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Excluded-volume effects for a hadron gas in Yang-Mills theory
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When the multiplicities of particles produced in heavy-ion collisions are fitted to the hadron-resonance-
gas model, excluded-volume effects play a significant role. In this work, we study the impact of such effects
on the equation of state of pure Yang-Mills theory at low temperatures, comparing the predictions of the
statistical model with lattice results. In particular, we present a detailed analysis of the SU(2) and SU(3)
Yang-Mills theories: we find that, for both of them, the best fits to the equilibrium thermodynamic
quantities are obtained when one assumes that the volume of different glueball states is inversely
proportional to their mass. The implications of these findings for QCD are discussed.
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I. INTRODUCTION

The ongoing program of relativistic heavy-nuclei colli-
sions at particle accelerators provides much experimental
information about strongly interacting matter under extreme
conditions of temperature and/or density [1]. Most strik-
ingly, it shows that, at temperatures 72 160 MeV, a new
state of matter exists, in which color charges are deconfined
and chiral symmetry gets restored: the quark-gluon plasma
(QGP) [2].

This conclusion is derived from the concurrent obser-
vation of several, distinct phenomena, such as elliptic flow
[3], jet quenching [4], quarkonium suppression [5],
enhanced production of strange hadrons [6], as well as
characteristic spectra of photons and leptons [7]. As this list
shows, in contrast to ordinary atomic plasmas, the QGP is
not observed directly, but rather through the hadronic (or
the electromagnetic) residues, that are left after the transient
QGP state expands, cools down, and rehadronizes [8].
|

The distributions of hadrons produced in ultrarelativistic
heavy-ion collisions indicate that the “fireball” created in
the collision thermalizes, as they can be modeled very
accurately using only a small number of parameters, such
as temperature (7'), chemical potential (1) and volume (V)
[9]. The simplest theoretical model to describe this physics
is a hadron-resonance gas [10,11]—see also Ref. [12] for a
historical account and Ref. [13], Sec. II for a modern
overview of the main formulas. In its most elementary
formulation (which continues to be a topic of active
research to this day—see, e.g., Ref. [14] and references
therein), it assumes that hadrons behave as an ideal gas of
massive, free particles, and that their mutual interactions
can be parametrized in terms of a tower of resonances [15].
In this picture, the pressure p can be written as the sum of
the contributions (denoted as p;) from the different species
of particles (labeled by j), which are assumed to be narrow,

noninteracting, and to have finite mass m;,
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where d; is the number of physical states (i.e. the spin
degeneracy) for the generic particle species j, ; is —1 for
bosons, while it equals 1 for fermions, and K,(z) denotes
the modified Bessel function of the second kind of argu-
ment z and index v. In general, each of the p; appearing in
Eq. (1) is a function of the temperature 7" and of the total
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chemical potential y; for the jth type of particles, which is
defined as

Hj = bjup +qjug + s;is, (2)

where up, up and ug denote the chemical potentials
respectively associated with conservation of baryonic
number, electric charge and strangeness, while b;, ¢q;
and s; are the eigenvalues of these charges for the particle
species j.

The success of this “ideal” hadron-resonance-gas model
in describing the QCD thermodynamics in the confining
phase is also confirmed by its comparison with numerical
results from lattice calculations, which are based on the first
principles of the theory, without any model-dependent
assumptions. This has been shown for full QCD with
dynamical fermions [16,17], as well as for pure Yang-Mills
theory' [18-21], and even in 2 + 1 spacetime dimensions
[22]. While the behavior of bulk thermodynamic quantities
at very low temperatures is essentially accounted for by the
contributions of the lightest hadron species only, heavier
states start to play a more prominent role at temperatures
O(10%) MeV: in particular, in Hagedorn’s original picture
[10], which predates QCD, an exponential growth in the
hadron spectral density as a function of mass implies the
existence of a limiting, maximal temperature at which
hadronic matter can exist.

A possible way to improve the ideal hadron-resonance-
gas model consists in including repulsive interactions
through excluded-volume effects [23]: the idea is to assume
that the total pressure p is still given by the sum of the
separate contributions from different particle species, like
in Eq. (1), but that the p; are functions of 7" and of a set of
modified chemical potentials x4 defined as

Hj = bjpug + qjug + Sjus = v;p, (3)

where v; denotes the “eigenvolume parameter” for the jth
particle species. If the particles are modeled as hard spheres
of radius r; and quantum-mechanical effects in their mutual
hard-core interaction are neglected, then

v =—r. (4)

Note, however, that quantum-mechanics effects are gen-
erally non-negligible [24], so that r; should rather be
interpreted as an “effective radius”.

'Note that, strictly speaking, the absence of quarks implies that
no hadrons (neither baryons, nor mesons, nor other multiquark
states) exist in a purely gluonic theory. The spectrum of the theory
only contains glueballs, i.e., color-singlet states made only of
gluons. Throughout this article we nevertheless use a broad
definition of “hadrons,” which includes glueballs.
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This excluded-volume-hadron-resonance-gas model has
been used in recent comparisons with lattice results [17,25].
Remarkably, in Ref. [26] it has been demonstrated that the
chemical freeze-out temperature obtained in fits of exper-
imental hadron yields is strongly sensitive to the hadron-
volume parameters, i.e., to the details of the short-range
repulsion between hadrons. The issue has been studied
further in Ref. [27], in which different mass-volume
relations were assumed for strange and nonstrange hadrons:
it was found that modeling the experimental results
obtained in heavy-ion collisions by means of a gas of
hadron resonances with excluded-volume effects yields
much better fits of the observed particle distributions, if one
assumes that heavier strange hadrons have smaller radii. In
principle, also charmed and bottom mesons could show
analogous behavior. Another recent study addressing
related issues is Ref. [28], in which the equation of state
is studied, under the assumption that mesons are pointlike,
while baryons and antibaryons have a finite hard-core
radius. Refining the hadron-resonance-gas model for QCD
could have important phenomenological implications: for
example, it may improve the modeling of conserved-charge
fluctuations [29], which are an important tool to explore the
QCD phase diagram.

In the present work, we extend the investigation of
hadronic excluded-volume effects in a different direction—
one that has the advantage of offering a somewhat ““clearer”
theoretical setup; namely we study this problem for the case
of a purely gluonic theory, focusing, in particular, on the
case of Yang-Mills theory with SU(2) gauge group, and
carrying out a detailed comparison between the hadron-
resonance-gas model with excluded-volume effects, and a
novel set of continuum-extrapolated results from
Monte Carlo lattice simulations of this theory. In addition,
we also present a similar analysis for the SU(3) Yang-Mills
theory, whose equation of state has been determined in
independent, high-precision calculations by various lattice
groups [20,30]; specifically, we use the data reported in
Ref. [20].

The reasons why this type of study is interesting are
manifold. From a purely theoretical side, pure Yang-Mills
theory possesses only one (independent) physical scale—
which can be chosen to be either the mass of the lightest
state in the spectrum (a scalar glueball) or of some stable,
heavier hadron, or the critical temperature 7', at which the
second-order deconfinement transition takes place [31], or
the square root of the force between static fundamental
color sources at asymptotically large distances, or the Ay
parameter of the theory, or any other dimensionful, non-
perturbative scale: all of these quantities are related to each
other by fixed ratios, typically O(1) [32,33]. As a conse-
quence, lattice simulations of pure Yang-Mills theory are
completely predictive, once one of these physical quantities
has been chosen to set the scale, i.e., it has been assumed to
take its experimentally measured value. This is a significant
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advantage with respect to QCD, where, in addition to the
dimensionful scale generated nonperturbatively by quan-
tum dynamics, all physical quantities exhibit dependence
on parameters like the number of light quark flavors, their
different masses, etc.: in particular, these parameters of
the theory are known to affect significantly its finite-
temperature properties [34], in some cases even at the
qualitative level,” and their effects on the physics can
sometimes be difficult to disentangle from each other. In
addition, Monte Carlo simulations of purely bosonic
theories have computational costs much lower than those
of full lattice QCD with light dynamical quarks, and do not
involve any of the subtleties related to the implementation
of fermionic fields. As a consequence, one can obtain
results of higher numerical precision; this is particularly
important in the confining phase at low temperatures, in
which the equilibrium thermodynamic observables take
much smaller values than in the deconfined phase.

For a study of excluded-volume effects, focusing on a
purely gluonic theory also entails an additional mathemati-
cal simplification: in a theory that contains no quarks, there
is no baryonic number, no electric charge, and no strange-
ness either. As a consequence, all of the modified chemical
potentials 7 defined in Eq. (3) are simply proportional to
the total pressure p.

Another, more “phenomenological,” motivation to study
the thermodynamic properties of pure Yang-Mills theory
was put forward in Ref. [36], in which it was pointed out
that the early stages of the system produced in proton-
proton, proton-nucleus, and nucleus-nucleus collisions can
be modeled by an essentially purely gluonic deconfined
plasma. Some implications of this scenario and related
aspects have been recently discussed in Refs. [37].

We emphasize that the primary goal of this paper is not to
propose a new way to describe Yang-Mills lattice data, but
to test the existing excluded-volume description for had-
ronic interactions in QCD [23-28], in theories with a
different particle content. As we discuss in detail below,
while purely gluonic SU(2) and SU(3) theories have many
qualitative similarities with QCD, in some respects they are
also remarkably different from it. As such, they can provide
a useful testing ground to check the robustness of a model
for hadron interactions in QCD at finite temperature, and
give helpful indications as to what extent it can be reliably
applied also for observables beyond equilibrium (like
fluctuations of conserved charges) and/or in regions of
the QCD phase diagram in which lattice calculations face
challenges [38].

The thermodynamics of Yang-Mills theory with SU(2)
gauge group lends itself to testing excluded-volume cor-
rections of the hadron-resonance-gas model in a setup with
a nontrivial difference with respect to the SU(3) theory: the

*For example, the order and the very existence of a phase
transition depend on the quark mass values [35].
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physical spectrum of the theory with N = 2 colors does not
contain any state of negative eigenvalue under the charge
conjugation operator C. This is a straightforward conse-
quence of the fact that all irreducible representations of
the algebra of the SU(2) group are real or pseudoreal, and
implies a clear difference in the pressure of the theory at
T <T. See Ref. [21], Fig. 4. Understanding how
excluded-volume effects affect the thermodynamics of this
theory, and comparing the results with the SU(3) Yang-
Mills case may thus reveal interesting common patterns,
and improve our understanding of such effects in full QCD,
too. Another interesting feature of SU(2) Yang-Mills theory
is that its deconfinement transition is of second order; hence
the Hagedorn temperature 7y should be equal to the
deconfinement temperature. As compared to the theory
with SU(3) gauge group (in which the deconfinement
transition is a weakly first-order one, and Ty > T.), this
removes a parameter from the fits, and strengthens the
predictive power of the statistical-model description.

The structure of this article is the following. In Sec. II we
set our notations and present the lattice formulation of the
theory. In Sec. III we present the results of our Monte Carlo
simulations and their extrapolation to the continuum limit;
these results are then analyzed and compared with a
hadron-resonance-gas model (for which we use the glueball
spectra previously determined in Refs. [32,33]), studying
excluded-volume effects. In Sec. IV we summarize our
findings, discuss their implications for QCD, and list some
future directions of research.

II. LATTICE SETUP

In this section, we introduce the definitions of the main
quantities relevant for this work, and summarize the setup
of our Monte Carlo calculations, which is the same as in
Ref. [21]; we refer readers interested in technical details
about the lattice calculation to that article, and to the earlier
works mentioned therein.

We consider SU(2) Yang-Mills theory in a four-
dimensional box of large, but finite, spatial volume
V = L3 and extent L, = 1/T along the Euclidean-time
direction, and regularize it on a lattice A of spacing a,
with Ny = L,/a sites along each spatial direction, and
N, = L,/a sites along the Euclidean-time direction. We
define the Euclidean action of the lattice theory as [39]

Sull] = =550 Y T, ()

9" e 0<u<r<3

where U, (x) =U,(x)U,(x+aj) U} (x+ab) U} (x) denotes
the “plaquette,” and U, (x) is the SU(2) matrix defined on
the oriented link between nearest-neighboring sites x and
X + aji. For later convenience, we define the Wilson action
parameter = 4/g>. We compute all expectation values
of physical quantities by Monte Carlo integration, using
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ensembles of configurations produced by an algorithm
combining heat-bath [40] and over-relaxation updates [41],
and estimate the statistical uncertainties of our simulation
results by the jackknife method [42]. We set the physical
scale of our lattice simulations using the string tension o (in
lattice units) extracted from the zero-temperature static
quark-antiquark potential: for 2.25 < f# < 2.6, the values of
oa® for this theory can be interpolated by [43]

0a® = exp[~2.68 — 6.82- (B—2.4) — 1.90 - (§ — 2.4)?
+9.96- (8—2.4)3). (6)

Note that for SU(2) Yang-Mills theory, the dimensionless
ratio of the deconfinement critical temperature over
the square root of the string tension is 7T./\/oc =
0.7091(36) [44].

Let us now define the main thermodynamic observables
of the theory. In the canonical ensemble, the pressure p is
the intensive variable conjugate to the system volume, and,
in the thermodynamic limit V — oo, equals minus the
density of free energy F per unit volume f = F/V,

. . T
p=iing =i yhs 7
The pressure is also related to the trace (denoted as A) of
the stress-energy tensor of the theory,

A a (p

Our lattice computation of these quantities is based on
the integral method [45], using the p = —f equality™: the
calculation of the pressure is traded for the calculation of
the free-energy density, which is proportional to InZ. In
turn, this quantity is reconstructed by computing the
derivative of In Z with respect to # (which is proportional
to the expectation value of the trace of the average
plaquette, U-) and integrating it over p. The upper
limit of this definite integral, to be denoted as /}(T), is
the value of the Wilson parameter yielding the lattice
spacing that corresponds to the target temperature 7,
namely, 1/[N,a(f"))] = T. The ultraviolet quantum fluc-
tuations affecting this quantity are removed by subtracting
from the integrand the expectation value of the trace of the
plaquette calculated at the same /3 (i.e., for the same lattice

cutoff) on a lattice of sizes N* (where N is sufficiently
large, so that the temperature is approximately 0). Finally,
we impose the condition that limy_op(T) = 0 by setting
the lower integration limit to a value ((°)) at which the

3As stressed above, this equality is exact only in the infinite-
volume limit; the finite-volume corrections to this equality have
been studied in various articles [46] and turn out to have a
negligible impact for the lattice sizes and temperatures inves-
tigated in the present work.
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temperature of the system is close to 0, 1/[N,a(f®)] = 0.
In summary, the pressure is obtained as

a (0)

(1) =S /ﬁ " U — Uk )

where the (...) 75 notation denotes expectation value at the
temperature 7 () = 1/[N,a(f)]. The right-hand side of
Eq. (9) is computed by numerical integration of plaquette
differences calculated at nz values of § in the interval from
A9 to 1), using the trapezoid method.*

The integrand in Eq. (9) is closely related to the trace of
the stress-energy tensor,

am =5 (oh -~ way). (0)

up to a factor that is obtained from the scale setting of the
theory. Since A (unlike p) is evaluated directly on the
lattice, in the following we focus on its behavior, compar-
ing it with the hadron-resonance-gas model with excluded-
volume effects. More precisely, we express the trace of the
energy-momentum tensor in units of the fourth power of
the temperature, and study it as a function of the ratio of the
temperature 7 over the deconfinement critical temper-
ature 7.

III. LATTICE RESULTS AND COMPARISON
WITH THE HADRON-RESONANCE GAS

A. Results for the SU(2) theory

Our results for the SU(2) theory are based on a set of
lattice simulations at the parameters listed in Table I: this
ensemble includes a part of the configurations analyzed in
Ref. [21], and extends it with configurations on finer
lattices, enabling us to extrapolate our results to the
continuum limit.

The lattice results for A/T*, as a function of T /T, are
shown in Fig. 1: symbols of different colors were obtained
from simulations on lattices at different values of N, (from
6 to 10), i.e., at different lattice spacings. Figure 1 also
displays the continuum extrapolation (green curve), which
was constructed in the following way. First, at each N,
value, we interpolated our results by cubic splines
fn,(T/T.). Then, we considered the values of these splines
at each of the temperatures defined by

T;=(0.794ix 10T, forieN, with 1<i<210,
(11)

and fitted each of them to

“Other numerical integration methods ([47], appendix) give
equivalent results, within the level of precision of our numerical
data.
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TABLE I. Parameters of our lattice simulations of SU(2) Yang-
Mills theory. The finite-temperature plaquette expectation values
appearing on the right-hand side of Eq. (10) are evaluated on
lattices of sizes N, x N3 (first two columns), while those at T = 0
are obtained from simulations on lattices of sizes N* (third
column), at the same f3 values. This is done at n (fourth column)
values of the Wilson parameter, in the interval reported in the fifth
column. The statistics of thermalized, independent configurations
in these runs is reported in the last two columns. This data sample
includes part of the data used in Ref. [21].

N, N; N ng p range Neons at finite 7 nggyp at T =10
6 72 40 25 [2.3059, 2.431] 1.5 x 10° 1.5 x 10°
7 80 40 12 [2.38, 2.476] 1.5 x 10° 10°
8 80 40 14 [2.42,2.516] 1.5 x 10° 10°
10 96 40 12 [2.51, 2.58] 6 x 10* 10°
d"
di(N,) =d” +7] (12)

N?'

The continuum-extrapolated value of A/T* at the temper-

ature T; was then defined as dl(.o). For each temperature T;

defined in Eq. (11), this procedure was then repeated on ten

SUQ). with T, = T,

L s e s s s s s s B B
[ | e N=6
r ° N’:7
0’4j A N=8
H N,=10
[ « continuum extrapolation
03| |— point-like particles
. L — — fixed radius r = 0.65(12) fm N
t [ -+ rdirectly proportional to mw, with - = 0.47(19) fm
<
02 L |'—r inversely proportional to mm, with r- = 0.82(14) fm
0,1+
NS T S N I BN B

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
TIT,

FIG. 1. Lattice results for the trace of the stress-energy tensor A
(in units of T*) in the confining phase of SU(2) Yang-Mills
theory, from lattice simulations at N, = 6 (red diamonds), 7 (blue
circles), 8 (magenta triangles) and 10 (cyan squares), and their
extrapolation to the continuum limit (green curve) with the
associated error band. The results are plotted against the temper-
ature 7, in units of the critical deconfinement temperature 7. The
figure also shows the fits of the hadron-gas model with or without
excluded-volume effects (violet curves): the solid line is obtained
under the assumption that particles are pointlike, the dashed line
assumes that all particles have the same radius, while the dotted
line is based on the ansatz that the volumes of different glueballs
are directly proportional to their mass, and finally the dash-dotted
line is obtained assuming that the volume of each particle is
inversely proportional to the particle mass. Information on these
fits is summarized in Table II.
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jackknife bins, in order to estimate the statistical error of the
extrapolated result.

The main systematic uncertainties associated with this
extrapolation procedure have two sources: the ambiguity in
defining an interpolating form for data at fixed N,, and the
functional form to parametrize finite-cutoff corrections
in Eq. (12).

Concerning the interpolating form for the lattice data in
each N, sample, our choice of a cubic spline is mainly
motivated by the fact that this type of interpolation provides
a general, minimal, smooth parametrization for the data,
without specific assumptions about the functional form that
should describe them. In addition, as compared, e.g., to
polynomial interpolations or to Padé approximants, it is
well known that spline interpolation is not affected by the
problem of Runge’s phenomenon.

A rough estimate of the systematic uncertainty involved
in the interpolation of our lattice data by a continuous curve
can be obtained studying how much the results vary, if one
uses a different interpolating function. To this purpose, we
performed a polynomial interpolation of our data for each
N,, obtaining a curve that is in very good agreement with
the result of the spline-interpolation procedure previously
described. This suggests that the systematic uncertainty
associated with the choice of an interpolating form is
indeed under control, and much smaller than the statistical
uncertainty of our results.

Similarly, the ambiguity associated with the continuum
extrapolation can be estimated, by carrying out such
extrapolation using a functional form different from
Eq. (12). Given that the finite-lattice-spacing artifacts
affecting the action and the observables in our lattice
formulation are expected to be proportional to powers of
a® (hence to powers of 1/N?, when the temperature T is
fixed), one could estimate the systematic error associated
with the continuum extrapolation by including a further

addend d'”) /N* on the right-hand side of Eq. (12), fitting
also d,@ [in addition to d;o) and dl(.l)], and defining the
continuum-extrapolated value of A/T* at that temperature

as the dl(»0> coefficient obtained from this three-parameter
fit. However, this procedure eventually leads to a much less
stable continuum extrapolation, because the dﬁ” coefficient
turns out to be poorly determined. In particular, the
resulting curve is very sensitive to the N, =10 data,
and their comparatively large uncertainties ultimately
lead to unphysical results: hence, for the continuum
extrapolation shown in Fig. (1) we chose the functional
form of Eq. (12), without considering any further powers
of 1/N?.

Since interactions among glueball states are poorly
known [48], we perform our analysis of the lattice data
testing the different parametrizations for the particle eigen-
volume that were already discussed in Ref. [27], with fixed
radius
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vV (13)

r = ro+,
(where j labels the glueball state, and ry+ denotes the radius
of the lightest glueball, with quantum numbers J” = 0
and mass mg+), with volume directly proportional to the
glueball mass m;, which implies

m.
ri=—Lry, (14)
mgy+

or with volume inversely proportional to the mass of the
particle, i.e.,

3 (Mot
) +. 15
rj er ( )

Thanks to the high quality of the data, we are able to test the
physical assumptions of these parametrizations, which, for
real-world QCD, turn out to have a strong impact on the
description of experimental data [27,49]. Besides the
simplest scenario described by Eq. (13), in which all
particles have the same radius, Egs. (14) and (15) respec-
tively describe the possibility that the eigenvolume
increases or decreases with the particle mass. Even though
this could seem unjustified, it is presently not clear how
higher-mass resonances in a certain channel would interact,
as compared with the ground state; in general, there is the
possibility that they may have a smaller cross section,
which would be encoded in a smaller effective radius. This
could be particularly relevant for a correct inclusion of
exotic resonances, for which the repulsive channels are
known to be as relevant as the attractive ones [50]. In the
case of mass-dependent eigenvolumes, we label the para-
metrization in terms of the radius of the ground-state
JP = 07 particle, in order to have an immediate compari-
son to the fixed-radius scenario.

As shown in various recent works [18-21], the contri-
bution from a tower of Hagedorn states to pure Yang-Mills
thermodynamics is non-negligible. In the present analysis,
we consider the same Hagedorn spectrum used in Ref. [21],
which is expected to model the spectrum states with mass
larger than twice the mass of the lightest glueball (i.e.,
larger than 3291.2 MeV), and Ty =T.=0.7091(36)/c =
312(2) MeV. The fits are performed minimizing the y* per
degree of freedom (that we denote as y2,). Although our
extrapolated curves yield the continuum value of A/T* at
any 7T in the temperature interval from 0.797 to T, it is
clear that, by construction, the A/T* at nearby temperature
values (and their uncertainties) are strongly correlated with
each other. In order to define a fitting procedure that
bypasses the complications generated by such spurious
correlations, we computed ;(fed using the continuum-
extrapolated lattice data evaluated at only twenty, equally
spaced, values of T/T. within the temperature interval in
which the continuum-extrapolated curve is defined; this set

PHYSICAL REVIEW D 95, 094511 (2017)

TABLE II. Best-fit results of our lattice data for the SU(2)
interaction measure, to the glueball-gas model. The radius, with
the corresponding error, of the lightest glueball state (the ground-
state particle in the channel with quantum numbers J” = 0%) and
the 2, value are shown for different scenarios.

Volume-mass dependence ro+ (fm) Org+ (fm) )(fed
Pointlike particles 0 0 8.16
Constant radius 0.65 0.12 0.74
Direct proportionality 0.47 0.19 1.87
Inverse proportionality 0.82 0.14 0.39

of temperatures is approximately the same as the actual set
of temperature values probed in independent lattice sim-
ulations. We stress that all of the fits were performed at
temperatures strictly less than 7'.. The uncertainty on the
fitted parameters was obtained imposing the y”> + 1 cri-
terion (see, e.g., Ref. [51]).

In Table II we summarize our fit results, which are shown
by the violet curves in Fig. 1. As compared to the model
with pointlike particles, it is clear that the inclusion of
short-range repulsions dramatically improves the quality of
the hadron-resonance-gas description, with reasonable
values of the glueball radii. In Fig. 1 we compare the
curves obtained from the different fits (and the curve based
on the ansatz of pointlike glueballs), assuming that the
particles have the same, finite, eigenvolume, or that they
have an eigenvolume directly or inversely proportional to
their mass: it is interesting to observe that the assumption of
a glueball volume proportional to the inverse of the mass

SU2)
0,025 ‘ T

— continuum-extrapolated results
— point-like particles
0,02 --- rfixed
’ . . 13
r directly proportional to m

. . 13
* = rinversely proportional to m

0,015

piT!

0,01

0,005

oo
9
G
S
%
e
g
3
oL
o
o
S

TIT
©

FIG. 2. Pressure (in units of 7%) in SU(2) Yang-Mills theory:
the figure shows a comparison of our continuum-extrapolated
lattice results (green line) and the hadron-resonance-gas predic-
tions obtained by integration of the different fits of A/7* in
Fig. 1, assuming pointlike particles (violet solid line), particles of
constant volume (violet dashed line), particles with eigenvolume
directly proportional to their mass (violet dotted line), or particles
with eigenvolume inversely proportional to their mass (violet
dash-dotted line). All curves are obtained using Eq. (8), with the
integration constant p/T* = 0.00268 for T/T, = 0.79 [21].
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SU(3), assuming TH = 1.024TC
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FIG. 3. Same as in Fig. 1, but for the continuum-extrapolated

lattice results from Ref. [20] for SU(3) Yang-Mills theory,
assuming Ty = 1.024T . [18,20]. These fits are summarized in
Table III.

yields the best data description among the three ways of
modeling excluded-volume effects that we considered.

Our results for the pressure in SU(2) Yang-Mills theory
are shown in Fig. 2.

Before discussing the SU(3) theory, we mention one
additional observation. It is interesting to investigate what
happens, if one compares the lattice data for A/T* with
two-parameter fits, in which also my,, besides r:, is fitted.
In general, this determines these quantities very poorly: for
example, assuming the particles to have the same radius,
one finds ro+ = 0.5(4) fm and my = 4100(1600) MeV,
with y2, = 0.4. If the dependence between the particles’
radii and their masses is of the form in Eq. (14), then one
finds ro+ = 0.2(3) fm and my, = 4700(1100) MeV, again
with y2,=0.4. Finally, if the volume is taken to be
inversely proportional to the particle mass, one obtains
ro+ = 0.7(5) fm and my, = 3600(1900) MeV, and again
224 = 0.4. The large uncertainties on both ry+ and mg,, as
well as the rather small 2, values, indicate that this type of
analysis tends to “overfit” the lattice data.

B. Results for the SU(3) theory

In order to further check our assumption, we performed
the same analysis for the SU(3) data from Ref. [20]. In this
case, for the Hagedorn temperature we assumed the value
Ty = 1.024T found in Ref. [ 18] and used also in Ref. [20].
In Table III we show the results of our analysis. Similarly to
the SU(2) case, we found that including eigenvolume
effects yields a significant improvement of the hadron-
resonance-gas description of data: this is mainly due to the
points close to the transition. The glueball radii are
comparable to those obtained for the two-color theory,
and the quality of the description with excluded-volume
effects is roughly the same for the three different types of
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TABLE III. Results of the best fit on the lattice data for the
SU(3) interaction measure from Ref. [20]. The radius of the
lightest glueball state (with quantum numbers J7¢ = 07F) and its
uncertainty are shown for different scenarios, together with the
corresponding y2, values.

Volume-mass dependence  ro++ (fm)  Orge+ (fm) 2
Pointlike particles 0 0 84.3
Constant radius 0.733 0.08 2.33
Direct proportionality 0.55 0.07 5.41
Inverse proportionality 0.91 0.10 0.82

mass-volume dependence, but the fit assuming glueball
volumes directly proportional to the masses is clearly worse
than the other two—while the one assuming that the
eigenvolume of each particle is inversely proportional to
its mass is the best one, with 2, = 1.

Figure 4 shows a comparison of the results for the
pressure in SU(3) Yang-Mills theory obtained in Ref. [20]
with the curve obtained by integration of our result for the
hadron-resonance-gas model with and without excluded-
volume effects, for the different types of relations between
the particle eigenvolume and mass.

Finally, carrying out two-parameter fits, in which
both rg++ and my, are regarded as free parameters, one
obtains rg+ = 0.68(6) fm, my = 3200(300) MeV, and
)(rzed = 1.3 when glueballs are assumed to have a common
radius, ro~+ = 0.46(7) fm, my = 3400(300) MeV, and
224 =18 when the glueball volume is assumed to be
directly proportional to their mass, and ryp++ = 0.9(1) fm,
mg, = 3000(300) MeV, and y2,; = 0.8 when the glueball
volume is assumed to be inversely proportional to their
mass.

SU@3)
D03 o

e continuum-extrapolated results from JHEP 07 (2012) 056
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FIG. 4. Same as in Fig. 2, but for SU(3) Yang-Mills theory: the
plot shows a comparison of the lattice results from Ref. [20]
(green symbols) and the statistical-model predictions (violet
lines) obtained by integration of the curves shown in Fig. 3,
assuming the integration constant p/T* = 0.0015(1) for T/T, =
0.7 [20].
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IV. DISCUSSION AND CONCLUSIONS

In this work, we extended recent studies of excluded-
volume effects in the hadron-resonance-gas model to the
purely gluonic SU(2) gauge theory, whose continuum
equation of state in the confining phase was determined
by means of a novel set of high-precision lattice simu-
lations. Our continuum-extrapolated results for this theory
reveal some non-negligible deviations with respect to those
reported in Ref. [21] (in which no continuum extrapolation
was attempted) in the temperature region closest to 7. This
is not surprising, since the finite-lattice-spacing data
reported in Ref. [21] already revealed that the N, = 8 data
for A/T* in that temperature range are clearly lower than
those obtained from N, = 6. Part of the motivation of the
present work consisted in carrying out a reliable continuum
extrapolation for the SU(2) data in the confining phase.

Then, we also carried out the analysis of excluded-
volume effects for the SU(3) theory.

As is well known, the thermodynamic properties of
Yang-Mills theories based on different gauge groups are
expected to have a different dependence on the number N
of color charges in the confining and in the deconfined
phases. At very high temperatures, color liberation and
asymptotic freedom imply that the pressure is proportional
to the number of physical gluon degrees of freedom, i.e., to
Npot * dy, Where nyo is the number of transverse polar-
izations (2 in 3 + 1 spacetime dimensions) and d, is the
dimension of the adjoint representation of the gauge group
algebra [N?> — 1 for SU(N) gauge group]: this is indeed
confirmed by lattice calculations [52], even at temperatures
very close to T, (where the plasma is very different from a
gas of free gluons), and even in 2 4 1 spacetime dimen-
sions [53]. By contrast, the physical degrees of freedom in
the confining phase are hadrons, i.e., color-singlet states,
whose number is O(N?). Nevertheless, the number of
hadronic states (glueballs) in SU(2) Yang-Mills theory
is different from the other SU(N > 3) theories, because
purely group-theoretical facts imply that in the SU(2)
theory no C = —1 states can be formed. This reduced
number of physical degrees of freedom implies that the
equation of state in the confining phase of the SU(2) theory
is significantly different with respect to the SU(3) theory.
Moreover, the fact that the SU(2) Yang-Mills theory is quite
“simple” from a conceptual (the physics depends only on
one dimensionful scale) and computational (a purely
bosonic, local theory, whose elementary degrees of freedom
in the lattice regularization can be represented in a very
compact form by pairs of complex numbers) point of view
makes it an ideal benchmark to study the hadron-resonance-
gas model and the effect of excluded-volume corrections.

The analysis that we carried out in this work shows
the improvement in the description of pure-glue thermo-
dynamics, when repulsive interactions among glueball
states are accounted for. As Tables II and III show, this
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improvement is very clear for both the SU(2) and SU(3)
theories. Our analysis also shows that two-parameter fits, in
which both ry++ and my, are considered as free parameters,
tend to overfit the lattice data; nevertheless, at least for the
SU(3) theory, they still tend to favor the assumption of
glueball radii inversely proportional to their masses.

In short, we found that the effective sizes of the glueballs
are finite, consistent among the two theories, and slightly
larger than the ones usually found in QCD. This could
imply that the repulsive channels for glueball interactions
are stronger than those for mesons and baryons. We also
found that, both for SU(2) and SU(3) Yang-Mills theory,
the best fits to the trace of the energy-momentum tensor
(and to the pressure, which is directly linked to it) are
obtained if one assumes that the eigenvolume of different
hadronic states is inversely proportional to their mass. This
is consistent with the results obtained for QCD in Ref. [27].

Some aspects of our present analysis (and their relation
to previous works) deserve comments. First of all, one
should note that, in QCD, Eq. (3) is just a modification of
the total chemical potential for the particle species j,
Eq. (2), while in the purely gluonic theory glueballs carry
no baryon number, no electric charge, and no strangeness,
so that the only nonvanishing contribution to the modified
chemical potential 4} is the one arising from the excluded-

volume term. As a consequence, one could wonder whether
Eq. (3) is the only (or the most appropriate) way to
introduce finite-eigenvolume corrections parametrizing
the effects of particle interactions in Yang-Mills theory.
A priori, there is no reason to assume that Eq. (3) provides
the only way to study excluded-volume effects in a glueball
gas, but this approach has the notable advantage of
allowing a direct comparison with the existing results
obtained in QCD using the same method. As we discussed
above, our results show a consistent pattern in the
SU(2) and SU(3) Yang-Mills theories, and in QCD: finite-
eigenvolume effects lead to a significant improvement
of fits to the hadron-resonance-gas model, the particle
radii fitted in the three theories are comparable, and are
consistent with the same type of dependence on the
particle mass.

For the SU(2) theory, it is worth remarking that, close to
T., the continuum-extrapolated curve is systematically (and
significantly) lower than the N, =6 and N, = 8 lattice
data, and, in contrast to the latter, exhibits quite a clear
deviation from the curve based on the Hagedorn model
with no finite-volume effects, which overshoots it for all
T Z 0.87T.. The continuum extrapolation of SU(2) data
carried out in this work enabled us to reveal this feature,
and to identify an interpretation for it, in terms of an
excluded-volume effect. Note that, for this theory, there is
no ambiguity in defining the value of 7.

Although the idea that heavier hadrons have smaller radii
has already been suggested in the theoretical literature [54]
and is supported by experimental evidence [55], our finding
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of eigenvolume values inversely proportional to the particle
mass may appear at odds with intuition, and in contrast to
the expectations from simple semiclassical models [56]. In
addition, it is perhaps worth mentioning that some lattice
studies [57] found indication that heavier glueball states
tend to have better overlap with more extended (rather than
more localized) operators. We do not think that these results
are necessarily in contradiction with our findings, because,
as we already remarked, the eigenvalue parameters that we
fitted are not to be interpreted as strictly equivalent to the
physical volume of each state: rather, they account for the
effects of glueball interactions, and describe the effective
volume of each state. This means that some of the
parameters that we fitted could turn out to be small, just
because the corresponding types of glueball are weakly
interacting, regardless of their actual physical size.
Moreover, even if one assumed the fitted effective eigen-
volumes to coincide with the physical volumes of the
glueballs, it should be noted that our fits do not allow one to
determine the precise volume of each particle to very high
precision. Indeed, the three finite-eigenvolume scenarios
that we considered here (i.e., the one in which the glueballs
are assumed to have a common finite volume, the one in
which their volume is directly proportional to their mass,
and the one in which it is inversely proportional to the
particle mass), described by Egs. (13)—(15), are, at best,
crude idealizations; in particular, they completely neglect
the nontrivial nonperturbative dynamics accounting for the
very existence of these states. Nevertheless, in our analysis
we assumed these simple scenarios, in order to limit the
number of parameters to be fitted to a minimum, and to try
and capture at least the main features of the relation
between the particle eigenvalue and mass. While our data
indicate that an inverse proportionality relation between
eigenvolume and mass provides the best fit to the data, the
results in Tables IT and III (and the curves shown in Figs. 1
and 3) reveal that the other two finite-eigenvolume scenar-
ios are not dramatically worse. The main reason for this
ambiguity lies in the fact that the dominant contribution to
the thermodynamics comes from the lightest state in the
spectrum, while those from heavier states are exponentially
suppressed. This makes it particularly hard to distinguish,
whether interactions involving heavy states are best
described in terms of a fixed, increasing, or decreasing
effective volume. In any case, the fits that we performed in
this work provide clear evidence that the model with
pointlike (i.e., noninteracting) particles is ruled out, and
that the radius of the lightest glueball is in the ballpark of
0.5-0.9 fm (depending on the fit details). In particular, for
the SU(2) theory, the present data analysis, performed on
results extrapolated to the continuum limit, supersedes the
more qualitative study presented in Ref. [21], in which the
precision and accuracy of data sets at finite lattice cutoff
was sufficient to confirm that heavy states give a large
contribution to the equation of state for 7 2 0.8T ., but did
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not allow a continuum extrapolation or a y> analysis of
effects beyond the simplest, pointlike-particle, picture.

As another technical comment, it is also worth mention-
ing that, over the years, several lattice computations of
glueball spectra have been reported [32,33,58—61]: they are
based on numerical calculations that differ in some tech-
nical aspects, and their results exhibit some quantitative
discrepancies with each other. Repeating our analysis using
spectra from different lattice studies (restricting our atten-
tion to the recent studies presented in Refs. [32,33,60])
leads to modest quantitative differences in the results,
without changing them at a qualitative level.

Another interesting question concerns the robustness of
the results obtained with a stringy Hagedorn spectrum
against a different choice for the value of the lowest end m,
of the continuous part of the spectrum—see Ref. [21],
Eq. (3.8). While setting my, to twice the mass of the lightest
particle in the physical spectrum may be regarded as the
most natural choice (and in this work we stick to that
choice), the assumption that the spectrum can be exactly
split into a discrete set of light states, plus a continuum that
is described by a bosonic-string model, is a crude approxi-
mation at best, and the very existence of a sharp threshold
value my, separating the two parts of the spectrum is an
idealization. As a consequence, one may wonder how the
results would vary, should one choose different values of
my,. We observe that our results are quite robust under a
change in my,. In particular, they are essentially stable if my,
is varied to 3, 3.3, or 4 GeV: this is consistent with the fact
that the lightest states are those that contribute most to the
thermodynamics. Somewhat larger variations are observed
when my, is reduced down to values that are significantly
lower than twice the lightest glueball mass, but the results
are affected in a strong way only for my =1 GeV;
obviously, however, the latter value is grossly unphysical,
since it is even lower than the mass of the lightest glueball.

Some readers may wonder if including the contributions
from the continuous part of the spectrum is just a way of
modeling a poor knowledge of the number and masses
of glueballs below my, This is not so: the identification of
states lighter than my, from recent lattice calculations is
unambiguous, and the level of precision to which their
masses are known [32,33,60] is sufficient to rule out the
hypothesis that they may account for the thermodynamics.
With the exception of the lightest states, the contribution of
such glueballs to the pressure of the system is basically
negligible: the lattice data confirm that, exactly as in
Hagedorn’s original intuition [10], as T — T, the thermo-
dynamics can only be reproduced in terms of contributions
from a continuous, exponentially increasing density of
states—whereby the growing spectral multiplicity (over-)
compensates the exponential suppression of heavier and
heavier particles.

One may also wonder up to which temperature a hadron
gas is expected to model the Yang-Mills thermodynamics
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accurately. For the SU(2) theory, this question has a clear
answer: the description in terms of a gas of massive hadrons
must fail at a temperature strictly lower than 7', because the
deconfinement transition is a continuous one, and the
dynamics in the proximity of 7, should be characterized
by the critical exponents of the three-dimensional Ising
model [62]—an expectation that is indeed borne out by
lattice calculations [63]. Moreover, as we already pointed
out in Sec. I, the fact that the deconfining transition in
SU(2) Yang-Mills theory is of second order also implies
that 7. equals the Hagedorn temperature Ty, at which,
according to the statistical model, the spectral density (and
the bulk thermodynamic observables) would diverge, but no
such divergence is observed in lattice simulations. Clearly,
this signals the breakdown of the hadron-resonance-gas
model—rather than the existence of an actual “ultimate
temperature”—and the transition to another state of matter,
characterized by quantitatively different degrees of free-
dom, i.e., deconfined gluons. As a consequence, the temper-
ature range in which a hadron-gas description holds must
necessarily be limited to a finite temperature strictly less
than 7. Nevertheless, one may wonder whether some
hadrons survive in the deconfined phase. The question is
nontrivial, and entails deep phenomenological implications.
We remark, however, that a full-fledged lattice study of the
survival of glueballs in the deconfined phase would require
the investigation of the temperature dependence of the
appropriate spectral functions, which would likely be even
more challenging than those for quarkonia [64], and which
is clearly beyond the scope of this work. In our present
analysis, we note that our results remain consistent within
the uncertainties, when we restrict the temperature range to
T <099T., T <0.95T,, or even T < 0.9T, (in the latter
case, however, the analysis tends to lose sensitiveness to
excluded-volume effects).

Finally, it is worth discussing the implications of a
different value for the Hagedorn temperature 7. In
particular, in Ref. [21] it was pointed out that the effective
string model provides an excellent quantitative description
of SU(3) Yang-Mills thermodynamics, if one uses the
prediction for Ty from the Nambu-Gotd model (that is,
the temperature at which the effective string tension
predicted by the Nambu-Gotd string model vanishes),

30
T = 1/ —. 1
w=1/5 (16)

Numerically, this value corresponds to Ty = 1.098T,
which is significantly larger than the value used in
Refs. [18,20], Ty = 1.024(3)T.. As discussed in
Ref. [18], the latter value was obtained by determining
the temperature at which the inverse correlation length of
the temporal flux loop, extracted from a two-point
Polyakov-loop correlation function in SU(3) Yang-Mills
theory, vanishes. Using this value for the Hagedorn
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temperature, in Ref. [18] it was shown that the hadron-
resonance-gas model (with pointlike particles) yields a
good description of the equation of state, provided the
“continuous” part of the spectrum is modeled in terms of a
closed bosonic string (neglecting the possibility of degen-
erate C = —1 states). This analysis was later extended in
Ref. [21], where it was pointed out that, if one includes the
contribution of C = —1 states, the model provides an
excellent (and parameter-free) description of the lattice
data with the Hagedorn temperature given by Eq. (16),
which ensures consistency with the bosonic-string model. It
is also worth noting that the lattice determination of the
Hagedorn temperature following the method discussed in
Ref. [18] yields Ty = 1.17 in the large-N limit [65]. From
these observations, one sees that statistical models with
slightly different details can simultaneously mimic the
actual thermodynamics to good accuracy: in some cases,
the exclusion of some heavy states can be accounted for by
a lower value for the Hagedorn temperature, and vice versa.
In the present work, in which we modeled interactions
between hadrons in terms of excluded-volume effects, for
the SU(3) theory we observe that assuming the Hagedorn
temperature defined by Eq. (16), the particle radii turn out
to be compatible with O: this is consistent with the findings
obtained in Ref. [21]. For the SU(2) theory there is no
obvious justification for taking Ty # T,; if one, never-
theless, tries to fit the lattice data using values Ty > T, one
finds that the resulting curve for the pointlike model is in
slightly better agreement with lattice data at low temper-
atures, but not at intermediate and higher temperatures.

As for extensions of the present work, it would be
instructive to perform the same analysis for observables
sensitive to specific quantum numbers, in order to check
the effect of repulsive interactions in full QCD and fit the size
of hadronic states, as was suggested in Ref. [66]. A qualitative
comparison of excluded-volume-hadron-resonance-gas cal-
culations to a set of lattice QCD observables was presented in
Ref. [67], but it would be interesting to implement flavor-
dependent repulsions, as was done in Ref. [27]: this work gave
hints that such a physical picture is motivated by experimental
data. We plan to address these issues in future work.
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