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We present physics results from simulations of QCD using Nf ¼ 2 dynamical Wilson twisted mass
fermions at the physical value of the pion mass. These simulations are enabled by the addition of the clover
term to the twisted mass quark action. We show evidence that compared to previous simulations without
this term, the pion mass splitting due to isospin breaking is almost completely eliminated. Using this new
action, we compute the masses and decay constants of pseudoscalar mesons involving the dynamical up
and down as well as valence strange and charm quarks at one value of the lattice spacing, a ≈ 0.09 fm.
Further, we determine renormalized quark masses as well as their scale-independent ratios, in excellent
agreement with other lattice determinations in the continuum limit. In the baryon sector, we show that the
nucleon mass is compatible with its physical value and that the masses of the Δ baryons do not show any
sign of isospin breaking. Finally, we compute the electron, muon and tau lepton anomalous magnetic
moments and show the results to be consistent with extrapolations of older ETMC data to the continuum
and physical pion mass limits. We mostly find remarkably good agreement with phenomenology, even
though we cannot take the continuum and thermodynamic limits.
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I. INTRODUCTION

In the last decade the field of lattice QCD has seen
significant progress in controlling systematic uncertainties.
Advances in algorithms and lattice formulations have made
it possible to study the continuum limit and the quark mass
dependence of many phenomenologically interesting
observables. Most recently, simulations with the physical
value of the average up/down quark mass were performed
making extrapolations to the physical pion mass super-
fluous, thereby eliminating the associated uncertainties. An
incomplete list of examples for observables related to the
results presented in this paper can be found in Refs. [1–4].
The Wilson twisted mass formulation of lattice QCD

(tmLQCD) [5] is one of a number of improved formulations

with many advantages. Most important, tuned to maximal
twist, leading lattice artifacts are of Oða2Þ in physical
observables [6]. However, twisted mass Wilson and stan-
dard Wilson fermions share a complicated phase structure
[7–10]: at finite values of the lattice spacing a remnant of
the continuum chiral phase transition can render simula-
tions with small values of the pion mass difficult. This
phenomenon was predicted in Wilson chiral perturbation
theory [11–14] for Wilson-type fermions and found to
occur in practice in Refs. [15,16]
In this paper we show in the Nf ¼ 2 case that these

difficulties are overcome by adding the Sheikholeslami-
Wohlert term [17] to the action. This enables simulations at
the physical pion mass with a value of the lattice spacing
around a ¼ 0.09 fm or even larger. At maximal twist, all
physical observables are automatically OðaÞ improved.
In contrast to Wilson clover fermions, a nonperturbative
tuning of the Sheikholeslami-Wohlert coefficient csw is thus
not needed. Moreover, for any value of csw, operator-
specific improvement terms are not required in the max-
imally twisted theory.
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With this new action, we have generated four ensembles
with pion masses in the range from about 130 to 500 MeV
at one value of the lattice spacing. On these gauge
configurations, we compute pseudoscalar meson masses
and decay constants as well as their ratios, the nucleon and
Δ baryon masses, the anomalous magnetic moments of the
electron, muon and tau leptons and a number of gluonic
scales. The meson mass ratios are used to give estimates
of renormalized quark masses as well as their scale-
independent ratios.
Our results show that the aforementioned quantities can

be extracted with good statistical precision. We believe,
therefore, that simulations at the physical pion mass
together with automaticOðaÞ improvement with this action
will provide high-precision results for phenomenologically
interesting observables such as quark masses, weak matrix
elements and the hadronic contribution to the anomalous
magnetic moment of the muon. In fact, a comparison of the
results obtained with the new action at one value of the
lattice spacing to continuum extrapolated results from
previous Nf ¼ 2 simulations reveals only small deviations,
with the exception of D-meson-related quantities for which
it is well known that a continuum extrapolation is essential.
The ensembles discussed in this paper are also the basis for
results on meson and nucleon structure [18], some of which
are the first obtained directly at the physical pion mass.
The paper is organized as follows: In Sec. II we detail the

lattice action and the observables investigated. Section III is
devoted to the results, followed by a summary in Sec. IV.
Details about the simulation parameters and the analysis
procedure are given in Appendixes A and B.

II. LATTICE ACTION AND OBSERVABLES

For the discretized gauge action we use the so-called
Iwasaki gauge action [19] as used for the previous Nf ¼
2þ 1þ 1 ETMC simulations. Compared to previous
simulations performed by ETMC the fermion action has
been modified by adding the so-called clover term [17] to
read

Stml ¼
X
x

χ̄l
h
DWðUÞ þm0 þ iμlγ5τ3

þ i
4
cswσμνF μνðUÞ

i
χlðxÞ; ð1Þ

where DW is the massless Wilson Dirac operator, m0 the
bare Wilson mass parameter, μl is the bare twisted mass
parameter and csw is the so-called Sheikoleslami-Wohlert
improvement coefficient [17]. τ3 is the third Pauli matrix
acting in flavor space and χ̄l, χl are the fermionic fields in
the twisted basis χl ¼ ðu; dÞt. We remark that we will work
in the twisted basis throughout this paper unless stated
otherwise.

The bare Wilson mass m0 is tuned to its critical value
mcrit by requiring the partially conserved axial current
(PCAC) quark mass

mPCAC ¼
P

xh∂0Aa
0ðx; tÞPað0Þi

2
P

xhPaðx; tÞPað0Þi ; a ¼ 1; 2 ð2Þ

to vanish at every value of the bare twisted mass
μl independently. Here Aa

μ and Pa are the axial vector
current and the pseudoscalar density in the twisted basis,
respectively,

Aa
μðxÞ¼ χ̄lðxÞγμγ5

τa

2
χlðxÞ; PaðxÞ¼ χ̄lðxÞγ5

τa

2
χlðxÞ:

In this situation—called maximal twist—physical observ-
ables are free of OðaÞ lattice artifacts without the need of
any improvement coefficients [6].
The clover term is usually introduced in order to obtain

on-shell OðaÞ improvement of lattice QCD with Wilson
fermions [20] by tuning csw nonperturbatively using a
suitable condition in the massless theory. Since in our case
OðaÞ improvement is already guaranteed byWilson twisted
mass at maximal twist, we can use the clover term to
modify artifacts of Oða2Þ and, possibly, reduce them.
In particular, it was shown in the quenched approxima-

tion [21,22] that combining Wilson twisted mass fermions
at maximal twist and the clover term reduces cutoff effects
related to isospin symmetry breaking in twisted mass lattice
QCD. Following Ref. [21], we have set csw to its non-
perturbative value csw ¼ 1.57551 using Padé fits to the data
in Ref. [23]. We stress again that it is not necessary to use
the nonperturbative value and in principle csw can be tuned
by requiring minimal mass splitting between the charged
and the neutral pion. In addition, it must be noted that all
the symmetries which ensure automaticOðaÞ improvement
at maximal twist persist when a clover term is present.
The gauge configurations have been generated using the

hybrid Monte-Carlo (HMC) algorithm with mass precon-
ditioning and multiple time scales [24]. The corresponding
code is publicly available in the tmLQCD software suite
[25–27]. The ensemble details are summarized in Table I
including the number of configurations, the number of
trajectories and the HMC trajectory length. Configurations
have been saved every second trajectory after a suitable
number of equilibration trajectories.
For ensemble cA2.09.48, the bare twisted mass has been

tuned such that the ratio Mπ=fπ takes its physical value.
A detailed listing of all simulation parameters for all
ensembles and a discussion of molecular dynamics histor-
ies is given in Appendix A.
Quantities with strange and charm quark content are

probed on our Nf ¼ 2 flavor ensembles by adding valence
strange and charm quarks in the so-called Osterwalder-
Seiler (OS) discretization [28]. The corresponding fer-
mionic action for a doublet of OS flavors f ∈ fs; cg with
bare twisted masses aμs;c reads
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SOSf ¼ χ̄f
h
DWðUÞ þm0 þ iμfγ5τ3 þ

i
4
cswσμνF μνðUÞ

i
χf:

ð3Þ

Formally, the action in Eq. (3) is accompanied by a
corresponding ghost action to exactly cancel their sea
contribution. For more details we refer to Ref. [28].
When m0 is set equal to the value of mcrit of the unitary
action, OðaÞ improvement stays valid for arbitrary values
of csw.

A. Lattice scales from gluonic observables

We begin by discussing our determinations of various
lattice scales from gluonic observables and hence not
specific to twisted mass fermions. We consider two types
of scales, namely one related to the static quark-antiquark
potential r0, and the ones related to the action density
renormalized through the gradient flow [29].
The gradient flow Bμðt; xÞ of gauge fields is defined in

the continuum by the flow equation

_Bμ ¼ DνGνμ; Bμjt¼0
¼ Aμ; ð4Þ

Gμν¼∂μBν−∂νBμþ½Bμ;Bν�; Dμ¼∂μþ½Bμ; ·�; ð5Þ

where Aμ is the fundamental gauge field, Gμν the field
strength tensor and Dμ the covariant derivative. At finite
lattice spacing Eqs. (4) and (5) become

d
dt

Vtðx; μÞ ¼ −g20 · ∂x;μSGðVtÞ · Vtðx; μÞ; ð6Þ

where Vtðx; μÞ is the flow of the original gauge field
Uðx; μÞ at flow time t, SG is an arbitrary lattice discretiza-
tion of the gauge action and ∂x;μ denotes the su(3)-valued
differential operator with respect to Vt. For our calculations
we use the standard Wilson gauge action. One virtue of the
gradient flow is that observables evaluated on gauge fields
at flow times t > 0 are renormalized [30]. One can,
therefore, define lattice scales by keeping a suitable
renormalized gluonic observable, e.g. the action density
E [29], at constant flow time t0 fixed in physical units,
through the condition

t20hEðt0Þi ¼ E0 ð7Þ

and determine the lattice scale from the dimensionless flow
time in lattice units, t̂0 ¼ a2t0. For convenience wewill also
sometimes use ŝ0 ¼

ffiffiffiffi
t̂0

p
. For our calculation we use both

the standard Wilson plaquette

EplðtÞ ¼ 2
X
p∈Px

Retrf1 − VtðpÞg; ð8Þ

and a symmetrized cloverlike discretization for the action
density Esym [29]. The difference between the results from
the two definitions can be used to estimate the size of the
effects stemming from the discretization of the action
density.
An alternative scale w0 has been introduced in Ref. [31]

and is defined through a suitable derivative of the action
density,

WðtÞ ¼ t · ∂tðt2hEðtÞiÞ; ð9Þ

and the condition

Wðt ¼ w2
0Þ ¼ W0: ð10Þ

In addition to the lattice scales from t0, s0 and w0 we also
consider the scale from the dimensionful combination
t0=w0. The combination has been found to have a very
weak dependence on the quark mass [32]. Because the
scales from the gradient flow of the action density are
strongly correlated, they should not be regarded as inde-
pendent. In particular, correlations need to be taken into
account in the combination t0=w0. Moreover, since the
action density at t ∼ t0 ∼ w2

0 usually suffers from large
autocorrelation [32], the calculation of the statistical error
needs special care.
An independent scale can be calculated from the static

quark-antiquark potential. In this approach, a scale is
defined through the force FðrÞ between a static quark
and antiquark separated by the distance r [33]. The
condition

r20Fðr0Þ ¼ 1.65 ð11Þ

TABLE I. The ensembles used in this investigation, all of which have temporal extent T ¼ 2Lwith L=a the spatial
lattice extent. In addition we give the total number of trajectoriesNτ, the number of thermalized configurations Nconf
and the HMC trajectory length τ and the integrated autocorrelation time of the plaquette τintðPÞ.
Ensemble β csw κc aμl L=a Nτ Nconf τ τintðPÞ
cA2.09.48 2.10 1.57551 0.13729 0.0009 48 6900 2950 1 15(6)
cA2.30.24 2.10 1.57551 0.13730 0.0030 24 3400 1300 1 3.2(8)
cA2.60.24 2.10 1.57551 0.13730 0.0060 24 9000 4000 1 3.8(6)
cA2.60.32 2.10 1.57551 0.13730 0.0060 32 11840 5350 1 2.9(5)
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fixes the scale r̂0 ¼ r0=a. The static force can be deter-
mined from the static quark-antiquark potential VðrÞ
through the calculation of Wilson loops. More specifically,
the potential at distance r is extracted from the asymptotic
time dependence of the (r × t)-sized Wilson loops Wðr; tÞ,

lim
t→∞

hWðr; tÞi ∝ e−VðrÞ·t; ð12Þ

and the force is then determined through the derivative of a
suitable parametrization of the potential as a function of r
which we choose as

VðrÞ ¼ V0 þ
α

r
þ σr: ð13Þ

In order to optimize the overlap of the Wilson loop with the
ground state of the potential, we employ five different
levels of spatial APE smearing and extract the ground state
energy from the corresponding correlation matrix by
solving the corresponding generalized eigenvalue problem
[34]. Finally, we also make use of the noise reduction
proposed in Ref. [35]. Further details on the calculation of
the Wilson loops and the analysis procedure can be found
in Refs. [34,36].

B. Pseudoscalar meson masses and decay constants

We continue with a discussion of the masses and decay
constants of pseudoscalar mesons such as pions, kaons, D
and Ds mesons. We define the pseudoscalar interpolating
operator for flavors f, f0 ∈ fl; s; cg as

P�
f;f0 ðtÞ ¼

X
x

χ̄fðx; tÞiγ5τ�χf0 ðx; tÞ; τ� ¼ τ1 � iτ2

2

ð14Þ

and the pseudoscalar correlation function

Cf;f0
PS ðtÞ ¼ hP�

f;f0 ðtÞP�
f;f0 ð0Þ†i: ð15Þ

This choice ensures that flavors f and f0 always come with
opposite values of their corresponding twisted mass param-
eters. In the light sector, this choice projects to the charged
pion states. In the kaon and D-meson case in principle also
the combinations with equal signs of light and s or c quarks
are possible, because they lead to the same meson mass
values and amplitudes in the continuum limit. However,
one can show that in the case of opposite signs leading
cutoff effects in the squared pseudoscalar meson masses are
of Oðmfa2Þ with mf the relevant quark mass [13,37].

The spectral decomposition of Cf;f0
PS ðtÞ allows one to

extract the pseudoscalar meson mass Mf;f0
PS from

lim
t→∞

Cf;f0
PS ðtÞ ¼ jh0jP�

f;f0 jPSij2
2Mf;f0

PS

ðe−Mf;f0
PS t þ e−M

f;f0
PS ðT−tÞÞ;

where jPSi is the ground state in this channel. Ml;l
PS , M

l;s
PS

and Ml;c
PS correspond to the charged pion, the kaon and the

D-meson masses, respectively. Let us also define the
effective mass

MeffðtÞ ¼ − logðCðtÞ=Cðt − 1ÞÞ ð16Þ
for general correlation functions CðtÞ, which can also be
utilized to determine hadron masses. The matrix element
h0jP�

f;f0 jPSi is at maximal twist directly related to the
pseudoscalar decay constant via

ff;f
0

PS ¼ ðμf þ μf0 Þ
h0jP�

f;f0 jPSi
ðMf;f0

PS Þ2
; ð17Þ

which follows from the partially conserved vector current
relation in Wilson twisted mass lattice QCD at maximal
twist [6]. The lattice dispersion relation for mesons can be
taken into account by exchanging ðMf;f0

PS Þ2 in Eq. (17) for

Mf;f0
PS sinhðMf;f0

PS Þ. In the following, the former will be
referred to as “continuum definition” (CD) and the latter
as “lattice definition” (LD).
Due to flavor symmetry breaking in Wilson twisted mass

lattice QCD, charged and neutral pions differ in their mass
values by Oða2Þ artifacts. Reducing this mass splitting—
and, therefore, allowing simulations at the physical point—
was one of the main design goals of the action specified in
Eq. (1). The mass of the neutral pion can be determined
from the interpolating operator in the twisted basis

P0ðtÞ ¼
X
x

χ̄lðx; tÞ1Fχlðx; tÞ; ð18Þ

where we denote with 1F the unit matrix in flavor space.
The corresponding correlation function C0

PSðtÞ has con-
nected and disconnected contributions and is, therefore,
noisy. In the following we denote the charged pion mass as
Mπ , the full neutral one as Mπ0 and the one determined
from only the connected part of C0

PSðtÞ as Mπð0;cÞ . The
techniques used to extract the full neutral pion mass with
sufficient statistical precision are detailed in Appendix B 1.
In order to extract the ground state masses and matrix

elements more reliably, we include also fuzzed [38] inter-
polators in our analysis. From local and fuzzed interpolators
we build a 2 × 2 matrix and solve the corresponding
generalised eigenvalue problem [39–41] or use a constrained
matrix fit [36]. For further details we refer to Ref. [36].

C. Nucleon and Delta masses

The mass of the nucleon is extracted from two-point
correlators using the standard interpolating fields, which
are given in the physical quark field basis for the proton by
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Jp ¼ ϵabcðuTaCγ5dbÞuc; ð19Þ

where C ¼ γ4γ2 denotes the charge conjugation matrix and
spinor indices are suppressed. For the Δþþ and Δþ, we use
the interpolating fields

JμΔþþ ¼ ϵabcðuTaCγμubÞuc; ð20Þ

JμΔþ ¼ 1ffiffiffi
3

p ϵabc½2ðuTaCγμdbÞuc þ ðuTaCγμubÞdc�: ð21Þ

In order to improve the overlap with the ground state we
employ gauge invariant smearing that has been demon-
strated to effectively suppress excited state contributions.
Gaussian smearing [42,43] is applied to each quark field
qðx; tÞ yielding a smeared quark field, qsmearðx; tÞ ¼P

yFðx; y;UðtÞÞqðy; tÞ. The gauge invariant smearing
function is given by

Fðx; y;UðtÞÞ ¼ ð1þ αHÞnðx; y;UðtÞÞ ð22Þ

constructed from the hopping matrix understood as a
matrix in coordinate, color and spin space,

Hðx;y;UðtÞÞ¼
X3
i¼1

ðUiðx;tÞδx;y−a{̂þU†
i ðx−a{̂;tÞδx;yþa{̂Þ:

ð23Þ

The parameters α and n are varied so that the root-
mean-square radius obtained using the proton interpolating
field is of the order of 0.5 fm. The values α ¼ 4 and n ¼ 50
are seen to produce an early plateau for the effective mass in
Eq. (16), where the appropriate correlation function is the
zero-momentum two-point correlator of the proton

CpðtÞ ¼
1

2
Trð1� γ4Þ

X
x

hJpðx; tÞJ̄pð0; 0Þi: ð24Þ

In addition, we apply APE smearing [44] to the spatial links
that enter the hopping matrix in the smearing function,
setting αAPE ¼ 0.5 and nAPE ¼ 50. APE smearing is useful
to reduce the gauge noise in the correlation functions.
The interpolating field for the Δ has also overlap to spin-

1=2 states. This overlap can be removed with the incor-
poration of a spin-3=2 projector in the definitions of the
interpolating fields

JμX3=2
¼ Pμν

3=2J
ν
X: ð25Þ

For nonzero momentum, Pμν
3=2 is defined as [45]

Pμν
3=2 ¼ δμν −

1

3
γμγν −

1

3p2
ðpγμpν þ pμγνpÞ: ð26Þ

The spin-1=2 component JμX1=2
can be obtained by acting

with the spin-1=2 projector Pμν
1=2 ¼ δμν − Pμν

3=2 on JμX.
Components with Lorentz indices μ, ν ¼ 0 will not
contribute. Since we are interested in the mass we take
p ¼ 0 in which case the last term of Eq. (26) will contain
δ0μ and vanish. When the spin-3=2 and spin-1=2 projectors
are applied to the interpolating field operators, the resulting
two-point correlators for the spin-3=2 and −1=2 baryons
acquire the form

C3
2
ðtÞ ¼ 1

3
Tr½CðtÞ� þ 1

6

X3
i≠j

γiγjCijðtÞ;

C1
2
ðtÞ ¼ 1

3
Tr½CðtÞ� − 1

3

X3
i≠j

γiγjCijðtÞ; ð27Þ

where Tr½C� ¼ P
iCii [46]. When no projector is taken into

account, the resulting two-point correlator would be equal
to 1

3
Tr½C�. Although for the Δ the contribution from the

spin-1=2 component is suppressed [47], we nevertheless
include the spin-3=2 projector.

D. Anomalous magnetic moments

The leading-order hadronic contribution to the lepton
anomalous magnetic moments in Euclidean space-time is
given by [48]

ahvpl ¼ α2
Z

∞

0

dQ2

Q2
w
�
Q2

m2
l

�
ΠRðQ2Þ; ð28Þ

where α is the fine structure constant, w is a weight
function, Q2 is the squared Euclidean momentum and
ml is the corresponding lepton mass. ΠRðQ2Þ is the
renormalized hadronic vacuum polarization function
ΠRðQ2Þ ¼ ΠðQ2Þ − Πð0Þ obtained from the vacuum
polarization tensor

ΠμνðQÞ ¼
Z

d4xeiQ·ðx−yÞhJemμ ðxÞJemν ðyÞi

¼ ðQμQν −Q2δμνÞΠðQ2Þ; ð29Þ

with the electromagnetic vector current Jemμ ðxÞ. For the
lattice computation of the quark-connected diagrams con-
tributing to ahvpl we employ the conserved point-split vector
current for a single flavor q,

JμðxÞ ¼
1

2
ðq̄ðxþ μ̂Þð1þ γμÞU†

μðxÞqðxÞ
− q̄ðxÞð1 − γμÞUμðxÞqðxþ μ̂ÞÞ: ð30Þ

The hadronic vacuum polarization function defined as in
Ref. [49] is fitted by dividing the momentum squared range
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between 0 and 100 GeV2 in a low-momentum region 0 ≤
Q2 ≤ Q2

match and a high-momentum one Q2
match < Q2 ≤

Q2
max ¼ 100 GeV2 according to

ΠðQ2Þ ¼ ð1 − ΘðQ2 −Q2
matchÞÞΠlowðQ2Þ

þ ΘðQ2 −Q2
matchÞΠhighðQ2Þ; ð31Þ

where the low-momentum fit function is chosen to be

ΠlowðQ2Þ ¼
XM
i¼1

f2i
M2

i þQ2
þ
XN−1

j¼0

ajðQ2Þj; ð32Þ

and the form of the high-momentum part is inspired by
perturbation theory

ΠhighðQ2Þ ¼ logðQ2Þ
XB−1
k¼0

bkðQ2Þk þ
XC−1
l¼0

clðQ2Þl: ð33Þ

This defines our so-called MNBC fit function, e.g.
M1N2B4C1 means M ¼ 1, N ¼ 2, B ¼ 4, and C ¼ 1 in
Eqs. (32) and (33) above. Mi and fi represent the energy
levels and decay constants in the vector channel, respec-
tively, which are determined from the corresponding two-
point functions; see Ref. [49]. ai, bi and ci are free
parameters to be fitted to the data. As the value of
Q2

match in the Heaviside functions in Eq. (31) we have
chosen 2 GeV2. Varying the value of Q2

match between 1 and
3 GeV2 does not lead to observable differences as long as
the transition between the low- and the high-momentum
part of the fit is smooth.
Since the momentum, where the weight function appear-

ing in the definition of ahvpl in Eq. (28) attains its maximum,
is proportional to the squared lepton mass and the lepton
masses vary over 4 orders of magnitude, the different lepton
anomalous magnetic moments are sensitive to very differ-
ent momentum regions. Thus, the different lepton moments
provide a very valuable cross-check of the interpolation
method we used.

III. RESULTS

In this section we present results for a number of
observables determined on the ensembles used in this
study. We remark that we currently have only one value
of the lattice spacing and one volume at the physical point
available. Therefore, we cannot control the associated
systematic errors, which will be addressed in the future.

A. Lattice scales from gluonic observables

In Table II we compile our results for the various gluonic
scales discussed in Sec. II A. The integrated autocorrelation

times τEðt0Þint refer to the action density evaluated at flow time

t0 and our estimates should be understood as lower bounds
for the true values.
The results for the scales from the gradient flow are

based on the symmetrized action density Esym. All errors
take into account the autocorrelation times either by

blocking or by including explicitly τEðt0Þint which is given
in units of HMC trajectories. The error on the combination
t0=w0 takes the strong correlation between t0 and w0 into
account by a correlated bootstrap analysis. The correlation
reflects itself in a very small relative statistical error of
0.3‰which is less than half the relative error on

ffiffiffiffiffiffiffiffiffiffiffi
t0=a2

p
or

w0=a. What makes the scale t0=w0 even more compelling is
the circumstance that its quark mass dependence is very
weak and in fact negligible within statistical errors. This
has already been observed for our Nf ¼ 2 twisted mass
ensembles using the twisted mass Dirac operator at
maximal twist without the clover term [32] and it would
be interesting to investigate this independence in view of
the χPT expressions provided in Ref. [50]. For the other
two scales t0 and w0 we observe a shift of about 2.5%
from the result at aμ ¼ 0.006 compared to the one at the
physical point. From the last two rows in Table II we can
further draw the conclusion that finite-volume effects in the
gluonic lattice scales from the gradient flow are also
negligible for the volumes considered here. Finally, an
estimate of the intrinsic lattice artifacts in the scales can be
obtained by comparing the results above with the corre-
sponding ones based on the action density calculated from
the plaquette. The difference between the two definitions is
about 10% for t0=a2 and ðt0=w0Þ=a while it is only about
1.5% for w0=a, but of course these numbers do not say
much about the true lattice artifacts in the scales listed in
Table II.
The total error on r0=a results from the statistical and

systematic errors added in quadrature. The estimates of the
systematic errors in r0=a due to neglected excited state
contributions interpolating FðrÞ to r0 and lattice artifacts
are obtained as follows. The excited state contributions are
estimated from the shift in r0=a when repeating the whole
analysis with all temporal fit ranges shifted by one unit. The
interpolation error is estimated from the variation of r0=a
under a change of the interpolation range. The lattice
artifacts are estimated from the shift in r0=a when the
analysis is repeated using Iwasaki improved distances for
the potential instead of the naive ones. Below, the separate

TABLE II. Results for the gluonic scales r0=a, t0=a2 and w0=a
as well as the integrated autocorrelation time of the action density
at flow time t0.

Ensemble τEðt0Þint t0=a2 ðt0=w0Þ=a w0=a r0=a

cA2.09.48 37(16) 2.8037(23) 1.50964(50) 1.8572(14) 5.317(48)
cA2.30.24 15(6) 2.8022(85) 1.5134(11) 1.8517(55) 5.322(114)
cA2.60.24 12(5) 2.7404(73) 1.5105(15) 1.8142(41) 5.162(53)
cA2.60.32 23(5) 2.7367(28) 1.5111(03) 1.8110(17) 5.191(63)
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statistical, excited state, interpolation and lattice artifact
errors can be read off in that order

r0=aðcA2.09.48Þ ¼ 5.317ð08Þð01Þð25Þð40Þ;
r0=aðcA2.30.24Þ ¼ 5.322ð52Þð89Þð38Þð32Þ;
r0=aðcA2.60.24Þ ¼ 5.162ð24Þð31Þð08Þð34Þ;
r0=aðcA2.60.32Þ ¼ 5.191ð13Þð22Þð38Þð43Þ:

From the comparison of the values for the two volumes
available for cA2.60, we conclude that the finite-volume
effects in r0=a are well within the statistical error. However,
we do observe a quark mass dependence for r0 yielding a
difference of about 2.5% between the result at aμ ¼ 0.006
and the one at the physical point, which is of the same size
as the shift in t0 and w0.

B. Simulation stability and twisted
mass isospin breaking

Before moving on to present our results for masses and
decay constants, we discuss the stability of the simulations
with the new action and the effects of the explicit isospin
symmetry breaking with twisted mass fermions. The
biggest (and almost only; see also Ref. [51]) effect of this
isospin breaking in past simulations has always been
observed in the charged to neutral pion mass splitting.
This splitting is responsible for the lower bound, μcrit, on

the bare light quark mass value which can be simulated at
given value of the lattice spacing [11–14]. In fact, meta-
stabilities were observed in simulations with μ < μcrit
[7,9,10].
In Table III, we list the charged, connected neutral

and full neutral pion masses in lattice units. The determi-
nation of the full neutral pion mass is somewhat subtle due
to the presence of a vacuum expectation value as well as
disconnected diagrams, as discussed in Appendix B 1. As
shown in Fig. 1(b), linear and constant extrapolations in the
light quark mass of the splitting between the squared full
neutral and charged pion masses to the chiral limit are
found to be

a2ðM2
π� −M2

π0
Þlinaμl→0 ¼ 0.00018

�þ32

−28

�
; ð34Þ

a2ðM2
π� −M2

π0
Þcstaμl→0 ¼ 0.00026

�þ21

−22

�
; ð35Þ

clearly compatible with zero. We can thus conclude that the
low energy constant c2 parametrizing the Oða2Þ lattice
artifact responsible for the pion mass splitting is zero within
our uncertainties. At the physical charged pion mass, taking
the extremal values of the errors as an upper bound, the
difference between the charged and neutral pion masses is
no larger than about 13 MeV.

TABLE III. Charged, neutral connected and full neutral pion masses as well as charged pion decay constants in
lattice units and their ratios determined on the ensembles in this analysis. In addition, values in lattice units for a
number of mesonic quantities. The first error is statistical and the second is an estimate of the systematic error due to
the choice of fit range. NmeasðNπ0

measÞ represents the number of configurations used for meson quantities (the full
neutral pion mass, respectively) on the corresponding ensemble.

Observable cA2.09.48 cA2.30.24 cA2.60.24 cA2.60.32

aMπ� 0.06196ð09Þðþ12
−05Þ 0.1147ð7Þðþ4

−7Þ 0.15941ð38Þðþ15
−21Þ 0.15769ð26Þðþ15

−14Þ
aMπð0;cÞ 0.1191ð05Þðþ07

−10Þ 0.1541ð13Þðþ05
−05Þ 0.18981ð61Þðþ21

−25Þ 0.18840ð44Þðþ46
−29Þ

aMπ0 0.0593ð27Þðþ16
−11Þ 0.1163ð55Þðþ51

−12Þ 0.1489ð50Þðþ41
−53Þ 0.1554ð34Þðþ20

−57Þ
afðCDÞ

π� 0.06042ð11Þðþ07
−03Þ 0.06104ð43Þðþ15

−14Þ 0.06946ð22Þðþ03
−05Þ 0.07043ð19Þðþ06

−05Þ
afðLDÞ

π� 0.06038ð11Þðþ07
−03Þ 0.06090ð43Þðþ16

−14Þ 0.06917ð22Þðþ03
−05Þ 0.07013ð19Þðþ06

−05Þ
Mπ�=f

ðCDÞ
π� 1.0254ð31Þðþ26

−12Þ 1.879ð22Þðþ08
−17Þ 2.30ð11Þðþ02

−03Þ 2.2395ð76Þðþ39
−24Þ

Mπ�=f
ðLDÞ
π� 1.0260ð31Þðþ26

−12Þ 1.884ð22Þðþ09
−17Þ 2.31ð11Þðþ02

−03Þ 2.2489ð77Þðþ38
−23Þ

afðCDÞK 0.07235ð9Þðþ2
−2Þ 0.07265ð31Þðþ06

−06Þ 0.07774ð19Þðþ07
−07Þ 0.07816ð16Þðþ09

−07Þ
afðLDÞK 0.07173ð9Þðþ2

−2Þ 0.07197ð32Þðþ06
−05Þ 0.07692ð19Þðþ07

−06Þ 0.07734ð16Þðþ09
−07Þ

afðCDÞD 0.1022ð9Þðþ3
−7Þ 0.1087ð14Þðþ09

−13Þ 0.1127ð7Þðþ5
−7Þ 0.1110ð10Þðþ05

−06Þ
afðLDÞD 0.0906ð8Þðþ2

−6Þ 0.0960ð12Þðþ07
−11Þ 0.0994ð6Þðþ4

−6Þ 0.0980ð8Þðþ4
−5Þ

afðCDÞDs
0.1207ð2Þðþ1

−1Þ 0.1220ð7Þðþ1
−1Þ 0.1237ð5Þðþ1

−2Þ 0.1219ð5Þðþ1
−1Þ

afðLDÞDs
0.1058ð2Þðþ1

−1Þ 0.1068ð5Þðþ1
−1Þ 0.1082ð4Þðþ1

−1Þ 0.1067ð5Þðþ1
−1Þ

aMDs
0.9022ð27Þðþ06

−07Þ 0.905ð3Þðþ1
−1Þ 0.9062ð27Þðþ02

−02Þ 0.9034ð26Þðþ01
−01Þ

NmeasðNπ0
measÞ 1457(615) 728(352) 1351(424) 670(337)
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In addition, the splitting between the charged and the
connected neutral pion—as shown in Fig. 1(a)—is seen to
be about a factor of 3 smaller than measured on ensembles
[52] without the clover term. We take these as strong
indications that the new action has significantly reduced the
isospin breaking compared to previous simulations, even at
the rather coarse lattice spacing employed here. This is in
line with quenched studies [21] which were the main
motivation for proceeding with twisted mass clover fer-
mions at maximal twist.
Let us now discuss the baryon sector. There is still an

exact lattice symmetry, namely parity combined with an
interchange of u with a d quark, which means for example
that the proton and the neutron are degenerate as are the
Δþþ and theΔ− as well as theΔþ andΔ0. However, a mass

splitting could be seen between the Δþþ and the Δþ. Thus,
we average the mass of the Δþþ and Δ− as well as that of
the Δþ and Δ0 and take the difference between the two
averages as a measure of the magnitude of the isospin
breaking. We show in the left panel of Fig. 2 the
dimensionless ratio

ΔM ¼ MΔþþ;− −MΔþ;0

MΔþþ;−

versus ða=r0Þ2 for the old Nf ¼ 2þ 1þ 1 ensembles as
well as for the new ensemble cA2.09.48 at the physical pion
mass. As can be seen, the splitting is consistent with zero,
indicating that isospin breaking effects are small for the Δ
baryons.

(a) (b)

FIG. 1. Charged and neutral pion mass splittings (a) a2ðM2
π� −M2

πð0;cÞ Þ and (b) a2ðM2
π� −M2

π0
Þ as a function of the bare light quark

mass aμl.

(a) (b)

FIG. 2. (a) Relative mass differences ΔM for the Δ baryons as a function of ða=r0Þ2 for Nf ¼ 2þ 1þ 1 ensembles (open circles for
β ¼ 1.90, squares for β ¼ 1.95 and diamonds for β ¼ 2.10) as well as for the ensemble at the physical value of the pion mass (filled red
triangle). Red symbols represent the lightest pion mass, then blue, green and violet for increasing pion mass values for each lattice
spacing. The data points have been slightly displaced horizontally for legibility. (b) Effective masses as a function of t=a of the nucleon,
kaon and pion for the physical pion mass ensemble cA2.09.48.
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C. Hadron masses and decay constants

In this section we give results for pseudoscalar meson
masses, their decay constants and the nucleon mass. The
analysis procedure for the mesons is described in detail in
Appendix B, with particular emphasis on the estimate of
the asymmetric systematic errors quoted in Tables IVand V.
For the nucleon mass the error is at present still too large for
a sensible analysis of systematic uncertainties.
As an example for the mass determinations, we show

in the right panel of Fig. 2 the effective masses for the
nucleon, the pion and the kaon, the latter with
aμs ¼ 0.0245. In this figure, for the nucleon the effective
masses are computed from a smeared-smeared correlation
function, while for the pion and kaon the local-local
correlation functions were used.
In the case of the nucleon we clearly observe the

expected exponential error growth. This is why we do
not include effective masses for t=a > 21 in the analysis.
The fit result, error and range are indicated by the solid line
and shaded region. For the pion and kaon, a plateau is

visible up to t ¼ T=2, as expected. For the two pseudo-
scalar particles the indicated fit range is only an example,
because we perform a weighted average over many fit
ranges, as explained in Appendix B 2. Errors on Mπ and
MK are too small to be visible on this scale, but details can
be found in Fig. 11.
In the left panel of Fig. 3 we show, as a function of

ðr0MπÞ2, the ratio r0M2
π=fπ in which some of the lattice

artifacts seem to cancel. In this plot we compare the new
Nf ¼ 2 results presented in this paper with the Nf ¼ 2

results from ETMC simulations without the clover term
[15]. We show the bare data with only Gasser-Leutwyler
finite size corrections [55] applied, together with the
experimental value. In addition we show a fit of the
NLO χPT expression [56–58]

M2
π

fπ
¼ M2

π

f0

�
1þ 2

M2
π

ð4πf0Þ2
log

M2
π

Λ2
4

�

as a function ofM2
π to the data (excluding the experimental

one) in units of r0, neglecting lattice artifacts. Restricting
the fit range to Mπ < 300 MeV (indicated by the solid
line), we obtain f0 ¼ 0.122ð4Þ GeV and l̄4 ≡ logM2

π�=
Λ2
4 ¼ 3.3ð4Þ. The p value of this fit is 0.49, and the

inclusion of a chiral log is clearly favored over a linear
fit. If one fitsMπ=fπ instead, the results do not change, only
the p value gets significantly worse, indicating residual
finite-volume and lattice artifacts. These fit results are
completely in line with the results of Ref. [59].
We remark that due to the smaller pion mass splitting

with the clover term in the action we expect also the finite
size corrections to be smaller than for the ensembles
without the clover term. Moreover, at the physical point

TABLE IV. Bare quark masses in lattice units and their ratios as
determined by matching MK=Mπ and MD=Mπ to their phenom-
enological values. For μc=μs, the asymmetric error is computed
by considering the maximum spread of the asymmetric errors on
the dividend and divisor while for μs=μl and μc=μl it comes from
MK=Mπ and MD=Mπ directly.

aμl aμs aμc

0.0009 0.02485ð7Þðþ4
−3Þ 0.3075ð15Þðþ14

−14Þ
μs=μl μc=μl μc=μs

27.61ð8Þðþ4
−4Þ 342.1ð1.8Þðþ1.6

−1.6Þ 12.39ð8Þðþ6
−9Þ

TABLE V. Ratios of pseudoscalar meson observables calculated on the gauge ensemble cA2.09.48 at the physical
pion mass interpolated to the strange and charm valence quark masses from the matching procedure described in
Appendix B 3. We give results with CD and LD definitions [see Eq. (17)] of the decay constants separately, where
applicable. All starred reference ratios involving Mπ or MK use the isospin symmetric values of these quantities
taken from Ref. [53]. Daggered quantities are not independent and given for reference only. “FLAG” refers to
Nf ¼ 2þ 1 averages.

Observable CD LD PDG [54] FLAG [53]

Mπ=fπ 1.0254ð31Þðþ26
−12Þ† 1.0262ð30Þðþ33

−18Þ† 1.0337ð28Þ⋆ 1.035ð11Þ⋆
MK=fK 3.1404ð55Þðþ13

−11Þ† 3.1675ð56Þðþ13
−11Þ† 3.164ð14Þ⋆ 3.162ð18Þ⋆

MD=fD 8.395ð64Þðþ41
−16Þ† 9.466ð71Þðþ41

−17Þ† 9.11(22) � � �
MDs

=fDs
7.474ð21Þðþ03

−03Þ 8.531ð28Þðþ04
−03Þ 7.64(14) � � �

MDs
=Mπ 14.564ð54Þðþ03

−03Þ† � � � 14.603ð33Þ⋆ � � �
fK=fπ 1.1976ð21Þðþ06

−07Þ 1.1881ð21Þðþ06
−07Þ 1.1979(57) 1.200(15)

fD=fπ 1.694ð14Þðþ04
−10Þ 1.503ð12Þðþ04

−07Þ 1.569(38) 1.61(3)

fDs
=fπ 1.998ð6Þðþ1

−1Þ 1.751ð5Þðþ1
−1Þ 1.975(35) 1.91(3)

fD=fK 1.413ð12Þðþ02
−03Þ 1.264ð10Þðþ02

−02Þ 1.309(33) 1.34(2)

fDs
=fD 1.206ð23Þðþ04

−04Þ 1.190ð22Þðþ04
−04Þ 1.258(38) 1.19(2)
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finite size corrections are expected to be small, because
they are proportional to M2

π . Hence, corrections discussed
in Refs. [60,61] are likely to give only tiny contributions.
The mass ratio of the nucleon to the pion for our Nf ¼ 2

and Nf ¼ 2þ 1þ 1 ensembles is shown in the right panel
of Fig. 3 as a function of the pion mass squared in units of
r0. The nucleon mass for the physical point has been
measured on 96 independent configurations with 16
sources per configuration. The masses for the Nf ¼ 2

ensembles without the clover term have been taken from
Ref. [62], the ones for the Nf ¼ 2þ 1þ 1 ensembles from
Ref. [46]. The values for r0=awere taken from Ref. [63] for
Nf ¼ 2þ 1þ 1 and from Ref. [64] for Nf ¼ 2 without the
clover term. As can be seen, the lattice results follow a
universal curve indicating that cutoff effects are small on
this ratio. Moreover, differences betweenNf ¼ 2 andNf ¼
2þ 1þ 1 are smaller than the statistical uncertainties.
For quantities involving strange and charm quarks the

valence quark mass needs to be tuned. This tuning was
performed by matching the phenomenological values of the
pseudoscalar meson mass ratios MK=Mπ and MD=Mπ

through linear interpolations of the lattice data, resulting
in the bare quark masses and their ratios given in Table IV.
The details of this procedure are discussed in Appendix B 3.
Ratios of meson masses and decay constants resulting

from this analysis are given in Table V. It is clear from
Mπ=fπ that the ensemble cA2.09.48 is at the physical pion
mass within errors. For the other quantities agreement with
phenomenological determinations and continuum limit
lattice averages is quite good. As an estimate of the residual
Oða2Þ artifacts, one can compare the difference between
the two definitions [see Eq. (17) and below] of the decay

constant in quantities involving fD and fDs
. It seems that

these effects should be no larger than about 15%, indicating
that a well-behaved continuum limit should certainly be
achievable. Finally, one can compare to ETMC determi-
nations from Ref. [65] for Nf ¼ 2 twisted mass fermions in
the infinite volume and continuum limit which gave
fK=fπ ¼ 1.210ð18Þ and fDs=fD ¼ 1.24ð3Þ, in excellent
agreement with the present analysis.

D. Estimate of the lattice spacing

In this section we provide estimates of the lattice spacing
in physical units. In order to simplify the discussion we
concentrate on the results at the physical point. From the
discussion in Sec. III A it is clear that the finite-volume
corrections in the gluonic scales are negligible, as well as the
effects from possibly being slightly off the physical point.
The lattice values we use for

ffiffiffiffiffiffiffiffiffiffiffi
t0=a2

p
, ðt0=w0Þ=a, w0=a and

r0=a are the ones given in the first row of Table II.
First we determine the lattice spacing from the gluonic

scales
ffiffiffiffiffiffiffiffiffiffiffi
t0=a2

p
, w0=a and r0=a. For the latter we refer to the

summary of values given in Ref. [66] for Nf ¼ 2 QCD.
There are three determinations by the CLS Collaboration
[67,68] which yield rCLS0 ¼ 0.4877ð77Þ fm from a
weighted average assuming 100% correlation between
the determinations. The correlations are taken into account
by following the procedure by Schmelling [69]. Combined
with the values from the ALPHA Collaboration [70] and
the QCDSF Collaboration [71] we obtain the weighted
average r0 ¼ 0.4945ð57Þ fm. In addition there are also
three determinations from our earlier Nf ¼ 2 simulations
using the tree-level Symanzik improved gauge action and

(a) (b)

FIG. 3. (a) r0M2
π=fπ as a function of ðr0MπÞ2 comparing Nf ¼ 2 results without the clover term [15] with the new results presented in

this paper. The line is a next-to-leading-order (NLO) χPT fit to the data as explained in the text. (b) Ratio of the nucleon mass to the pion
mass as a function of the pion mass squared in units of r0. We show data for Nf ¼ 2 without the clover term, Nf ¼ 2þ 1þ 1 and the
new physical point result.
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twisted mass fermions without the clover term [15,62,65].
A weighted average assuming 100% correlation yields
rETMC
0 ¼ 0.443ð20Þ fm which exposes a sizable tension
between the ETMC determinations and the ones by other
collaborations. Nevertheless, we can also average the
results from all collaborations and obtain the weighted
average r0 ¼ 0.4907ð86Þ fm where the error is stretched byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d:o:f:

p
¼ 1.6 in order to account for the incompati-

bility of the results. This is the value we use for our
determination of the lattice spacing from r0. For the
physical values of

ffiffiffiffi
t0

p
, w0 we refer to Ref. [72] which

so far provides the only Nf ¼ 2 determinations. The values
are

ffiffiffiffi
t0

p ¼ 0.1535ð12Þ fm and w0 ¼ 0.1757ð13Þ fm.
In Table VI we collect the physical values for the gluonic

scales as discussed above together with the resulting lattice
spacings calculated from our determinations at the physical
point. In the last line we provide the weighted average of
the lattice spacings together with the statistical error,
assuming 100% correlation between our gluonic lattice
data for

ffiffiffiffi
t0

p
=a, w0=a and r0=a. The weighted average

yields a ¼ 0.0931ð08Þ fm with a χ2=d:o:f: ¼ 4.7. We
assign the large value of χ2=d:o:f: to lattice artifacts, since
for the gluonic quantities this is the only systematic error
which we do not control in our simulation at the physical
point. In order to account for this uncertainty, we quote a
systematic error covering the spread of the determinations.
In this way we obtain

agluonic ¼ 0.0931ð08Þð15Þ fm: ð36Þ

In addition to the gluonic scales in Table II we can make
use of hadronic quantities, namely the nucleon mass MN ,
the pion massMπ and the pion and kaon decay constants fπ
and fK , respectively. The lattice values afπ ¼ afðCDÞ

π� ,

aMπ ¼ aMπ� and afK ¼ afðCDÞK can be found in
Table III. For the nucleon mass we use the value aMN ¼
0.440ð4Þ [18]. The physical values we use are taken from
the 2014 edition of the PDG Review of Particle Physics
[54]. Fixing in turn each one of the hadronic quantities to
their physical value yields a physical value for the lattice
spacing and for the gluonic scales. The results are tabulated
in Table VII. In the last line we provide the weighted

average, assuming 100% correlation, together with the
statistical error for the lattice spacing and the gluonic lattice
scales determined from the hadronic quantities. For the
final error we also include an estimate of the systematic
error due to lattice artifacts and finite size effects. Our
procedure to do so is the same as above leading to Eq. (36).
We can allow for a possible small mismatch in the pion
mass from its physical value and use the lowest order
(heavy baryon) chiral perturbation theory expression [73]
to extrapolate to the physical point and then determine the
lattice spacing. Applying this procedure for example to the
nucleon mass [74] we find a value of a ¼ 0.093ð1Þ fm
consistent with the value obtained assuming that we are
exactly at the physical point.
A weighted average of the lattice spacings, assuming

100% correlation between our determinations, yields
a ¼ 0.0913ð2Þ fm with χ2=d:o:f: ¼ 4.6. The large value
of χ2=d:o:f: could simply be due to lattice artifact or due to
the fact that our lattice data are not corrected for finite-
volume effects. In order to account for these uncertainties
we quote a systematic error covering the spread of the
determinations. In this way we obtain

ahadronic ¼ 0.0913ð2Þð11Þ fm: ð37Þ

This lattice spacing is nicely consistent with the one
determined from the gluonic quantities in Eq. (36) if the
systematic error is taken into account. The weighted
average of the two lattice spacings gives

a ¼ 0.0914ð02Þð15Þ fm; ð38Þ

where we quote the larger of the two estimates for the
systematic error.

E. Physical scales

In order to determine estimates of the gluonic scales
ffiffiffiffi
t0

p
,

t0=w0, w0 and r0 at the physical point in physical units we
proceed the same way as above. The weighted averages forffiffiffiffi
t0

p
, t0=w0, w0 have a χ2=d:o:f: ∼ 4.5, while the weighted

TABLE VI. Lattice spacing in physical units determined from
gluonic quantities at the physical point using the input from
Ref. [72] given in the second row. The last line contains the
weighted average of the three determinations assuming 100%
correlation.

(fm) a (fm)ffiffiffiffi
t0

p
0.1535(12) 0.0917(07)

w0 0.1757(13) 0.0946(07)
r0 0.4907(86) 0.0923(18)
Avg. 0.0931(08)

TABLE VII. Lattice spacing and gluonic lattice scales in
physical units determined from hadronic quantities at the physical
point. The last line contains the weighted average of the four
determinations assuming 100% correlation. As input we have used
Mπ ¼ 134.98 MeV, fπ ¼ 130.4ð2Þ MeV, fK ¼ 156.2ð7Þ MeV
and the average proton-neutron mass MN ¼ 938.9 MeV.

a (fm)
ffiffiffiffi
t0

p
(fm) ðt0=w0Þ (fm) w0 (fm) r0 (fm)

MN 0.0925(8) 0.1547(14) 0.1395(13) 0.1716(16) 0.4913(63)
Mπ 0.0906(2) 0.1517(04) 0.1367(03) 0.1682(04) 0.4816(45)
fπ 0.0914(2) 0.1531(03) 0.1380(03) 0.1698(04) 0.4861(45)
fK 0.0914(1) 0.1530(02) 0.1380(02) 0.1697(02) 0.4860(44)
Avg. 0.0913(2) 0.1528(03) 0.1378(02) 0.1695(03) 0.4856(47)
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average for r0 has a χ2=d:o:f: ¼ 0.6. However, since our
determinations of aMN , aMπ , afπ and afK are certainly
correlated, we do not expect a reduction of the error when
averaging the four results. Assuming the data to be 100%
correlated, the error for r0 for example increases from
0.0024 to 0.0047. In addition to the statistical error we
again also quote a systematic error covering the spread of
the determinations in order to account for the uncertainty
due to lattice artifacts and/or finite-volume effects.
Eventually we obtain

ffiffiffiffi
t0

p ¼ 0.1528ð03Þð19Þ fm;

t0=w0 ¼ 0.1378ð02Þð17Þ fm;

w0 ¼ 0.1695ð03Þð19Þ fm;

r0 ¼ 0.4856ð47Þð57Þ fm:

Finally, using the estimate of the lattice spacing from
gluonic scales, hadronic quantities can be determined in
physical units from their values listed in Table III. fK , fD,
fDs

and MDs
take the values,

fðCDÞK ¼ 153.35ð0.18Þ
�þ0.04
−0.04

�
ð2.96Þ MeV;

fðCDÞD ¼ 216.71ð1.99Þ
�þ0.59
−1.47

�
ð4.19Þ MeV;

fðCDÞDs
¼ 255.85ð0.49Þ

�þ0.10
−0.14

�
ð4.95Þ MeV;

MDs
¼ 1912.3ð5.73Þ

�þ0.13
−0.15

�
ð37.0Þ MeV;

where the first error is statistical, the second is from the fit
range ambiguity (see Appendix B 2) and the last one comes
from the estimate of the lattice spacing. They can be
compared to phenomenological and lattice continuum limit
results listed in Table VIII. The agreement to both FLAG
and PDG is good when systematic errors are taken into
account. Likewise, the agreement to previous ETM con-
tinuum and chirally extrapolated results for Nf ¼ 2 [65]
and Nf ¼ 2þ 1þ 1 [75] is good. We observe clearly that
systematic errors are significantly bigger than the statistical

ones. Similarly, again using the estimate of the lattice
spacing from gluonic scales, the nucleon mass can be given
in physical units

MN ¼ 933ð8Þð18Þ MeV;

where the first error is statistical and the second stems from
the estimate of the lattice spacing. The agreement to the
physical value of MN is excellent.
As an interesting experiment (assuming the absence of

strange and charm quark effects and lattice artifacts inMN),
we can combine the Nf ¼ 2þ 1þ 1 data forMN at heavier
than physical light quark masses with the new data at the
physical point. This procedure will allow us to correct for
the small mismatch in the physical pion mass value
appearing when MN is used to set the scale. To this end
we consider SU(2) chiral perturbation theory (χPT) and the
well-established Oðp3Þ result of the nucleon mass depend-
ence on the pion mass [73,76] given by

MN ¼ M0
N − 4c1M2

π −
3g2A

32πf2π
M3

π; ð39Þ

where M0
N (the nucleon mass in the chiral limit) and c1 are

in general treated as fit parameters. In our fits, we fix the
value of c1 by constraining the fit to go through the physical
point. The lattice spacings aβ¼1.90, aβ¼1.95 and aβ¼2.10 for
theNf ¼ 2þ 1þ 1 ensembles as well as the lattice spacing
aphys of our physical ensemble are considered as additional
independent fit parameters. For the fit we find χ2=d:o:f: ¼
1.578 with d:o:f: ¼ 12 corresponding to a p value of 0.09.
This procedure yields aphys ¼ 0.093ð1Þ fm, which is in
agreement with the estimate of the lattice spacing in
Eq. (38), but shows some tension with the lattice spacing
determined from other hadronic quantities as discussed
above. We remark that the lattice spacing determined from
the nucleon mass is in very good agreement with the
gluonic one, Eq. (36). In general, the discrepancy between
the lattice spacing values determined from MN and fπ is
significantly reduced with the new action compared to the
previous ETM Nf ¼ 2 and Nf ¼ 2þ 1þ 1 simulations.

F. Quark masses

One advantage of having an ensemble with physical pion
mass value available is the fact that the bare twisted mass
can directly be related to the renormalized average up/down
quark mass using appropriate renormalization factors. The
relevant renormalization factor in twisted mass lattice QCD
is ZP, since mR

q ¼ μl=ZP. We have determined ZP using
the RI’-MOM scheme employing the momentum source
technique [77]. Details are discussed in Refs. [18,78]. The
value of ZP at 2 GeV in the MS scheme reads

ZP ¼ 0.501ð8Þð26Þð12Þ:

TABLE VIII. Reference values for the dimensional quantities
calculated in this study. FLAG refers to Nf ¼ 2þ 1 averages
from Ref. [53], ETM ’09 refers to Ref. [65] (Nf ¼ 2) and ETM
’15 to Ref. [75] (Nf ¼ 2þ 1þ 1).

fK fD fDs
MDs

ETM ’09 (MeV) 158.1(2.4) 197(9) 244(8) (� � �)
ETM ’15 (MeV) 155.0(1.9) 207.4(3.8) 247.2(4.1) (� � �)
PDG (MeV) 156.2(7) 204.6(5.0) 257.5(4.6) 1968.50(32)
FLAG (MeV) 156.3(9) 209.2(3.3) 248.6(2.7) (� � �)
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The first error is statistical, the second systematic stemming
from the extrapolation to ðapÞ2 ¼ 0 and the perturbative
subtraction of leading lattice artifacts [79,80] and the third
from the conversion of RI’ to MS at 2 GeV.
With aμl ¼ 0.0009, the ZP value given above and the

lattice spacing value from Eq. (38) we obtain a value for the
average up/down quark mass as follows

mMS
ud ð2 GeVÞ ¼ 3.88ð6Þð21Þð10Þ MeV; ð40Þ

where the first error is statistical, the second from the
combined systematic errors of the lattice scale and ZP, and
the third from the conversion of RI’-MOM to MS at 2 GeV.
Using the ratios μs=μl and μc=μl from Table IV we can

then directly compute also estimates for the strange and
charm quark masses

mMS
s ð2 GeVÞ ¼ 107ð2Þð6Þð3Þ MeV;

mMS
c ð2 GeVÞ ¼ 1.33ð3Þð7Þð3Þ GeV: ð41Þ

Both mud and ms compare well to the quark mass values
determined on the Nf ¼ 2 ETMC ensembles without the
clover term [81]. We can also compare mud and ms to the
Nf ¼ 2 determinations from Refs. [1,64,82–84] averaged
by FLAG [85], namely

mud ¼ 3.6ð2Þ MeV; ms ¼ 101ð3Þ MeV;

which are both in agreement with our determinations. The
values presented above should be taken with some care,
because we did not take the continuum and thermodynamic
limits. An alternative determination of ZP [86,87] might
shed light on the fact that all three quark masses determined
here have consistently larger values than what can be found
in the literature, while the quark mass ratios show good
agreement.

G. Lepton anomalous magnetic moments

In this section, we discuss the leading-order light quark
hadronic contribution to the anomalous magnetic moments
of the electron, the muon and the τ leptons, aude , audμ and audτ ,
respectively. We have performed exactly the same analysis
as described in Ref. [88] for the anomalous magnetic
moment of the muon, only changing the lepton masses in
the numerical integration to the ones of the electron and τ
lepton. We will compare the results obtained at the physical
point with the ones that were obtained from ensembles at
unphysically large pion masses and which were then
extrapolated to the physical point. In Fig. 4 we show the
data for the three aud as a function of M2

π comparing the
results of Refs. [88,89] with the new result at the physical
point.

For our results at unphysically large pion masses we
have used the same redefinition of the vacuum polarization
function as in Refs. [88–91]

ahvp
l̄

¼ α2
Z

∞

0

dQ2

Q2
w

�
Q2

H2

H2
phys

m2
l

�
ΠRðQ2Þ; ð42Þ

with the hadronic scale H ¼ MV , the lowest lying vector
meson state, and ml the lepton mass. H ¼ Hphys ¼ 1

corresponds to the standard definition given in Eq. (28).
When determining the lepton anomalous magnetic

moments the chiral extrapolation to the physical pion mass
can lead to a severe systematic error. This uncertainty is
avoided when using ensembles at the physical point [92].
We have computed the light quark contributions to the
lepton anomalous magnetic moments with the standard
definition Eq. (28) on 800 configurations of the new
physical ensemble. We find full agreement with our
previous results for the light quark contribution originating
from a chiral extrapolation of our Nf ¼ 2 as well as Nf ¼
2þ 1þ 1 results. The extrapolations of the Nf ¼ 2þ 1þ
1 data are depicted in Fig. 4 as dashed lines with shaded
error band, whereas the extrapolated values—also includ-
ing the previous Nf ¼ 2 values from Ref. [90]—are given
in Table IX.
We made a particular effort to quantify the systematic

uncertainties which arise in our calculation for the lepton
anomalous magnetic moments in the data not at the
physical point. These systematic effects originate from

FIG. 4. Comparison of the chiral extrapolation of the light
quark contributions to the three lepton anomalous magnetic
moments obtained from Nf ¼ 2þ 1þ 1 simulations to the
values obtained with the standard definition Eq. (28) at the
physical value of the pion mass (black square). The dark green
diamonds correspond to a ¼ 0.086 fm and L ¼ 2.8 fm and the
circles to a ¼ 0.078 fm, the violet one stands for L ¼ 1.9 fm,
the blue ones for L ¼ 2.5 fm, and the pink for L ¼ 3.7 fm. The
orange triangle shows the value obtained for a ¼ 0.061 fm and
L ¼ 1.9 fm and the light green triangle denotes a ¼ 0.061 fm
and L ¼ 2.9 fm.
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the chiral extrapolation, the continuum limit, the fit range
for the vector meson mass and the form of the fit function.
These investigations are described in detail in Ref. [89]. We
also compared the approach of using Padé fits as proposed
in Ref. [93] with our MNBC fits. As discussed in Ref. [94]
we could not find a clear advantage of using the Padé
approach which led us therefore to stay with our standard fit
function.

IV. SUMMARY AND DISCUSSION

In this paper we have presented results from a first
simulation with two flavors of Wilson twisted mass
fermions at maximal twist, directly at the physical value
of the pion mass. The introduction of the clover term in the
action significantly reduces the mass splitting between
neutral and charged pions, which previously prevented
such simulations to be carried out. As we have demon-
strated in this paper, with the clover parameter close to its
nonperturbatively tuned value, simulations at the physical
point are stable even at a lattice spacing of a ≈ 0.09 fm
with no signs of metastabilities and the pion mass splitting
vanishes within our uncertainties. Thus, the action dis-
cussed here can be used also for smaller values of the lattice
spacing such that eventually a continuum limit extrapola-
tion of lattice results can be performed. We consider the
present work as a first step in this direction.
It must be stressed that with the addition of the clover

term, the arguments for automatic OðaÞ improvement at
maximal twist for twisted mass lattice QCD hold at any
value of the clover parameter. Therefore, as in the past, only
the Wilson quark mass needs to be tuned to achieve the
automatic OðaÞ improvement. As a consequence, with the
action used here, all physical quantities considered in
the broad research program of our collaboration scale with
a rate of Oða2Þ to the continuum limit and no additional
operator-specific improvement coefficients are needed. We
regard this fact as a major advantage of the maximally
twisted mass approach to compute physical quantities from
lattice QCD.
On the ensemble at the physical pion mass we have

computed phenomenologically interesting observables
including fK , fD, fDs

, quark masses and ratios thereof,

the nucleon mass and the hadronic contribution to the
anomalous magnetic moments of leptons. Where possible,
we have compared to previous results obtained with twisted
mass fermions at unphysically large pion mass values with
Nf ¼ 2 and Nf ¼ 2þ 1þ 1 dynamical quark flavors
without the clover term. First results on meson and nucleon
structure using this new ensemble are presented in
Ref. [18]. The physical pion mass ensemble with the clover
term largely confirms the reliability of the chiral extrap-
olations performed with ETMC ensembles without the
clover term. Note, however, that we currently have only one
value of the lattice spacing available with the new action
and only one volume at the physical point. This means that
we cannot (directly) control finite-volume and finite lattice
spacing effects and, hence, the systematic errors might be
larger than our current estimates. For the lattice artifacts we
have an indirect way of estimating them using ensembles
generated with the new action but with larger than physical
pion mass values. These can be compared to ETMC’s
Nf ¼ 2 simulations without the clover term at similar
volumes and pion masses, indicating that with the clover
term in the action, Oða2Þ lattice artifacts are small.
However, not unexpectedly, lattice artifacts become visible
for quantities in the heavy quark sector.
We have determined the lattice spacing using gluonic

and hadronic observables. We have found good agreement
between gluonic and hadronic determinations of the lattice
spacing after averaging over different scale setting quan-
tities. When comparing the scales obtained by considering
observables such as fπ or Mπ in isolation, the correspond-
ing differences are not covered by the statistical errors. This
is of course not unexpected and it is likely that lattice
artifacts are mainly responsible for these differences, which
we account for through the quoted systematic error.
Given this estimate of the lattice spacing, we have been

able to predict values for other, independent quantities
in physical units. Figure 5 shows a comparison between
the values of various quantities Q determined in the
present analysis and their phenomenological counterparts
in the form Qlat=Qphys. It is notable that for most quantities
the current analysis gives error estimates that are of the
same order or smaller than their phenomenological
ones. We have observed—with the exception of a few
D- and Ds-meson-related quantities—agreement within
errors between lattice and phenomenological determina-
tions. Lattice artifacts are probably responsible for the
deviations and in the case of D-meson quantities, cutoff
effects below 10% can be considered as tolerably small.
A number of conclusions can be drawn concerning the

effect of simulations at the physical point on systematic
errors. The most striking feature is certainly the potential
precision that quark mass ratios can be determined with, as
indicated by the rather small errors given in Table IV.
Together with the lattice spacing estimates and the com-
putation of the renormalization constant, this allows us to

TABLE IX. Comparison of the values for ahvpe , ahvpμ , and ahvpτ

obtained at the physical point using the standard definition
Eq. (28) with the results of the linear extrapolations (Extr.) from
our improved definition Eq. (42) on the Nf ¼ 2 and Nf ¼
2þ 1þ 1 ETMC ensembles without the clover term.

Physical point Extr. Nf ¼ 2 Extr. Nf ¼ 2þ 1þ 1

ahvpe × 1012 1.45(11) 1.51(04) 1.50(03)

ahvpμ × 108 5.52(39) 5.72(16) 5.67(11)

ahvpτ × 106 2.65(07) 2.65(02) 2.66(02)
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determine the average up/down quark mass and the strange
and charm quark masses without any chiral extrapolation.
The agreement with other Nf ¼ 2 determinations is good.
In the baryon sector, employing chiral effective theory for

the quark mass extrapolation of quantities like gA of the
nucleon typically leads to large uncertainties. Here the
calculations directly at the physical point are, therefore,
very helpful to give insights into the source of the discrep-
ancies of specific observables between lattice QCD and
phenomenological results; see Ref. [18]. For lepton anoma-
lous magnetic moments, simulations at the physical value of
the light quark mass confirm the correctness of the lattice
redefinition of the Q2 dependence of the weight function
within errors. Here, an open problem is the allowed strong
decay of the ρmeson, which has to be taken into account in
the computations of the light quark contribution to the
hadronic vacuum polarization and thus the lepton moments
al, l ∈ fe; μ; τg and the electroweak couplings.
Currently we are generating an ensemble with the new

action and physical pion mass value at the same lattice
spacing value but with L=a ¼ 64. This ensemble, once
completed, will allow us to address finite-volume effects for
the quantities discussed here and the nucleon observables

presented in Ref. [18] in the near future. We take the results
of this paper as indicative of the fact that simulations at the
physical pionmasswith the symmetry-basedOðaÞ improve-
ment of maximally twisted mass quarks will allow many
interesting quantities to be accurately studied. In particular,
we expect that we will eventually be able to provide
theoretical input with competitive uncertainties relevant to
the analysis of experimental data for heavy flavor physics,
hadron scattering and lattice studies of resonances and the
baryon sector, as well as tests of the Standard Model in the
electroweak sector. This is especially true of our ongoing
simulations using Nf ¼ 2þ 1þ 1 flavors of clover-
improved twisted mass quarks at the physical point.
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APPENDIX A: SIMULATION DETAILS

1. Tuning to maximal twist

For the purpose of automatic OðaÞ improvement an
estimate of the critical value of the hopping parameter
can be determined from Ref. [23] with a relatively large
error. This value was refined through two simulations and a
linear interpolation in 1=2κ as shown in Fig. 6. In past
simulations employing twisted mass fermions without a
clover term, it was seen that the linear behavior shown
in Fig. 6 breaks down around the critical κ value, making
interpolations difficult. In addition, a much steeper slope
than shown here forced us to perform very fine adjustments
of the hopping parameter, which in turn required long
tuning runs to control the statistical error on the individual
measurements. As was discussed in Ref. [36] and shown in
subsequent simulation results, it is sufficient to tune the
renormalized PCAC quark mass to be no larger than 10% of
the renormalized twisted quark mass to ensure OðaÞ

FIG. 5. Ratios of lattice results and phenomenological values of
the quantities in the legend with lattice decay constants computed
via the continuum definition. For dimensional quantities, the
inner error bar combines the statistical and systematic errors in
quadrature while the outer error bar stems from the estimate of the
lattice spacing from gluonic scales. The red bands show the
phenomenological uncertainty onQphys separately (the respective
experimental errors on MN and MDs

are too small to be visible).
The dotted and dashed lines indicate per-mille and percent
deviations from 1.0 respectively.
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improvement in practice. For the cA2.09.48 ensemble, the
bare PCAC quark mass takes a value of amPCAC ≈
8ð1Þ × 10−5, thus fulfilling the condition.

2. Molecular dynamics histories

As discussed in Sec. I, in past simulations, lattice
artifacts rendered simulations without a clover term

metastable as the pion mass was lowered towards its
physical value. As can be seen in Fig. 7, the twisted mass
clover action results in very stable molecular dynamics
histories at the physical average up/down quark mass
without any signs of metastability in the plaquette or the
PCAC quark mass despite the relatively coarse lattice
spacing in excess of 0.09 fm. As expected, the topological
charge in the Wilson flow definition and the energy density
at flow time t0 as defined in Sec. II A are sampled well and
show integrated autocorrelation times well below one
hundredth of the total simulation time. This can be seen
in the bottom-most panels of Fig. 7.
A complete listing of various algorithmic observables

from the different ensembles is provided in Table X together
with their autocorrelation times. For ensemble cA2.30.24, it
is to be noted that there are significant fluctuations in the
number of CG iterations, probably an indication of an
insufficient volume for the simulated pion mass.

FIG. 6. amPCAC as a function of 1=2κ for the tuning of
ensembles cA2.09.48 with κ ¼ ð2am0 þ 8Þ−1.

FIG. 7. Molecular dynamics histories of various quantities on ensemble cA2.09.48.
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A feature of the simulation which deserves a special
mention is the behavior of the energy violation which we
denote by δH. It seems that compared to twisted mass
simulations without the clover term, large deviations occur
quite frequently but they do not seem to affect the stability
of the algorithm, do not seem to affect any observables and
are in line with what has been observed by other collab-
orations [84,97].

3. Simulation parameters

The simulation parameters for the ensembles used
in this work are listed in Table XI, including the mass

preconditioning and the number of integration steps on
the various time scales. In order to determine the origin of
the sizeable δH fluctuations observed in the molecular
dynamics history of cA2.09.48, short simulations
cA2x.09.48, cA2y.09.48 and cA2z.09.48 with more inte-
gration steps and more time scales were performed. As
shown in Fig. 8 it was found that this significantly reduces
the frequency of large energy violations at the price of
increased simulation cost. It should be noted that none of
the observables that we determined on ensemble
cA2z.09.48 showed any deviation within errors compared
to those on ensemble cA2.09.48.

TABLE X. Expectation values and autocorrelation times of various observables for ensembles used in this study.

NðCGÞ
iter refers to the number of CG iterations in the heat bath and acceptance steps of the mass preconditioning

determinant ratio which has the target light quark mass in the numerator. Pacc refers to the acceptance rate which
should be used to scale the autocorrelation times, which are given in units of trajectories.

Observable cA2.09.48 cA2.30.24 cA2.60.24 cA2.60.32

Pacc 0.726(6) 0.910(7) 0.771(5) 0.874(4)

hPi 0.603526(4) 0.603562(9) 0.603535(5) 0.603533(2)

hmPCACi 0.00008(1) −0.00037ð7Þ −0.00026ð3Þ −0.00021ð1Þ
hδHi 0.37(3) 0.047(12) 0.177(8) 0.044(3)

hexpð−δHÞi 1.00(1) 1.01(1) 1.003(7) 1.003(3)

hNðCGÞ
iter i 33235(3) 10720(67) 5288(2) 5674(1)

τintfPg 15(5) 3.2(8) 3.8(7) 2.9(5)

τintfmPCACg 15(5) 1.6(4) 1.4(2) 1.2(1)

τintfδHg 0.50(4) 0.50(2) 0.53(3) 0.50(1)

τintfexpð−δHÞg 0.49(2) 0.48(2) 0.49(1) 0.50(1)

τintfNðCGÞ
iter g 0.83(9) 17(9) 1.8(2) 4.2(8)

TABLE XI. Simulation parameters for the ensembles used in this work and three additional test ensembles. Nt:
number of integration steps of second order minimal norm integrator on the various time scales. aρHBt : Hasenbusch
mass preconditioning parameters as in Ref. [98] but with multiple determinant ratios. r2aðr2fÞ: squared relative
residual stopping criterion in the acceptance step (force calculation) in the conjugate gradients solver. Square
brackets indicate that more than one monomial is placed on the same time scale.

Ensemble Nt aρHBt
log10

�
r2a
r2f

�

cA2.60.24 f1; 2; 2; 7g f−; 0.060; 0.0110
0.0600 ;

0.0000
0.0110g f−; −22−14 ;

−22
−14 ;

−22
−14g

cA2.60.32 f1; 1; 1; 1; 14g f−; 0.800; 0.0800
0.8000 ;

0.0080
0.0800 ;

0.0000
0.0080g f−; −22−14 ;

−22
−14 ;

−22
−14 ;

−22
−14g

cA2.30.24 f1; 2; 2; 10g f−; 0.040; 0.0080
0.0400 ;

0.0000
0.0080g f−; −22−14 ;

−22
−14 ;

−22
−14g

cA2.09.48 f1; 1; 2; 13g f−; 0.030; 0.0050
0.0300 ; ½0.00130.0050 ;

0.0000
0.0013�g f−; −22−14 ;

−22
−14 ; ½−22−14 ;

−22
−14�g

cA2x.09.48 f1; 1; 2; 17g f−; 0.030; 0.0050
0.0300 ; ½0.00130.0050 ;

0.0000
0.0013�g f−; −22−14 ;

−22
−14 ; ½−22−14 ;

−22
−14�g

cA2y.09.48 f1; 1; 1; 1; 13g f−; 0.250; 0.0250
0.2500 ;

0.0025
0.0250 ;

0.0000
0.0025g f−; −22−14 ;

−22
−14 ;

−22
−14 ;

−22
−14g

cA2z.09.48 f1; 1; 1; 1; 17g f−; 0.250; 0.0250
0.2500 ;

0.0025
0.0250 ;

0.0000
0.0025g f−; −22−14 ;

−22
−14 ;

−22
−14 ;

−22
−14g
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APPENDIX B: PSEUDOSCALAR MESON
ANALYSIS DETAILS

In this section we discuss the methods adopted for the
analysis of pseudoscalar meson correlators to produce the
results of Sec. III C. First we introduce a somewhat novel
technique for quantifying the uncertainty due to the choice
of fit range for correlation functions. Then we discuss
different methods for choosing the bare valence strange and
charm quark masses and how this choice affects the central
values and uncertainties on the physical quantities extracted
from the analysis. Finally we show some examples of linear
interpolations of the various quantities presented in this
analysis and discuss remaining uncertainties such as dis-
cretization artifacts and finite-volume corrections which
have not been accounted for yet.
For each gauge configuration, the quark propagators for

all masses were computed from the same stochastic (Z2)
time-slice sources and the correlation functions were
constructed using the one-end trick. A single time-slice
source chosen at random, with full spin-dilution was used
for each gauge configuration and local-local, fuzzed-local
and fuzzed-fuzzed correlation functions were computed to
improve the extraction of the ground state mass in a
constrained 2 × 2 matrix fit. To profit from correlations
in the data, the complete analysis was carried out in a
stationary blocked bootstrap [99] framework with block
lengths tuned to accommodate the short autocorrelations in
the data as determined from the Gamma method. All
observables were bootstrapped with the same bootstrap
samples, preserving all correlations.
First, positive correlation reduces the statistical error in

many expressions built from data, in particular in ratios.
Second, preserving correlation at all levels in the analysis
allows one to provide realistic error estimates on our final
results.

1. Computing the neutral pion mass

The neutral pion two-point correlation function in the
twisted mass formulation is notoriously difficult to

compute with sufficient statistical precision, because it
requires the inclusion of quark-line disconnected diagrams.
In addition, it is contaminated by a very noisy vacuum
expectation value [100] because in tmLQCD, the neutral
pion has the same quantum numbers as the vacuum state.
In previous analyses, see e.g. Refs. [52,100], this contami-
nation was explicitly computed and subtracted from the
disconnected piece of the correlation function, which may
result in biases if the number of measurements is insuffi-
cient to properly estimate the ensemble average of the
vacuum expectation value. We have adopted new tech-
niques to efficiently deal with both issues.
In order tackle the first difficulty, we construct the

neutral pion correlation functions using the stochastic
Laplacian Heaviside method [101,102] in the context of
Ref. [103]. In this setup, between 3000 and 4000 inversions
per gauge configuration are carried out for the computation
of so-called perambulators, which can be stored efficiently
and later used to construct any correlation function with the
given quark content, including statistically well-resolved
quark-line disconnected contributions. For details, see
Ref. [104].
The second issue is approached instead by observing that

the vacuum expectation value contributes the same constant
to the two-point function at every source-sink separation.
In order to remove this contribution on a configuration-
by-configuration basis (rather than subtracting the ensem-
ble average of the vacuum expectation value), we consider
the difference of the correlation function at two neighbor-
ing source-sink separations. Thus, we obtain the shifted
correlation function,

~Cðt; δtÞ ¼ CðtÞ − Cðtþ δtÞ; ðB1Þ

where δt is a positive offset of one or more time slices. By
virtue of the subtraction, this modified correlation function
does not have a constant contribution. For large enough
source-sink separations, we may assume that it is domi-
nated by the ground state, resulting in a time dependence of
the form

FIG. 8. Detail of molecular dynamics histories of the energy violation δH for runs cA2.09.48 (left) and cA2z.09.48 (right), indicating a
reduction of large deviations as the number of integration steps is increased and the time scale splitting is adjusted.
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~Cðt;δtÞ¼A½e−Mtð1−e−MδtÞþe−MðT−tÞð1−eMδtÞ�; ðB2Þ

where T is the time extent of the lattice. As an example, the
shifted charged and full neutral pion correlation functions
computed on ensemble cA2.09.48 are shown in Fig. 9. An
appropriate effective mass for a correlation function of this
type can be obtained by numerically solving, at each
source-sink separation, the ratio

~Cðtþ1;δtÞ
~Cðt;δtÞ ¼ ½e−Mðtþ1Þð1−e−MδtÞþe−MðT−t−1Þð1−eMδtÞ�

½e−Mtð1−e−MδtÞþe−MðT−tÞð1−eMδtÞ� ;

ðB3Þ

for the unknown M. The effective mass for the full neutral
pion as well as the correlated difference of the effective
masses of the charged and full neutral pions for ensemble
cA2.09.48 are shown in the left and right panels of Fig. 10,
respectively. Within the large statistical errors, it seems that
the mass splitting is indeed either very slightly positive or
compatible with zero.
In order to ascertain whether the method presented above

is reliable, we have confirmed that on our old Nf ¼ 2þ
1þ 1 ensembles which do not employ the clover term, the
masses and (significant) mass splittings are fully consistent

with the results obtained in Ref. [52] using the traditional
analysis technique.

2. Fit range dependence and reliable central values

The choice of fit range for a correlation function is rather
ambiguous as excited state contamination as well as
random oscillations in the data can move the apparent
onset of the plateau in effective masses by multiple time
slices. In addition, correlations between the time slices can
cause data at several successive source-sink separations to
rise and fall together, delaying or expediting the onset of an
apparent plateau. This kind of correlation can be seen in the
effective masses of the pion and kaon shown in Fig. 11, for
example. Both of these effects have been studied to a
limited extent as early as in Ref. [105], but even modern
analyses often only take into account variations of the fit
ranges by a few time slices in either direction, concluding
that the resulting effect is covered by the statistical error.
Although this is true in most cases, we see that for certain
quantities the spread is at the level of the statistical error and
we believe it should be quoted as an additional source of
uncertainty.
We observe further, especially with the twisted mass

clover action, that rounding errors in the computation of
heavy quark propagators can induce unwanted systematic

FIG. 9. Shifted two-point correlation functions [see Eq. (B1)] for the charged (left) and full neutral (right) pion computed on ensemble
cA2.09.48 for δt ¼ 1.

FIG. 10. (Left) Effective mass for the full neutral pion obtained by solving Eq. (B3) for each source-sink separation with δt ¼ 1.
(Right) Correlated difference of the effective masses from the charged and full neutral pion correlation functions with δt ¼ 1.
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effects in the extracted masses and amplitudes. We observe
this in the case of the D and Ds mesons, for which the
effective masses show a deviation from the plateau for large
source-sink separations which significantly exceeds the
statistical error. In addition, statistical errors for large
source-sink separations can bias the fit result. When fits
make use of the full inverse variance-covariance matrix,
enhanced decorrelation at large source-sink separations can
increase the relative contribution of these data to the
correlated χ2 function.
In order to quantify the uncertainties entailed by the

freedom to choose the fit range, we have attempted a
somewhat novel analysis technique which takes into
account all possible (reasonable) fit ranges, as already
applied in Ref. [104]. We make a somewhat arbitrary
choice of about 0.5 fm for the minimum length of a fit range
corresponding to six successive time slices [ðΔtÞmin] and
define “reasonable” to mean that all fits are required to
converge on all fit ranges on all bootstrap samples in the
analysis. A complete listing of the minimum and maximum
source-sink separations for the various quantities in this
analysis is given in Table XIII. In the case of the kaon on
the cA2.09.48 ensemble at the physical pion mass, for
example, this results in 561 fits with a distribution of fitted

masses as shown in the left panel of Fig. 12. Subsequently
the fits are weighted according to their p values and
statistical errors, Δ, by the weight

w ¼
�
1

Δ
ð1 − 2 · jp − 0.5jÞ

�
2

; ðB4Þ

resulting in the distribution in the right panel of Fig. 12.
The same approach is taken for ratios of observables,

with the difference that only those fit ranges are considered
which have been taken into account for both the dividend
and the divisor and the weight is taken to be

w ¼
�

1

Δ12

�
2

ð1 − 2 · jp1 − 0.5jÞð1 − 2 · jp2 − 0.5jÞ: ðB5Þ

The median of this weighted distribution is taken as the
central value and its statistical error is computed on the
bootstrap samples. The estimate of the systematic error is
given by the 34.27 percentiles around the median. As an
example, the median and systematic error in the determi-
nation of aMK at aμs ¼ 0.0245 are shown in Fig. 12 and
can be taken as an indication of what can be expected on the
final results.

FIG. 11. Effective masses from the pion (left) and kaon (right) correlation functions for local-local (black), local-fuzzed (red) and
fuzzed-fuzzed (cyan) quark propagator contractions. Oscillations and correlations between time slices can clearly be seen here, affecting
the apparent locations of the onset of the respective plateaus. The three horizontal lines indicate one possible choice of fit range and the
resulting effective mass and statistical errors of fitting a constant to the effective mass plateau, making use of the full inverse variance-
covariance matrix.

FIG. 12. (Left) Distribution of masses extracted from constrained matrix fit to kaon correlation function at aμs ¼ 0.0245 on the set of
all “reasonable” fit ranges as described in the body of the text. (Right) The same distribution after weighting according to Eq. (B4) with
the weighted median indicated by the thick vertical line and 34.27 percentiles around the median shown by the shaded area.
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3. Tuning the strange and charm valence
quark masses

In Ref. [92], the bare strange and charm valence quark
masses were fixed using the Nf ¼ 2 light-strange quark
mass ratio from Ref. [85] and the strange-charm quark mass
ratio given in Ref. [106], which we will call the FLAG and
high precision lattice QCD (HPQCD) collaboration quark
mass ratios respectively. Although this is valid because we
areworking at the physical point, the quark mass ratios in the
literature have significant uncertainties and simply using
their central values to set the valence masses does not allow
us to propagate the resulting uncertainty to observables.
In order to obtain a reliable error estimate and to allow

comparison with an analysis performed using quark mass
ratios, the method used in the present work consists of
computing all quantities at four values each of the bare
strange and charm quark masses on the ensemble with the
physical light quark mass, resulting in up to 16 different
combinations for observables depending on both, as listed
in Table XIII. At heavier than physical light quark mass, we
use a total of 36 combinations of strange and charm masses
in order to cover a larger range and to make more reliable
interpolations.
We then perform a linear fit in the valence quark mass

dependence and can subsequently interpolate to match the
bare quark masses determined from the quark mass ratios
above with the error properly propagated. Alternatively, we
can fix the strange and charm quark masses by interpolating
to match the phenomenological values of some ratios of
mesonic quantities. Here, we do this for MK=Mπ and
MD=Mπ as shown in Fig. 13, resulting in much smaller
errors on the strange and charm quark masses in the rest of
the analysis than by using quark mass ratios and propa-
gating their uncertainties or by matchingMK=fK . The bare
quark masses determined from the different methods
are given in Table XII, where the first error is statistical
the second error stems from the analysis described above
in Appendix B 2. All the final results are quoted for aμs

and aμc as determined from the matching to the phenom-
enological values of MK=Mπ and MD=Mπ with the other
values given for comparison only.
It is interesting to note that for the strange quark mass the

use of the lattice definition of the decay constant in the ratio
MK=fK results in good agreement with the value of aμs as
given by the Nf ¼ 2 FLAG strange to light quark mass
ratio and the one determined from MK=Mπ . In the charm
sector, using the lattice definition in MD=fD results in a
charm quark mass which agrees with the values determined
via the HPQCD charm to strange quark mass ratio and the
three strange quark masses discussed above. The statistical
and systematic errors on aμc derived from the lattice
definition of MD=fD are quite small because in this
definition the charm quark mass dependence of afD is
suppressed, giving MD=fD a substantial slope. The large
value of aμc and the associated uncertainties derived from
the continuum definition ofMD=fD just reflect how flat the
behavior of this ratio becomes as a function of aμc in this

FIG. 13. Linear interpolation in the strange and charm quark masses and matching with the phenomenological values of the ratios
MK=Mπ (blue triangle in the left-hand panel) and MD=Mπ (blue diamond in the right-hand panel). The other points are given for
reference and of these, the strange quark mass from MK=fK is determined using the “continuum definition” of afK .

TABLE XII. Bare quark masses resulting from matching the
quantity in the leftmost column. The labels (LD) and (CD)
correspond to fK (fD) extracted according to the two definitions
given in Eq. (17). The starred aμc are derived from the
corresponding aμs and the HPQCD charm to strange ratio.
The bold values are the strange and charm quark masses used
for the final results of the analysis.

aμs aμc

FLAG/HPQCD 0.0247(4) 0.293ð6Þ⋆
MK=f

ðCDÞ
K 0.02536ð10Þðþ05

−05Þ 0.3005ð42Þðþ06
−06Þ⋆

MK=f
ðLDÞ
K 0.02480ð10Þðþ04

−04Þ 0.2938ð41Þðþ04
−05Þ⋆

MK=Mπ 0.02485ð7Þðþ4
−3Þ 0.2940ð40Þðþ04

−04Þ⋆
MD=f

ðCDÞ
D (� � �) 0.3629ð66Þðþ70

−96Þ
MD=f

ðLDÞ
D (� � �) 0.2902ð26Þðþ09

−17Þ
MD=Mπ (� � �) 0.3075ð15Þðþ14

−14Þ

FIRST PHYSICS RESULTS AT THE PHYSICAL PION … PHYSICAL REVIEW D 95, 094515 (2017)

094515-21



case, which can be seen as an indication for discretization
errors. The charm quark mass determined from MD=Mπ

has a statistical uncertainty lower by a factor of 2 or 3
compared to the other estimates but disagrees with their
values. In addition to the possibly sizeable lattice artifacts
in MD, finite size corrections on Mπ are likely to be at the
few-percent level which means that without the necessary
corrections, the current uncertainties are likely to be
strongly underestimated.
In principle, at the cost of losing predictivity for fK and

fD, estimates for the physical strange and charm quark
masses could be derived from weighted averages of some
or all of the lattice determinations given in Table XII. The
spread of the different values could then be taken as a first
estimate of systematic uncertainties due to discretization
and finite-volume artifacts. In addition, similar to what was
done in Sec. III D for the lattice spacing, determinations
from the baryon sector could be used to increase confidence
in the quark mass estimates.

4. Interpolations

After reliable central values, statistical and systematic
errors due to fit range arbitrariness have been determined
for the observables as described above, we perform
independent linear interpolations in all quantities under
study towards the values of the strange and charm quark
masses listed in Table XII. In principle other approaches
could be used for the interpolations, such as using the
squares of the quantities or forms inspired by chiral
perturbation theory, but for reasons of simplicity and
consistency all the data are interpolated linearly. This
seems to be very well justified by the small mass range
in the interpolations and the shape of the quark mass
dependences. Here, only the statistical error is used as a
weight for the linear fits because of the difficulties involved
in defining a sum of squared residuals with asymmetric
weights. The statistical uncertainties in the values of the
quark masses are propagated by Taylor expansion, con-
tributing to the total statistical error of the interpolation
results in quadrature. Illustrations of a representative set of
these interpolations are shown in Fig. 15 with the con-
tinuum definition of the decay constant shown in the left
panels and the lattice counterpart in the right panels.
A number of features seen in Fig. 15 deserve discussion.

The first one we would like to mention is the fact that for
many of the quantities that were analyzed, the quark mass
dependence is so weak that within errors, no appreciable
slope is observed over the whole range of strange and
charm quark masses. Consequently the error is also largely
independent of which set of strange and charm quark
masses is used, as exemplified by the quark mass inter-
polation of the ratio fDs

=fD in Fig. 14. This is of course not
unexpected for decay constants and it shows that for many
quantities, slight mistuning of the valence strange and
charm quark masses does not lead to significant biases
when working at the physical light quark mass. On the
other hand, for a quantity like MDs

=fDs
, which has a

noticeable slope in both the strange and charm mass, it has

TABLE XIII. Bare valence quark mass parameters and fit range
restrictions for the computation of pseudoscalar meson correla-
tors used in this analysis. ⋆: ð0; cÞ refers to the connected part of
the neutral pion.

L=a Bare valence quark masses

24, 32 aμl 0.003 0.006
aμs 0.0224 0.0231 0.0238 0.0245 0.0252 0.0259
aμc 0.2586 0.2704 0.2822 0.294 0.3058 0.3176

48 aμl 0.0009
aμs 0.0231 0.0238 0.0245 0.0252
aμc 0.2704 0.2822 0.294 0.3058

Fit range minimum and maximum time slices

L=a π� πð0;cÞ⋆ π0 K D Ds ðΔtÞmin

24 [9, 23] [9, 23] [7, 23] [9, 23] [12, 23] [18, 23] 6
32 [9, 28] [9, 28] [7, 31] [9, 28] [13, 27] [15, 27] 6
48 [9, 47] [9, 47] [7, 47] [9, 47] [11, 35] [11, 35] 6

FIG. 14. Quark mass interpolation of the ratio fDs
=fD on the physical pion mass ensemble cA2.09.48 with the phenomenological

value indicated by the green band. (Left) Continuum definition of the decay constants. (Right) Lattice definition of the decay constants.
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FIG. 15. Representative choice of interpolations of various quantities involving decay constants using the continuum definition (left)
and the lattice definition (right) with the phenomenological value indicated by the green band.

FIG. 16. Propagation of the systematic error due to fit range ambiguity to the interpolation of afD. (Left) Distribution resulting from
uniform sampling of data from different fit ranges. (Right) Distribution resulting from sampling which accounts for the weights of
different data points as relative sampling probabilities. The median and the 34.27 percentiles around the median, our estimate of the
systematic error, are indicated by the thick vertical line and the grey rectangle.
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a strong effect on the central value as well as the errors
which interpolation point is chosen. Errors differ by up to a
factor of 4 as shown in the bottom-most panels of
Figure. 15. The next notable feature concerns the (unsur-
prisingly) rather large effect of the definition of the decay
constant on ratios involving fD and fDs

, except when both
are involved simultaneously. Clearly, the two definitions
agree in the continuum limit and these differences show
that discretization effects could be at the level of 15% to
20% for quantities involving charm quarks. Finally, quan-
tities involving Mπ and fπ are expected to be subject to
finite-volume corrections at the few-percent level which
will be accounted for in a future study with finer lattice
spacings and larger volumes.
To propagate the systematic error to the quark mass

estimates and the results of interpolations, we generate
5000 random samples of the data points involved in a given
interpolation by randomly drawing from the various fit
ranges for each combination of quark masses. In order to
obtain a reliable estimate of the resulting error, rather than
sampling uniformly, we use the weights from Eqs. (B4) and
(B5) as relative sampling probabilities, such that data with
large weights occur more frequently in the set. The effect of
this choice can be rather profound as we show in Fig. 16 for
afD, where the left panel corresponds to the distribution
when the data from different fit ranges are sampled
uniformly and the right panel shows the distribution when
the weights are taken into account. It must be noted that the
weighted distribution corresponds to what is observed for
afD at the four charm quark masses, justifying the
approach.
A summary of the statistical and systematic errors is

given in Fig. 17 for the 24 quantities from this analysis,
normalized by their respective central values and including
those that are technically not independent. It is clear that for
most quantities the choice of fit range has a very limited
effect on the total uncertainty and past analyses were
probably well justified in using only one or a few fit
ranges, despite what appears to be a significant ambiguity
involved in the choice of fit range. For the pion mass and
decay constant, however, the systematic error is of the same
order as the statistical error and must be taken into account.
Quantities involving the D meson show significant

spread which might increase even further as the volume
is enlarged and more fit ranges become available. On the
one hand this is due to the light pion mass, which limits the
signal-to-noise ratio for large source-sink separations in
observables involving light quarks. On the other hand, we
observe deviations in the effective mass from a plateau
which exceed the statistical error and these are likely due to
increased round-off errors in the computation of heavy
quark propagators at coarse lattice spacings and with the
clover term present. Since these round-off errors limit the
maximum source-sink separations that can be taken into
account, we would like to perform future studies with more

robust solvers, possibly with a number of iterations in
quadruple precision, in order to significantly extend the
source-sink separation for which a reasonable plateau can
be observed as suggested in Ref. [107]. Finally we would
like to note that for many quantities, per-mille level
uncertainties are likely not attainable by working just with
simulations at the physical pion mass, because the signal-
to-noise ratio deteriorates as the light quark mass is reduced
to its physical value. As a result, a procedure involving
simulations at heavier than physical light quark masses in
combination with (heavy meson) Wilson chiral perturba-
tion theory stabilized by measurements at the physical point
may be necessary. This finding is in line with what was
already observed in Refs. [108,3].

FIG. 17. Error budget for various mesonic observables on
ensemble cA2.09.48 relative to their central values. Observables
involving strange and charm quarks have been interpolated to
physical strange and charm quark masses as described in
Appendix B 4. The inner error bar is statistical and includes
contributions from the fitting procedure as well as the error
propagated from the uncertainty in the quark mass estimates. The
outer error bar indicates the systematic error due to the ambiguity
in the choice of fit range. The dotted and dashed lines show the
per-mille and percent error boundaries respectively. The errors are
shown cumulatively and would add in quadrature if combined.
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