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We investigate the static interquark potential for the three-quark system in SU(3) lattice gauge theory at
zero temperature by using Monte Carlo simulations. We extract the potential from the correlation function
of the three Polyakov loops, which are computed by employing the multilevel algorithm. We obtain
remarkably clean results of the three-quark potential for Oð200Þ sets of the three-quark geometries
including not only the cases that three quarks are put at the vertices of acute, right, and obtuse triangles, but
also the extreme cases such that three quarks are put in line. We find several new interesting features of the
three-quark potential and then discuss its possible functional form.
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I. INTRODUCTION

The static interquark potential for a three-quark system,
the three-quark potential, is one of the characteristic quan-
tities in quantum chromodynamics (QCD), which is relevant
to spectroscopy of hadrons, especially, of baryons. Therefore
it is quite important to determine the functional form of the
potential from the first principle, clarify the properties of the
three-quark system. Since a direct interaction among three
quarks, a three-body force, is expected in QCD by virtue of
SU(3) gauge symmetry, it is also interesting to investigate
how the three-quark potential is different from or the same as
the two-body quark-antiquark potential.
The investigation of the static interquark potential gen-

erally requires a nonperturbative method as the quarks are
strongly interacting with each other inside hadrons, and
Monte Carlo simulations of lattice QCD offer a powerful
tool for this purpose. The first lattice study of the three-
quark potential goes back to the mid-1980s by Sommer and
Wosiek [1,2], and by Thacker et al. [3]. The study was
revisited around 2000 by several groups with improved
numerical techniques and computer resources [4–7].
These latest results were, however, found to be incon-

sistent with each other. Bali [4] and Alexandrou et al. [7]
claimed that the potential was described by the half of the
sum of two-body potentials in the quark-antiquark system,
which is called the Δ area law, up to the interquark distance
nearly 1 fm.1 At the distances where the perturbation theory
cannot be applied, the Δ area law may suggest the
formation of a Δ-shaped color flux tube among the three
quarks. On the other hand, Takahashi et al. [5,6], claimed

that the potential was described by the sum of the two-body
Coulombic terms and the three-body linear term, where the
latter is proportional to the Y distance with a junction at the
Fermat-Torricelli point of a triangle spanned by the three
quarks. This may then be called the Y area law, suggesting
the formation of a Y-shaped color flux tube among the three
quarks at long distances. The confining feature of the Y area
law can be explained partly if the QCD vacuum possesses
the property of dual superconductor [9,10], which are
explicitly demonstrated by lattice QCD simulations in
the maximally Abelian gauge [11–13]. Bissey et al. [14]
investigated the profile of the non-Abelian action density in
the three-quark system and found no Δ-shaped flux-tube
structure at long distance, but the structure was not always
of Y shape. Several ideas were proposed to reconcile this
situation based on the effective models [15–18].
Perturbation theory may provide a guideline for solving
the discrepancy [19,20], if higher order contributions are
property evaluated one after another.
In this paper, we thus revisit the determination of the

three-quark potential in SU(3) lattice gauge theory at zero
temperature. All of the previous lattice results were
obtained by using the Wilson loop as the three-quark
source, which is composed of the three temporal Wilson
lines connected by the spatial Wilson lines with a junction
as illustrated in Fig. 1 (left). The potential and the flux-tube
profile should not depend on the path of the spatial Wilson
lines and the location of the junction, but some of the earlier
results seem to be affected by them especially when the
temporal extent of the Wilson loop is not large enough.
Clearly, it is desirable to have the precise lattice data with
less statistical and systematic errors before evaluating the
validity of the functional form.
Our strategy is then to use the Polyakov loop correlation

function (PLCF) in the fundamental representation as the
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quark source. In contrast to the Wilson loop, the PLCF is
free from systematic effects caused by the spatial Wilson
lines, since the PLCF is composed only of the three
Polyakov loops as illustrated in Fig. 1 (right), where a
periodic boundary condition is imposed in the time
direction. A severe problem, which is why the PLCF
has not been used so far for the zero temperature simu-
lations, may be the smallness of the expectation value in
contrast to the finite temperature case [21,22], which means
that ordinary simulations are ineffective as the signal is
easily obscured by the statistical noise. As we demonstrate
in this paper, however, this problem can be solved by
employing the multilevel algorithm [23,24] with tuned
simulation parameters [25]. Another reason that the PLCF
has been avoided may originate from a folklore that the
potential from the PLCF can contain contributions not only
from the color-singlet state but also from the color-adjoint
state. However, as we have demonstrated in SU(3) lattice
gauge theory [26], all intermediate states of gluons equally
contribute to the color-singlet potential, at least as long as
one uses the PLCF in the fundamental representation (see,
an illuminating discussion in Ref. [27] for SU(2) lattice
gauge theory).
We obtain the three-quark potential ofOð200Þ sets of the

three-quark geometries including not only the cases that
three quarks are put at the vertices of acute, right, and
obtuse triangles, but also the extreme cases such that three
quarks are put in line. We find that most of the three-quark
potentials from triangle geometries that the maximum inner
angle is smaller than 120° can fall into one curve as a
function of the minimal length of lines connecting the three
quarks, which supports the Y-shaped flux-tube picture.
From the derivative of the potential, we observe that the
string tension of the three-quark potential is the same as that
of the quark-antiquark potential. We also critically compare
the three-quark potential to the half of the sum of the

two-body quark-antiquark potential and find a systematic
deviation especially for larger triangle geometries, which
brings us to a conclusion that there is certainly a force
which cannot be described by the superposition of the two-
body forces. We then discuss the functional form of the
three-quark potential and examine its scaling behavior with
respect to the lattice spacing.
This paper is organized as follows. In Sec. II, we describe

how to compute the three-quark potential from the PLCF
with the multilevel algorithm. We also classify various
three-quark geometries. In Sec. III, we present our numeri-
cal results. Section IV is devoted to the summary of our
findings. Our preliminary results have been presented at
Lattice 2013 in Mainz [26], at Lattice 2014 in New York
[25], and at Lattice 2015 in Kobe [28].

II. NUMERICAL PROCEDURES

In this section, we describe how to extract the three-
quark potential from the PLCF and how to implement the
multilevel algorithm for computing the PLCF. We then
provide the definition of some practical distances and
angles to classify various three-quark geometries analyzed
in the present study.

A. The three-quark potential from the PLCF

We perform simulations of SU(3) lattice gauge theory
(lattice QCD within the quenched approximation) in four
dimensions with the lattice volume L3 × T and the lattice
spacing a by imposing periodic boundary conditions in all
space-time directions. The three-quark potential is
extracted from the PLCF as follows.
We first define a three-link correlator as

Tðx0; x⃗1; x⃗2; x⃗3Þαβγδϵζ
≡U4ðx0; x⃗1ÞαβU4ðx0; x⃗2ÞγδU4ðx0; x⃗3Þϵζ; ð1Þ

which is a direct product of three timelike link variables
U4ðxÞ placed at a time x0 with spatial positions of three
quarks, x⃗1, x⃗2, and x⃗3. Greek indices α, β, γ, δ, ϵ, ζ take the
values from one to three, respectively. Practically, a three-
link correlator is a complex matrix with 36 ¼ 729 compo-
nents. The three-link correlator acts on a color state in the
3 ⊗ 3 ⊗ 3 representation of the SU(3) group jnαβγ; x⃗1; x⃗2;
x⃗3i, which is an eigenstate of the Hamiltonian H defined by
the transfer matrix in the temporal gauge, T ≡ e−Ha, and
then satisfies

Tðx0; x⃗1; x⃗2; x⃗3Þαλβργσjnαβγ; x⃗1; x⃗2; x⃗3i
¼ e−Enðx⃗1;x⃗2;x⃗3Þajnλρσ; x⃗1; x⃗2; x⃗3i; ð2Þ

where n is the principal quantum number and repeated
Greek indices α, β, γ are to be summed over from one to
three. The energies Enðx⃗1; x⃗2; x⃗3Þ are positive and are

FIG. 1. The three-quark Wilson loop (left) and the three-quark
PLCF (right). While the Wilson loop is composed of the three
temporal Wilson lines connected by the spatial Wilson lines with
a junction, the PLCF is only composed of the three Polyakov
loops, where a periodic boundary condition is imposed in the
time direction.
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common to all of the 33 ¼ 27 color components of
jnαβγ; x⃗1; x⃗2; x⃗3i. The multiplication rule of two three-link
correlators for adjacent times at x0 and x0 þ a is

fTðx0; x⃗1; x⃗2; x⃗3ÞTðx0 þ a; x⃗1; x⃗2; x⃗3Þgαβγδϵζ
¼ Tðx0; x⃗1; x⃗2; x⃗3ÞαλγρϵσTðx0 þ a; x⃗1; x⃗2; x⃗3Þλβρδσζ: ð3Þ

With this multiplication rule a new and longer three-link
correlator is created as schematically shown in Fig. 2.
We then construct the PLCF from the time-ordered

product of the three-link correlators,

TrPðx⃗1ÞTrPðx⃗2ÞTrPðx⃗3Þ
¼ fTð0; x⃗1; x⃗2; x⃗3ÞTða; x⃗1; x⃗2; x⃗3Þ
� � � TðT − a; x⃗1; x⃗2; x⃗3Þgααγγϵϵ: ð4Þ

By inserting the complete set of eigenstates,

1αλβργσ ¼
X
n

jnαβγ; x⃗1; x⃗2; x⃗3ihnλρσ; x⃗1; x⃗2; x⃗3j; ð5Þ

at each time x0 ¼ 0; a;…; T − a, and by using the nor-
malization condition,

hnαβγ; x⃗1; x⃗2; x⃗3jmαβγ; x⃗1; x⃗2; x⃗3i ¼ δnm; ð6Þ

the expectation value of the PLCF is reduced to

hTrPðx⃗1ÞTrPðx⃗2ÞTrPðx⃗3Þi ¼
X∞
n¼0

e−Enðx⃗1;x⃗2;x⃗3ÞT: ð7Þ

The ground state potential, V3q ≡ E0, is then extracted as

V3qðx⃗1; x⃗2; x⃗3Þ ¼ −
1

T
lnhTrPðx⃗1ÞTrPðx⃗2ÞTrPðx⃗3Þi

þO

�
1

T
e−ðE1−E0ÞT

�
; ð8Þ

where the terms ofOðe−ðE1−E0ÞT=TÞ are always negligible at
zero temperature. Therefore, once the PLCF is computed
accurately for a large temporal extent T, it is straightforward
to extract the ground state potential. For instance, if we refer
to the value aðE1 − E0Þ ∼ 0.5 at β ¼ 6.00 given by
Takahashi and Suganuma [29], the order of magnitude of
Oðe−ðE1−E0ÞT=TÞ on a lattice with T=a ¼ 24, which is our

numerical setting, is estimated asOðe−0.5·24=24Þ¼Oð10−7Þ,
which is clearly negligible compared to aV3q at β ¼ 6.00.
Note that if the sum of multiexponential functions in

Eq. (7) is forcibly cast into a single exponential function, its
exponent may be understood as the minus of the free energy
divided by corresponding temperature. However, if the
excited state contribution is negligible from the beginning
and the summation in Eq. (7) is represented only by the first
term with E0, the energy we can extract following Eq. (8) is
no longer the free energy but just the ground state potential,
where the notion of temperature could be irrelevant.
On the other hand, if one uses the three-quark Wilson

loop as in Fig. 1 (left) with a time extent t, the expectation
value will be

hWðx⃗1; x⃗2; x⃗3; fx⃗pg; tÞi

¼
X∞
n¼0

wnðx⃗1; x⃗2; x⃗3; fx⃗pg; tÞe−Enðx⃗1;x⃗2;x⃗3Þt; ð9Þ

and the ground state potential is then extracted as

V3qðx⃗1; x⃗2; x⃗3Þ ¼ −
1

t
lnhWðx⃗1; x⃗2; x⃗3; fx⃗pg; tÞi

þ 1

t
lnw0 þO

�
1

t
e−ðE1−E0Þt

�
: ð10Þ

The crucial difference from Eq. (8) is the presence of the
nontrivial second term, since the weight factor fwng is
dependent not only on the temporal extent of theWilson loop
t but also on the path of the spatial Wilson lines fx⃗pg. One
may adopt smearing techniques [30] to the spatial links to
achieve a better overlap with the ground state, w0 → 1, and
then the second term can be dismissed. However, the
achievement is usually incomplete especially when the
interquark distance becomes larger. A possible way to
overcome the incompleteness of the smearing may be to
combine this technique and the variational method, although
it requires a further careful look on the validity for the choice
of the variational basis [8,29]. Moreover, the terms of
Oðe−ðE1−E0Þt=tÞ are not easily suppressed, since t cannot
be large practically. There is also limitation such as t < T=2
due to the periodic boundary condition in the time direction.
Thus, in order to identify the first term of the r.h.s. of Eq. (10)
as the ground state potential, these problems must be solved.
Otherwise the contamination from the excited states cannot
be avoided and the resulting potential may be overestimated,
since the second term is usually negative.

B. The multilevel algorithm for the PLCF

A severe problem of the PLCF is that the expectation
values of the PLCF are extremely small at zero temperature,
so that they are immediately obscured by the statistical
noise. By using the multilevel algorithm [23,24], however,
it is possible to overcome the problem. The idea is to

FIG. 2. A product of two three-link correlators, where repeated
Greek indices λ, ρ, and σ are to be summed over from one to
three.
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compute a desired correlation function, which may have an
extremely small expectation value, from the product of
relatively large sublattice averages of its components (in
our case it corresponds to the product of T s within a
sublattice), where the sublattices are defined by dividing
the lattice volume into several layers along the time
direction. During the computation of the sublattice aver-
ages, the spatial links at the sublattice boundaries are kept
intact. The computation of the correlation function in this
way is regarded as the hierarchical functional integral
method and is supported by the transfer matrix formalism
of quantum field theory.
In order to make efficient use of the multilevel algorithm,

it is important to choose the following two parameters
appropriately. One is the number of time slices in a
sublattice, Ntsl ¼ T=ðaNsubÞ, where Nsub is the number
of sub-lattices. The other is the number of internal updates
for the sub-lattice averages, Niupd.
Let us explain the reason how and why the multilevel

algorithm works well by looking at a simple case that the
lattice volume is divided into two sublattices at the time slice
x0 ¼ 0 and x0 ¼ T=2 (Nsub ¼ 2 andNtsl ¼ T=ð2aÞ).Wemay
prepare the product of the three-link correlators fTð0;x⃗1;
x⃗2;x⃗3Þ���TðT=2−a;x⃗1;x⃗2;x⃗3Þgαβγδϵζ and fTðT=2; x⃗1; x⃗2;
x⃗3Þ � � � TðT − a; x⃗1; x⃗2; x⃗3Þgαβγδϵζ, and construct the PLCFby

TrPðx⃗1ÞTrPðx⃗2ÞTrPðx⃗3Þ

¼
�
Tð0; x⃗1; x⃗2; x⃗3Þ���T

�
T
2
−a;x⃗1; x⃗2; x⃗3

��
αλγρϵσ

×

�
T

�
T
2
; x⃗1; x⃗2; x⃗3

�
� ��TðT−a;x⃗1; x⃗2; x⃗3Þ

�
λαργσϵ

; ð11Þ

where ½� � �� represent taking the sublattice averages (this is not
yet an expectation value). Fixing the spatial links at the
sublattice boundaries may correspond to inserting two fixed
sources jϕ1i¼

P
nanjnαβγ;x⃗1;x⃗2;x⃗3i and jϕ2i¼

P
nbnjnαβγ;

x⃗1;x⃗2;x⃗3i at x0 ¼ 0 and x0 ¼ T=2, respectively, where fang
and fbmg are unknown complex values but satisfy janj2 ¼
jbnj2 ¼ 1 for arbitrary n. Then, Eq. (11) is evaluated, omitting
arguments of the spatial vectors for simplicity, as

TrPðx⃗1ÞTrPðx⃗2ÞTrPðx⃗3Þ

¼
�
jϕ1ihϕ1jTð0Þ���T

�
T
2
−a

��
αλγρϵσ

×

�
jϕ2ihϕ2jT

�
T
2

�
���TðT−aÞ

�
λαργσϵ

¼
X
n;m

a�manjnαγϵihmλρσje−Em
T
2

×
X
n0;m0

b�m0bn0 jn0λρσihm0
αγϵje−Em0 T2

¼
X
n

b�nane−En
T
2 ·
X
m

a�mbme−Em
T
2 : ð12Þ

If we take the average for a large number of different fixed
sources at x0 ¼ 0 and x0 ¼ T=2 of other independent gauge
configurations,we obtain the expectationvalue of the PLCFas
in Eq. (7), since inserting many fixed sources corresponds to
inserting the complete set.
It is worth noting that if T=2 is large enough such that the

contribution from the terms of Oðe−ðE1−E0ÞðT=2ÞÞ is negli-
gible, which is the case at zero temperature limit, Eq. (12)
further reduces to

TrPðx⃗1ÞTrPðx⃗2ÞTrPðx⃗3Þ ¼ ja0j2jb0j2e−E0ðx⃗1;x⃗2;x⃗3ÞT

¼ e−E0ðx⃗1;x⃗2;x⃗3ÞT; ð13Þ
where ja0j2 ¼ jb0j2 ¼ 1. This means that the ground state
potential E0 can be extracted from one gauge configuration.
Of course, one should be careful that the weight of one
gauge configuration in the multilevel algorithm is different
from that in ordinary simulations. It is important to notice
that each color component of the intermediate states
equally contributes to the exponential decay of the
PLCF (the degeneracy is just 36 ¼ 729 in this example),
and there is no dominant contribution to the potential from
a particular color component, which implies that contribu-
tions from the color-singlet and color-adjoint states are the
same. Equation (13) also indicates that it is possible to
obtain the same gauge invariant potential even from the
gauge variant PLCF constructed by selected partial inter-
mediate states [26]. In this sense, gauge invariance of the
PLCF is desirable to maximize the number of internal color
statistics (the degeneracy), which may help to obtain stable
values with a smaller Niupd. On the other hand, if the terms
of Oðe−ðE1−E0ÞðT=2ÞÞ in Eq. (12) are not small enough, the
ground state potential cannot be extracted since the PLCF
always suffer from contamination of excited states. In such
a case, increasing the number of independent gauge
configurations (statistics) does not help. Instead, the larger
temporal lattice volume is needed from the beginning.
This example tells us that it is crucial to find an

appropriate Ntsl so that the terms of Oðe−ðE1−E0ÞðaNtslÞÞ
are small enough. In our experience with the standard
SU(3) Wilson gauge action, there is a critical minimal
length of aNtsl to obtain the ground state potential. We find
the value aNtsl ¼ 0.36 ∼ 0.37 ½fm� [31–33], which corre-
sponds to Ntsl ¼ 3 at β≃ 5.85, Ntsl ¼ 4 at β≃ 6.00, and
Ntsl ¼ 6 at β≃ 6.30. Then, the appropriate Niupd is chosen
by looking at the convergence history of the PLCF as a
function of Niupd. If one is interested in the behavior of the
potential at long distances, the larger Niupd is needed.

C. The classification of various three-quark geometries

We compute the PLCF composed of the three Polyakov
loops, TrPðx⃗1ÞTrPðx⃗2ÞTrPðx⃗3Þ, where the spatial locations
of the Polyakov loops, x⃗1, x⃗2, and x⃗3 correspond to those of
three quarks in the three-dimensional space, respectively.
As shown in Fig. 3, there are five types of three-quark
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geometries: three quarks are put at the vertices of acute
(ACT), right (RGT), obtuse (OBT) triangles, and are put in
line (LIN). As a special case, two of three quarks are put at
the same location, which corresponds to a quark-diquark
system (QDQ).
These three-quark geometries can be classified by the

value of the maximum inner angle of a triangle

θmax ¼ maxðθ1; θ2; θ3Þ

¼ cos−1
�
rmaxðr21 þ r22 þ r23 − 2r2maxÞ

2r1r2r3

�
; ð14Þ

where

r1 ¼ jx⃗2− x⃗3j; r2 ¼ jx⃗3− x⃗1j; r3¼ jx⃗1− x⃗2j; ð15Þ

are interquark distances and rmax ¼ maxðr1; r2; r3Þ (see,
Fig. 4). Acute triangles satisfy θmax < 90°, which contain
equilateral and isosceles triangles in our study. Right
triangles are the case θmax ¼ 90°. Obtuse triangles are
further classified into two types depending on θmax, obtuse-
narrow (OBTN) triangles for 90° < θmax < 120° and
obtuse-wide (OBTW) triangles for 120°≦θmax < 180°.
In contrast to the classification of the three-quark

geometries, the parametrization of the three-quark potential
is not straightforward. This is due to the fact that the
potential can depend not only on the location of three
quarks, x⃗1, x⃗2, and x⃗3, but also on the structure of the flux
tube spanned among the three quarks, which is unknown
a priori because of the nonperturbative feature of the QCD
vacuum. Therefore, the determination of the functional
form of the potential is nothing but the finding of
appropriate distances that can capture the systematic
behavior of the potential. Such distances should be sym-
metric under the permutation of the quark positions.
The simplest distance is then given by the sum of inter-

quark distances in Eq. (15),

Δ ¼ r1 þ r2 þ r3: ð16Þ
Another possible distance is given by the minimal total
length of lines connecting the three quarks via the Fermat-
Torricelli point of a triangle,

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 þ r23 þ 4

ffiffiffi
3

p
S

2

s
; ð17Þ

where S is the area of the triangle given by Heron’s
formula,

s ¼ 1

2
Δ; S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − r1Þðs − r2Þðs − r3Þ

p
: ð18Þ

Note that the distance between the Fermat-Torricelli point
and each vertex is

li ¼ Y −
1

Y

�
r2i þ

4Sffiffiffi
3

p
�
: ð19Þ

For finding the location of the Fermat-Torricelli point the
method presented in [34,35] may be useful.
In fact, these two types of distances, Δ and Y, were often

used to examine the behavior of the potential in the earlier
studies. We also follow them in our analyses of the three-
quark potential. In terms of the minimal length of con-
nected lines, Y is reduced to

Λ ¼ Δ − rmax; ð20Þ

when θmax≧120°. It is then convenient to introduce a
combined distance of Y and Λ classified by θmax as

Lstr ¼
�
Y ðθmax < 120°Þ
Λ ðθmax≧120°Þ : ð21Þ

For a detailed comparison with the quark-antiquark
potential, we also use a reduced interquark distance R
defined by

1

R
¼ 1

r1
þ 1

r2
þ 1

r3
; ð22Þ

and an averaged distance between the Fermat-Torricelli
point and three sides of a triangle (see, Fig. 4),

h ¼ 1

3
ðh1 þ h2 þ h3Þ; ð23Þ

FIG. 3. The three-quark geometries investigated in our numerical simulations. The circles represent the spatial location of quarks.
Three Polyakov loops are put at the vertices of (i) acute, (ii) right, (iii) obtuse triangles, and are also put in (iv) line, and are put to be
(v) the quark-diquark system.
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where

hi ¼
2Si
ri

¼
ffiffiffi
3

p
ljlk

2ri
ði; j; k∶cyclicÞ: ð24Þ

Note that Si ¼ ð1=2Þljlk sin 120° is the area of the triangle
spanned by three points xj, xk, and F.
As we will see in the next section, these distances are

quite useful to see the systematic behaviors of the three-
quark potential, although it may be possible to define other
symmetric distances [16].

III. NUMERICAL RESULTS

In this section, we present results of our lattice
Monte Carlo simulations. We emphasize that the crucial
difference of our simulations from the earlier ones of other
groups is that we compute the three-quark potential from
the PLCF, which could provide us with numerical results
with less systematic effects than that from the Wilson loop.
We carried out Monte Carlo simulations using the

standard Wilson gauge action in SU(3) lattice gauge theory.
The basic simulation parameters are summarized in Table I.
The lattice spacing was determined by the Sommer scale
r0 ¼ 0.50 ½fm� [36]. One Monte-Carlo update consisted of
one heat-bath and five over-relaxation steps. The gauge
coupling β and the lattice volume L3 × T were chosen to
make maximal use of the multilevel algorithm within our
computer resource.

In fact, we once investigated the quark-antiquark poten-
tial from the PLCF at β ¼ 6.00 for various lattice volumes
including 164, 204, and 203 × 40 using the multilevel
algorithm [32,33], and found no noticeable dependence
on the temporal size T. Therefore, our results of the three-
quark potential on the 244 lattice at β ¼ 6.00 are also
expected to be independent of T, and can be regarded as
those at zero temperature. Note that the lattice volume 244

at β ¼ 5.85 and β ¼ 6.30 approximately corresponds to
324 and 164 at β ¼ 6.00, respectively.
The numbers of internal updates Niupd and of the gauge

configurations Ncnf are dependent on the observables,
which will be described in the following subsections
individually. The special attention is paid to the data from
one gauge configuration at β ¼ 6.00, which has no stat-
istical error. On the other hand, the data with statistical
errors are from a certain number of gauge configurations,
and the corresponding errors are estimated by the standard
jackknife method. When we perform the χ2 fit, we mainly
use the data with statistical errors.

A. The potential from one gauge configuration

At the beginning, we demonstrate that the three-quark
potential can be obtained from one gauge configuration by
tuning the parameters of the multilevel algorithm as
explained in Sec. II B. In Fig. 5, we plot typical con-
vergence histories of the PLCF for the equilateral triangle
configurations of one gauge configuration at β ¼ 5.85
(Ntsl ¼ 3), β ¼ 6.00 (Ntsl ¼ 4), and β ¼ 6.30 (Ntsl ¼ 6)
as a function of the number of internal updates Niupd. We
find that the fluctuation of the PLCF is washed out and the
values become stable as we increase Niupd. Required Niupd
for convergence depends on the size of the triangle.
Once the PLCF becomes stable, it can be regarded as the

expectation value as in Eq. (13), and then the potential is
computed by Eq. (8). In Fig. 6, we show the potential at
β ¼ 6.00 from one gauge configuration at Niupd ¼ 500000

as a function of Y defined in Eq. (17). The potential is also
compared to that from the average of Ncnf ¼ 9 independent
gauge configurations (the number 9 is just the maximum
gauge configurations that we obtained within our available
computer resources). The numerical error of the average is
estimated by the standard jackknife method. It is obvious
that the potential is determined accurately, where the
potential from one gauge configuration already represents
the average. The level of agreement between the two
potentials can be quantified by evaluating the relative error
ðVðaveÞ

3q − V3qÞ=VðaveÞ
3q , which is plotted in Fig. 7. This figure

shows that the relative error is gradually increasing at large
Y, which is one of the origin of the statistical error of the
average. However it is only 0.8% even at a quite long
distance Y=a≃ 18.
The fit of the averaged potential to an empirical func-

tional form,

TABLE I. The basic simulation parameters used in this study.
The numbers of internal updates Niupd and of the gauge
configurations Ncnf are dependent on the observables.

β ¼ 6=g2 ðL=aÞ3ðT=aÞ a [fm] Nsub Ntsl

5.85 244 0.123 8 3
6.00 244 0.093 6 4
6.30 244 0.059 4 6

FIG. 4. The definition of distances and angles of a triangle used
in our analyses: xi denotes the location of i th quark, F the
Fermat-Torricelli point, so that ∠x1Fx2 ¼ ∠x2Fx3 ¼ ∠x3Fx1 ¼
120°. hi denotes the distance between F and each side. Δ and Y
are given byΔ ¼ r1 þ r2 þ r3 and Y ¼ l1 þ l2 þ l3, respectively.
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VðYÞ
3q ¼ −

AðYÞ
3q

Y
þ σ3qY þ μ3q; ð25Þ

yields AðYÞ
3q ¼ 0.662ð6Þ, σ3qa2 ¼ 0.0446ð3Þ, and μ3qa ¼

1.092ð3Þ, which describes the behavior of the data nicely as
shown in Fig. 6. It is interesting to note that the coefficient
in front of Y, which we may call the three-quark string
tension σ3q, is consistent with the string tension of the

quark-antiquark potential σqq̄. In addition, the constant
term μ3q is approximately ð3=2Þμqq̄, where μqq̄ is the
constant term of the quark-antiquark potential (discussed
later in Sec. III E).

B. The potential of various three-quark geometries

We then extend the computation of the potential to
various three-quark geometries as in Fig. 3 by using the
same one gauge configuration at β ¼ 6.00. In total we
investigate 221 three-quark geometries as summarized in
Table II. We list all of these potential data within the
significant digits in Appendix A.
In Fig. 8, we plot all the potential data against Δ and Lstr

defined in Eqs. (16) and (21). At glance, we find that
neitherΔ nor Lstr can provide a universal functional form of
the three-quark potential, since all the data do not fall into
one curve with these distances. However, if we look at the
potential of ACT, RGT, and OBTN against Lstr carefully
and restrict the data only for rmin=a > 2, where

FIG. 5. Convergence histories of the PLCF of the equilateral
triangle geometries at β ¼ 5.85 (upper), β ¼ 6.00 (middle), and
β ¼ 6.30 (lower) as a function of Niupd, where quarks are placed
at ðx; 0; 0Þ, ð0; x; 0Þ, and ð0; 0; xÞ.

FIG. 6. The three-quark potentials of the equilateral triangle
geometries at β ¼ 6.00 obtained from one gauge configuration
and from the average of 9 gauge configurations as a function of Y.
The dotted line represents the fit curve to the averaged potential.

FIG. 7. The relative error between the two potentials in Fig. 6,
ðVðaveÞ

3q − V3qÞ=VðaveÞ
3q .
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rmin ¼ minðr1; r2; r3Þ, by assuming that they do not suffer
from severe lattice cutoff effects, we observe an excellent
linearly-rising behavior as explicitly shown in Fig. 9. As we
will demonstrate in the following analysis, the correspond-
ing string tension is consistent with that of the quark-
antiquark potential.
The behavior of the potentials of OBTW and LIN is not

as clear as that of ACT and RGT. They are not on a simple

function of Lstr. In particular, as explicitly shown in Fig. 10
for LIN, the potentials are dependent also on rmin. The
increasing behaviors as a function of rmin are similar with
each other, which in turn imply that the three quarks in LIN
prefers to be QDQ. As clarified later in Sec. III D, the
potential for LIN is well described by the half of the sum of
the quark-antiquark potential, so that the interval between
the potentials for various Lstr in Fig. 10 is approximately
given by σqq̄δLstr, where δLstr is the difference of Lstr.
The potential of QDQ exhibits a different behavior from

that of other three-quark geometries. In Fig. 11, we plot the
QDQ potential (we have selected only on-axis data), which
is then compared to the quark-antiquark potential with the
same distance between a quark and an antiquark r (the raw
data of the quark-antiquark potential are summarized in
Table XI in Appendix B). It appears that the two potentials
are almost the same. Fitting the two potentials to the
functional form,

V ¼ −
A
r
þ σrþ μ; ð26Þ

TABLE II. The number of various three-quark geometries inves-
tigated from one gauge configuration at β ¼ 6.00 (total 221). The
potential data are summarized in tables in Appendix A.

Classification (abbr.) Count Table

acute (ACT) 68 III
right (RGT) 43 IV
obtuse-narrow (OBTN) 27 V
obtuse-wide (OBTW) 28 VI
line (LIN) 32 VII
quark-diquark (QDQ) 23 VIII

FIG. 9. The three-quark potential of acute, right, and obtuse-
narrow geometries restricted to rmin=a > 2 against Lstr .

FIG. 8. The three-quark potential against Δ defined in Eq. (16)
(upper) and Lstr defined in Eq. (21) (lower). Smaller markers
denote data from the geometries for rmin=a≦2, which may suffer
from lattice cutoff effects. FIG. 10. The three-quark potential of line geometries against rmin.
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leads to the values Aqdq ¼ 0.336ð2Þ, σqdqa2 ¼ 0.0449ð1Þ,
and μqdqa ¼ 0.811ð1Þ for the QDQ potential,2 while
Aqq̄ ¼ 0.340ð2Þ, σqq̄a2¼0.0449ð2Þ, and μqq̄a¼0.766ð1Þ
for the quark-antiquark potential (see, Table XII in
Appendix B), where subscripts are added to distinguish
the fit results; two potentials are consistent with each other
except for the constant shift, aðμqdq − μqq̄Þ ¼ 0.045ð3Þ.
We also compute the derivatives of the QDQ and the

quark-antiquark potentials with respect to r, which are
shown in Fig. 12. We find that the two results completely
agree with each other, including a systematic effect caused
by finite volume. These results mean that reduction of the
representation in SU(3) color group, 3 ⊗ ð3̄ ⊕ 6Þ ⇒
3 ⊗ 3̄, is realized nonperturbatively. Note that a similar

result is obtained in Ref. [37] by using the T-shaped three-
quark Wilson loop, where the distance between the two
quarks for the diquark is set to two lattice steps.

C. The string tension of the flux tube

The analysis in Sec. III B indicates that all of the three-
quark potentials of various three-quark geometries cannot
be parametrized by a unique distance simultaneously.
However, if we look at the three-quark potential plotted
in Fig. 8 optimistically, especially the plot against Lstr, there
seems to be a common increasing behavior with different
constant shifts. This may probably be due to the fact that
somehow a common type of flux tube is formed among
three quarks to minimize the total energy of the three-quark
system, while the difference of the constants originates only
from short distance effects among the three quarks, which
persists even if one of the three quarks is located at a
distance. We thus investigate the derivative of the potential
with respect to Lstr so that the short distance effects can be
removed from the potential.
Let us first focus on the potential of the isosceles triangle

geometries within ACT, where the two of three quarks are
placed at x⃗1 ¼ ðx; 0; 0Þ and x⃗2 ¼ ð0; x; 0Þ, and the remain-
ing third quark is placed at x⃗3 ¼ ð0; 0; zÞ with z≧x. In this
case, Lstr is identical to Y and the distance between the
Fermat-Torricelli point and x⃗1 and x⃗2, respectively, is the
same l1 ¼ l2 ¼ ð ffiffiffi

6
p

=3Þx (see, Fig. 4). Therefore, pulling
the third quark (changing z) with the fixed first and second
quarks does not affect the location of the Fermat-Torricelli
point, which just affects the increase of the energy between
the Fermat-Torricelli point and the third quark, where
l3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2=2

p
− x=

ffiffiffi
6

p
. We then compute the derivative

of the potential with respect to Y for several fixed values
of x,

V 0
3q ¼

V3qðx; zþ δzÞ − V3qðx; zÞ
δY

: ð27Þ

In Fig. 13 (upper), we plot the result for one gauge
configuration at β ¼ 6.00 with the classification in terms
of the distance between the first and second quarks,
rmin ¼

ffiffiffi
2

p
x, where x=a ¼ 1, 2, and 3 (in this case, δY ¼

δl3). We find that all the derivatives behave quite similarly
and approach a constant value at long distance.
Remarkably, the constant value is nothing but the string
tension in the quark-antiquark system, σqq̄a2 ¼ 0.0449
(see, Table XII). Since the third quark is chosen arbitrarily
among the three, this result also supports a picture of the Y-
shaped flux-tube formation. This feature agrees with that
was pointed out by Takahashi et al. [5,6] based on the χ2 fit
to the potential data with the Y Ansatz.
We then pay attention to the potentials of RGT, where

x⃗2 ¼ ð0; y; 0Þ and x⃗3 ¼ ð0; 0; 0Þ, and the remaining first
quark is placed at x⃗1 ¼ ðx; 0; 0Þ, where x≧y. In this case,

FIG. 11. The quark-diquark and quark-antiquark potentials
against r. The dashed and dotted lines are the fit curves to
Eq. (26), respectively.

FIG. 12. The derivatives of the quark-diquark and quark-
antiquark potentials with respect to r. The horizontal dotted line
corresponds to the string tension of the quark-antiquark potential
σqq̄a2 ¼ 0.0449 (see, Table XII).

2The errors of the QDQ data, which are absent because of
Ncnf ¼ 1, are estimated from the residuals in the fitting process,
and are used to evaluate the errors of the fit parameters.
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although the location of the Fermat-Torricelli point is
slightly dependent on changing x, it becomes insensitive
to x when x ≫ y. The derivative is then defined by

V 0
3q ¼

V3qðxþ δx; yÞ − V3qðx; yÞ
δY

: ð28Þ

In Fig. 13 (middle), we plot the result for the same one
gauge configuration with the classification in terms of the

distance between the second and third quarks, rmin ¼ y,
where y=a ¼ 1 ∼ 4. We find that all the derivatives
approach the constant value, σqq̄a2 ¼ 0.0449, at long
distance: the tendency is quite the same as that for ACT.
We finally examine the potentials of LIN, where

x⃗1 ¼ ðx1; 0; 0Þ, x⃗2 ¼ ðx2; 0; 0Þ, and x⃗3 ¼ ð0; 0; 0Þ, which
is an extreme case that there is probably no chance to form a
junction of the flux tube. For a fixed distance rmin ¼ x2
(0 < x2 < x1=2), the derivative is then defined by

V 0
3q ¼

V3qðx1 þ δx1; x2Þ − V3qðx1; x2Þ
δx1

: ð29Þ

In Fig. 13 (bottom), we plot the result for the same one
gauge configuration as a function of Lstr ¼ x1. We again
find that all the derivatives approach the constant value,
σqq̄a2 ¼ 0.0449, at long distance.
These results strongly indicate that the energy of the flux

tube per unit length, the string tension, is common to that of
the quark-antiquark potential regardless of the geometry of
three quarks.

D. Detailed comparison with the two-body quark-
antiquark potential

In the earlier studies of the three-quark potential, there
was a claim that the potential was described by the half of
the sum of two-body potentials in the quark-antiquark
system [4,7]. However, our results in Sec. III C, indicating
the presence of the flux-tube junction in larger ACT and
RGT, clearly contradict the earlier claim. Thus we critically
compare the three-quark potential with the quark-antiquark
potential. In fact, this is possible only when the both
potentials are determined accurately up to long distance,
otherwise one cannot distinguish the difference between
them since it is not so apparent in practice as we will
see below.
In Fig. 14, we plot the relative error between the three-

quark potential and the half of the sum of the quark-
antiquark potentials at β ¼ 6.00,

δV
V3q

¼ 1

V3q

�
V3qðx⃗1; x⃗2; x⃗3Þ −

1

2

X3
i¼1

Vqq̄ðriÞ
�
; ð30Þ

against Δ defined in Eq. (16), where we have selected only
55 three-quark geometries out of 221 ones. The selection is
to perform the subtraction in Eq. (30) by using only the
available raw data of the quark-antiquark potential as
summarized in Tables XI and XIII in Appendix B. We
have avoided the use of the fit function of the quark-
antiquark potential in Eq. (26), which may cause unwanted
systematic effects especially at short distance.
We observe that the relative error is almost constant

about 0.003 atΔ=a < 10, which may be understood as zero
within the systematic error due to the use of different gauge

FIG. 13. The derivatives of the three-quark potential with
respect to Lstr for acute (upper), right (middle), and line (lower)
geometries. The dotted line in each plot corresponds to the string
tension of the quark-antiquark potential σqq̄a2 ¼ 0.0449 (see
Table XII).
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configurations,3 where the three-quark potential is from one
gauge configuration with Niupd ¼ 500000, while the quark-
antiquark potential is from Ncnf ¼ 20 gauge configurations
with Niupd ¼ 100000. On the other hand, the difference
becomes apparent at Δ=a > 10 especially for ACT and
RGT, both of which show a similar increasing behavior up
to 0.03 at Δ=a ¼ 35. Note that the relative error 0.03 is
already large enough compared to that from the gauge
configuration dependence as demonstrated in Fig. 7. In
Fig. 15, we also plot the same relative error in Eq. (30)
against θmax defined in Eq. (14). Clearly, some of ACT and
RGT data (correspond to larger Δ) exhibit a large deviation
from zero.
The above two results seem to indicate that the large

deviation in ACTand RGToriginates from the formation of
the flux-tube junction, since only these configurations are
possible to form a proper junction at larger triangle. On the
other hand, even in ACT and RGT, the flux-tube junction
cannot be formed properly when the size of the triangle is
insufficient. It seems that there is a critical size of the
triangle to form a proper flux-tube junction. Based on this
expectation, in Fig. 16, we then plot the relative error in
Eq. (30) against the distance h defined in Eq. (23), the
averaged distance between the Fermat-Torricelli point and
three sides of a triangle. Note that h ¼ 0 for LIN, while
h > 0 for the other triangles. We find that the relative errors
of all the three-quark potential are well parametrized by h.

The dashed line corresponds to a fit curve for the ACT data,
which is an empirical quadratic function given by

δV
V3q

¼ c0 þ c1ðh=aÞ þ c2ðh=aÞ2; ð31Þ

where c0¼0.0029ð3Þ, c1¼−0.0011ð7Þ, and c2¼0.0026ð3Þ.
The relative errors seem to start increasing around
h=a ∼ 0.6.
The difference between the three-quark potential and the

half of the sum of the quark-antiquark potentials signals an
existence of three-body force among the three quarks. Our
results in this subsection indicate that the difference is not
so drastic when the size of the triangle is small or θmax
approaches 180°, while it shows up gradually for larger
ACT and RGT. In other words, it seems that the emergence
of the three-body effects depends on whether the inter-
quark distance among three quarks is large enough to form
a flux-tube junction inside the triangle.

FIG. 14. The relative error between three-quark potential and
the half of the sum of the quark-antiquark potential, δV=V3q
against Δ defined in Eq. (16). As the three-quark potential is from
one gauge configuration with no statistical error, the error bars in
this plot are purely from that of the quark-antiquark potential
from Ncnf ¼ 20 (see Tables XI and XIII).

FIG. 15. The same plot as in Fig. 14, but against θmax defined in
Eq. (14).

FIG. 16. The same plot as in Fig. 14, but against h defined in
Eq. (23). The fit curve is given by Eq. (31).

3Note, however, that our further analysis using exactly the
same Ncnf ¼ 200 gauge configurations for the three-quark and
the quark-antiquark potentials at β ¼ 6.00 with Niupd ¼ 10000
indicates that this constant still remains finite about 0.002, which
may be due to lattice cutoff effects. These potentials are not
presented in this paper as the number of geometries is very
limited, but the data are available on request.
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E. The functional form of the three-quark potential

The analysis in Sec. III C suggests that the long distance
part of the three-quark potential can be described by the
term σ3qLstr, where the coefficient σ3q is common to that of
the quark-antiquark potential σqq̄. In addition, a naive fit
result of the three-quark potential of the equilateral triangle
geometries in Sec. III A as well as the analysis in Sec. III D
have indicated that the potential also contains a constant
term, which is approximately 3=2 of that in the quark-
antiquark potential μqq̄. The presence of such a constant
term in the three-quark potential is quite natural in terms of
the self-energy of quarks, which will be proportional to the
number of quarks involved in the system.
We then investigate the behavior of the rest of the

potential by subtracting the confinement term σqq̄Lstr
and an expected constant term ð3=2Þμqq̄ from the three-
quark potential,

Vðsub 1Þ
3q ¼ V3q −

�
σqq̄Lstr þ

3

2
μqq̄

�
; ð32Þ

which will be useful to clarify the short distance part of the
potential. In Fig. 17, we plot Eq. (32) against R defined in
Eq. (22), where the three-quark potential used in this
analysis is the same as that used in the previous subsections
at β ¼ 6.00. From the quark-antiquark potential we
take the values σqq̄a2 ¼ 0.0449ð2Þ and μqq̄a ¼ 0.766ð1Þ
(see Table XII in Appendix B). Remarkably, we find two
systematic curves4: one is mostly for LIN and the other is
for triangle geometries although both seem to overlap at
R=a < 1. The data of LIN are well described by a function
−Aqq̄=ð2RÞ (the dotted line in the figure), where Aqq̄ ¼
0.340ð2Þ is also from Table XII, which may not be
surprising after the analysis in Sec. III D. Since Lstr ¼
Δ=2 for LIN, the difference of the potential from the half of
the sum of the quark-antiquark potential is at most 0.3%
relative error as explicitly shown in Fig. 14. What we
should pay attention to is then the behavior of the other data
for triangle geometries, which clearly deviates from the
function −Aqq̄=ð2RÞ. Moreover, it seems that the curve
approaches a negative constant value at large R. We then
perform an empirical χ2 fit to the functional form,

VðRÞ
3q ¼ −

AðRÞ
3q

R
þ ~μ3q; ð33Þ

which yields AðRÞ
3q ¼ 0.126ð3Þ and ~μ3qa ¼ −0.062ð4Þ with

χ2=Ndf ¼ 0.04, where the averaged potential of the equi-
lateral triangle configuration with error bars is taken into
account in the fit. It turns out that Eq. (33) nicely captures

the increasing behavior of Vðsub 1Þ
3q (the dashed line in the

figure). We find that AðRÞ
3q is significantly smaller than

Aqq̄=2 ¼ 0.170 about 26%, namely,

AðRÞ
3q ¼ Aqq̄

2
ð1 − 0.259Þ; ð34Þ

and ~μ3q has a negative value as expected. The value 0.259
may be further tuned by performing a more sophisticated
fit. The absolute value of ~μ3q is one order of magnitude
smaller than μqq̄, but still seems to be finite.
One may suspect at this stage that the existence of ~μ3q

just reflects a lattice artifact at β ¼ 6.00, however, the
following analysis in Sec. III F shows a kind of scaling
behavior on ~μ3q, which implies that ~μ3q reflects a physical
effect. Since the negative shift of the energy at large R
appears only for triangle geometries, we speculate that it
just represents an energy reduction due to formation of the
flux-tube junction. Of course, if this is the case, the energy
reduction could depend on the size of the triangle. This
feature seems to be incorporated effectively by rewriting
Eq. (33) as

VðRÞ
3q ¼ −

Aqq̄

2R
þ
�
0.259 ·

Aqq̄

2R
þ ~μ3q

�
; ð35Þ

where the first term purely represents two-body interaction
between quarks while the terms inside parenthesis are
interpreted as the three-body junction effect. In Fig. 18, we
plot

Vðsub 2Þ
3q ¼ V3q −

�
−
Aqq̄

2R
þ σqq̄Lstr þ

3

2
μqq̄

�
; ð36Þ

against R. Although it is not obvious in Fig. 17 whether
OBTW belongs to LIN or triangle category, the plot in
Fig. 18 seems to support the latter. The change of sign from
positive to negative values around R=a ∼ 0.7 may reflect
the fact that forming a simple Y-shaped junction is rather
costly for these smaller R, implying that a different type of

FIG. 17. The three-quark potential after subtracting the confine-
ment and constant terms Vðsub 1Þ

3q in Eq. (32) against the reduced
distance R defined in Eq. (22). The open symbols are the three-
quark potential from one gauge configuration at β ¼ 6.00, and
the filled circles with error bars are from 9 gauge configurations
of the equilateral triangle geometries. The dotted line corresponds
to −Aqq̄=ð2RÞ, and the dashed line the fit curve given by Eq. (33).

4Although we attempted to plot Vðsub 1Þ
3q with Δ and Lstr, we

failed to see any systematic behaviors.
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flux structure is realized. It would be quite interesting to
investigate the energy density of various three-quark
systems with the PLCF.
To summarize, the functional form of the three-

quark potential for triangle geometries is effectively para-
metrized by

V3q ¼ −
AðRÞ
3q

R
þ σqq̄Lstr þ

3

2
μqq̄ þ ~μ3q: ð37Þ

On the other hand, the functional form for LIN can be
described by the half of the sum of the quark-antiquark
potential,

V3q ¼
1

2

X3
i¼1

Vqq̄ðriÞ; ð38Þ

up to the tiny 0.3% relative error as shown in Sec. III D. We
cannot answer here whether or not both functional forms
can change continuously depending on the movement of
quarks, which should be clarified in future study. It is
certainly important for this purpose to see the potential of
OBTW at long distance in detail. The functional form in
Eq. (37) may be similar to that proposed by Takahashi et al.
[5,6] for triangle geometries, where the potential was
parametrized by V3q ¼ −Aqq̄=ð2RÞ þ σqq̄Y þ constant.
However, our result shows a noticeable difference from
it in terms of the junction term in Eq. (35).

F. Scaling test of the three-quark potential

So far we have concentrated on analyzing the potential at
β ¼ 6.00, and have found the possible functional form of
the potential as in Eqs. (37) and (38). We finally examine
whether the functional form is still valid even if the lattice
spacing decreases or increases. We then computed the
three-quark potential at β ¼ 5.85 and 6.30. We only pay
attention to the potential of equilateral triangle geometries

because of the limited computer resources, however, it will
provide some hints concerning the scaling behavior of the
potential. The number of gauge configurations to compute
the final expectation values are not so many, but the
statistical errors are highly suppressed by employing the
multilevel algorithm with the tuned parameters, where
Ncnf ¼ 8 at β ¼ 5.85 with Niupd ¼ 500000, and Ncnf ¼ 6
at β ¼ 6.30 with Niupd ¼ 400000. Typical convergence
histories of the PLCF of the equilateral triangle geometry
at β ¼ 5.85 and β ¼ 6.30 are already shown in Fig. 5.
In Fig. 19, we plot the potential as a function of Y, where

physical scales are introduced according to Table I (the raw
data and the fit results are summarized in Tables IX and X).
In addition, the constant term ð3=2Þμqq̄a is subtracted
before we introduce the physical scale for each β value.
The constant term μqq̄ is extracted from the quark-antiquark
potential as summarized in Table XII, which reflects the
self-energy of a quark and an antiquark, and diverges in the
continuum limit a → 0. We find that the potential beauti-
fully falls into one curve,

VðYÞ
3q ¼ −

AðYÞ
3q ℏc

Y
þ σ3qY þ ~μ3q; ð39Þ

indicating a scaling behavior with respect to the lattice
spacing.5 The quark-antiquark potential used in this analy-
sis also exhibits a good scaling behavior as shown in
Fig. 20 (the raw data and the fit results are summarized in
Tables XI and XII in Appendix B). Comparison of the

FIG. 18. The same plot as in Fig. 17, but the term −Aqq̄=ð2RÞ
is further subtracted from the three-quark potential [Vðsub 2Þ

3q

in Eq. (36)]. The dashed line corresponds to 0.259Aqq̄=
ð2RÞ þ ~μ3q.

FIG. 19. The three-quark potential as a function of Y in physical
unit, where the constant ð3=2Þμqq̄ is subtracted. The dotted line
corresponds to the fit curve to Eq. (39), which yields
AðYÞ
3q ℏc ¼ 0.131ð4Þ ½GeV=fm�, σ3q ¼ 1.02ð1Þ ½GeV=fm�, and

~μ3q ¼ −0.12ð2Þ ½GeV� with χ2=Ndf ¼ 0.02.

5When we put three quarks at ðx; 0; 0Þ, ð0; x; 0Þ, and ð0; 0; xÞ,
the distance between the two of three quarks is r ¼ ffiffiffi

2
p

x and
Y ¼ ffiffiffi

6
p

r ¼ 2
ffiffiffi
3

p
x. On the other hand, R ¼ ffiffiffi

2
p

x=3, and then
R ¼ ffiffiffi

3
p

Y=9 ¼ 0.19245Y. Thus, the function 1=Y and 1=R is the
same for equilateral triangles up to a multiplicative factor.
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potentials at various β values may be affected by the way of
subtraction of the constant μ3q. This uncertainty can
however be avoided by looking at the derivative of the
potential with respect to Y, which is independent of the
constant μ3q. The result is plotted in Fig. 21 and the data fall
into a curve given by the derivative of Eq. (39) with respect
to Y.
We then look at the scaling behavior of the constant term

in the three-quark potential. Although it has already been
suggested in Sec. III E that the constant μ3q consists of two
contribution ð3=2Þμqq̄ and the remnant ~μ3q,

μ3q ¼
3

2
μqq̄ þ ~μ3q; ð40Þ

we simply compare the behavior of μqq̄=2 and μ3q=3 in
physical unit, which is plotted in Fig. 22 as a function of the

inverse of the lattice spacing 1=a. If the constant originates
only from the divergent self-energies of quarks, both should
coincide with each other. As can be seen, the increasing
behavior is the same as 1=a increases, however, there is a
difference by a constant, which seems to be independent of
a. Indeed, as we explicitly show in Fig. 23, the remnant of
the constant ~μ3q seems to exhibit a scaling behavior against
a. As already discussed in Sec. III E, ~μ3q is absent for LIN
and appears only when the three quarks form a triangle.
Therefore, it would be quite reasonable to understand that
this is caused by the formation of the flux-tube junction,
which can reduce the total energy of the three-quark
system.
Finally, in Fig. 24, we plot the three-quark potential as a

function of R in physical unit after subtracting the confine-
ment and divergent constant terms expected from the
quark-antiquark potential, Vðsub 1Þ

3q in Eq. (32). The behavior
of the potential is nicely described by the functional form in
Eq. (33). Although we cannot exclude the possibility of

FIG. 20. The quark-antiquark potential as a function of r in
physical unit, where the constantμqq̄ is subtracted. The dotted line is
the fit curve toVqq̄ðrÞ ¼ −Aqq̄ℏc=rþ σqq̄r, which yieldsAqq̄ℏc ¼
0.0671ð6Þ ½GeV=fm�, σqq̄ ¼ 1.025ð4Þ ½GeV=fm� with χ2=Ndf ¼
0.013.

FIG. 21. The derivative of the potential with respect to Y in
physical unit. The dotted line corresponds to the fit curve to the
derivative of Eq. (39) with respect to Y, which yields AðYÞ

3q ℏc ¼
0.139ð4Þ ½GeV=fm�, σ ¼ 1.013ð7Þ ½GeV=fm� with χ2=Ndf ¼ 2.0.

FIG. 22. The scale dependence of the constant term of the
quark-antiquark and three-quark potentials per one quark. A
naive fit to a linear function yields the slope 0.33 for both cases.

FIG. 23. The scaling behavior of the remnant of the constant
term of the three-quark potential ~μ3q in Eq. (40). A naive fit to a
constant value yields ~μ3q ¼ −0.131ð7Þ ½GeV�.
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other parametrizations with different distances, such as Y,
which is different from R only by a multiplicative factor for
the equilateral triangle geometries, this plot and the detailed
analysis of the potential at β ¼ 6.00 in Fig. 17 indicate that
the parametrization with R also works well for other three-
quark geometries at β ¼ 5.85 and 6.30.

IV. SUMMARY

We have investigated the static interquark potential for
the three-quark system, the three-quark potential, in
SU(3) lattice gauge theory at zero temperature by using
Monte Carlo simulations. The crucial difference of our
study from earlier ones by other groups is that we have
used the Polyakov loop correlation function (PLCF)
composed of the three Polyakov loops as the three-quark
source instead of the three-quark Wilson loop, and thus,
our results are not contaminated by systematic effects
due to the spatial Wilson lines. By employing the
multilevel algorithm extensively, we have then obtained
remarkably accurate data on the potential for Oð200Þ
sets of the three-quark geometries, which include not
only the cases that three quarks are put at the vertices of
acute (ACT), right (RGT), and obtuse (OBTN and
OBTW) triangles, but also the extreme cases such that
three quarks are put in line (LIN). As a special case,
we have also investigated the quark-diquark (QDQ)
potential.
What we have shown on the three-quark potential is

summarized as follows.
(i) The potentials of ACT, RGT, OBTN with rmin=a>2

plotted against Lstr can fall into one curve, which

show the same linearly-rising behavior at long
distance as in the quark-antiquark potential.

(ii) The potential of QDQ is identical to the quark-
antiquark potential as in Eq. (26) except for the
constant shift.

(iii) The string tension of the potential, identified as the
coefficient in front of Lstr, is common to that of the
quark-antiquark potential (we have shown this with-
out a fit procedure).

(iv) The potentials of triangle geometries are clearly
different from the half of the sum of the two-body
quark-antiquark potential when the size of the
triangle becomes larger, which can be described
by the functional form in Eq. (37).

(v) The potential of LIN is very close to the half of the
sum of the two-body quark-antiquark potentials,
which can be described by the functional form in
Eq. (38) (up to a tiny relative error about 0.3%
at β ¼ 6.00).

(vi) The potential, its derivative, and the remnant of the
constant term, which we call the junction term, show
good scaling behaviors with respect to the lattice
spacing (although only the equilateral triangle
geometries have been examined).

It seems that there is no unique functional form of the
potential which covers all three-quark geometries, which
in turn implies that the potential is very sensitive not only
to the location of three quarks but also to the nontrivial
flux-tube structure spanned among the three quarks. The
functional forms that we have successfully categorized
into three types as in Eqs. (26), (37), and (38) clearly
indicate this feature. Probably, the potential of OBTW,
which has not been addressed fully in the present study,
may play an intermediate role between ACT-RGT-OBTN
and LIN. It must be quite important to look at the
distribution of energy density in the three-quark system
at zero temperature by using the PLCF as in the finite
temperature case [13,38,39].
In order to apply the three-quark potential to baryon

spectroscopy, on the other hand, it would be desirable to
have a unique functional form. This may be possible by
introducing a kind of a form factor. One of the practical
ideas may be to extend the functional form that we have
found further by using the distance such as h, an averaged
distance between the Fermat-Torricelli point and three
sides of a triangle. As we have demonstrated in Fig. 16,
the difference between all three-quark potentials from the
half of the sum of the quark-antiquark potential can be
described by a quadratic function of h.
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APPENDIX A: THE THREE-QUARK
POTENTIAL DATA

TABLE III. List of the three-quark potential (ACT).

No. x⃗1 x⃗2 x⃗3 r1 r2 r3 θmax V3q

1 (1,0,0) (0,1,0) (0,0,1) 1.41 1.41 1.41 60 0.9300
2 (2,0,0) (0,2,0) (0,0,2) 2.83 2.83 2.83 60 1.1723
3 (3,0,0) (0,3,0) (0,0,3) 4.24 4.24 4.24 60 1.3252
4 (4,0,0) (0,4,0) (0,0,4) 5.66 5.66 5.66 60 1.4538
5 (5,0,0) (0,5,0) (0,0,5) 7.07 7.07 7.07 60 1.5737
6 (6,0,0) (0,6,0) (0,0,6) 8.49 8.49 8.49 60 1.6899
7 (7,0,0) (0,7,0) (0,0,7) 9.90 9.90 9.90 60 1.8050
8 (8,0,0) (0,8,0) (0,0,8) 11.31 11.31 11.31 60 1.9210
9 (2,0,0) (0,1,0) (0,0,1) 1.41 2.24 2.24 72 1.0347
10 (3,0,0) (0,1,0) (0,0,1) 1.41 3.16 3.16 77 1.1156
11 (4,0,0) (0,1,0) (0,0,1) 1.41 4.12 4.12 80 1.1822
12 (5,0,0) (0,1,0) (0,0,1) 1.41 5.10 5.10 82 1.2412
13 (6,0,0) (0,1,0) (0,0,1) 1.41 6.08 6.08 83 1.2959
14 (7,0,0) (0,1,0) (0,0,1) 1.41 7.07 7.07 84 1.3481
15 (8,0,0) (0,1,0) (0,0,1) 1.41 8.06 8.06 85 1.3988
16 (9,0,0) (0,1,0) (0,0,1) 1.41 9.06 9.06 86 1.4483
17 (10,0,0) (0,1,0) (0,0,1) 1.41 10.05 10.05 86 1.4972
18 (11,0,0) (0,1,0) (0,0,1) 1.41 11.05 11.05 86 1.5430
19 (1,0,0) (0,2,0) (0,0,2) 2.83 2.24 2.24 78 1.1155
20 (3,0,0) (0,2,0) (0,0,2) 2.83 3.61 3.61 67 1.2310
21 (4,0,0) (0,2,0) (0,0,2) 2.83 4.47 4.47 72 1.2873
22 (5,0,0) (0,2,0) (0,0,2) 2.83 5.39 5.39 75 1.3410
23 (6,0,0) (0,2,0) (0,0,2) 2.83 6.32 6.32 77 1.3927
24 (7,0,0) (0,2,0) (0,0,2) 2.83 7.28 7.28 79 1.4432
25 (8,0,0) (0,2,0) (0,0,2) 2.83 8.25 8.25 80 1.4926
26 (9,0,0) (0,2,0) (0,0,2) 2.83 9.22 9.22 81 1.5414
27 (10,0,0) (0,2,0) (0,0,2) 2.83 10.20 10.20 82 1.5897
28 (11,0,0) (0,2,0) (0,0,2) 2.83 11.18 11.18 83 1.6348
29 (1,0,0) (0,3,0) (0,0,3) 4.24 3.16 3.16 84 1.2476
30 (2,0,0) (0,3,0) (0,0,3) 4.24 3.61 3.61 72 1.2820
31 (4,0,0) (0,3,0) (0,0,3) 4.24 5.00 5.00 65 1.3718
32 (5,0,0) (0,3,0) (0,0,3) 4.24 5.83 5.83 69 1.4196
33 (6,0,0) (0,3,0) (0,0,3) 4.24 6.71 6.71 72 1.4676
34 (7,0,0) (0,3,0) (0,0,3) 4.24 7.62 7.62 74 1.5154
35 (8,0,0) (0,3,0) (0,0,3) 4.24 8.54 8.54 76 1.5632
36 (9,0,0) (0,3,0) (0,0,3) 4.24 9.49 9.49 77 1.6107
37 (10,0,0) (0,3,0) (0,0,3) 4.24 10.44 10.44 78 1.6579
38 (11,0,0) (0,3,0) (0,0,3) 4.24 11.40 11.40 79 1.7022
39 (1,0,0) (0,4,0) (0,0,4) 5.66 4.12 4.12 87 1.3578
40 (2,0,0) (0,4,0) (0,0,4) 5.66 4.47 4.47 78 1.3814
41 (3,0,0) (0,4,0) (0,0,4) 5.66 5.00 5.00 69 1.4148
42 (5,0,0) (0,4,0) (0,0,4) 5.66 6.40 6.40 64 1.4961

(Table continued)

TABLE III. (Continued)

No. x⃗1 x⃗2 x⃗3 r1 r2 r3 θmax V3q

43 (6,0,0) (0,4,0) (0,0,4) 5.66 7.21 7.21 67 1.5401
44 (7,0,0) (0,4,0) (0,0,4) 5.66 8.06 8.06 69 1.5852
45 (8,0,0) (0,4,0) (0,0,4) 5.66 8.94 8.94 72 1.6307
46 (9,0,0) (0,4,0) (0,0,4) 5.66 9.85 9.85 73 1.6768
47 (10,0,0) (0,4,0) (0,0,4) 5.66 10.77 10.77 75 1.7225
48 (11,0,0) (0,4,0) (0,0,4) 5.66 11.70 11.70 76 1.7655
49 (1,0,0) (0,5,0) (0,0,5) 7.07 5.10 5.10 88 1.4579
50 (2,0,0) (0,5,0) (0,0,5) 7.07 5.39 5.39 82 1.4758
51 (3,0,0) (0,5,0) (0,0,5) 7.07 5.83 5.83 75 1.5028
52 (4,0,0) (0,5,0) (0,0,5) 7.07 6.40 6.40 67 1.5361
53 (6,0,0) (0,5,0) (0,0,5) 7.07 7.81 7.81 63 1.6140
54 (7,0,0) (0,5,0) (0,0,5) 7.07 8.60 8.60 66 1.6563
55 (8,0,0) (0,5,0) (0,0,5) 7.07 9.43 9.43 68 1.6994
56 (9,0,0) (0,5,0) (0,0,5) 7.07 10.30 10.30 70 1.7439
57 (10,0,0) (0,5,0) (0,0,5) 7.07 11.18 11.18 72 1.7877
58 (11,0,0) (0,5,0) (0,0,5) 7.07 12.08 12.08 73 1.8307
59 (1,0,0) (0,6,0) (0,0,6) 8.49 6.08 6.08 88 1.5530
60 (2,0,0) (0,6,0) (0,0,6) 8.49 6.32 6.32 84 1.5676
61 (3,0,0) (0,6,0) (0,0,6) 8.49 6.71 6.71 78 1.5902
62 (4,0,0) (0,6,0) (0,0,6) 8.49 7.21 7.21 72 1.6191
63 (5,0,0) (0,6,0) (0,0,6) 8.49 7.81 7.81 66 1.6529
64 (7,0,0) (0,6,0) (0,0,6) 8.49 9.22 9.22 63 1.7295
65 (8,0,0) (0,6,0) (0,0,6) 8.49 10.00 10.00 65 1.7699
66 (9,0,0) (0,6,0) (0,0,6) 8.49 10.82 10.82 67 1.8108
67 (10,0,0) (0,6,0) (0,0,6) 8.49 11.66 11.66 69 1.8556
68 (11,0,0) (0,6,0) (0,0,6) 8.49 12.53 12.53 70 1.9051

TABLE IV. List of the three-quark potential (RGT).

No. x⃗1 x⃗2 x⃗3 r1 r2 r3 θmax V3q

1 (1,0,0) (0,1,0) (0,0,0) 1.00 1.00 1.41 90 0.8139
2 (2,0,0) (0,1,0) (0,0,0) 1.00 2.00 2.24 90 0.9588
3 (3,0,0) (0,1,0) (0,0,0) 1.00 3.00 3.16 90 1.0500
4 (4,0,0) (0,1,0) (0,0,0) 1.00 4.00 4.12 90 1.1197
5 (5,0,0) (0,1,0) (0,0,0) 1.00 5.00 5.10 90 1.1799
6 (6,0,0) (0,1,0) (0,0,0) 1.00 6.00 6.08 90 1.2352
7 (2,0,0) (0,2,0) (0,0,0) 2.00 2.00 2.83 90 1.0796
8 (3,0,0) (0,2,0) (0,0,0) 2.00 3.00 3.61 90 1.1597
9 (4,0,0) (0,2,0) (0,0,0) 2.00 4.00 4.47 90 1.2244
10 (5,0,0) (0,2,0) (0,0,0) 2.00 5.00 5.39 90 1.2820
11 (7,0,0) (0,1,0) (0,0,0) 1.00 7.00 7.07 90 1.2877
12 (8,0,0) (0,1,0) (0,0,0) 1.00 8.00 8.06 90 1.3386
13 (9,0,0) (0,1,0) (0,0,0) 1.00 9.00 9.06 90 1.3884
14 (10,0,0) (0,1,0) (0,0,0) 1.00 10.00 10.05 90 1.4373
15 (11,0,0) (0,1,0) (0,0,0) 1.00 11.00 11.05 90 1.4831
16 (6,0,0) (0,2,0) (0,0,0) 2.00 6.00 6.32 90 1.3359
17 (7,0,0) (0,2,0) (0,0,0) 2.00 7.00 7.28 90 1.3875
18 (8,0,0) (0,2,0) (0,0,0) 2.00 8.00 8.25 90 1.4377
19 (9,0,0) (0,2,0) (0,0,0) 2.00 9.00 9.22 90 1.4872
20 (10,0,0) (0,2,0) (0,0,0) 2.00 10.00 10.20 90 1.5358

(Table continued)
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TABLE IV. (Continued)

No. x⃗1 x⃗2 x⃗3 r1 r2 r3 θmax V3q

21 (11,0,0) (0,2,0) (0,0,0) 2.00 11.00 11.18 90 1.5813
22 (3,0,0) (0,3,0) (0,0,0) 3.00 3.00 4.24 90 1.2322
23 (4,0,0) (0,3,0) (0,0,0) 3.00 4.00 5.00 90 1.2922
24 (5,0,0) (0,3,0) (0,0,0) 3.00 5.00 5.83 90 1.3470
25 (6,0,0) (0,3,0) (0,0,0) 3.00 6.00 6.71 90 1.3990
26 (7,0,0) (0,3,0) (0,0,0) 3.00 7.00 7.62 90 1.4495
27 (8,0,0) (0,3,0) (0,0,0) 3.00 8.00 8.54 90 1.4990
28 (9,0,0) (0,3,0) (0,0,0) 3.00 9.00 9.49 90 1.5478
29 (10,0,0) (0,3,0) (0,0,0) 3.00 10.00 10.44 90 1.5960
30 (11,0,0) (0,3,0) (0,0,0) 3.00 11.00 11.40 90 1.6412
31 (4,0,0) (0,4,0) (0,0,0) 4.00 4.00 5.66 90 1.3487
32 (5,0,0) (0,4,0) (0,0,0) 4.00 5.00 6.40 90 1.4010
33 (6,0,0) (0,4,0) (0,0,0) 4.00 6.00 7.21 90 1.4513
34 (7,0,0) (0,4,0) (0,0,0) 4.00 7.00 8.06 90 1.5005
35 (8,0,0) (0,4,0) (0,0,0) 4.00 8.00 8.94 90 1.5489
36 (9,0,0) (0,4,0) (0,0,0) 4.00 9.00 9.85 90 1.5972
37 (10,0,0) (0,4,0) (0,0,0) 4.00 10.00 10.77 90 1.6451
38 (11,0,0) (0,4,0) (0,0,0) 4.00 11.00 11.70 90 1.6896
39 (5,0,0) (0,5,0) (0,0,0) 5.00 5.00 7.07 90 1.4513
40 (6,0,0) (0,5,0) (0,0,0) 5.00 6.00 7.81 90 1.5001
41 (7,0,0) (0,5,0) (0,0,0) 5.00 7.00 8.60 90 1.5481
42 (8,0,0) (0,5,0) (0,0,0) 5.00 8.00 9.43 90 1.5958
43 (9,0,0) (0,5,0) (0,0,0) 5.00 9.00 10.30 90 1.6433

TABLE V. List of the three-quark potential (OBTN).

No. x⃗1 x⃗2 x⃗3 r1 r2 r3 θmax V3q

1 (2,0,0) (1,0,0) (0,0,2) 2.24 2.83 1.00 117 1.0049
2 (3,0,0) (1,0,0) (0,0,2) 2.24 3.61 2.00 117 1.1264
3 (4,0,0) (1,0,0) (0,0,2) 2.24 4.47 3.00 117 1.2051
4 (5,0,0) (1,0,0) (0,0,2) 2.24 5.39 4.00 117 1.2684
5 (2,0,0) (1,0,0) (0,0,3) 3.16 3.61 1.00 108 1.0742
6 (3,0,0) (1,0,0) (0,0,3) 3.16 4.24 2.00 108 1.1881
7 (4,0,0) (1,0,0) (0,0,3) 3.16 5.00 3.00 108 1.2621
8 (5,0,0) (1,0,0) (0,0,3) 3.16 5.83 4.00 108 1.3225
9 (2,0,0) (1,0,0) (0,0,4) 4.12 4.47 1.00 104 1.1352
10 (3,0,0) (1,0,0) (0,0,4) 4.12 5.00 2.00 104 1.2443
11 (3,0,0) (2,0,0) (0,0,4) 4.47 5.00 1.00 117 1.1621
12 (4,0,0) (1,0,0) (0,0,4) 4.12 5.66 3.00 104 1.3147
13 (4,0,0) (2,0,0) (0,0,4) 4.47 5.66 2.00 117 1.2738
14 (5,0,0) (1,0,0) (0,0,4) 4.12 6.40 4.00 104 1.3726
15 (5,0,0) (2,0,0) (0,0,4) 4.47 6.40 3.00 117 1.3457
16 (2,0,0) (1,0,0) (0,0,5) 5.10 5.39 1.00 101 1.1910
17 (3,0,0) (1,0,0) (0,0,5) 5.10 5.83 2.00 101 1.2971
18 (3,0,0) (2,0,0) (0,0,5) 5.39 5.83 1.00 112 1.2117
19 (4,0,0) (1,0,0) (0,0,5) 5.10 6.40 3.00 101 1.3649
20 (4,0,0) (2,0,0) (0,0,5) 5.39 6.40 2.00 112 1.3206
21 (5,0,0) (1,0,0) (0,0,5) 5.10 7.07 4.00 101 1.4207
22 (5,0,0) (2,0,0) (0,0,5) 5.39 7.07 3.00 112 1.3904
23 (2,0,0) (1,0,0) (0,0,6) 6.08 6.32 1.00 99 1.2438
24 (3,0,0) (1,0,0) (0,0,6) 6.08 6.71 2.00 99 1.3479
25 (3,0,0) (2,0,0) (0,0,6) 6.32 6.71 1.00 108 1.2604
26 (4,0,0) (1,0,0) (0,0,6) 6.08 7.21 3.00 99 1.4139
27 (4,0,0) (2,0,0) (0,0,6) 6.32 7.21 2.00 108 1.3674

TABLE VII. List of the three-quark potential (LIN).

No. x⃗1 x⃗2 x⃗3 r1 r2 r3 θmax V3q

1 (2,0,0) (1,0,0) (0,0,0) 1.00 2.00 1.00 180 0.8478
2 (3,0,0) (1,0,0) (0,0,0) 1.00 3.00 2.00 180 0.9914
3 (4,0,0) (1,0,0) (0,0,0) 1.00 4.00 3.00 180 1.0786
4 (4,0,0) (2,0,0) (0,0,0) 2.00 4.00 2.00 180 1.1203
5 (5,0,0) (1,0,0) (0,0,0) 1.00 5.00 4.00 180 1.1457
6 (5,0,0) (2,0,0) (0,0,0) 2.00 5.00 3.00 180 1.2017
7 (6,0,0) (1,0,0) (0,0,0) 1.00 6.00 5.00 180 1.2044
8 (6,0,0) (2,0,0) (0,0,0) 2.00 6.00 4.00 180 1.2661
9 (6,0,0) (3,0,0) (0,0,0) 3.00 6.00 3.00 180 1.2803
10 (7,0,0) (1,0,0) (0,0,0) 1.00 7.00 6.00 180 1.2588
11 (7,0,0) (2,0,0) (0,0,0) 2.00 7.00 5.00 180 1.3233
12 (7,0,0) (3,0,0) (0,0,0) 3.00 7.00 4.00 180 1.3434
13 (8,0,0) (1,0,0) (0,0,0) 1.00 8.00 7.00 180 1.3108
14 (8,0,0) (2,0,0) (0,0,0) 2.00 8.00 6.00 180 1.3769
15 (8,0,0) (3,0,0) (0,0,0) 3.00 8.00 5.00 180 1.3998
16 (8,0,0) (4,0,0) (0,0,0) 4.00 8.00 4.00 180 1.4055
17 (9,0,0) (1,0,0) (0,0,0) 1.00 9.00 8.00 180 1.3612
18 (9,0,0) (2,0,0) (0,0,0) 2.00 9.00 7.00 180 1.4283
19 (9,0,0) (3,0,0) (0,0,0) 3.00 9.00 6.00 180 1.4527
20 (9,0,0) (4,0,0) (0,0,0) 4.00 9.00 5.00 180 1.4614
21 (10,0,0) (1,0,0) (0,0,0) 1.00 10.00 9.00 180 1.4108

(Table continued)

TABLE VI. List of the three-quark potential (OBTW).

No. x⃗1 x⃗2 x⃗3 r1 r2 r3 θmax V3q

1 (2,0,0) (1,0,0) (0,0,1) 1.41 2.24 1.00 135 0.9243
2 (3,0,0) (1,0,0) (0,0,1) 1.41 3.16 2.00 135 1.0570
3 (3,0,0) (2,0,0) (0,0,1) 2.24 3.16 1.00 153 1.0169
4 (4,0,0) (1,0,0) (0,0,1) 1.41 4.12 3.00 135 1.1410
5 (4,0,0) (2,0,0) (0,0,1) 2.24 4.12 2.00 153 1.1425
6 (4,0,0) (3,0,0) (0,0,1) 3.16 4.12 1.00 162 1.0904
7 (5,0,0) (1,0,0) (0,0,1) 1.41 5.10 4.00 135 1.2068
8 (5,0,0) (2,0,0) (0,0,1) 2.24 5.10 3.00 153 1.2226
9 (5,0,0) (3,0,0) (0,0,1) 3.16 5.10 2.00 162 1.2122
10 (5,0,0) (4,0,0) (0,0,1) 4.12 5.10 1.00 166 1.1529
11 (3,0,0) (2,0,0) (0,0,2) 2.83 3.61 1.00 135 1.0618
12 (4,0,0) (2,0,0) (0,0,2) 2.83 4.47 2.00 135 1.1821
13 (4,0,0) (3,0,0) (0,0,2) 3.61 4.47 1.00 146 1.1184
14 (5,0,0) (2,0,0) (0,0,2) 2.83 5.39 3.00 135 1.2596
15 (5,0,0) (3,0,0) (0,0,2) 3.61 5.39 2.00 146 1.2374
16 (5,0,0) (4,0,0) (0,0,2) 4.47 5.39 1.00 153 1.1725
17 (3,0,0) (2,0,0) (0,0,3) 3.61 4.24 1.00 124 1.1117
18 (4,0,0) (2,0,0) (0,0,3) 3.61 5.00 2.00 124 1.2272
19 (4,0,0) (3,0,0) (0,0,3) 4.24 5.00 1.00 135 1.1551
20 (5,0,0) (2,0,0) (0,0,3) 3.61 5.83 3.00 124 1.3017
21 (5,0,0) (3,0,0) (0,0,3) 4.24 5.83 2.00 135 1.2711
22 (5,0,0) (4,0,0) (0,0,3) 5.00 5.83 1.00 143 1.2007
23 (4,0,0) (3,0,0) (0,0,4) 5.00 5.66 1.00 127 1.1962
24 (5,0,0) (3,0,0) (0,0,4) 5.00 6.40 2.00 127 1.3094
25 (5,0,0) (4,0,0) (0,0,4) 5.66 6.40 1.00 135 1.2346
26 (4,0,0) (3,0,0) (0,0,5) 5.83 6.40 1.00 121 1.2394
27 (5,0,0) (3,0,0) (0,0,5) 5.83 7.07 2.00 121 1.3503
28 (5,0,0) (4,0,0) (0,0,5) 6.40 7.07 1.00 129 1.2721
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APPENDIX B: THE QUARK-ANTIQUARK
POTENTIAL DATA

TABLE VII. (Continued)

No. x⃗1 x⃗2 x⃗3 r1 r2 r3 θmax V3q

22 (10,0,0) (2,0,0) (0,0,0) 2.00 10.00 8.00 180 1.4786
23 (10,0,0) (3,0,0) (0,0,0) 3.00 10.00 7.00 180 1.5040
24 (10,0,0) (4,0,0) (0,0,0) 4.00 10.00 6.00 180 1.5142
25 (10,0,0) (5,0,0) (0,0,0) 5.00 10.00 5.00 180 1.5171
26 (11,0,0) (1,0,0) (0,0,0) 1.00 11.00 10.00 180 1.4591
27 (11,0,0) (2,0,0) (0,0,0) 2.00 11.00 9.00 180 1.5279
28 (11,0,0) (3,0,0) (0,0,0) 3.00 11.00 8.00 180 1.5540
29 (11,0,0) (4,0,0) (0,0,0) 4.00 11.00 7.00 180 1.5654
30 (11,0,0) (5,0,0) (0,0,0) 5.00 11.00 6.00 180 1.5697
31 (12,0,0) (1,0,0) (0,0,0) 1.00 12.00 11.00 180 1.4987
32 (12,0,0) (2,0,0) (0,0,0) 2.00 12.00 10.00 180 1.5740

TABLE VIII. List of the three-quark potential (QDQ).

No. x⃗1 x⃗2 x⃗3 r1 r2 r3 θmax V3q

1 (1,0,0) (0,0,0) (0,0,0) 0.00 1.00 1.00 — 0.5480
2 (2,0,0) (0,0,0) (0,0,0) 0.00 2.00 2.00 — 0.7331
3 (3,0,0) (0,0,0) (0,0,0) 0.00 3.00 3.00 — 0.8347
4 (4,0,0) (0,0,0) (0,0,0) 0.00 4.00 4.00 — 0.9075
5 (5,0,0) (0,0,0) (0,0,0) 0.00 5.00 5.00 — 0.9689
6 (6,0,0) (0,0,0) (0,0,0) 0.00 6.00 6.00 — 1.0248
7 (7,0,0) (0,0,0) (0,0,0) 0.00 7.00 7.00 — 1.0777
8 (8,0,0) (0,0,0) (0,0,0) 0.00 8.00 8.00 — 1.1287
9 (9,0,0) (0,0,0) (0,0,0) 0.00 9.00 9.00 — 1.1786
10 (10,0,0) (0,0,0) (0,0,0) 0.00 10.00 10.00 — 1.2277
11 (11,0,0) (0,0,0) (0,0,0) 0.00 11.00 11.00 — 1.2736
12 (12,0,0) (0,0,0) (0,0,0) 0.00 12.00 12.00 — 1.2979
13 (1,0,0) (1,0,0) (0,0,1) 1.41 1.41 0.00 — 0.6650
14 (2,0,0) (2,0,0) (0,0,1) 2.24 2.24 0.00 — 0.7693
15 (3,0,0) (3,0,0) (0,0,1) 3.16 3.16 0.00 — 0.8498
16 (4,0,0) (4,0,0) (0,0,1) 4.12 4.12 0.00 — 0.9161
17 (5,0,0) (5,0,0) (0,0,1) 5.10 5.10 0.00 — 0.9748
18 (1,0,0) (1,0,0) (0,0,2) 2.24 2.24 0.00 — 0.7693
19 (2,0,0) (2,0,0) (0,0,2) 2.83 2.83 0.00 — 0.8255
20 (3,0,0) (3,0,0) (0,0,2) 3.61 3.61 0.00 — 0.8832
21 (4,0,0) (4,0,0) (0,0,2) 4.47 4.47 0.00 — 0.9385
22 (5,0,0) (5,0,0) (0,0,2) 5.39 5.39 0.00 — 0.9914
23 (1,0,0) (1,0,0) (0,0,3) 3.16 3.16 0.00 — 0.8498

TABLE IX. The three-quark potentials of the equilateral
geometries at β ¼ 5.85 (Niupd ¼ 500000 and Ncnf ¼ 8), 6.00
(Niupd ¼ 500000 and Ncnf ¼ 9), and 6.30 (Niupd ¼ 400000 and
Ncnf ¼ 6), where the three quarks are placed at ðx; 0; 0Þ, ð0; x; 0Þ
and ð0; 0; xÞ. The distances Y ¼ ffiffiffi

6
p

x and R ¼ ffiffiffi
3

p
Y=9 ¼ ffiffiffi

2
p

x=3
are used when we plot the potential data. The corresponding plot
is shown in Fig. 19.

x=a Y=a R=a β ¼ 5.85 β ¼ 6.00 β ¼ 6.30

1 2.449 0.471 1.01563(39) 0.93078(23) 0.82543(12)
2 4.899 0.943 1.3374(11) 1.17491(76) 0.99852(53)
3 7.348 1.414 1.5703(21) 1.3300(15) 1.0886(12)
4 9.798 1.886 1.7813(34) 1.4609(23) 1.1540(22)

(Table continued)

TABLE IX. (Continued)

x=a Y=a R=a β ¼ 5.85 β ¼ 6.00 β ¼ 6.30

5 12.247 2.357 1.9855(53) 1.5830(33) 1.2083(36)
6 14.697 2.828 2.1871(78) 1.7013(42) 1.2569(48)
7 17.146 3.300 2.385(10) 1.8187(52) 1.3026(66)
8 19.596 3.771 1.930(11) 1.3364(70)
9 22.045 4.243 1.997(27) 1.383(18)
10 24.495 4.714 1.440(23)
11 26.944 5.185 1.442(48)

TABLE X. Fit results of the three-quark potential in Table IX to
VðYÞ
3q ¼ −AðYÞ

3q =Y þ σ3qY þ μ3q.

β AðYÞ
3q σ3qa2 μ3qa fit range x=a (Y=a) χ2=Ndf

5.85 0.64(1) 0.0776(5) 1.089(5) 1–7 (2.45–17.1) 0.15
6.00 0.662(6) 0.0446(3) 1.092(3) 1–8 (2.45–19.6) 0.09
6.30 0.635(6) 0.0180(3) 1.041(3) 1–7 (2.45–17.1) 2.1

TABLE XI. The quark-antiquark potentials at β ¼ 5.85
(Niupd ¼ 50000 and Ncnf ¼ 133), 6.00 (Niupd ¼ 100000 and
Ncnf ¼ 20), and 6.30 (Niupd ¼ 6000 and Ncnf ¼ 40), where the
quark and antiquark are separated only along the on-axis. For
other simulation parameters, see Table I. The data at β ¼ 5.85 and
6.30 were computed when we studied the relativistic corrections
to the quark-antiquark potential [32,33] and for this reason some
parts remain blank, which however are harmless in the present
analysis. The corresponding plot is shown in Fig. 20.

r=a β ¼ 5.85 β ¼ 6.00 β ¼ 6.30

1 0.501511(36)
2 0.762272(85) 0.68631(12) 0.600853(55)
3 0.90051(16) 0.78796(24) 0.67114(11)
4 1.00877(25) 0.86105(39) 0.71569(19)
5 1.10516(35) 0.92273(56) 0.74970(30)
6 1.19592(46) 0.97891(75) 0.77837(41)
7 1.28359(58) 1.03203(97) 0.80403(56)
8 1.36941(71) 1.0833(12) 0.82733(74)
9 1.45401(84) 1.1333(14) 0.84850(96)
10 1.53776(99) 1.1820(17) 0.8667(12)
11 1.2269(21)
12 1.2499(24)

TABLE XII. Fit results of the quark-antiquark potential in
Table XI to Vqq̄ðrÞ ¼ −Aqq̄=rþ σqq̄rþ μqq̄.

β Aqq̄ σqq̄a2 μqq̄a fit range r=a χ2=Ndf

5.85 0.354(2) 0.0790(1) 0.781(1) 3–10 1.1
6.00 0.340(2) 0.0449(2) 0.766(1) 2–10 0.13
6.30 0.313(2) 0.0182(1) 0.721(1) 3–10 1.2
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