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It has been established that matrix product states can be used to compute the ground state and single-
particle excitations and their properties of lattice gauge theories at the continuum limit. However, by
construction, in this formalism the Hilbert space of the gauge fields is truncated to a finite number of
irreducible representations of the gauge group. We investigate quantitatively the influence of the truncation
of the infinite number of representations in the Schwinger model, one-flavor QED2, with a uniform electric
background field. We compute the two-site reduced density matrix of the ground state and the weight of
each of the representations. We find that this weight decays exponentially with the quadratic Casimir
invariant of the representation which justifies the approach of truncating the Hilbert space of the gauge
fields. Finally, we compute the single-particle spectrum of the model as a function of the electric
background field.
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I. INTRODUCTION

Wilson’s well-known paper “Confinement of quarks” [1]
has led to a big breakthrough for quantum chromodynamics
(QCD), the theory describing strong interactions. Not only
did Wilson offer an explanation why no free quarks appear
in nature, he also introduced his so-called Wilsonian path
integral which enables one to numerically compute expect-
ation values using the Monte Carlo method [2]. With the
increasing computing power, this method has since its first
results at the end of the 1970s [3] produced by far the most
impressive results for QCD [4,5]. Examples include the
determination of the light hadron masses [6], the determi-
nation of the quark masses [7], as well as obtaining the
phase diagram at finite temperature [8]. Despite its success
this method is troubled by the sign problem for finite
fermion densities and, as defined on a Euclidean lattice,
does not enable one to perform real-time evolution.
One year later, Kogut and Susskind presented their so-

called Kogut-Susskind Hamiltonian [9] which corresponds
to the Wilsonian path integral in the transfer matrix
formalism [10,11]. As a Hamiltonian method, this approach
overcomes in principle the sign problem and enables out-
of-equilibrium simulations. A new problem that arises is
the many-body problem: the dimension of the Hilbert space
increases exponentially with the number of sites. This
problem is not specific to QCD only, but holds for any
strongly correlated many-body system: the Hilbert space
describing the space of states is too large to simulate on a
classical computer.

Fortunately, often one is only interested in the low-
energy states of a system, and it turns out that the area law
for entanglement entropy [12–14] gives a universal iden-
tification of the physically relevant tiny corner of Hilbert
space for these states. This is where tensor network states
(TNS) [15,16] come into play. They constitute a variational
class of states that efficiently represent general low-energy
states, by encoding the wave function into a set of tensors
whose interconnections capture the proper entanglement
behavior. The most famous example of TNS is the matrix
product states (MPS) [17] in one spatial dimension, which
underlie White’s density matrix renormalization group
(DMRG) [18]. Since the formulation of DMRG in terms
of MPS, the number of MPS algorithms for many-body
systems has increased rapidly. In particular, for lattice
gauge theories they have been applied successfully in many
different contexts [19–33].
In the Kogut-Susskind formalism the Hilbert space is

defined by all the irreducible representations of the Lie-
algebra underlying the gauge group. If there are an infinite
number of these irreducible representations, a natural
question one could ask is whether we can safely truncate
the infinite number of irreducible representations to a
manageable number of representations. In particular, when
approaching the continuum limit or a phase transition it is
not obvious at all whether this is possible. In this paper we
answer this question for (1þ 1)-dimensional quantum
electrodynamics (QED) also known as the massive
Schwinger model [34]. Despite its simplicity as an
Abelian gauge theory in one spatial dimension, it has

PHYSICAL REVIEW D 95, 094509 (2017)

2470-0010=2017=95(9)=094509(23) 094509-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.95.094509
https://doi.org/10.1103/PhysRevD.95.094509
https://doi.org/10.1103/PhysRevD.95.094509
https://doi.org/10.1103/PhysRevD.95.094509


many interesting physical features, for instance, confine-
ment and chiral symmetry breaking. This made this model
very attractive for testing analytical and numerical methods
[19–23,27,35–66]. This model also gained interest from the
experimentalists in the context of quantum simulators; see
[67–70] and references therein. As aUð1Þ-gauge theory, all
the irreducible representations are one-dimensional and can
be labeled by an integer p ∈ Z. As we will show in Sec. III,
we will only need to retain a few of these representations to
obtain reliable results in the continuum limit.
Besides the fermion mass m and the charge g, the

Schwinger model also depends on the electric background
field α ∈ ½0; 1½. It has many interesting equivalent inter-
pretations ranging from labeling the different vacua in the
massless Schwinger model [52] to finding the charge
between an external quark-antiquark pair introduced in
the empty vacuum [36]. Here we determine the single-
particle excitations for different values of α. Surprisingly,
earlier numerical studies on the spectrum of the Schwinger
model in the nonperturbative regime exclusively focused on
the cases α ¼ 0 [19,23,62] and α ¼ 1=2 [21–23]. An
overview of the low-energy spectrum is, for instance,
useful to have a better understanding of the dynamics
induced by a quench in the form of an electric field. Indeed,
in [66] we found that the behavior for small quenches can
be understood by looking at the single-particle excitations
of the Hamiltonian, even beyond linear response theory.
The paper is organized as follows. For the sake of

completeness, in Sec. II we discuss the setup for the
simulations: the Kogut-Susskind formulation of the
Schwinger model, gauge invariant MPS, and optimization
methods for MPS. The reader familiar with these subjects
can skip it and start directly fromSec. III wherewe introduce
the systematics on how to obtain field expectation values
from our simulations at finite lattice spacing. We properly
address the issue on the needed variational freedom
to faithfully approximate the low-energy states when
approaching the continuum limit and the phase transition.
We quantify the contribution of each of the irreducibleUð1Þ
representations to the ground-state expectation values by
investigating the two-site reduced density matrix. We also
explain there how to extrapolate the expectation values at
finite lattice spacing to the continuum limit. Finally, in
Sec. IV we report the results on the single-particle spectrum
as a function of the electric background field.

II. SETUP

A. Kogut-Susskind Hamiltonian

The massive Schwinger model is (1þ 1)-dimensional
QED with one fermion flavor and, hence, is described by
the Lagrangian density

L ¼ ψ̄ðγμði∂μ þ gAμÞ −mÞψ −
1

4
FμνFμν: ð1Þ

Here, ψ is a two-component fermion field, Aμ (μ ¼ 0, 1)
denotes the Uð1Þ gauge field, and Fμν ¼ ∂μAν − ∂νAμ is
the corresponding field strength tensor.
In the following, we employ a lattice regularization à la

Kogut and Susskind [9]. Therefore the two-component
fermions are decomposed into their particle and antiparticle
components which reside on a staggered lattice. These
staggered fermions are converted to quantum spins 1=2 by
a Jordan-Wigner transformation with the local Hilbert
space basis fjsnin∶sn ∈ f−1; 1gg of σzðnÞ at site n. The
charge −g “electrons” reside on the odd lattice sites, where
spin down (s ¼ −1) denotes an occupied site, whereas
spin up (s ¼ þ1) corresponds to an unoccupied site.
Conversely, the even sites are related to charge þg
“positrons” for which spin down/up corresponds to an
unoccupied/occupied sites, respectively.
Moreover, we introduce the compact gauge field

θðnÞ ¼ agA1ðnÞ, which lives on the link that connects
neighboring lattice sites, and its conjugate momentum
EðnÞ, which corresponds to the electric field. The commu-
tation relation ½θðnÞ; Eðn0Þ� ¼ igδn;n0 determines the spec-
trum of EðnÞ up to a constant: EðnÞ=g ¼ LðnÞ þ α. Here,
LðnÞ denotes the angular operator with integer spectrum
and α ∈ R corresponds to the background electric field.
Any of the integer eigenvalues p ∈ Z of the angular
operator LðnÞ corresponds to irreducible one-dimensional
representations of the Uð1Þ gauge group. One of the main
goals of this paper is to investigate how one can deal
with this infinite number of representations in numerical
simulations, this is treated in more detail in Secs. III A
and III B.
In this formulation the gauged spin Hamiltonian derived

from the Lagrangian density Eq. (1) reads (see [9,38] for
more details)

H ¼ g
2

ffiffiffi
x

p
�X

n∈Z

1

g2
EðnÞ2 þ

ffiffiffi
x

p
g

m
X
n∈Z

ð−1ÞnσzðnÞ

þ x
X
n∈Z

ðσþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:Þ
�
; ð2Þ

where σ� ¼ ð1=2Þðσx � iσyÞ are the ladder operators. Here
we have introduced the parameter x as the inverse squared
lattice spacing in units of g: x≡ 1=ðg2a2Þ. The continuum
limit then corresponds to x → ∞. Notice the different
second (mass) term in the Hamiltonian for even and odd
sites which originates from the staggered formulation of the
fermions.
In the timelike axial gauge the Hamiltonian is still

invariant under the residual time-independent local gauge
transformations generated by

gGðnÞ ¼ EðnÞ − Eðn − 1Þ − g
2
ðσzðnÞ þ ð−1ÞnÞ: ð3Þ
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As a consequence, if we restrict ourselves to physical gauge
invariant operatorsO, with ½O;GðnÞ� ¼ 0, the Hilbert space
decomposes into dynamically disconnected superselection
sectors, corresponding to the different eigenvalues of GðnÞ.
In the absence of any background charge the physical
sector then corresponds to the GðnÞ ¼ 0 sector. Imposing
this condition (for every n) on the physical states is also
referred to as the Gauss law constraint, as this is indeed the
discretized version of ∂zE − ρ ¼ 0, where ρ is the charge
density of the dynamical fermions.
The other superselection sectors correspond to states

with background charges. Specifically, if we want to
consider two probe charges, one with charge −gQ at site
mL and one with opposite charge þgQ at site mR, we have
to restrict ourselves to the sector

gGðnÞ ¼ gQðδn;mL
− δn;mR

Þ: ð4Þ

Notice that we consider both integer and noninteger
(fractional) charges Q.
As in the continuum case [36], we can absorb the probe

charges into a background electric field string that connects
the two sites. This amounts to the substitution EðnÞ ¼
g½LðnÞ þ αðnÞ� where αðnÞ is only nonzero in between the
sites: αðnÞ ¼ −QΘð0 ≤ n < kÞ; and LðnÞ has an integer
spectrum: LðnÞ ¼ p ∈ Z. In terms of LðnÞ the Gauss
constraint now reads

GðnÞ ¼ LðnÞ − Lðn − 1Þ − σzðnÞ þ ð−1Þn
2

¼ 0; ð5Þ

and we finally find the Hamiltonian

H ¼ g
2

ffiffiffi
x

p
�X

n∈Z
½LðnÞ þ αðnÞ�2 þ

ffiffiffi
x

p
g

m
X
n∈Z

ð−1ÞnσzðnÞ

þ x
X
n∈Z

ðσþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:Þ
�
; ð6Þ

in accordance with the continuum result of [37]. For our
purpose we consider the Schwinger model in the thermo-
dynamic limit in a uniform electric background field
(αðnÞ ¼ α; ∀ n); hence the Hamiltonian reads

Hα ¼
g

2
ffiffiffi
x

p
�X

n∈Z
½LðnÞ þ α�2 þ

ffiffiffi
x

p
g

m
X
n∈Z

ð−1ÞnσzðnÞ

þ x
X
n∈Z

ðσþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:Þ
�
: ð7Þ

Note that we explicitly denoted the α dependence in Hα.

B. Phase diagram and single-particle spectrum
for the Schwinger model

Before turning our attention to the numerics, we briefly
discuss the phase diagram and the single-particle spectrum
that we can expect for the Schwinger model. This is based
on analytical studies in the weak-coupling limit (m=g ≫ 1)
and the strong-coupling limit (m=g ≪ 1), numerical studies
in the nonperturbative regime in earlier studies and also the
new results that are discussed in detail in Sec. IV. In units
g ¼ 1, there are two free parameters:m=g and α. Moreover,
the model is periodic in α with period 1 and physics for
α ∈ ½0; 1=2½ can be mapped to physics for α ∈ ½1=2; 1� by
the following transformation:

LðnÞ → −1 − Lðnþ 1Þ; θðnÞ → −θðnþ 1Þ; ð8aÞ

σ�ðnÞ → σ∓ðnþ 1Þ; σzðnÞ → −σzðnþ 1Þ: ð8bÞ

Indeed, under this transformation we find that Hα is
mapped to H1−α. For α ¼ 1=2, it follows that this is
actually a symmetry of the Hamiltonian: the so-called
CT symmetry (C is charge conjugation; T is translation
over one site). As we discuss below, this symmetry plays a
special role as there is a critical value ðm=gÞc of ðm=gÞ
above which this symmetry is spontaneously broken. Also,
for α ¼ 0 the Hamiltonian has also a CT symmetry but now
with LðnÞ → −Lðnþ 1Þ instead of Eq. (8a). In this case,
this symmetry is not spontaneously broken for all values
of m=g.
For m=g ¼ 0, the model is exactly solvable and can be

mapped to a Klein-Gordon field describing the so-called
Schwinger boson with mass g=

ffiffiffi
π

p
. Historically, this was

the main motivation why Schwinger considered this model
[34]: the model is an example where a massless gauge field,
the photon, acquires mass [71] and as such it was, in fact, a
pioneer for the Higgs mechanism.
When m=g ¼ 0, physics is independent from α. In

contrast, when m=g ≠ 0, it does depend on α. The cases
α ¼ 0 and α ¼ 1=2 are somehow special as the model
exhibits in that case the CT symmetry. Therefore, we first
discuss the more generic case 0 < α < 1=2, and afterwards
we treat the cases α ¼ 0 and α ¼ 1=2.
(1) The case 0 < α < 1=2. In mass-perturbation theory

[37,52], m=g ≪ 1, there are two single-particle
excitations for α ≤ 0.25 [72]. The first single-par-
ticle excitations with energy E1 corresponds to the
Schwinger boson in the limit m=g → 0 while the
second single-particle excitation with energy E1 is
easiest interpreted as a bound state of two Schwinger
bosons. When α ≥ 0.25, the energy for the second
eigenvalue becomes larger than or equal to 2E1, and,
therefore, it is not stable anymore. On the other
hand, in the weak-coupling limit (m=g ≫ 1) the
number of single-particle excitations grows approx-
imately with ðm=gÞ2=ð1=2 − αÞ for α < 1=2 [37].
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As we see in Sec. IV, the behavior in the non-
perturbative regime [m=g ∼Oð1Þ] interpolates be-
tween the strong- and the weak-coupling limit. For
m=g≲ 0.3 we find the existence of a value αc below
which there are two single-particle excitations and
above which there is only one single-particle ex-
citation. This value of αc comes closer to 1=2 when
m=g increases. When m=g≳ 0.5 we find that there
are at least three single-particle excitations for
α < 0.5. Furthermore, our simulations suggest that
the number of stable excitations increases when α
tends to 1=2, although this should be confirmed by
other studies. This would then agree qualitatively
with the behavior in the weak-coupling limit.

(2) The case α ¼ 0. For α ¼ 0 the Hamiltonian has
the CT symmetry Eq. (8), but where now LðnÞ →
−Lðnþ 1Þ. Numerical simulations [19,23,62]
pointed out that, for all values ofm=g, this symmetry
is not spontaneously broken. As a consequence, the
energy eigenstates are divided into vector excitations,
which flip sign under aCT transformation, and scalar
excitations, which are invariant under CT. The
ground state and the second single-particle excitation
with energy E2 behaves as a scalar under CT, while
the first single-particle excitation with energy E1

transforms as a vector under CT. Furthermore, there
is another single-particle excitation with energy E3.
This excitation is best interpreted as a bound state of
the excitationswith energy E1 and E2. Form=g≲ 0.3,
we found that this vector excitation is only stable due
to symmetry considerations (a vector excitation
cannot decay into two vector excitations) and, hence,
disappears from the single-particle spectrum for
α ≠ 0. Similar to the case α > 0, the number of
scalar and vector single-particle excitations grows
with ðm=gÞ2 when m=g is large.

(3) The case α ¼ 1=2. As already mentioned, for α ¼ 0
the CT transformation Eq. (8) is a symmetry of the
Hamiltonian. In 1975, Coleman predicted the exist-
ence of a critical mass ðm=gÞc below which the
ground state has the CT symmetry and above which
the CT symmetry is spontaneously broken [37]; see
Fig. 1. The most precise value for this critical mass
has been found with MPS simulations by Byrnes
[21–23], and he found that ðm=gÞc ¼ 0.3335ð2Þ.
Byrnes also conjectured that the corresponding
phase transition falls in the university class of the
Ising model. When approaching the phase transition
from below, m=g ≤ ðm=gÞc, the mass gap decreases
and becomes zero at the phase transition. When
m=g ≥ ðm=gÞc, the vacuum is twofold degenerate
and the elementary excitations are kinks connecting
these two vacua. They were also predicted by
Coleman [37], and the most precise estimates for
their masses were found by Byrnes [21–23].

C. Gauge invariant MPS

Consider now the lattice spin-gauge system Eq. (7) on
2N sites. On site n the matter fields are represented by the
spin operators with basis fjsnin∶sn ∈ f−1; 1gg. The gauge
fields live on the links, and on link n their Hilbert space is
spanned by the eigenkets fjpnin∶pn ∈ Zg of the angular
operator LðnÞ. But notice that for our numerical scheme
we only retain a finite range: pminðnþ 1Þ ≤ pn ≤
pmaxðnþ 1Þ. We address the issue of which values to take
for pminðnþ 1Þ and pmaxðnþ 1Þ in subsection III B.
Furthermore, it is convenient to block site n and link n
into one effective site with local Hilbert space spanned by
fjsn; pning. Writing κn ¼ ðsn; pnÞ we introduce the multi-
index

κ ¼ ððs1; p1Þ; ðs2; p2Þ;…; ðs2N; p2NÞÞ ¼ ðκ1;…; κ2NÞ:

With these notations we have that the effective site n is
spanned by fjκning. Therefore the Hilbert space of the full
system of 2N sites and 2N links, which is the tensor
product of the local Hilbert spaces, has basis
fjκi ¼ jκ1i1 � � � jκ2Ni2Ng, and a general state jΨi is thus
a linear combination of these jκi,

jΨi ¼
X
κ

Cκ1;…;κ2N jκi

with basis coefficients Cκ1;…;κ2N ∈ C.
A general MPS jΨ½A�i now assumes a specific form for

the basis coefficients [73]

0 (m/g)
c

0

1/2

1

FIG. 1. The phase diagram of the Schwinger model. For α ¼
1=2 there is a phase transition at m=g ¼ ðm=gÞc related to the CT
symmetry. When m=g < ðm=gÞc, the symmetry is not sponta-
neously broken while for m=g > ðm=gÞc the symmetry is
spontaneously broken.
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jΨ½A�i ¼
X
κ

v†LAκ1ð1ÞAκ2ð2Þ � � �Aκ2N ð2NÞvRjκi; ð9Þ

where AκnðnÞ is a complex DðnÞ ×Dðnþ 1Þ matrix with
components ½AκnðnÞ�αβ and where vL ∈ CDð1Þ×1, vR ∈
CDð2Nþ1Þ×1 are boundary vectors. The MPS ansatz thus
associates with each site n and every local basis state
jκnin ¼ jsn; pnin a matrix AκnðnÞ ¼ Asn;pn

ðnÞ. The indices
α and β are referred to as virtual indices, and D ¼
maxn½DðnÞ� is called the bond dimension.
To better understand the role of the bond dimension in

MPS simulations it is useful to consider the Schmidt
decomposition with respect to the bipartition of the lattice
consisting of the two regions A1ðnÞ ¼ Z½1;…; n� and
A2ðnÞ ¼ Z½nþ 1;…; 2N� [17],

jΨ½A�i ¼
XDðnþ1Þ

α¼1

ffiffiffiffiffiffiffiffiffiffiffi
σαðnÞ

p
jψA1ðnÞ

α ijψA2ðnÞ
α i: ð10Þ

Here jΨA1ðnÞ
α i (jΨA2ðnÞ

α i) are orthonormal unit vectors living
in the tensor product of the local Hilbert spaces belonging
to the region A1ðnÞ (A2ðnÞ), and σαðnÞ, called the Schmidt
values, are non-negative numbers that sum to one. One can
easily deduce that for a general MPS of the form Eq. (9) at
most Dðnþ 1Þ Schmidt values are nonzero [for the cut at
site n Eq. (10)]. Hence, we see that taking a finite bond
dimension for the MPS corresponds to a truncation in the
Schmidt spectrum of a state. The success of MPS is then
explained by the fact that ground states of local gapped
Hamiltonians can indeed be approximated very efficiently
in D [12] and that the computation time for expectation
values of local observables scales only with D3, allowing
for reliable simulations on an ordinary desktop.
To parametrize gauge invariant MPS, i.e., states that

obey GðnÞjΨ½A�i ¼ 0 for every n, it is convenient to
give the virtual indices a multiple index structure
α → ðq; αqÞ; β → ðr; βrÞ, where q (r) labels the eigenvalues
of Lðn − 1Þ (LðnÞ). In [62] it is proven that the condition
GðnÞ ¼ 0, Eq. (5), then imposes the following form on the
matrices:

½As;pðnÞ�ðq;αqÞ;ðr;βrÞ ¼ ½aq;sðnÞ�αq;βrδqþðsþð−1ÞnÞ=2;rδr;p; ð11Þ

where αq ¼ 1 � � �DqðnÞ, βr ¼ 1 � � �Drðnþ 1Þ. The first
Kronecker delta is Gauss’ law, GðnÞ ¼ 0, on the virtual
level, while the second Kronecker delta connects the virtual
index rwith the physical eigenvalue p of LðnÞ. Because the
indices q (r) label the eigenvalues of Lðn − 1Þ (LðnÞ)
and we only retain the eigenvalues of Lðn − 1Þ in the
interval Z½pminðnÞ; pmaxðnÞ� (of LðnÞ in the interval
Z½pminðnþ 1Þ; pmaxðnþ 1Þ�), we have that DqðnÞ ¼ 0

for q > pmaxðnÞ and q < pminðnÞ. The formal total bond

dimension of this MPS is DðnÞ ¼ PpmaxðnÞ
q¼pminðnÞDqðnÞ, but

notice that, as Eq. (11) takes a very specific form, the
true variational freedom lies within the matrices
aq;sðnÞ ∈ CDqðnÞ×Drðnþ1Þ.
Gauge invariance Eq. (5) is, of course, also reflected in

the Schmidt decomposition Eq. (10): for states of the form
Eq. (11) the Schmidt values can be labeled with the same
double index α → ðq; αqÞ. More specifically, the Schmidt
decomposition Eq. (10) now reads

jΨ½A�i ¼
Xpmaxðnþ1Þ

q¼pminðnþ1Þ

XDqðnþ1Þ

αq¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σq;αqðnÞ

q
jψA1ðnÞ

q;αq ijψA2ðnÞ
q;αq i:

ð12Þ

Another advantage of MPS simulations is that one can
work directly in the thermodynamic limit N → ∞ (see
[74–76]), bypassing any possible finite size artifacts. In the
following we work in this limit. As in this limit the
Hamiltonian is invariant under translations over two sites;
aq;sðnÞ only depends on the parity of n. In particular, it
follows that the MPS ansatz, Eqs. (9) and (11), depends on
a finite number of parameters. Similar to [64] we block sites
2n − 1 and 2n into one effective site n. Hence, the MPS
ansatz for the ground state reads

jΨ½a�i ¼
X
κ

v†L

�YN
n¼1

Aκ2n−1;κ2n

�
vRjκi ð13aÞ

(N → þ∞) with

½As1;p1;s2;p2
�ðq;αqÞ;ðr;βrÞ ¼ δp1;qþðs1−1Þ=2δp2;qþðs1þs2Þ=2

× δp2;r½aq;s1;s2 �αq;βr ; ð13bÞ

where ½aq;s1;s2 �αq;βr ∈ CDq×Dr [Dq ¼ Dqð1Þ]; s1; s2 ¼ �1

and q; p2 ∈ Z½pmin; pmax� [pmin =max ¼ pmin =maxð1Þ].
Finally, we note that, in the thermodynamic limit, the

expectation values of local observables are independent of
the boundary vectors vL and vR.

D. TDVP for ground state

The time-dependent variational principle (TDVP), intro-
duced in [77], provides a tool to evolve the Schrödinger
equation (SE) within a variational manifold in a global
optimal way. Starting from the action principle for the SE,
applying the Euler-Lagrange equations with respect to the
variational parameters gives the TDVP equations. They
also have a nice geometric interpretation [78]. Note that
recently it has been shown that the TDVP unifies a lot of
optimization methods for MPS such as the density renorm-
alization group algorithm and the infinite time evolving
block decimation algorithm [79,80].
Here we use the framework of [74,81] to apply the TDVP

to the manifold of MPS of the form Eq. (13) with a fixed
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bond dimension. The TDVP replaces the SE, i∂tjΨ½A�i ¼
HαjΨ½A�i, by

i _aq;s1;s2 ¼ bq;s1;s2 ½a�;
q ∈ Z½pmin; pmax�;

s1; s2 ∈ f−1; 1g;

where bq;s1;s2 ½a� ∈ CDq×Dqþðs1þs2Þ=2 is a (quite complicated)
expression, depending on all aq;s1;s2 ∈ CDq×Dqþðs1þs2Þ=2 and
Hα, which can be computed efficiently [81]. To obtain an
MPS approximation jΨ½a�i for the ground state and the
ground-state energy E0;α, the evolution is performed in
imaginary time τ (dτ ¼ idt). A first-order Euler algorithm
yields the following update scheme:

aq;s1;s2ðτ þ dτÞ ¼ aq;s1;s2ðτÞ − bq;s1;s2 ½aðτÞ�dτ: ð14Þ

Starting from an initial guess aq;s1;s2ð0Þ and after
sufficient iterations with jdτj ≪ 1, this scheme provides
the aq;s1;s2 that yields the optimal MPS approximation
jΨ½a�i of the ground state of Hα within the class of states
Eq. (13). Note that although the TDVP equation does not
yield a steepest descent in parameter space, it produces
the best approximation to a gradient descent in the full
Hilbert space. In particular, we can also compute
η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΦ½b̄; ā�jΦ½b; a�i

p
with

jΦ½b; a�i ¼ d
dτ

jΨ½aþ bτ�ijτ¼0;

which yields a notion of the norm of the gradient in full
Hilbert space. In our computations we halt the algorithm
when η ¼ 10−9. Because of the infinite size of the lattice,
2N → þ∞, the ground-state energy is infrared divergent,

E0;α ¼ 2N ~E0;α; ð15Þ

with ~E0;α the finite energy per site which can be obtained
from the TDVP algorithm. Finally, we note that this
steepest descent can also be extended to a naive variational
conjugate gradient method; see [82] for an example.

E. Rayleigh-Ritz for single-particle excitations

In the previous section we discussed how one can use the
TDVP to find an optimal MPS approximation jΨ½a�i,
Eq. (13), for the ground state of Hα. For the single-particle
excitations with momentum k ∈ ½−π ffiffiffi

x
p

; π
ffiffiffi
x

p � we now use
the ansatz [81]

jΦk½b;a�i ¼
XN
n¼1

e2ikn=
ffiffi
x

p

×
X
fζng

v†L

�Y
m<n

Aζm

�
Bζn

�Y
m>n

Aζm

�
vRjζi; ð16aÞ

where ζm ¼ ðκ2m−1; κ2mÞ ¼ ðs2m−1; p2m−1; s2m; p2mÞ,
sk ∈ f−1; 1g, pk ∈ Z½pmin; pmax�; jζi ¼ jζ1;…; ζNi and
Aζ corresponds to the ground state Eq. (13) of Hα.
Gauge invariance is imposed by

½Bs1;p1;s2;p2
�ðq;αqÞ;ðr;βrÞ ¼ δp1;qþðs1−1Þ=2δp2;qþðs1þs2Þ=2

× δp2;r½bq;s1;s2 �αq;βr ð16bÞ

with bq;s1;s2 ∈ CDq×Dr .
The ansatz is an extension of the Feynman-Bijl ansatz

[83,84], the single mode approximation [85], and the
Rommer-Östlund ansatz [86] for single-particle excitations
to the thermodynamic limit. Motivated by [87,88], where it
is proven that the momentum-k eigenstates with energy
separated from the rest of the spectrum in that momentum
sector can be created by acting with local operators on the
vacuum, we expect that the states Eq. (16) provide a good
ansatz for bound states as long as their energies are
separated sufficiently far from the other eigenstates in their
momentum sector.
As the matrices aq;s1;s2 in jΦk½b; a�i are already fixed by

the requirement that they correspond to the optimal
approximation Eq. (13) for the ground state of Hα, we
only need to optimize the matrices bq;s1;s2 such that

hΦk½b̄; ā�jHαjΦk½b; a�i
hΦk½b̄; ā�jΦk½b; a�i

is minimal with the requirement that jΦk½b; a�i is orthogo-
nal to jΨ½a�i. As the ground-state energy is infrared
divergent [see Eq. (15)], we subtract its contribution from
Hα; i.e., we consider Hα ← Hα − E0;α. As discussed in
[81], this boils down to a generalized eigenvalue equation
of the form

HeffðkÞ · b ¼ EðkÞNeffðkÞ · b ð17Þ

with b the vector containing all the elements bq;s1;s2 for
q ∈ Z½pmin; pmax�, sk ∈ f−1; 1g. Here Heff and Neff are
expressions depending on Hα and aq;s1;s2 for which the
action on b can be computed efficiently. Hence, using an
iterative eigenvalue solver we obtain approximations
jΦk½b; a�i for the low-energy eigenstates with momentum
k and their energies EðkÞ.
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III. FROM MPS TO FIELD
EXPECTATION VALUES

To obtain ground-state expectation values and excitation
energies for the Schwinger model, we have two tasks:
T1. Computing reliable MPS approximations for the
ground state and single-particle excitations for several
values of the lattice spacing 1=g

ffiffiffi
x

p
.

T2. Extrapolating the results at nonzero lattice spacing to
the continuum limit x → þ∞.
For T1, we compute MPS approximations of the form

Eqs. (13) and (16) to the ground state and the single-particle
excitations for x ¼ f9; 16; 25; 36; 50; 60; 75; 90; 100g.
These are then used to compute the expectation values.
However, as already noted, these MPS approximations are
an effective truncation in the Schmidt spectrum associated
with a half-chain cut of the lattice, and we only recover the
exact ground state in the limitDq → þ∞ and pmax → þ∞;
see Eq. (12). In Sec. III A, we develop a systematic way to
choose Dq and pmax according to the distribution of the
Schmidt values among the eigenvalue sectors q of LðnÞ.
Then we assign an error on our results, originating from
taking finitevalues forDq andpmax.We show that our results
are reliable up to 10−6 for the ground-state expectation
values and up to order 10−3 for the energies of the single-
particle excitations. In Sec. III B, we perform a detailed
analysis on how the needed number of variational param-
eters changes (i.e., Dq and pmin =max) as a function of α and
m=g. In particular, we find that this number grows when
approaching the continuum limit and the phase transition.
However, even close to these limits we are still able to obtain
accurate results with a manageable number of parameters.
Moreover, we argue that we only need to retain a small
number of irreducible representations of the Uð1Þ group
which represent the Hilbert space of the gauge fields.
T2 is performed in Sec. III C. We explain there how to

extrapolate the results for x ¼ 9, 16, 25, 36, 50, 60, 75, 90,
100 to the continuum limit by fitting the data against
polynomials in 1=

ffiffiffi
x

p
and assign a proper error to our

results originating from the choice of fitting interval and
fitting function. As a check, we perform for m=g ¼ 0.125
an independent continuum extrapolation by using the
results for x ¼ 90, 100, 150, 200, 250, 300, 350, 400
and show that the continuum estimates are in agreement
with the ones obtained from x ¼ 9, 16, 25, 36, 50, 60, 75,
90, 100.
The results for α ¼ 0 have already been obtained in [62].

Here, we perform computations for α ¼ 0.05; 0.10;
0.15; 0.20;…; 0.40; 0.45; 0.47; 0.48; 0.50 and use interpo-
lating fits to obtain the results for α ∈ ½0; 1=2�. The results
for all values of α follow from the CT transformation
Eq. (8) and periodicity in α with period 1; see Sec. II B.
The observables that are considered here are the ground-

state energy per unit of length
ffiffiffi
x

p
E0;α=2N ¼ ffiffiffi

x
p hHαi0=

2N, the electric field Eα ¼ hEi0, the chiral condensate

Σα ¼ hψ̄ψi0, and the axial fermion current density
Γ5
α ¼ ihψ̄γ5ψi0. Here h� � �i0 denotes the expectation value

with respect to the ground state of Hα. We refer to Eq. (A1)
in Appendix A 1 for the discretized versions of these
quantities.
Both the electric field and the axial fermion current

density transform as vectors under a CT transformation.
Hence, they serve as an order parameter for the sponta-
neous symmetry breaking of the CT symmetry at α ¼ 1=2.
Also, as for α ¼ 0 the CT symmetry is not spontaneously
broken, and they are then always zero: Eα¼0 ¼ Γ5

α¼0 ¼ 0.
Finally, we note that these quantities are UV finite.
The chiral condensate is a scalar under the CT trans-

formation. Note, however, that, for m=g ≠ 0, the chiral
condensate is a UV-divergent quantity. In [20,63] it is
shown that for α ¼ 0 this divergence originates from the
free chiral condensate (i.e., the chiral condensate for
g ¼ 0). Here we remove the divergence by subtracting
the chiral condensate for α ¼ 0; i.e., we consider

ΔΣα ¼ Σα − Σα¼0;

which is also UV finite. The energy per unit of length is UV
divergent as well, and similar to the chiral condensate, we
obtain a UV-finite quantity by considering the so-called
string tension σα,

σα ¼
ffiffiffi
x

p �
E0;α − E0;α¼0

2N

�
:

This nomenclature stems from the investigation of confine-
ment where σα indeed corresponds to the string tension
(asymptotic force per unit of length) between an external
quark-antiquark pair with charge α [36,64].
Finally, we will consider the energy of the excited states

(with respect to the ground-state energy), obtained via the
method in Sec. II E. The energies are denoted by
E1;α; E2;α;…, with E1;α ≤ E2;α ≤ � � �.

A. The limits Dq → +∞ and pmax → +∞

1. Ground state

Here we discuss how to fixDq and pmax in the numerical
simulations and estimate the errors that this introduces.
Taking a finite bond dimension Dq corresponds to a
truncation in the Schmidt decomposition Eq. (12),

jΨ½a�i ¼
Xpmax

q¼pmin

XDq

αq¼1

ffiffiffiffiffiffiffiffiffi
σq;αq

p jψA1ð2nÞ
q;αq ijψA2ð2nÞ

q;αq i; ð18Þ

where we take into account translation invariance over two
sites and where the half-chain cut is taken between an even
site and an odd site.
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The distribution of Dq is chosen by looking at the
Schmidt coefficients σq;αq and demanding that the smallest
coefficients of each sector approximately equal a preset
tolerance ϵ. In Fig. 2 we show this for an example with
ϵ ¼ 2.5 × 10−17. Furthermore, a particular choice of pmin
and pmax implies taking Dq ¼ 0 for q∉Z½pmin; pmax� and,
hence, also corresponds to a truncation in the Schmidt
spectrum. Similar to Fig. 2, we find in general the relevant
eigenvalue sectors of LðnÞ to be centered around p0 ¼ 0 for
jαj≲ 0.5. Physically this is explained by the first term in
the Hamiltonian Eq. (7) which punishes large expectation
values for the electric field. The largest Schmidt value
in each q sector decreases as we move farther away
from q ¼ p0. For instance, from Fig. 2(b) we clearly
observe that the eigenvalue sectors q ¼ �4 are redundant
for ϵ ¼ 2.5 × 10−17, i.e., ∀αq ¼ 1 � � �Dq∶σq;αq ≤ ϵ for
jqj ≥ 4. In general, we found for jqj≳ 5 that all the
Schmidt values σq;αq were sufficiently small, even when
approaching the continuum limit, and we could safely take
Dq ¼ 0 for these values of q. From Eq. (18) it is clear that
by taking smaller and smaller values for ϵ, the threshold
below which we discard the Schmidt values in Eq. (18), our
MPS approximation jΨ½a�i becomes closer to the real
ground state. As our reference state we take the MPS
approximation jΨ½a0�i with

ϵ ¼ 2.5 × 10−17 and pmax ¼ −pmin ¼ 4: ð19aÞ

To check whether this value for ϵ is sufficiently small, we
perform additional simulations with, respectively,

ϵ ¼ 2.5 × 10−17 and pmax ¼ −pmin ¼ 3; ð19bÞ

ϵ ¼ 10−16 and pmax ¼ −pmin ¼ 4; ð19cÞ

ϵ ¼ 10−16 and pmax ¼ −pmin ¼ 3; ð19dÞ

leading to the MPS approximations, respectively, jΨ½a1�i,
jΨ½a2�i, and jΨ½a3�i, and check how the results differ
among the simulations.
The observables of interest take the form

O ¼
XN−1

n¼1

T2n−2oT−2nþ2;

where o is an operator with support on the effective sites 1
and 2 (consisting of the physical sites and links 1,2,3,4) and
T is the translation over one site. For the expectation value
per site O½a� with respect to jΨ½a�i we have that

O½a� ¼ 1

2N
hΨ½a�jOjΨ½ā�i ¼ trðρ2½a� · oÞ; ð20Þ

where ρ2 is the two-site reduced density matrix of jΨ½a�i
(see Appendix B for the details). As is shown in
Appendix B, gauge invariance ofO, ½O;GðnÞ� ¼ 0, implies
that

O½a� ¼ trðρ2½a� · oÞ ¼
Xpmax

q¼pmin

trðρ2;q½a� · oqÞ; ð21Þ

where ρ2;q½a� and oq can be found in Eq. (B2) in
Appendix B.
When comparing the expectation values of two different

MPS approximations jΨ½a�i and jΨ½a0�i for the ground state
(aq;s1;s2 ∈CDq×Dqþðs1þs2Þ=2 ;a0q;s1;s2 ∈CD0

q×D0
qþðs1þs2Þ=2), we note

that Hölder’s inequality implies that

jO½a� −O½a0�j ≤
� Xpmax

q¼pmin

kρ2;q½a� − ρ2;q½a0�k1
�

· ð max
pmin≤q≤pmax

koqk∞Þ; ð22Þ

where k · km denotes the m-Schatten norm of the operator
(i.e., the m norm of the vector containing the singular
values). For the local variables of interest (e.g., electric
field, energy) koqk∞ is bounded by a polynomial in q; see
Appendix B. Hence,

Δρ2½a; a0� ¼
Xpmax

q¼pmin

kρ2;q½a� − ρ2;q½a0�k1

is a good measure to compare two different MPS approx-
imations jΨ½a�i and jΨ½a0�i for the same ground state.
Now, from the MPS approximations jΨ½a0�i, jΨ½a1�i,

jΨ½a2�i, and jΨ½a3�i [see Eq. (19)], we compute the reduced
density matrices ρ2½a0�; ρ2½a1�, ρ2½a2�, and ρ2½a3�. This
enables us to compute the quantity

-4 -3 -2 -1 0 1 2 3 4

10-20

10-10

100

(a)

-4 -3 -2 -1 0 1 2 3 4

10-20

10-10

100

(b)

FIG. 2. m=g ¼ 0.3, x ¼ 100, α ¼ 0.4. Dq is chosen such that
the smallest Schmidt values in each eigenvalue sector of LðnÞ
equal approximately ϵ ¼ 2.5 × 10−17. We have set everywhere
pmin ¼ −pmax. (a) pmax ¼ 3. (b) pmax ¼ 4.
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Δρ2 ¼ max
n¼1;2;3

� Xpmax

q¼pmin

kρ2½an� − ρ2½a0�k1
�
; ð23Þ

which is shown in Fig. 3(a) for m=g ¼ 0.125, x ¼ 25, 100,
400, and 0.05 ≤ α ≤ 0.5. In all cases Δρ2 is of order 10−8
or smaller. This is, in fact, what we would expect because
taking ϵ≲ 10−16 corresponds to discarding in the Schmidt
decomposition Eq. (12) terms with norm smaller
than

ffiffiffi
ϵ

p ≲ 1 × 10−8.
We can also compute the variance of Hα with respect to

jΨ½a�i,

ΔE0;α½a� ¼
1ffiffiffiffiffiffiffi
2N

p kHαjΨ½a�i − E0;αjΨ½a�ik

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N
hΨ½ā�jðHα − E0;αÞ2jΨ½a�i

r
ð24aÞ

with

kjΨik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨjΨi

p
; ð24bÞ

which is also a good measure to quantify how good our
MPS approximates the real ground state. The computation
ofΔE0;α½a� can be done efficiently using conventional MPS
techniques [89]. In Fig. 3(b) we show ΔE0;α for m=g ¼
0.125, which equals

ΔE0;α ¼ jΔE0;α½a0�j ð24cÞ

with a0 corresponding to the MPS ground-state approxi-
mation jΨ½a0�i; see Eq. (19a). Although this quantity is of
order 10−6 or smaller, it is 2 orders of magnitude larger than
Δρ2; see Fig. 3(a). This is no contradiction because
ΔE0;α½a� involves the computation of the expectation value

of H2
α which is not a local operator and, hence, cannot be

computed as in Eq. (21).
We conclude that the TDVP simulations with pmax ¼

−pmin ¼ 4 and ϵ ¼ 2.5 × 10−17 provides us faithful MPS
approximations for the real ground state of Hα.

2. Single-particle excitations

As explained in Sec. II E, once we have an MPS
approximation jΨ½a�i for the ground state of Hα, we can
use the ansatz jΦk½b; a�i [see Eq. (16)] to approximate the
momentum-k excitations. As the Schwinger model is
Lorentz invariant (in the continuum limit) the excitation
energies EðkÞ of the states with momentum k can be
obtained from the ones with zero momentum by the
Einstein dispersion relation EðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð0Þ2 þ k2

p
.

Therefore we restrict ourselves to the zero-momentum
states (k ¼ 0).
Not all the solutions of the generalized eigenvalue

equation (17) correspond to single-particle excitations.
For instance, the generalized eigenvalue equation (17) also
gives solutions that correspond to multiparticle excitations.
Note, however, that it is clear that an ansatz of the form
Eq. (16) is not suited for these types of excitations, and,
hence, that the solution of Eq. (17) gives, in fact, the
overlap of a state of the form Eq. (16) with a multiparticle
eigenstate. Therefore, these solutions are not reliable. For
two-particle scattering states an MPS ansatz is introduced
and discussed in [90].
Let us consider a specific example from our simulations

to explain how we separate the solutions corresponding to
single-particle excitations from solutions corresponding to
multiparticle excitations. In Table I we show the three

lowest eigenvalues EðnÞ
1;α, E

ðnÞ
2;α, and EðnÞ

3;α of the generalized

0 0.1 0.2 0.3 0.4 0.5
10-11

10-10

10-9

10-8

10-7

(a)

0 0.1 0.2 0.3 0.4 0.5
10-7

10-6

10-5

 25
100
400

(b)

FIG. 3. m=g ¼ 0.125, x ¼ 25, 100, 400. (a) Δρ2 [defined in
Eq. (23) as the differences in the two-site reduced density
matrices between the MPS result jΨ½a0�i and the other MPS
approximations jΨ½an�i (n ≥ 1) with less precision] as a function
of α. (b) Variance ΔE0;α of Hα, Eq. (24), with respect to the MPS
approximation jΨ½a0�i of the ground state.

TABLE I. m=g ¼ 0.125, α ¼ 0.15, x ¼ 400. We compare the
three lowest eigenvalues E1;α, E2;α, and E3;α obtained from the
generalized eigenvalue equation Eq. (17) for different tolerances
in our simulations. E1;α and E2;α correspond to single-particle
excitations, while E3;α originates from a multiparticle state.
Indeed, in all cases we have E3;α > 2E1;α; hence it can decay
in two particles with smaller energy. From the differences

between the Eð0Þ
k;α with EðnÞ

k;α we can compute δEm;α, Eq. (25),
which is displayed as well. We also compute the variance ΔEm;α,
Eq. (26). We find that the errors on E3;α are at least 1 order of
magnitude larger than the errors on E1;α and E2;α.

n ðϵ; pmaxÞ EðnÞ
1;α EðnÞ

2;α EðnÞ
3;α

0 ð2.5 × 10−17; 4Þ 0.75333 1.40854 1.631
1 ð2.5 × 10−17; 3Þ 0.75332 1.40849 1.629
2 ð10−16; 4Þ 0.75323 1.40849 1.641
3 ð10−16; 3Þ 0.75323 1.40850 1.639

Em;α 0.75333 1.40854 1.631
δEm;α 1.0 × 10−4 5.3 × 10−5 1.0 × 10−2

ΔEm;α 6.2 × 10−3 3.0 × 10−2 0.38
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eigenvalue equation (17) where we started from the MPS
approximation jΨ½an�i for the ground state with ϵ and
pmax ¼ −pmin as in Eq. (19). As our final result we take the
result corresponding to our simulation for ðϵ; pmaxÞ ¼
ð2.5 × 10−17; 4Þ, i.e., Em;α ¼ Eð0Þ

m;α, and an error δEm;α on
this result is estimated by comparing it with the energies of
the other simulations,

δEm;α ¼ max
n¼1;2;3

jEðnÞ
m;α − Eð0Þ

m;αj: ð25Þ

From Table I one observes that the energies E1;α and E2;α

are stable under the limit ϵ → 0 within an error of 10−4,
whereas the error on E3;α is 2 orders of magnitude larger.
Note that E3;α ≥ 2E1;α; hence we expect that this energy

corresponds to a state Eq. (17) which has overlap with a
two-particle eigenstate of Hα. On the other hand, we have
that E2;α ≤ 2E1;α, and there is no reason why E2;α should not
correspond to a single-particle excitation. In Fig. 4(a) we
show how δEm;α varies for different values of α. We indeed
find that the error on the lowest eigenvalue E1;α does not
significantly change as a function of α. In contrast, the error
on the second eigenvalue increases. As we discuss in
Sec. IV, the second particle with energy E2;α indeed
disappears in the multiparticle spectrum for α≳ 0.35;
i.e., for α ≳ 0.35 we find that E2;α ≥ 2E1;α. In general,
we thus only consider the solutions ðEm;α; jΦ0½bm; a�iÞ for
which Em;α ≤ 2E1;α.
Similar to Eq. (24), we can also compute the variance as

a measure for the error,

ΔEm;α½a� ¼
1ffiffiffiffiffiffiffi
2N

p kHαjΦ0½b; a�i − Em;αjΦ0½b; a�ik; ð26aÞ

which can be done efficiently using MPS techniques [89].
Note, however, that as this quantity is a sum of negative and
positive terms with comparable magnitude, there can be
relatively large errors in ΔEm;α½a�, and this quantity is very
likely to overestimate the error. However, it can at least give
a good indication whether jΦ0½b; a�i corresponds to an
eigenstate of Hα. In Fig. 4(b) we show

ΔEm;α ≡ ΔEm;α½a0� ð26bÞ

for m=g ¼ 0.125 and x ¼ 400 for different values of α. We
indeed find that ΔEm;α correlates with the behavior of
δEm;α, but that it is 2 orders of magnitude larger than δEm;α.
In general, we found that the errors on the excitation

energies were significantly larger than the ones on the
ground-state expectation values but they were still under
control: in general, smaller than 10−2 and in most cases
only of order 10−4.

B. Charge sector occupation

In [64] we found that the half-chain Von Neumann
entropy,

S ¼ −
X
q

X
αq

σq;αq logðσq;αÞ;

scales as

S ∼ logðξ ffiffiffi
x

p Þ

with ξ the correlation length and x the inverse lattice
spacing squared, as was predicted by Cardy and Calabrese
[91]. Given the fact that for a MPS

jSj≲ logðDÞ; D ¼
X
q

Dq;

we can anticipate that the bond dimension should scale as

D ∼ ðξ ffiffiffi
x

p Þβ; ð27Þ

for some power β. In particular, when approaching the
continuum limit (x → þ∞) or the phase transition for
m=g → ðm=gÞc and α → 1=2 (ξ → þ∞), we expect to need
large Dq. As truncating the eigenvalues of LðnÞ between
pmin and pmax corresponds to taking Dq ¼ 0 for
q∉Z½pmin; pmax�, one expects that we would also need
larger values for jpminj and pmax. However, as we already
mentioned, we found for all our simulations that σq;αq ≤
2.5 × 10−17 for jqj ≥ 5, implying that pmax ¼ 4 suffices.
To quantify the weight of each of the eigenvalue sectors

of LðnÞ, we consider again the MPS approximation
jΨ½a0�i, Eq. (13), for the ground state of Hα obtained by
using the TDVP where
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FIG. 4. m=g ¼ 0.125, x ¼ 400. Measures for the error in the
excitation energies E1;α (red lines), E2;α (magenta lines), and E3;α

(green lines) as a function of α. (a) δEm;α, Eq. (25), which is
obtained by comparing the estimates with other estimates
obtained from simulations with less precision. (b) The variance
ΔEm;α, Eq. (26), of Hα with respect to our MPS approximation
for the excited state.
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pmax ¼ −pmin ¼ 4 and ϵ ¼ 2.5 × 10−17;

i.e., we have chosenDq such that the smallest eigenvalue in
each of the sectors equals approximately ϵ ¼ 2.5 × 10−17

(see Fig. 2). Then we compute the quantity ~Dq,

~Dq ¼ #fσq;αq ≥ 10−16∶αq ¼ 1 � � �Dqg;

which counts the number of Schmidt values larger than or
equal to 10−16. It is obvious that ~Dq gives a good measure
for the weight of each of the eigenvalue sectors of LðnÞ in
the ground state.
In general, we are interested in expectation values of

local gauge-invariant quantities. To identify the contribu-
tion of each of the eigenvalue sectors of LðnÞ to these
expectation values, we note that it follows from Eq. (21)
that the contribution of each of the eigenvalue sectors q of
LðnÞ to the expectation value with respect to jΨ½a0�i is

tr½ρ2;q½a0� · oq�;

which is bounded by (Hölder’s inequality)

jtr½ρ2;q½a0� · oq�j ≤ kρ2;q½a0�k1 · koqk∞;
where k · km denotes the m-Schatten norm of the operator.
We refer to Eq. (B2)in Appendix B for the explicit
expressions of ρ2;q½a0� and oq. There we also show that
for the quantities we are interested in (electric field, energy,
etc.), koqk∞ scales at most polynomially with q. Provided
that kρ2;qk1 ≡ kρ2;q½a0�k1 decreases fast enough (e.g.,
exponentially) with q, it follows that the contribution of
the eigenvalue sectors q of LðnÞ for large jqj to the ground-
state expectation values is negligible. Therefore we also
investigate the quantity kρ2;qk1, which is the sum of the
singular values of ρ2;q½a0�.

1. From coarse to fine lattices

Here we investigate the weight of the eigenvalue sectors
of LðnÞ when approaching the continuum limit
1=

ffiffiffi
x

p
→ þ∞. In Fig. 5(a) we show the needed variational

freedom in each of the sectors for x ¼ 25, 100, 400
corresponding to the lattice spacings 1=

ffiffiffi
x

p ¼ 0.2, 0.1,
0.05 in units g ¼ 1. The figure shows that for each of the
eigenvalue sectors q of LðnÞ, Dq increases with

ffiffiffi
x

p
which

is in agreement with Eq. (27).
From Fig. 5(b) we find that the contribution of the

eigenvalue sectors q of LðnÞ to local expectation values
decreases very fast with q. The figure suggests that
logðkρ2;qk1Þ fits a parabola (note that the scale of the Y
axis is logarithmic) for all values of x. Moreover, we can
even do a polynomial extrapolation of log10 kρ2;qk1 in
1=

ffiffiffi
x

p
using our computations for x ¼ 16, 25, 36, 50, 60,

75, 90, 100, 150, 200, 250, 300, 350, 400; see Fig. 6(a)

[92]. These continuum estimates are shown by the red error
bars in Fig. 5(b). It is clear that they can be fitted against a
quadratic function in q which yields

kρ2;qk1 ≈ expð−1.63ð5Þq2 − 0.84ð2Þq − 0.1ð1ÞÞ; ð28Þ

where the errors on the coefficients are obtained by
comparing with the same fit through q ¼ −3;−2;
…; 2; 3. The parabola Eq. (28) is shown in Fig. 5(b) with
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FIG. 5. m=g ¼ 0.125, α ¼ 0.5. Scaling of ~Dq and kρ2;qk1 to the
continuum limit x → þ∞. (a) ~Dq increases with

ffiffiffi
x

p
in each of

the eigenvalue sectors of LðnÞ, but falls off very fast with jqj.
(b) By performing a polynomial extrapolation of log10ðkρ2;qk1Þ
in 1=

ffiffiffi
x

p
, we obtain estimates for the continuum value of kρ2;qk1

(red error bars). The green line represents the parabolic fit through
these estimates, Eq. (28), and shows that kρ2;qk1 falls off
exponentially with q2 in the continuum limit.
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FIG. 6. α ¼ 0.5. (a) Linear (solid line), quadratic (dashed line),
and cubic fit (dotted line) of log kρ2;qk1 against 1=

ffiffiffi
x

p
for x ∈

½9; 400� (blue circles). These fits allow us to obtain an estimate for
log kρ2;qk1 in the continuum limit (stars). (b) We show here the
(continuum estimates of) log kρ2;qk1 as a function of the mass gap
E1. The mass gaps correspond, in increasing order, to the fermion
masses m=g ¼ 0.3, 0.25 and m=g ¼ 0.125. The value E1 ¼ 0
corresponds to the phase transition at m=g ¼ ðm=gÞc ≈ 0.33. We
observe an almost linear behavior (red line) which allows us to
estimate log kρ2;qk1 at the phase transition (star).
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the green line. For other values of m=g and α, a similar
result can be obtained from our simulations for x ¼ 9, 16,
25, 50, 60, 75, 90, 100. Apparently, the dynamical gauge
term ∼

P
nEðnÞ2 in the Hamiltonian Hα weights the

eigenvalue sectors of LðnÞ with a Gaussian in the ground
state.

2. Toward the phase transition

Let us now investigate what happens when we approach
the phase transition for ðm=g; αÞ ¼ ððm=gÞc ≈ 0.33; 1=2Þ.
At that point the system becomes gapless and the corre-
lation length ξ diverges, which leads again to the need of
many variational parameters; see Eq. (27). Although MPS
simulations are hard around the critical point, we were able
to get very close to it. In Fig. 7 we show ~Dq (for x ¼ 100)
and kρ2;qk1 (in the continuum limit) for α ¼ 1=2 and
investigate their scaling toward m=g → ðm=gÞc.
We observe that for ðm=g; αÞ ¼ ð0.3; 1=2Þ and x ¼ 100,

~Dq is large (e.g., ~D0 ≈ 176), but still easily manageable for
a classical computer. In addition, when searching for the
optimal MPS ground-state approximation close to the
critical point, we also need a large amount of iterations
Eq. (14) to get the norm of the gradient below η ¼ 10−9.
The TDVP takes a few weeks to obtain an optimal ground
state. In contrast, form=g≲ 0.25 and α≲ 0.48, simulations
take at most 24 hours.
In Fig. 7(b), we show the continuum estimates of

kρ2;qk1, obtained from our simulations for x ∈
f16; 25; 36; 50; 60; 75; 90; 100g as in Fig. 6(a), for
m=g ¼ 0.125, 0.25 and m=g ¼ 0.3. At the critical point,

ðm=gÞ ¼ ðm=gÞc, the system becomes gapless, and it turns
out that we can perform a linear extrapolation in the mass
gap E1. In Fig. 6(b), we show log10 kρ2;q¼2k1 as a function
of the mass gap E1 of the Schwinger model for
m=g ¼ 0.125, 0.25, 0.3 (we refer to Sec. III C for a
discussion on how to obtain E1). One observes that they
almost fit a straight line and, hence, we estimate the value
of log10 kρ2;q¼2k1 at the phase transition by the section of
the linear fit with the ðE1 ¼ 0Þ axis; see Fig. 6(b). The
estimates for kρ2;qk1 for ðm=gÞ ¼ ðm=gÞc are now shown
by the red error bars in Fig. 7(b). A parabolic fit though the
points now gives [see green line in Fig. 7(b)]

kρ2;qk1 ≈ exp ð−1.60ð6Þq2 − 0.81ð2Þq − 0.0ð2ÞÞ; ð29Þ

which is very similar to Eq. (28). This shows that even at
the phase transition we can safely truncate the Hilbert space
of the gauge fields to a relatively small number of
irreducible Uð1Þ representations.

3. General dependence on m=g and α

When α is sufficiently small, the mass gap becomes
larger when ranging from the strong-coupling (m=g ≪ 1)
limit to the weak-coupling limit (m=g ≫ 1) (see Sec. IV).
For α ¼ 0, we found in [62] that we needed substantially
smaller values ofDq whenm=g increases. This is also what
we observe in Fig. 8(a) for α ¼ 0.1: the number of Schmidt
values above 10−16 decreases when m=g increases. Note
that this is the case for all the eigenvalue sectors q of LðnÞ.
This behavior is observed for all values of α smaller
than 0.4. Furthermore, in Fig. 8(b) we observe as before
that kρ2ðqÞk1 ∼ expð−q2Þ. This implies that the main
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FIG. 7. α ¼ 0.5. Scaling of ~Dq and kρ2;qk1 when approaching
the phase transition m=g → ðm=gÞc ≈ 0.33. (a) ~Dq increases in
each of the eigenvalue sectors of LðnÞ when getting close to
ðm=gÞc. Fortunately, it falls off very fast with jqj. (b) By
performing a polynomial extrapolation of log10ðkρ2;qk1Þ in the
mass gap E1, we obtain an estimate for the value of kρ2;qk1 at
m=g ¼ ðm=gÞc (red error bars). The green line represents a
parabolic fit through these estimates, Eq. (29), and shows that
kρ2;qk1 falls off exponentially with q2 at the phase transition.
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FIG. 8. x ¼ 100, α ¼ 0.1. Scaling of ~Dq and kρ2;qk1 when
ranging from the strong-coupling regime (m=g ≪ 1) to the weak-
coupling regime (m=g ≫ 1). (a) ~Dq decreases in each of the
eigenvalue sectors of LðnÞ with increasing m=g. (b) kρ2;qk1 falls
off exponentially with q2 and is almost independent of m=g.
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contribution to the ground-state expectation values comes
from the small eigenvalue sectors of LðnÞ.
For a fixed value ofm=g, we find in general that we need

more variational freedom when α increases; see Fig. 9. An
explanation is that the mass gap decreases with increasing
α; see Sec. IV. In particular, when α ¼ 1=2, ~Dq becomes
suddenly very large. Indeed, there is a large difference
between ~Dq for α ¼ 0.48 and α ¼ 0.5 in Fig. 9(a). Here we
also find that the contribution to the local expectation
values mainly originates from the eigenvalue sectors of
LðnÞ with small q [see Fig. 9(b)], confirming the general
picture.
In conclusion, the fast decay Eq. (28) and Eq. (29) and

the aforementioned results imply that for the study of the
Schwinger model we only need to retain a few of the
infinite number of Uð1Þ representations to obtain reliable
results in the continuum limit. From a broader perspective,
this holds optimism for the study of any lattice field theory
in the Wilsonian formulation. As the Hamiltonian of a
SUðNÞYang-Mills theory has a quadratic electric field term
[10], generally referred to as the quadratic Casimir oper-
ator, we might expect that the contribution of each of the
irreducible representations of SUðNÞ to local expectation
values also decays exponentially fast with its quadratic
Casimir invariant. Hence, we expect that also for these
theories we could safely truncate the Hilbert space of the
gauge fields to a relatively small number of irreducible
representations, not undermining the possibility of per-
forming efficient tensor network simulations.

C. The continuum limit: x → +∞
In this subsection we discuss how to obtain the con-

tinuum limit of the ground-state expectation values and
excitation energies which we have computed for

x ∈ X1 ¼ f9; 16; 25; 36; 50; 60; 75; 90; 100g: ð30aÞ

In addition, we quantify the uncertainty in our result which
originates from the choice of fitting procedure. By perform-
ing a similar independent continuum extrapolation for

x ∈ X2 ¼ f90; 100; 150; 200; 250; 300; 350; 400g; ð30bÞ

we show that our results are robust against the choice of
fitting interval and, in particular, that the chosen x range
gives reliable continuum extrapolations. Finally we also
check, where possible, our results against mass-perturbation
theory [52] and with the results of Byrnes [21–23].
In Fig. 10, we show the energy density ϵ0;αðxÞ ¼

E0;α=2N
ffiffiffi
x

p
, the renormalized chiral condensate ΔΣαðxÞ,

the axial fermion current density Γ5
αðxÞ, and the electric

field EαðxÞ as a function of the lattice spacing 1=
ffiffiffi
x

p
(in

units g ¼ 1) for m=g ¼ 0.125 and α ¼ 0.4. As can be
observed from the circles in Fig. 10, we have computed
these quantities for the x values in X1 and X2; see Eq. (30).
As has already been noticed in earlier studies [19,21–
23,41,62–64], these quantities scale polynomially in 1=

ffiffiffi
x

p
when approaching the continuum limit x → þ∞. Therefore
we propose to fit the data against the following polynomials
in 1=

ffiffiffi
x

p
:

f1ðxÞ ¼ A1 þ B1

1ffiffiffi
x

p ; ð31aÞ

f2ðxÞ ¼ A2 þ B2

1ffiffiffi
x

p þ C2

1

x
; ð31bÞ

and

f3ðxÞ ¼ A3 þ B3

1ffiffiffi
x

p þ C3

1

x
þD3

1

x3=2
: ð31cÞ

By considering different sets of consecutive x values and
fitting them to fn (n ¼ 1, 2, 3), we obtain several estimates
for the continuum limit. Similar to [65], we take the median
of the distribution of all these estimates weighed by
expð−χ2=NdofÞ to obtain a continuum estimate for each
of the fitting functions fn and take the 15%–85% con-
fidence interval to assign an error on this result for the
choice of fitting interval. By comparing the different
continuum estimates for each of the fn (n ¼ 1, 2, 3) we
obtain also an error for the choice of fitting function. We
refer to Appendix C for the technical details and to [65] for
an even more extended discussion.
In Fig. 10 we show the fits that determine the continuum

estimate (solid line and filled circle at 1=
ffiffiffi
x

p ¼ 0). One
observes that for all the quantities displayed in Fig. 10, the
results are almost on top of each other. Note that as the error
bars are very small, they are not drawn there. As another
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FIG. 9. m=g ¼ 0.3, x ¼ 100. Scaling of ~Dq and kρ2;qk1 when
varying α. (a) ~Dq increases in each of the eigenvalue sectors of
LðnÞ when α grows. Note also the difference between the values
of ~Dq for α ¼ 0.48 and α ¼ 0.5. (b) kρ2;qk1 falls off exponen-
tially with q2.
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check, we show in Fig. 10(a) that the continuum estimate of
the ground-state energy density ϵ0;α is very close to its real
result −1=π (dashed line) within an error of 1 × 10−4 (for
x → þ∞: Hα=2

ffiffiffi
x

p
becomes the Heisenberg XY model).

Figure 11 shows the same as Fig. 10, but now for the
energy E1;α of the first excited state and for different values
of α. One observes now that the slope of E1;αðxÞ with
respect to 1=

ffiffiffi
x

p
changes as α crosses 0.4. This makes a

continuum extrapolation hard for α ¼ 0.4 [see Fig. 11(c)]
and, hence, introduces large errors for these values.
Therefore we compute for m=g ¼ 0.125 the excitation

energies for α ¼ 0.42 instead of α ¼ 0.4. Note, however,
that we do not face this problem for the ground-state
expectation values (see Fig. 10) or when α is farther away
from α ¼ 0.4 [see Figs. 11(a) and 11(d)]. In particular, we
also find that the continuum estimates of the excitation
energies, obtained independently from the sets X1 and X2,
are in agreement with each other.
As another check, we compare in Appendix A 2 our

results with mass-perturbation theory and with the results
of [21–23] for α ¼ 0.5. We find that our results agree in the
appropriate regimes and, therefore, we can be confident
that our procedure to obtain a continuum estimate from the
simulations at nonzero lattice spacing 1=

ffiffiffi
x

p
provides a

reliable method. Therefore, we adopt this method to obtain
continuum estimates of ground-state expectation values and
excitation energies from our simulations with x ¼ 9, 16,
25, 36, 60, 60, 75, 90, 100.

IV. SINGLE-PARTICLE SPECTRUM

Most of the ground-state properties have already been
investigated in the context of confinement [64]. Therefore
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FIG. 10. m=g ¼ 0.125, α ¼ 0.4. Continuum extrapolation of
ground-state expectation values. The blue circles are the data for
x ¼ 9, 16, 25, 50, 60, 75, 90, 100 while the green circles represent
the data for x ¼ 150, 200, 250, 300, 350, 400. The magenta line is
the best polynomial fit in 1=

ffiffiffi
x

p
through the data for x ∈ X1 ¼

f9; 16; 25; 50; 60; 75; 90; 100g while the yellow line is the best fit
in 1=

ffiffiffi
x

p
through the data for x ∈ X2 ¼ f90; 100; 150;

200; 250; 300; 350; 400g. The intersection of these curves with
the ð1= ffiffiffi

x
p ¼ 0Þ axis gives the continuum estimate. In all cases,

the continuum estimates obtained for X1 and X2 are in good
agreement within an error 4 × 10−4. (a) Energy density ϵ0 and
comparison with the exact result −1=π (dashed line). (b) Renor-
malized chiral condensate ΔΣα. Note that the figure confirms that
ΔΣα is a UV-finite quantity, and, hence, we have properly
renormalized it. (c) For the axial fermion current density Γ5

α,
the cutoff effects at smaller values of x are more severe, and a
higher order polynomial extrapolation is necessary. Note, how-
ever, that the continuum estimates for x ∈ X1 and x ∈ X2 agree.
(d) The electric field Eα.
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FIG. 11. m=g ¼ 0.125. Similar as Fig. 10 but now the con-
tinuum extrapolation of the mass gap E1 for different values of α.
One observes that the slope of E1;αðxÞ with respect to 1=

ffiffiffi
x

p
changes when crossing α ¼ 0.4. Around α ¼ 0.4 a continuum
extrapolation gives very large errors. Note, however, that the error
bars from the continuum estimates obtained from x ∈ X1 and
x ∈ X2 do overlap.
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we present our results in Appendix A 3. Here we focus on
the single-particle spectrum as a function of α.
As explained in Sec. II B, for α ¼ 0, there are two single-

particle excitations with CT ¼ −1 and energies E1;α; E3;α

and one single-particle excitation with CT ¼ 1 and energy
E2;α with the hierarchy E1;α < E2;α < E3;α; see [62]. For
m=g ¼ 0.125, 0.25, 0.3 we have that E1 < E2 þ E3 and
E3;α > 2E1;α while for m=g≳ 0.5 we have E3;α ≤ 2E1;α.
This means that for m=g ¼ 0.125, 0.25, 0.3 the decay of
E3;α into two elementary particles is only prevented by the
CT symmetry. When 0 < α < 1=2, the CT symmetry is
broken, and this decay is no longer forbidden. This is,
indeed, what we observe in the single-particle spectrum: for
α > 0, only the excitations with energy E1;α correspond
to single-particle excitations; see Figs. 12(a)–12(c).
Furthermore, we observe that the binding energy Ebind ¼
2E1;α − E2;α decreases as α tends toward 1=2.
For m=g ¼ 0.125 (see Fig. 12), the second particle

is stable until α≲ 0.35. For α ¼ 0.42 our estimates are

E1;α ¼ 0.414ð4Þ and E2;α ¼ 0.852ð7Þ, indicating that the
second excited state is unstable against decay into two
particles with energy E1;α: E2;α > 2E1;α. When α ≥ 0.35,
we have E2;αðxÞ > 2E1;αðxÞ for all the x values we used. We
conclude that there are two single-particle excitations for
α≲ 0.35 and only one single-particle excitation for
α≳ 0.42. This agrees qualitatively with mass-perturbation
theory, m=g ≪ 1, where there are two single-particle
excitations for α ≤ 1=4 and one single-particle excitation
for 1=4 < α ≤ 1=2 [37].
For m=g ¼ 0.25 [see Fig. 12(b)], our estimates for the

energy E2;α were unstable against variation of the bond
dimensionD for α ≥ 0.48. The errors on E2;α were too large
and prevent an extrapolation toward x ¼ ∞. Nevertheless,
in our simulations we have E2;αðxÞ < 2E1;αðxÞ for all our x
values, and the fact that E2;αðxÞ decreases as the bond
dimension increases might suggest that this particle is still
stable but with very small binding energy. For α ¼ 1=2, the
ground state is CT invariant form=g ≤ ðm=gÞc, allowing us
to classify the excitations according to their CT number
with the method similar to [62]. We compute the excitation
energies with and without classifying the states according
to their CT number for ðm=g; αÞ ¼ ð0.25; 1=2Þ. In both
cases, we found only one single-particle excitation. In the
vector sector (CT ¼ −1) all other states have energies that
are larger than 3E1;α, and in the scalar sector (CT ¼ 1) the
energies were larger than 2E1;α. This corresponds to a
theory with one single-particle excitation. Therefore we
estimate the value of the electric background field where
the second elementary particle disappears to be larger than
0.47 but smaller than 0.5 for m=g ¼ 0.25.
A similar picture arises for m=g ¼ 0.3; see Fig. 12(c).

Here we estimate that the second elementary particle
disappears between α ¼ 0.48 and α ¼ 0.5. One also
observes that the mass gap decreases as we approach the
phase transition ðm=g; αÞ → ððm=gÞc; 1=2Þ: for ðm=g; αÞ ¼
ð0.3; 1=2Þ our estimate for the mass gap is E1;α ¼
0.0527ð5Þ.
We conclude that for m=g ≤ ðm=gÞc and relative small

values of α there are two single-particle excitations with
energies E1 and E2. Above a certain value of α, the
excitation with energy E2 does not correspond to a
single-particle excitation anymore and, hence, disappears
in the continuum of the spectrum. This mechanism is best
understood as the binding energy of the second excited
state becoming too small to be stable against a decay into
two elementary particles with smaller energy. Not surpris-
ingly, we find that when approaching the phase transition
that the mass gap becomes smaller. In particular, whenm=g
is close to the critical mass, the mass gaps decrease more
suddenly when approaching α ¼ 1=2 compared to the
smoother behavior for m=g ¼ 0.125.
This picture changes form=g ≥ ðm=gÞc. For instance, for

m=g ¼ 0.5 we have for all values of α that E3;α < 2E1;α and
thus at least three single-particle excitations exist; see
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FIG. 12. Energy of the single-particle excitations as a function
of α for different values of m=g. The energy E1;α of the first
single-particle excitation is shown with a green line, the energy
E2;α of the second single-particle excitation is shown with a red
line, and the energy E3;α of the third single-particle excitation is
shown with a blue line. The yellow line shows the continuum
spectrum consisting of multiparticle states with energy larger than
2E1;α. For m=g ¼ 0.125, 0.25, 0.3 the excitation with energy E3;α

corresponds only to a single-particle excitation for α ¼ 0 and
α ¼ 1 (blue star).
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Fig. 12(d). When α → 1=2, we observe that the difference
among the energies E1;α, E2;α, and E3;α becomes smaller.
This results in the fact that the ansatz Eq. (16) is less
accurate in approximating the single-particle excitations.
Indeed, for α ≥ 0.45 we observe large error bars for E3;α.
Anyway, we found that E1;α, E2;α, and E3;α were stable for
all values of x. Furthermore, for α ≥ 0.45 we found even a
fourth solution to the eigenvalue problem Eq. (16) that
might correspond to a single-particle excitation. However,
because its energy was very close to 2E1;α the errors on this
energy using the ansatz Eq. (16) for fixed values of x were
too large to obtain a reliable continuum estimate.
Our results thus show that the spectrum of m=g ¼ 0.5

differs from the spectrum for m=g ≤ ðm=gÞc. For α ¼ 1=2,
because of spontaneous symmetry breaking of the CT
symmetry, there are two vacua and kink excitations which
connect these two vacua [21–23]. Local excitations con-
structed on top of one of the two vacua are scattering states
containing an equal number of kinks and antikinks. Away
from α ¼ 1=2, the CT symmetry is explicitly broken and
only one of the two vacua survives as ground state, while
individual kinks no longer exist. The splitting in energy
density between the two vacua acts as a linear attractive
potential between kink-antikink pairs. As such, the elemen-
tary excitations on top of the ground state that we observe
for α close to 1=2, such as those with energies E1;α; E2;α; E3;

α, emerge as a remnant of the symmetry breaking and can
be thought of as kink-antikink bound states stabilized by
the attractive interaction. As α → 1=2, the slope of the
potential decreases and more and more bound states come
closer together in the spectrum, below our limit of energy
resolution, and finally make up the kink-antikink con-
tinuum for α ¼ 1=2.

V. CONCLUSIONS

In this paper we presented an overview of the low-energy
properties of the Schwinger model in terms of the fermion
mass m=g and the electric background field α, comple-
menting earlier studies [21–23,37,52] for α ¼ 0 and α ¼
1=2 with numerical MPS simulations for α ∈ ½0; 1=2�. We
also investigated in great detail the influence of truncating
the infinite dimensional Hilbert space of the gauge fields by
quantifying the contribution of each of the irreducibleUð1Þ
representations to ground-state expectation values. The
conclusion is that, even close to the continuum limit and
a phase transition, this contribution falls off exponentially
with the quadratic Casimir invariant of the representation.
We expect the same conclusion to hold for any SUðNÞ
Yang-Mills gauge theory, that is, that the infinite Hilbert
space of the gauge fields poses no obstacle to study Yang-
Mills theories in the Hamiltonian framework by means of
tensor network methods.
However, there are still formidable challenges for the

TNS framework to overcome: possibly the biggest one is
going to higher dimensions. The generalization of MPS to

higher dimensions are the projected entangled-pair states
(PEPS) [93]. Although some interesting studies of gauge
theories with PEPS have appeared [94–98], at present, the
need for a large number of variational freedom when
approaching the continuum limit is still hindering a truly
variational study of gauge field theories [99]. Fortunately,
in the last years the PEPS methods have significantly
improved [100–109]. In particular, for some models the
PEPS framework can already compete with state-of-the-art
Monte Carlo simulations [105]. This makes us confident
that in the near future the TNS framework will provide a
tool for the study of gauge field theories in the illusive
regimes which are inaccessible with other methods.
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APPENDIX A: GROUND-STATE PROPERTIES

1. The quantities and their lattice version

In this paper we consider the following quantities:
(i) The electric field Eα,

Eα ¼ hEi0 ¼
g
2
hLð1Þ þ Lð2Þ þ 2αi0; ðA1aÞ

(ii) The chiral condensate Σα,

Σα ¼ hψ̄ψi0 ¼ g
ffiffiffi
x

p
4

h−σzð1Þ þ σzð2Þ þ 2i0;
ðA1bÞ

(iii) The axial fermion current density Γ5
α,

Γ5
α ¼ ihψ̄γ5ψi0
¼ g

ffiffiffi
x

p
4

ðhσþð1Þeiθð1Þσ−ð2Þ þ H:c:i0
− hσþð2Þeiθð2Þσ−ð3Þ þ H:c:i0Þ; ðA1cÞ

where h� � �i0 denotes the expectation value with respect to
the ground state ofHα with an electric background field gα.
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As the chiral condensate is UV divergent, we consider its
renormalized version: if Σα is the chiral condensate of the
ground state of Hα with electric background field α, then
we consider

ΔΣα ¼ Σα − Σα¼0;

with Σα¼0 computed at the same value of m=g.
Furthermore, the ground-state energy E0;α ¼ hHαi0 is IR

divergent and UV divergent

E0;α ¼ g2N
ffiffiffi
x

p
ϵ0;α ðA2aÞ

with ϵ0;α finite as N → þ∞ and x → þ∞. As Hα=2
ffiffiffi
x

p
becomes the Heisenberg XY model in the limit x → þ∞,
we have that

ϵ0;α ¼ −1=π for x → þ∞; ðA2bÞ

which is independent of m=g and α. Another possibility to
renormalize the ground-state energy is to substract the zero-
background contribution and consider the so-called string
tension

σα ¼ g
ffiffiffi
x

p E0;α − E0;α¼0

2N
;

which is also UV finite.

2. Comparison with earlier studies

Adam [52] showed in mass-perturbation theory ðm=g ≪
1Þ that

E1;α ¼ μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3.5621

m
μ0

cosð2παÞ þ ð5.4807 − 2.0933 cosð4παÞÞ
�
m
μ0

�
2

s
þO

��
m
g

�
3
�
; ðA3aÞ

Eα ¼ −2π
m
g
~Σ sinð2παÞ

þ π

�
m
g

�
2
~Σ2Eþ sinð4παÞ þO

��
m
g

�
3
�
; ðA3bÞ

ΔΣα ¼ − ~Σðcosð2παÞ − 1Þ

þm
g

~Σ2

2
Eþðcosð4παÞ − 1Þ þO

��
m
g

�
2
�
; ðA3cÞ

Γ5
α ¼ − ~Σ sinð2παÞ −m

g

~Σ2

2
Eþ sinð4παÞ þO

��
m
g

�
2
�
;

ðA3dÞ

with μ0 ¼ g=
ffiffiffi
π

p
, ~Σ ¼ −eγμ0=2π, γ ≈ 0.5772 (the Euler-

Mascheroni constant), and Eþ ¼ −28.0038=g2.
In Fig. 13 we compare our results (solid line) with the

perturbative results (dashed line) for the quantities E1;α,
ΔΣα, Γ5

α, and Eα (dashed line) for m=g ¼ 0.125 and
m=g ¼ 0.25. Although we are for m=g ¼ 0.125 beyond
the strong-coupling regime, we observe that our results
converge toward the perturbative results as m=g → 0. In
particular, for the excitation energy E1;α the agreement is
striking form=g ¼ 0.125. As another check, we compare in
Table II some quantities for α ¼ 0.5 with the results of
Byrnes [21–23]. When m=g ¼ 0.25, 0.30 the electric field
Eα and the axial fermion current density Γ5

α are zero due to
the CT symmetry. We recovered this in our numerical
simulations for all our values of 1=

ffiffiffi
x

p
up to 10−7.

Therefore a continuum extrapolation is useless. For m=g ¼
0.5 and α ¼ 0.5, the elementary excitations are kinks which
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FIG. 13. Comparison of our results for m=g ¼ 0.125 and
m=g ¼ 0.25 (solid line) with the results in mass-perturbation
theory of Adam [52] (dashed line) for different quantities. We
observe convergence toward the perturbative results form=g → 0.
In particular, for the mass gap E1 the result for m=g ¼ 0.125
matches very well the predicted behavior in mass-perturbation
theory.
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cannot be captured with the ansatz Eq. (16). The lowest
solutions to the generalized eigenvalue equation Eq. (17)
correspond to excitations with at least twice the energy of
the kinks and, hence, are also not faithfully represented by
the ansatz Eq. (16). Therefore we do not have a reliable
estimate for the mass gap for α ¼ 0.5 and m=g ¼ 0.5.
We were also able to obtain a rough estimate for the

critical mass ðm=gÞc. Therefore we fitted m=g against E1

for m=g ¼ 0.125, 0.25, 0.3. As can be observed from
Fig. 14, E1 behaves almost linear in m=g [21–23]. Hence,
the critical mass ðm=gÞc is obtained by the intersection of
the linear fit with the (E1 ¼ 0) axis. Indeed, the mass gap
vanishes at the phase transition. A linear fit gives yields
ðm=gÞc ¼ 0.3308… which is in agreement with the result
of Byrnes, ðm=gÞc ≈ 0.3335ð2Þ, up to 3 × 10−3. By per-
forming additional simulations for m=g ∈ ½0; 0.3� we could
improve these results, but this falls beyond the scope of
this paper.

3. Results

In [64] we found that the string tension σα [see Fig. 15(a)]
interpolates smoothly between the behavior in the

strong-coupling limit for small values of m=g and the
weak-coupling limit for large values of m=g. In particular,
for m=g ¼ 0.5 we find that the string tension is nondiffer-
entiable for α ¼ 1=2 which is a consequence of the sponta-
neous breaking of the CT symmetry. Indeed, an order
parameter for this spontaneous symmetry breaking is the
electric fieldEα [see Fig. 15(b)], which is related to the string
tension by

Eα ¼
∂σα
∂α :

Hence, the discontinuity of Eα at α ¼ 1=2 implies that σα is
nondifferentiable at α ¼ 1=2. This holds for all values of
m=g ≥ ðm=gÞc. Similarly, we find that the renormalized
chiral condensateΔΣα [seeFig. 15(c)],which is related to the
string tension by

ΔΣα ¼
∂σα
∂m ;

is nondifferentiable at α ¼ 1=2 for ðm=gÞ ≥ ðm=gÞc.
Note that for m=g ¼ 0.125 and m=g ¼ 0.25 it is hard to

see with the naked eye whether σα and ΔΣα are differ-
entiable at α ¼ 1=2. However, the differentiability follows

TABLE II. α ¼ 0.5. Comparison with the results of Byrnes [23]
for m=g ¼ 0.25, 0.3, 0.5 and α ¼ 0.5. For m=g ¼ 0.125 and
m=g ¼ 0.25 the ground is CT invariant and, hence, Eα ¼ Γ5

α ¼ 0.
In our numerics we recovered this up to 10−7 and, hence, a
continuum extrapolation makes no sense. Form=g ¼ 0.5 and α ¼
0.5 the elementary excitations are kinks which cannot be
approximated by the ansatz Eq. (16). Therefore we do not have
an estimate for that.

m=g E1 Eα Γα

0.25 Buyens 0.1338(7) � � � � � �
Byrnes [23] 0.134(2) � � � � � �

0.3 Buyens 0.0527(5) � � � � � �
Byrnes [23] 0.05(2) � � � � � �

0.5 Buyens � � � 0.4206(2) 0.136(2)
Byrnes [23] 0.246(3) 0.421(1) 0.135(2)
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FIG. 14. The mass gap E1 as a function of m=g for
m=g ¼ 0.125, 0.25, 0.3 (red circles). A linear fit (blue line)
enables us to extrapolate the curve to E1 ¼ 0 which gives us the
estimate ðm=gÞc ≈ 0.3308… (red star) for the critical mass.
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FIG. 15. Results for the ground state for α ∈ ½0; 1� for
m=g ¼ 0.125, 0.25, 0.3, 0.5. (a) String tension σα. (b) Electric
field Eα. (c) Renormalized chiral condensate ΔΣα. (d) Axial
fermion current density Γ5

α.
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from the fact that the electric field is zero and continuous
at α ¼ 1=2.
Finally, in Fig. 15(d) we show the axial fermion current

density. This quantity also switches sign under a CT
transformation and, hence, serves as an order parameter
as well. In fact, one observes that Γ5

α correlates with Eα.
However, note that Eα increases with m=g while Γ5

α

decreases with m=g. Similarly, ΔΣα correlates with σα,
but again, σα increases with m=g while ΔΣα decreases
with m=g.

APPENDIX B: REDUCED DENSITY
MATRIX OF A MPS

Here, we briefly discuss how to compute the reduced
density matrices of a MPS of the form Eq. (13),

jΨ½a�i ¼
X
κ

v†L

�YN
n¼1

Aκ2n−1;κ2n

�
vRjκi; ðB1aÞ

N→þ∞, κn ¼ ðsn; pnÞ, sn ∈ f−1; 1g; pn ∈ Z½pmin; pmax�,
with

½As1;p1;s2;p2
�ðq;αqÞ;ðr;βrÞ ¼ δp1;qþðs1−1Þ=2δp2;qþðs1þs2Þ=2

× δp2;r½aq;s1;s2 �αq;βr ; ðB1bÞ

where aq;s1;s2 ∈ CDq×Dqþðs1þs2Þ=2 .
We assume that the state is proper normalized, i.e., the

largest eigenvalue of the transfer matrix

E ¼
X
κ1;κ2

Aκ1;κ2 ⊗ Aκ1;κ2 ;

and equals one, and the matrices ΛL and ΛR corresponding
to the left and right leading eigenvectors are positive
definite. Moreover, Eq. (B1b) implies that

½ΛL�ðq;αqÞ;ðr;βrÞ ¼ δq;r½λL;q�αq;βr ;
½ΛR�ðq;αqÞ;ðr;βrÞ ¼ δq;r½λR;q�αq;βr

for λR;q; λL;q ∈ CDq×Dq positive definite matrices. Consider
an operator O of the form

O ¼
XN
n¼1

T2n−2oT−2nþ2;

where o acts on the effective sites 1 and 2 (i.e., sites 1,2,3,4
and links 1,2,3,4) and where T is the translation operator
(over one site). If O is gauge invariant, i.e., for all n,

½O;GðnÞ� ¼ 0; GðnÞ ¼ LðnÞ − Lðn − 1Þ − σzðnÞ þ ð−1Þn
2

;

then

1

2N
hΨ½ā�jOjΨ½a�i ¼ trðρ2½a� · oÞ

¼
Xpmax

q¼pmin

trðρ2;q½a� · oqÞ;

where ρ2;q½a� and oq ∈ C2⊗4×2⊗4

have components

hs1; s2; s3; s4jρ2;q½a�jt1; t2; t3; t4i ¼ trðλL;qaq;t1;t2aqþðt1þt2Þ=2;t3;t4λR;qþðt1þt2þt3þt4Þ=2½aqþðs1þs2Þ=2;s3;s3 �†½aq;s1;s2 �†Þ
× δt1þt2þt3þt4;s1þs2þs3þs4 ðB2aÞ

(sk; tk ∈ f−1; 1g; k ¼ 1, 2, 3, 4) and

hs1; s2; s3; s4joqjt1; t2; t3; t4i ¼ hs1; p1; s2; p2; s3; p3; s4; p4jojt1; r1; t2; r2; t3; r3; t4; r4iδs1þs2þs3þs4;t1þt2þt3þt4 ðB2bÞ

with

p1 ¼ qþ s1 − 1

2
; r1 ¼ qþ t1 − 1

2
; ðB2cÞ

p2 ¼ qþ s1 þ s2
2

; r2 ¼ qþ t1 þ t2
2

; ðB2dÞ

p3 ¼ qþ s1 þ s2 þ s3 − 1

2
;

r3 ¼ qþ t1 þ t2 þ t3 − 1

2
; ðB2eÞ

p4 ¼ qþ s1 þ s2 þ s3 þ s4
2

¼ qþ t1 þ t2 þ t3 þ t4
2

¼ r4;

ðB2fÞ

pk; rk ∈ Z½pmin; pmax�; sk; tk ∈ f−1; 1g.
We find that the contribution of each of the eigenvalue

sectors q of LðnÞ to this expectation value equals

tr½ρ2;q½a� · oq� ðB3aÞ

for which the magnitude is bounded by (Hölder’s
inequality)
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jtr½ρ2;q½a� · oq�j ≤ kρ2;q½a�k1 · koqk∞: ðB3bÞ

Note that koqk∞ equals the largest singular value [i.e., the
largest eigenvalue of OðqÞ in magnitude]. For instance, to
compute the expectation value of the electric field,

E ¼ g
2
hΨ½ā�jLð1Þ þ Lð2Þ þ 2αjΨ½a�i;

we have

koqk∞ ≤ gðjqj þ 1þ jαjÞ:

For the expectation value of the electric field squared E2,

E2 ¼ g2

2
hΨ½ā�jðLð1Þ þ αÞ2 þ ðLð2Þ þ αÞ2jΨ½a�i;

we find similarly

koqk∞ ≤ g2ðjqj þ 1þ jαjÞ2:

For the Hamiltonian Hα, Eq. (7), we have

koqk∞ ≤
g

2
ffiffiffi
x

p ðjqj þ 1þ jαjÞ2 þmþ g
ffiffiffi
x

p
2

:

We conclude that for the quantities in which we are
interested (electric field, energy, etc.) that koqk∞ scales at
most polynomially q. Provided that kρ2;q½a�k1 decreases
fast (e.g., exponentially) with q, it follows from Eq. (B3)
that we can indeed conclude that the contribution of the
eigenvalue sectors q of LðnÞ for large jqj is negligible.

APPENDIX C: CONTINUUM EXTRAPOLATION
OF THE QUANTITIES

In this appendix we explain how we performed the
continuum extrapolation of all the quantities discussed in
Sec. III C. We employ the method used in [65] which is
based on the methods discussed in [19,20].
Consider a quantity OðxÞ for which we compute its

values for

x ¼ x1;…; xM:

The goal is to obtain a continuum valueO ¼ limx→þ∞OðxÞ
and to estimate a reliable error on this extrapolation. For the
quantities we considered here we observed that they behave
polynomially (see, for instance, Figs. 10 and 11 in the main
text) as a function of 1=

ffiffiffi
x

p
; therefore we fit our data against

the following polynomials in 1=
ffiffiffi
x

p
:

f1ðxÞ ¼ A1 þ B1

1ffiffiffi
x

p ; ðC1aÞ

f2ðxÞ ¼ A2 þ B2

1ffiffiffi
x

p þ C2

1

x
; ðC1bÞ

and

f3ðxÞ ¼ A3 þ B3

1ffiffiffi
x

p þ C3

1

x
þD3

1

x3=2
: ðC1cÞ

Let us discuss in more detail how we obtain a continuum
estimate for each of the fitting ansätze fn (Sec. C 1) and a
final continuum estimate (Sec. C 2).

1. Obtaining a continuum estimate for
the fitting ansatz f n

For every type of fitting ansatz, i.e., a particular fn
(n ¼ 1, 2, 3), Eq. (C1), we determine an estimate OðnÞ for
the continuum value and an error ΔðnÞO which originates
from the choice of fitting interval. Given our data set
fðxj;OðxjÞÞ∶j ¼ 1;…;Mg of M points, we perform all
possible fits of fn against at least nþ 5 consecutive data
points where the coefficients An, Bn, Cn, Dn (Cn ¼ 0 if
n < 2, Dn ¼ 0 if n < 3) are estimated using an iterative
generalized least-squares algorithm.
By taking at least nþ 5 consecutive data points we

reduce the problem of overfitting: the fitted function fn fits
the considered points extremely well, but fails to fit the
overall data. Furthermore we also discard the fits that give
statistically insignificant coefficients (p value ≥ 0.05). In
practice, this means that we discard the fits fn where the
error on one of its coefficients ðAn; Bn; Cn;…Þ is larger
than approximately half of its value.
For every fit θ of fn against a subset of at least nþ 5

consecutive x values, say fxjgj∈fitθ, which produces sta-
tistically significant coefficients, we obtain values

AðθÞ
n ; BðθÞ

n ; CðθÞ
n ; DðθÞ

n ;

with CðθÞ
n ¼ 0 for n < 2 and DðθÞ

n ¼ 0 for n < 3, and a
corresponding fitting function gθðxÞ,

gθðxÞ ¼ AðθÞ
n þ BðθÞ

n
1ffiffiffi
x

p þ CðθÞ
n

1

x
þDðθÞ

n
1

x3=2
:

All the values AðθÞ
n are an estimate for the continuum

value of O for the fitting ansatz fn. Let us denote with

fAðθÞ
n gθ¼1���Rn

all the An’s obtained from a fit θ against fn
which produces significant coefficients with

Að1Þ
n ≤ Að2Þ

n ≤ � � � ≤ AðRnÞ
n :

For each fit θ we also compute its χ2 value,
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χ2θ ¼
X
j∈fitθ

�
gθðxjÞ −OðxjÞ

ΔOðxjÞ
�

2

; ðC2Þ

where ΔOðxjÞ is a measure for the error in OðxjÞ
originating from taking a finite value for the virtual
dimensions Dq. For the ground-state expectation values
we takeΔE0 [see Eq. (24)], while for the excitation energies
E1;α and E2;α we takeΔEm [see Eq. (26)]. When our data set
is large enough, the quantity χ2θ=N

θ
dof, with N

θ
dof the number

of degrees of freedom of the fit (here the number of data
points used in the fit minus nþ 2), gives an indication
whether gθ fits the data set well (χ2θ=N

θ
dof ≪ 1) or

not (χ2θ=N
θ
dof ≫ 1).

If we have at least 10 fits θ with χ2θ=N
θ
dof ≤ 1, we can

obtain a reliable continuum estimate by taking the median

of fAð1Þ
n ;…; AðRnÞ

n g weighted by expð−χ2θ=Nθ
dofÞ; see

also [19,65]. More specifically we build the cumulative
distribution Xθ,

Xθ ¼
P

θ
κ¼1 expð−χ2κ=Nκ

dofÞPRn
κ¼1 expð−χ2κ=Nκ

dofÞ
;

and take as our continuum estimate OðnÞ for the fitting

ansatz fn: OðnÞ ¼ Aðθ0Þ
n where θ0 corresponds to the value

for which Xθ0 is the closest to 1=2, i.e.,

θ0 ¼ argmin
θ
jXθ − 1=2j:

The systematic error ΔðnÞO from the choice of x interval
comes from the %ð68; 3Þ-confidence interval, it is com-
puted as

ΔðnÞO ¼ 1

2
ðAðθ2Þ

n − Aðθ1Þ
n Þ

with

θ1 ¼ argmin
θ
jXθ − 0.85j; θ2 ¼ argmin

θ
jXθ − 0.15j:

If we have less than 10 fits θ with χ2θ=N
θ
dof ≤ 1, only a

few fits dominate the histogram of the χ2 distribution.
Therefore we adopt the more conservative approach from
[20]. We only consider the fits with statistically significant
coefficients and with χ2θ=N

θ
dof ≤ 1; the corresponding

continuum estimates are

Að1Þ
n ≤ Að2Þ

n ≤ � � � ≤ AðR0
nÞ

n ; with R0
n ≤ Rn:

Of these estimates we take the Aðθ0Þ
n which corresponds to

the θ for which the mean squared of the variances ΔO is
minimal, i.e.,

θ0 ¼ argmin
θ

1

jfitθj
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j∈fitθ
ðΔOðxjÞÞ2

s �
:

As the systematic error originating from the choice of
fitting range we take the difference in magnitude of this

estimate with the most outlying AðθÞ
n (for the same type of

fitting ansatz),

ΔðnÞO ¼ max
1≤θ≤R0

n

jAðθ0Þ
n − AðθÞ

n j:

2. Final continuum estimate and uncertainty

Using the method discussed in Sec. C 1 we now have
three estimates for O (Oð1Þ;Oð2Þ, and Oð3Þ) corresponding
to the fitting functions f1, f2, and f3. As our final estimate
we take the estimate from the fitting function fn0 which had
the most statistically significant fits with χ2θ=N

θ
dof ≤ 1. The

error originating from the choice of fitting function is then
computed as the maximum of the difference with the
continuum estimates from the other fitting functions. As
our final result we reportO ¼ Oðn0Þ, and the errorΔO is the
maximum of

(i) max ðmaxjδOðxjÞÞ, where

δOðxjÞ ¼ max
n¼1;2;3

kOðxjÞ½an� −OðxjÞ½an�k:

OðxjÞ½an� is the expectation value of OðxjÞ½an� with
respect to the MPS ground-state approximation
jΨ½an�i [see Eq. (13)] obtained with the parameters
ϵ and pmax as shown in Eq. (19). In particular, for the
excitation energies Em we find δOðxjÞ ¼ δEmðxjÞ as
defined in Eq. (25).

(ii) The error originating from the choice of x
range: Δðn0ÞO.

(iii) The error originating from the choice of fitting
ansatz: maxn¼1;2;3jO −OðnÞj.
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