Center: Running of ρ3 − 2ρ1 which provides the leading masses for the ΔL multiplets. The values for the cutoff are read off from the
point where ρ3 − 2ρ1 goes to zero. Right: The same for 4ρ2 which provides the leading mass term for δþþ

R . In all plots the bands denote
the dependence on the random initial choices consistent with the mass spectrum.

2The analysis is done even by choosing randomly negative
values for those quartics not responsible for the leading mass
terms of the scalars. No significative differences emerge.
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A final comment is in order. What is exhibited in Fig. 1
(center, right) represents proper instabilities (not meta-
stabilities), since the estimated decay time from [60] is very
short with respect to the age of the Universe. The same
holds for the instabilities discussed below.

B. Left-right symmetry at next hadronic collider

The proper machine for the LRSM would be a 100 TeV
collider in any case, since the FV scalar doublet is far away
from the LHC reach. Therefore we choose to focus in this
section on the LRSMwithMWR

¼ 20 TeV, consistent with
next generation colliders. This choice, besides eliminating
any tension in the parametric space of the model, represents
a scale for which the LRSM offers an insight on the strong
CP problem. Namely, the restoration of parity makes θ̄
computable [61] leading to MWR

≥ 20 TeV [62]. This also
fits well with the potentially strong limit due to ϵ0 [63].
The general setup of the RGE analysis is the same of the

one discussed in the previous subsection, except that now α3
can be fairly small. From the FV constraints one has α3 ≳
0.38 [16,24], being the lower value our input parameter.
The most stringent limits are obtained by the running of

λHiggs ≡ 4λh defined in (19), and they depend on tβ. In the left
panel of Fig. 2 we choose tβ ¼ 0, leading to a destabilization
of the potential around 109 GeV. The result is seen to depend
on the random choices of the initial values, and we
conservatively quote the worst configuration.
A nonvanishing tβ enters directly in the RGEs through the

Yukawa couplings and the cutoff gets lowered. For tβ ¼ 0.3,
chosen for the sake of illustration,3 the potential is destabi-
lized around 107 GeV, as shown in the right side of Fig 2.
As a result, we believe that it is not well motivated to

focus on versions of the theory in which parity is broken at
very high energy, while the gauge symmetry GLR is
preserved up to 10–100 TeV—at least, not by appealing

to grand unification. The quartic couplings become non-
perturbative well below the GUT scale and this holds even
for the truncated potential [25,34] consistent with the high
scale parity breaking picture.
In short, a RH scale in the range 10–100 TeV leads to a

well-defined perturbative model, with a high scale cutoff.
Moreover, the theoretical limits on the masses of ΔL states
and δþþ

R are now gone away and one is left only with the
experimental bounds on the order of a few hundred GeV.

C. High scale left-right symmetry and SOð10Þ GUT

The LRSM can be naturally embedded in the SOð10Þ
GUT with the generalized charge conjugation C a discrete
SOð10Þ gauge symmetry. With the minimal fine-tuning
hypothesis, the LR and GUT scales are predicted to be
∼1010 and ∼1016 GeV respectively [33]. A question arises
naturally: are there any conditions on the scalar potential
needed to ensure the consistence of this picture? After all,
the quartics of the potential have to remain perturbative up
to the scale of grand unification.
In Fig. 3 we illustrate once again the cases of tβ ¼ 0; 0.3

for two different ranges of the quartics. For the sake of
completeness we plot also the gauge couplings as a
benchmark. By varying randomly the initial quartics,
one sees that the two step SOð10Þ symmetry breaking
can be preserved with jλi;αi; ρij < 0.1, albeit nontrivially.
The case of non-null tβ is slightly disfavored, as clear from
the right side of Fig. 3. In fact, although the cutoff is still
around GUT scale, λHiggs can become fairly large below the
destabilization point of the potential.
In any case, keeping the quartics of order of few percent

is sufficient to preserve the standard SOð10Þ picture. This
implies that the scalar masses tend to be lower than vR, in
reasonable accord with the extended survival principle
(equivalent to minimal fine-tuning) needed in order to
make predictions on the mass scales in grand unification
[64]. In short, all is well with the naive picture, as long as
the scalars live somewhat below the corresponding sym-
metry breaking scale.
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FIG. 2. Left: Running of λHiggs ≡ 4λh defined in (19) for tβ ¼ 0. Right: The same for tβ ¼ 0.3 giving a lower cutoff. The cutoffs are
defined in the same manner as in the Fig. 1.

3Larger values imply a less perturbative interaction of the FV
scalars with the quarks [38].
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Higher order effects. Before closing this section, a
discussion is needed regarding higher order effects. The
one-loop RGEs for the LRSM show fairly large coefficients
in the pure quartics part [57] due to the rich scalar field
content. One has to wonder whether at higher orders even
larger coefficients appear, breaking down the perturbative
expansion and spoiling the one-loop results. A complete
two-loop analysis is beyond the scope of this work. Still, it
is important to check the impact on the running from this
main part of β2-loop related to the quartics only. In
Appendix B, as generic example, we show the β function
for λ1 at the two-loop order.
As can be seen from (B1), no relevant impact on the

running is expected in the cases of very high energy RH
scale and next collider reach, since there the quartics can be
fairly small (we verify this by explicit calculation). In the
case of LR symmetry at LHC, α3 is large and so most of the
other couplings grow quickly during the running. A direct
evaluation shows that the two-loop correction reduces a bit
the already low destabilization point. However, the Landau
pole appears still slightly above the cutoff shown in Figs. 1
(center, right), which in turn is not drastically modified. In
conclusion, the results presented in this section are quite
stable.

V. TRILINEAR VERTEX CORRECTIONS

Here we discuss the one-loop renormalization vertex for
the cubic couplings; similar results hold also for the quartic
couplings. Of particular importance is the limit of
mδR ≪ MWR

, since a phenomenologically appreciable
impact on the Higgs physics requires a light δR, partially
decoupled from RH scale. This, in turn, implies domination
of the quantum corrections for the trilinear and quartic
couplings involving δR in the effective potential. Moreover,
a WR in the reach of LHC requires a large α3 and therefore
its related loop effects may be the dominant ones. In this
case the leading quantum correction can be read off from
the effective potential in [24], where in particular one sees

the trilinear δ3R coupling (rescaling δR → δR=
ffiffiffi
2

p
in usual

normalization) ≃ð ffiffiffi
2

p
ρ1 þ 2

ffiffiffi
2

p
α23=ð48π2ÞÞvR.

Clearly, for δR sufficiently light (small ρ1), the loop
effect becomes dominant. One should not confuse this with
the perturbativity issue in the LRSM discussed in [24];
simply the perturbation theory starts at the one-loop level
when the tree level is made artificially small, as known
from the classic work of Coleman and Weinberg [56].
We consider here the quantum corrections to the tree-

level exact expressions in Table III and Appendix A by
including the whole scalar spectrum. The latter is especially
important in the case of the RH scale in the LHC reach,
where one has to consider even the constraints in (20) and
(21). The complete expressions of the effective trilinear
couplings are too long to be reported here, thus we show the
leading corrections to the expressions in Table III in the
limit θ; ρ1 → 0:

λapproxhhh ¼ λhhh þ
1

π2

�
v3

v2R

� ffiffiffi
2

p
λ3Φ

3α3
þ α33
96

ffiffiffi
2

p
ρ2

þ 3α33
64

ffiffiffi
2

p
ρ3

�

þ 9λ2Φv

8
ffiffiffi
2

p
�
; ð22Þ

λapproxhhδR
¼ λhhδR þ

v2ð9α23 þ 32λΦ
2Þ

32
ffiffiffi
2

p
π2vR

; ð23Þ

λapproxhδRδR
¼ λhδRδR þ

α3vð8ðλΦ þ ρ2Þ þ 3ρ3Þ
16

ffiffiffi
2

p
π2

; ð24Þ

λapproxδRδRδR
¼ λδRδRδR þ

ð2α23 þ 16ρ22 þ 3ρ23ÞvR
24

ffiffiffi
2

p
π2

: ð25Þ

In Fig. 4 we show the deviation from the expressions
(22)–(25) of the full quantum corrections due to the entire
scalar sector. More precisely we plot

jðλtotali;j;kÞ − λapproxi;j;k Þ=λapproxi;j;k j; ð26Þ
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FIG. 3. Left Running of λHiggs ≡ 4λh defined in (19) for tβ ¼ 0. Right: The same for tβ ¼ 0.3which shows a lower cutoff and λHiggs can
become slightly large at GUT scale. The cutoffs are defined as in the previous figures.
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in the ðmδR ; θÞ plane, where λtotali;j;k are the trilinear couplings
with the full quantum corrections included and the indices
fi; j; kg range on h and δR.
Notice that λapproxhhh would be affected by the further

quantum corrections in the presence of nonvanishing
mixing, as shown in Fig. 4. Therefore a larger SM deviation
than the one in (18) may result in some portions of the
parameter space. This can be understood by noticing that
for nonzero mixing, λΦ has to be larger than its SM value
(see first line in Table I), thus affecting the tree-level values
for the couplings entering directly in the loops.
Furthermore, there are contributions depending on both
α3 and θ. This is particularly true for the effective λhδRδR , as
clear from Fig. 4, which receives contributions ∼α23θ.
Nevertheless, the approximations in (22)–(25) work quite
well for wide regions in the ðmδR ; θÞ plane.
In the natural case with mδR ≃ vR and θ negligible, in

accord with the perturbativity constraints [24], the effective
vertices discussed above assume a simple form given in the
Appendix C. In Fig. 4, for the caseMWR

¼ 6 TeV we have
used the bounds in (20) and (21) on ρ2, ρ3, while for
MWR

¼ 20 TeV the experimental constraints [65] on
mþþ

δR
; mþþ

δL
of a few hundred GeV. Assuming larger values,

especially in the latter case, changes only slightly the
effective vertices and the explicit check shows that the
Fig. 4 remains quite stable.

VI. CONCLUSIONS AND OUTLOOK

The LR symmetric theory has gone through a revival of
interest in recent years, and for good reasons. Due to the
theoretical limits on its scale, obtained in the early eighties,

one had to wait for the LHC in order to hope for its
verification. The possible LHC signatures are remarkable:
lepton number violation through the production of same sign
charged lepton pairs and the way of directly testing the
Majorana nature of RH neutrinos [8]. This is connected with
the low energy lepton number and lepton flavor violating
processes [9]. Moreover, the theory allows for a direct probe
of the origin of neutrino mass and a disentangling of the
seesaw mechanism [3], as long as one can measure the
masses and mixings of the RH neutrinos [66,67] and their
Majorana nature [68]. In recent years, one has also finally
computed analytically the RH quark mixing matrix [10].
One cannot overemphasize the importance of the study

of the Higgs sector of the theory, especially today when it
appears that the SM Higgs boson has been found. The rich
scalar sector of the LRSM merges two milestones of the
present day phenomenology, the Higgs boson physics and
the origin of neutrino mass. An example of the related
literature can be found in [54], where a LNVHiggs decay is
analyzed in the light of LHC. Nevertheless, a complete
analysis of the whole phenomenologically relevant para-
metric space of the scalar potential was still missing, and in
the present work we have attempted to fill the gap. In
particular we have discussed the scalar spectrum with a
generic tβ and the spontaneous CP phase. This configu-
ration, moreover, would be the one needed for a RH scale in
the reach of LHC [15] if the LR symmetry were P. In any
case the full knowledge of the scalar masses is fundamental
for the matching of the parameters of the model with the
relevant physical observables. Such an example is the
evolution of the quartics under the RGEs, which requires
a direct match with the analytical expression of the masses,
in order to ensure the stability of the potential.
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FIG. 4. Plots for the quantities shown in (26) (in %) for MWR
¼ 6 TeV (top) and MWR

¼ 20 TeV (bottom). For the sake of clearness
the plots run up to θ≃ 0.7, although some regions are ruled out phenomenologically [40].
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We have examined the behavior of the model in three
different regimes: LHC energy reach, next 100 TeV hadronic
collider and very high energy, in accordancewith theSOð10Þ
GUT constraints. In the first regime, our analysis shows that
the model lives dangerously. While it is not ruled out from
LHC reach, new physics beyond the LRSM is already
required at energy ∼10MWR

. This cutoff implies stringent
bounds for the entire scalar spectrum, and except that formδR
that might be light as an effective SM singlet, all other states
end up too heavy to be seen at the LHC.A light δR could have
direct implications for the standard-like Higgs physics, with
fairly large deviations of the Higgs self-couplings from the
SM predictions, measurable in the near future.
The second energy regime considered is the one of next

hadronic collider. Here themodel becomesmore natural. The
cutoff appears far away from MWR

, although well below
GUT scale.
In the last energy regime we discussed the SOð10Þ

embedding, within the scenario of two-step symmetry
breaking. We have shown that the usual picture fits well
with the RGE evolution of the whole parametric space of the
LRSM, as long as the quartics are fairly small of order
of 10−1.
We conclude with the vertex renormalization for the

phenomenologically important system h, δR, showing the
anatomy of the quantum corrections that may be dominant
in some regions of the parametric space.
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APPENDIX A: NEUTRAL SCALAR MASSES

Here we discuss the neutral mass matrix for the scalar
potential in (9). What in principle could be a complicated
4 × 4 matrix, reduces effectively to the fhSM; δg system,
since the flavor violating neutral components H and A
decouple and form a part of the super-heavy doublet ϕFV

with the mass m2
ϕFV

¼ α3
c2β

v2R.

Some comments are in order. First of all, the mass of the
heavy doublet ϕFV receives corrections of the order v2 that
we discard because of the strong limit on its mass of around
20 TeV [16] and the ϕFV components (scalar and pseudo-
scalar) are degenerate for any phenomenological purpose.
For the same reason we neglect in m2

δR
in Table I those

terms suppressed as 1=m2
FV and moreover, we neglect the

small mixing between δ and ϕFV states, which can be
relevant in the case of their quasidegeneracy, of little
phenomenological interest, in which case one could trust
the tree level anyway. It is worth noticing that a very light
δR, well below the electroweak scale, requires some more
care because of potential flavor changing neutral currents

(FCNC) effects. This subject has been recently studied in
[69], in which a strong constraint on θ is obtained.
However, this does not affect our results, since we consider
mδR ≥ mh. In such a case, this mixing is suppressed by the
electroweak scale, completely negligible due to the huge
mass of ϕFV field. The only mixing to consider is between
hSM and δ, and only if δ is relatively light.
Themassmatrix for thefhSM; δg system is then found to be

M2
0 ≃

�m2
hSM

m2
δh

m2
δh m2

δ

�
; ðA1Þ

where

m2
hSM

¼ 4λΦv2; ðA2Þ

m2
δ ¼ 4ρ1v2R; ðA3Þ

m2
δh ¼ 2αvvR; ðA4Þ

and λΦ and α are given by (13).
This matrix has the following eigenvalues (it is effectively

the SM augmented by a real scalar singlet studied in [45]):

m2
h;δR

¼ 2

�
ρ1v2R þ v2λΦ ∓ ðρ1v2R − v2λΦÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2v2v2R

ðρ1v2R − λΦv2Þ2
þ 1

s �
ðA5Þ

where h ¼ cθhSM − sθδ, δR ¼ sθhSM þ cθδ, with the mix-
ing given by

t2θ ¼
αvvR

ρ1v2R − λΦv2
: ðA6Þ

Finally we quote the expressions of λΦ, ρ1, α in terms of the
masses mh, mδR and the mixing [45]

λΦ ¼ c2θðm2
h −m2

δR
Þ þm2

δR
þm2

h

8v2
; ðA7Þ

ρ1 ¼
c2θðm2

δR
−m2

hÞ þm2
δR
þm2

h

8v2R
; ðA8Þ

α ¼ s2θðm2
δR
−m2

hÞ
4vvR

: ðA9Þ

APPENDIX B: A LOOK AT RGES
AT HIGHER ORDER

In this appendix, we estimate the impact of the two-loop
corrections to the running of the quartic couplings in the
potential. Since the complete two-loop corrections is out of
the scope of this work, we consider the corrections due to
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the scalar self-couplings only. We expect that the leading
contribution from the two-loop is due to the self-quartics
part, in full analogy with the one-loop result [57] where the
full expressions are provided. Also, the gauge couplings
remain always smaller than unity, even for larger quartics
(this is precisely the case in which two-loop might be

relevant), and for this reason they play a secondary role.
With this in mind and as an illustrative example, we show
the partial two-loop and one-loop β-function of λ1 for a
direct comparison, including only the contributions of the
scalar quartics since only these may become dangerously
large

ð4πÞ2βλ1ð1−loopÞ ⊃ 6α21 þ 6α3α1 þ 2.5α23 þ 32λ21 þ 64λ22 þ 16λ23 þ 48λ24 þ 16λ1λ3;

ð4πÞ2βλ1ð2−loopÞ ⊃
1

384π2
f−36α21ðα3 − 30λ1Þ − 2α1½α3ð19α3 − 540λ1Þ þ 48α2ðα2 þ 3λ4Þ� þ 826α23λ1

− 48α22ðα3 − 94λ1 þ 8λ2 þ 4λ3Þ − 144α2α3λ4 − 24α31 − 13α33 þ 2304λ1ρ
2
1 þ 3456λ1ρ

2
2

þ 432λ1ρ
2
3 þ 2304λ1λ

2
4 þ 3456λ1ρ

2
4 þ 2304λ1ρ1ρ2 þ 1424λ31 − 384λ33 þ 14592λ1λ

2
2

þ 2304λ1λ
2
3 − 3328λ2λ

2
4 − 1792λ3λ

2
4 þ 1152λ21λ3 − 5632λ22λ3g: ðB1Þ

Let us emphasize once again that in Sec. IV the complete one-loop RGEs were used. The expressions in (B1) can be
worked out from the general formalism in [70] and are both normalized with ð4πÞ2 for a direct comparison. A drastic gap
between the size of the coefficients of one-loop and two-loops is evident, although the number of the contributions clearly
increases for the latter. Similar expressions hold for the other quartics.

APPENDIX C: EFFECTIVE TRILINEAR VERTICES

Here we report the expressions of the trilinear vertices with negligible mixing θ

λeffhhh ¼
ffiffiffi
2

p
λΦvþ

1

384π2α3ρ2ð2ρ1 − ρ3Þv2R
ð432

ffiffiffi
2

p
α3λ

2
Φρ2ρ1vv

2
R − 216

ffiffiffi
2

p
α3λ

2
Φρ2ρ3vv

2
R − 9

ffiffiffi
2

p
α43ρ2v

3

−2
ffiffiffi
2

p
α43ρ3v

3 þ 4
ffiffiffi
2

p
α43ρ1v

3 þ 256
ffiffiffi
2

p
λ3Φρ2ρ1v

3 − 128
ffiffiffi
2

p
λ3Φρ2ρ3v

3Þ; ðC1Þ

λeffhhδR
¼ v2ðα23ð8ρ2ρ1 − 2ρ3ρ1 − 9ρ2ρ3 þ 4ρ21Þ þ 32λ2Φρ2ð2ρ1 − ρ3ÞÞ

32
ffiffiffi
2

p
π2ρ2ð2ρ1 − ρ3ÞvR

; ðC2Þ

λeffhδRδR
¼ α3vð−2ρ3ð4λΦρ2 þ ð2ρ2 þ ρ1Þ2Þ þ 4ρ1ð4λΦρ2 þ ð2ρ2 þ ρ1Þ2Þ − 3ρ2ρ

2
3Þ

16
ffiffiffi
2

p
π2ρ2ð2ρ1 − ρ3Þ

; ðC3Þ

λeffδRδRδR
¼

ffiffiffi
2

p
ρ1vR þ 1

48π2ρ2ð2ρ1 − ρ3Þ
ð4

ffiffiffi
2

p
α23ρ2ρ1vR − 2

ffiffiffi
2

p
α23ρ2ρ3vR þ 78

ffiffiffi
2

p
ρ2ρ

3
1vR − 2

ffiffiffi
2

p
ρ3ρ

3
1vR þ 48

ffiffiffi
2

p
ρ22ρ

2
1vR

− 39
ffiffiffi
2

p
ρ2ρ3ρ

2
1vR þ 32

ffiffiffi
2

p
ρ32ρ1vR − 24

ffiffiffi
2

p
ρ22ρ3ρ1vR − 3

ffiffiffi
2

p
ρ2ρ

3
3vR − 16

ffiffiffi
2

p
ρ32ρ3vR þ 4

ffiffiffi
2

p
ρ41vRÞ: ðC4Þ
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