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We investigate the approach of pure SU(2) lattice gauge theory with the Wilson action to its continuum
limit using the deconfining phase transition, the gradient flow and the cooling flow to set the scale. For the
gradient and cooling scales we explore three different energy observables and two distinct reference values
for the flow time. When the aim is to follow scaling towards the continuum limit, one gains at least a factor
of 100 in computational efficiency by relying on the gradient instead of the deconfinement scale. Using
cooling instead of the gradient flow one gains another factor of at least 34 in computational efficiency on
the gradient flow part without any significant loss in the accuracy of scale setting. Concerning our
observables, the message is to keep it simple. The Wilson action itself performs as well as or even better
than the other two observables explored. Two distinct fitting forms for scaling are compared, of which one
connects to asymptotic scaling. Differences of the obtained estimates show that systematic errors of length
ratios, though only about 1%, can be considerably larger than statistical errors of the same observables.
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I. INTRODUCTION

Nowadays lattice gauge theory (LGT) calculations, for
instance for the QCD spectrum, come close to aiming at an
accuracy of about 1% [1]. Therefore, it appears to us
desirable to check a model that allows rather easily for large
statistics for the accuracy that can be obtained there.
We consider pure SU(2) LGT with the Wilson action

S ¼ β
X
n;μ<ν

�
1 −

1

2
TrU□

μνðnÞ
�
; β ¼ 4=g20; ð1Þ

U□
μνðnÞ ¼ UμðnÞUνðnþ μ̂ÞU†

μðnþ ν̂ÞU†
νðnÞ: ð2Þ

Here μ̂, ν̂ are unit vectors in positive μ, ν ¼ 1, 2, 3, 4
directions; U□

μν is the product of SU(2) link variables along
the boundary of a plaquette with one corner at site
n ¼ ðn1; n2; n3; n4Þ; and g0 is the bare coupling.
Due to its computational simplicity, pure SU(2) LGT is

well suited as a showcase for computational methodology.
Computational pitfalls or shortcomings are more easily
identifiable than in more complex systems like QCD.
Furthermore, with modest CPU time resources, pure SU(2)
LGTallows one to study the approach to the continuum limit
for an entire range of suitable coupling constant values and
lattice sizes. We investigate the approach of SU(2) LGT to its
continuum limit using three differentmethods to set the scale:
(1) The deconfining phase transition [2]. The deconfine-

ment length scale is set by the inverse transition
temperature times the lattice spacing a. It has no
ambiguities in its definition, but one needs to fit a
number of parameters. Calculations of transition
temperatures become very CPU time demanding
with increasing lattice size.

(2) Lüscher’s gradient flow [3]. When defining the
gradient scale one encounters a number of

ambiguities. Once they are fixed, there are no
parameters to fit. In our calculations the CPU time
demands are reduced by at least 2 orders of magni-
tude when compared with the deconfinement scale.

(3) Bonati and D’Elia [4] noted that similar results as
with the gradient scale are even more efficiently
obtained using cooling [5] instead of the gradient
flow. We demonstrate here in quantitative detail that
the cooling and gradient scales are for practical
purposes equivalent. One gains another factor of at
least 34 in computational efficiency on the gradient
flow part by using cooling instead.

Our results are obtained by Markov chain Monte Carlo
(MCMC) simulations for which we report the statistics in
units of Monte Carlo plus overrelaxation (MCOR) sweeps.
One MCOR sweep updates each link once in a systematic
order [6] with the Fabricius-Haan-Kennedy-Pendleton [7]
heatbath algorithm and, in the same systematic order, twice
by overrelaxation [8]. Using checkerboard coding [9] and
MPI Fortran, parallel updating of sublattices is imple-
mented, and our SU(2) code is a scaled-down version of the
SU(3) code documented in Ref. [10].
In the next section our estimates for the SU(2) deconfin-

ing phase transition are reported. Section III presents our
results for six SU(2) gradient scales. In Sec. IV the gradient
flow is replaced by cooling. We analyze scaling and
asymptotic scaling in Sec. V. Summary and conclusions
are given in the final section, Sec. VI.

II. DECONFINEMENT SCALE

We perform MCMC simulations on N3
sNτ lattices and

estimate critical coupling constants βcðNτÞ up to Nτ ¼ 12
by three-parameter fits
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βcðNs;NτÞ ¼ βcðNτÞ þ a1ðNτÞNa2ðNτÞ
s ð3Þ

of pseudocritical βcðNs; NτÞ values, where the fit param-
eters βcðNτÞ estimate the infinite volume values βcðNs;∞Þ.
Inverting the results of these fits defines the deconfining
length scale

NτðβcÞ ð4Þ

to which we attach error bars by means of the equation

△Nτ ¼
Nτ

L1;3
10 ðβcÞ

½L1;3
10 ðβcÞ þ L1;3

10 ðβc −△βcÞ�; ð5Þ

where the length scale L1;3
10 ðβÞ is introduced later in the

paper (Nτ error bars depend only mildly on the choice of
the interpolation of its scaling behavior).
We use the locations of maxima of the Polyakov

susceptibility to define pseudocritical βcðNs; NτÞ values.
Polyakov loops Px⃗ are products of SU(2) matrices along
straight lines in the Nτ direction. The argument x⃗ labels
their locations on the spatial N3

s sublattice. From the sum
over all Polyakov loops P ¼ P

x⃗Px⃗ one finds the suscep-
tibility

χðβÞ ¼ 1

N3
s
½hP2i − hjPji2�; ð6Þ

which is the analogue to the magnetic susceptibility of a
spin system in three dimensions. We also implemented
measurements of the thermal Polyakov loop susceptibility

χTðβÞ ¼
1

N3
s

d
dβ

hjPji; ð7Þ

but maxima are less pronounced than for χðβÞ.
We use reweighting in small neighborhoods of the

simulation points to extract pseudocritical β values from
the locations of the maxima. The error bars are then
estimated by repeating the entire procedure for ≥ 32
jackknife bins (see, e.g., [6]). Notably, the estimates of
pseudocritical β values from the maxima of (6) and (7) may
not fall into one reweighting range, though they have
ultimately identical Ns → ∞ limits. So, to reduce computa-
tional requirements one is pressed to make a decision in
favor of one of them.
Together with their goodness of fit q (for the definition

see, e.g., Ref. [6]), our pseudocritical βc estimates are
compiled in Tables I and II. In previous literature Engels
et al. [11] studied Nτ ¼ 4 extensively and demonstrated
that it falls into the 3D Ising universality class. Their
Ns → ∞ estimate βcð4Þ ¼ 2.29895 (10) is marginally
smaller than our estimate in Table I with q ¼ 0.042 from
a Gaussian difference test (see, e.g., [6]). For Nτ values up
to Nτ ¼ 8 we found estimates in a paper by Lucini et al.

[12]. Gaussian difference tests with our estimates give
q ¼ 0.33 and q ¼ 0.67 for Nτ ¼ 4 and 6, respectively. For
Nτ ¼ 8 their estimate βcð8Þ ¼ 2.5090 (6) is somewhat
lower than ours of Table II, which has an error bar almost
ten times smaller than theirs. The Gaussian difference test
gives q ¼ 0.022.
For Nτ ¼ 10 and 12, calculations of the pseudocritical β

values from maxima of the Polyakov loop susceptibility
become very CPU time consuming. The largest statistics
we assembled consists of slightly more than 225 MCOR
sweeps for the 40312 lattice. On even larger Nτ ¼ 10 and
12 lattices we spent 223 MCOR sweeps. The largest
amounts of CPU time were not spent on the largest lattices
because we were mainly feeding on the NERSC scavenger
queue. For comparison, at β ¼ 2.67 we spent only 219

MCOR sweeps on generating the 404 lattice used for the
gradient flow. Taking achieved error bars, lattice sizes and

TABLE I. Pseudocritical β values Ns: βc. Error bars of βc are in
parentheses.

Nτ ¼ 4 Nτ ¼ 6 Nτ ¼ 8

08: 2.30859 (53) 12: 2.43900 (33) 16: 2.52960 (90)
12: 2.30334 (33) 18: 2.43096 (43) 24: 2.51678 (43)
16: 2.30161 (30) 20: 2.42973 (11) 32: 2.51296 (20)
20: 2.30085 (17) 24: 2.42873 (35) 40: 2.51192 (12)
24: 2.30060 (16) 28: 2.427939 (74) 44: 2.51150 (11)
28: 2.30025 (19) 30: 2.427690 (87) 48: 2.51119 (11)
32: 2.299754 (99) 36: 2.427274 (67) 52: 2.51130 (11)
40: 2.299593 (74) 44: 2.426827 (67) 56: 2.511096 (85)
48: 2.299452 (83) 48: 2.426756 (64) 64: 2.510635 (83)
56: 2.299435 (29) 56: 2.426605 (62) 72: 2.510716 (72)

60: 2.426596 (55) 80: 2.510517 (79)

∞: 2.299188 (61) ∞: 2.426366 (52) ∞: 2.510363 (71)
q ¼ 0.56 q ¼ 0.73 q ¼ 0.14

Nτ ¼ 4� 0.00063 Nτ ¼ 6� 0.0011 Nτ ¼ 8� 0.0019

TABLE II. Pseudocritical β values Ns: βc (continuation).

Nτ ¼ 10 Nτ ¼ 12

20: 2.59961 (52)
24: 2.58909 (49) 24: 2.66317 (91)
28: 2.58497 (26)
32: 2.58270 (27) 32: 2.64450 (39)
36: 2.58117 (13) 36: 2.64223 (33)
40: 2.58046 (26) 40: 2.64039 (26)
44: 2.58002 (17) 44: 2.63925 (24)
48: 2.57941 (15) 48: 2.63839 (27)
52: 2.57949 (23) 52: 2.63744 (19)
56: 2.57876 (18)
64: 2.57851 (15)

∞: 2.57826 (14) ∞: 2.63625 (35)
q ¼ 0.29 q ¼ 0.06

Nτ ¼ 10� 0.0045 Nτ ¼ 12� 0.013
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numbers of lattices needed into account, this amounts to
improvements by factors of at least 100. In view of the
degrading of the deconfinement transition estimates with
increasing lattice size, we also tried improved estimators
[13], performing the SU(2) integration explicitly. However,
correlations between Polyakov loops turned out to be too
strong to allow for major gains.
For Nτ ¼ 10 and 12 the reweighting curve about the

simulation point βsim becomes rather flat within large error
bars. See Fig. 1 for an example. Therefore, one may be
amazed about the astonishingly accurate estimate of the
maximum position βmax. This is explained by the fact
that all these error bars are strongly correlated, because they
rely on reweighting of the same simulation. Dividing out
the maximum value χðβmaxÞ of the susceptibility in each
jackknife bin, one is led to Fig. 2, which projects out the
central part around the maximum of the previous figure and
makes the (jackknife) error bars of the βmax estimate
plausible.
The scaling analysis of the NτðβcÞ estimates of Tables I

and II is performed in Sec. V.

III. GRADIENT SCALE

Before coming to our central issue of scale setting we
define the SU(2) gradient flow, the observables used and
sketch our generation of MCMC data.

A. Gradient flow

With initial condition Uμðn; 0Þ ¼ UμðnÞ the gradient
flow is defined [3] by the evolution equation

_Uμðn; tÞ ¼ −g20f∂n;μS½UðtÞ�gUμðn; tÞ: ð8Þ

Here the SU(2) link derivatives are given by

∂n;μfðUÞ ¼ i
X3
j¼1

σj
d
ds

fðeisXj
UÞj

s¼0
; ð9Þ

where σj are the Pauli matrices and

Xjðm; νÞ ¼
�
σj if ðm; νÞ ¼ ðn; μÞ;
0 otherwise:

ð10Þ

We use the notation U□
μ for the sum of plaquette matrices

containing the link matrix Uμ. With the definition of the
staple matrix,

U⊔
μ ðnÞ¼

X
ν≠μ

UνðnÞUμðnþ ν̂ÞU†
νðnþ μ̂Þ

þ
X
ν≠μ

U†
νðn− ν̂ÞUμðn− ν̂ÞUμðn− ν̂þ μ̂Þ; ð11Þ

this is

U□
μ ðnÞ ¼ UμðnÞU⊔

μ ðnÞ†: ð12Þ

For the SU(2) link derivative (9) one finds the simple
equation

g20∂n;μSðUÞ ¼ 1

2
ðU□

μ ðnÞ −U□
μ ðnÞ†Þ; ð13Þ

and we calculate the time evolution (8) using the Runge-
Kutta scheme described in Appendix C of [3] with

Zi ¼ ϵZðWiÞ; ZðWiÞ ¼
1

2
ðWi −W†

i Þ; ð14Þ

and W0 ¼ Uμðn; tÞ as starting values and ϵ ¼ 0.01.

B. Observables

For the lattice expectation values of the time dependent
plaquette matrices we use the parametrization
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FIG. 1. Reweighting of the Polyakov loop susceptibility on our
64310 lattice.
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hU□ðtÞiL ¼ a0ðtÞσ0 þ i
X3
i¼1

aiðtÞσi; ð15Þ

where we suppress the μν subscripts and σ0 is the 2 × 2 unit
matrix, supplementing the Pauli matrices σj. As observ-
ables we use three definitions of the energy density: E0ðtÞ,
E1ðtÞ and E4ðtÞ. Up to a constant factor

E0ðtÞ ¼ 2½1 − a0ðtÞ� ð16Þ

is the usual Wilson action; i.e., it becomes ∼FαβFαβ in the
continuum limit. The definition

E1ðtÞ ¼
X3
i¼1

aiðtÞ2 ð17Þ

has the same continuum limit as E0. Finally, we denote by
E4ðtÞ Lüscher’s [3] energy density which averages over the
four plaquettes attached to each site n in a fixed μν, μ ≠ ν
plane, i.e.,

E4ðtÞ ¼
X3
i¼1

biðtÞ2;

biðtÞ ¼
1

4
ðauli þ auri þ adli þ adri Þ; ð18Þ

where the superscripts of ai stand for up (u), left (l), right
(r), and down (d) in a fixed μν plane with respect to n
(drawn in Fig. 1 of [3]). The functions

yiðtÞ ¼ t2EiðtÞ; ði ¼ 0; 1; 4Þ ð19Þ

are used to set the three gradient scales by choosing
appropriate fixed values y0i and iterating the time evolution
(19) until

y0i ¼ ðt0i Þ2Eiðt0i Þ ð20Þ

is reached. As a function of β the observable

s0i ðβÞ ¼
ffiffiffiffiffiffiffiffiffiffi
t0i ðβÞ

q
ð21Þ

then scales like a length provided the following conditions
are met:
(1) Lattice sizes have to be chosen so that Nmin ≫

ffiffiffi
8

p
s0i

holds, where
ffiffiffi
8

p
s0i is the smoothing range [3] and

Nmin ¼ minfNi; i ¼ 1; 2; 3; 4g for simulations on a
N1N2N3N4 lattice.

(2) The values of β have to be large enough to be in the
SU(2) scaling region.

(3) The values of y0i have to be large enough so thatffiffiffi
8

p
s0i ≫ 1 holds for the smallest used flow time.

C. Data generation and analysis

Our numerical results rely on MCMC simulations for the
β values and lattice sizes given in Table V and (identically)
in subsequent tables. In each run 128 ¼ 27 configurations
were generated and on each of them the gradient flow was
performed. To optimize our use of computational resources,
we followed the rule of [6] and allocated our CPU time in
approximately equal parts to the generation of configura-
tions and to measurements (gradient flow). Subsequent
configurations were separated by 211 to 213 MCOR sweeps
where the increase from 211 to larger numbers of MCOR
sweeps is essentially enforced by the number of gradient
sweeps needed to reach the y0i target values. The dividing
line from 211 to 212 sweeps is between β ¼ 2.574 and
β ¼ 2.62, and from 212 to 213 between β ¼ 2.67 and
β ¼ 2.71. We estimated integrated autocorrelation times
τint with the software of [6] for the time series of 128
measured scale values and found all τint compatible with the
lower bound 1, where the unit is set by the number of
sweeps between the configurations.
In addition, we calculated the topological charge Q with

the cooling method along the lines of Ref. [14]. The cooling
method was introduced in Ref. [5] in the context of
investigating the topological charge of the 2D O(3) sigma
model. It has since then found many applications. For
reviews see [15]. A SU(2) cooling update maps a link
matrix

UμðnÞ → U0
μðnÞ; ð22Þ

so that U0
μðnÞ maximizes the local contribution to the

action. This is achieved by

U0
μðnÞ ¼ U⊔

μ ðnÞ= det jU⊔
μ ðnÞj; ð23Þ

where U⊔
μ ðnÞ is the staple matrix (11), which for SU(2)

agrees up to the determinant factor with a SU(2) matrix.
We found that it takes for SU(2) about 100 cooling

sweeps to reach reasonably long-lived metastable configu-
rations and thus we decided to define the topological charge
of a configuration by its value reached after 100 cooling
sweeps. Figure 3 shows the cooling trajectories obtained
from our 128 configurations at β ¼ 2.816 on a 444 lattice
with the corresponding histogram compiled in Table III.
To estimate topological correlations between our con-

figurations we calculated the integrated autocorrelation
times of the topological charge on our time series of
128 configurations. For our largest lattice at each β value
the results are given in Table IV. Error bars are large as 128
data points is a rather small sample for calculating the
integrated autocorrelation time. Within this limitation all
values are compatible with 1. Statistical fluctuations allow
for smaller values than this lower bound. When this
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happens the effective value at t ¼ 1 is taken as the final
estimate.
So, our data are considered to be statistically indepen-

dent and error bars will be calculated by the jackknife
method with respect to the 128 configurations. Mostly, we
used N4 lattices with the exception of 24348 and 32364,
which mirror lattices used in [3]. The scale estimates from
these asymmetric lattices are consistent with those we
obtained from N4 lattices.

D. Scale setting

From estimates of the deconfinement βcðNτÞ values we
know that it only makes sense to investigate SU(2) scaling
for β ≥ 2.29, Nτ ≥ 4. The smallest N3

s4 lattice size that can
be used for the Nτ ¼ 4, Ns → ∞ finite size extrapolation is
given by Ns ¼ 8. Therefore, it is natural to start our
gradient flow simulations at β ¼ 2.3 on an 84 lattice and

to work from there up to larger β values and lattice sizes. It
is of interest to control scaling violations at the lower end of
the scaling region, because simulations there are less
expensive than at larger β.
The upper two curves (red, black) and the, ultimately,

lowest (blue) curve of Fig. 4 show yiðtÞ, (i ¼ 0, 1, 4) from
simulations on an 84 lattice (t on the lower abscissa). While
the plots corresponding to E0 and E1 fall practically on top
of one another, they deviate from the plot for E4. This is due
to finite lattice size corrections as well as scaling correc-
tions in β. These corrections are much smaller for the other
three curves which are from simulations at β ¼ 2.574 on a
404 lattice. The corresponding t values are on the upper
abscissa and chosen so that the largest y-values reached
agree approximately with those from the 84 lattice.
The question is this: How does one pick a set of y0i values

that defines suitable s0i scales according to Eqs. (20) and
(21)? To minimize CPU time, one likes to keep the lattice
size and si0 as small as possible. On the other hand, smaller
si0 values imply larger discretization (finite lattice spacing)
corrections and too small lattices imply finite size correc-
tions. It is at this point that one encounters considerable
ambiguities in the definition of gradient (and similarly
cooling) scales.
In our context it is natural to define y0i values so that our

initial estimates from the s0i scales are consistent with those
from low βcðNτ) values. Lowest reasonable starting values
for β, corresponding approximately to the βcð4Þ and βcð6Þ
estimates of Table I, are β1 ¼ 2.3 and β2 ¼ 2.43. In Fig. 5
we plot ratio functions

siðN2; β2 ¼ 2.43Þ
siðN1; β1 ¼ 2.3Þ ðyÞ ð24Þ

for ðN2; N1Þ ¼ ð12; 8Þ and (24,16). On the 1.5 line the
outer curves correspond to (12,8) and the inner curves
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FIG. 3. Cooling of the topological charge on a 444 lattice at
β ¼ 2.816.

TABLE III. Histogram of the topological charge of Fig. 3 at 100
cooling sweeps.

−7 −6 −5 −4 −3 −2 −1 0 þ1 þ2 þ3 þ4 þ5 þ6 þ7
0 1 0 6 11 16 17 24 21 19 8 3 0 1 1

TABLE IV. Integrated autocorrelation times of the topological
charge.

β Lattice τint

2.3 164 1.26 (24)
2.51 284 1.01 (21)
2.574 404 1.49 (48)
2.62 404 0.91 (22)
2.674 404 0.92 (26)
2.71 404 0.85 (22)
2.751 404 1.68 (51)
2.816 444 1.59 (35)
2.875 524 1.17 (27)
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(using the same colors) to (24,16). To prevent the figure
from becoming too convoluted, error bars are only given on
this line. As one expects from Fig. 4, the y values of the E4

crossing points are apart from those of E0 and E1. The
difference is considerably reduced when finite lattice size
corrections are remediated by moving to (24, 16) lattices.
The remaining difference should mainly be attributed to
corrections in β (i.e., finite lattice spacing corrections).
One may have expected a plateau in the neighborhood of

the 1.5 line, indicating that the ratios do not depend on the
precise choice of the y0i target values. Instead, without using
the deconfinement result as input, another uncertainty in
the choice of the y0i target values would exist.
In the following we use the outer values of Fig. 5 and

explore whether their differences result in seriously distinct
scaling behavior. Starting off with β ¼ 2.3, we are explor-
ing two gradient scales:
(1) We define the y01i scale so that the E4 observable

delivers s014 ð12; 2.43Þ=s014 ð8; 2.3Þ ¼ 1.5.
(2) We define the y02i scale so that for the Ei, i ¼ 0, 1,

observables s02i ð12; 2.43Þ=s02i ð8; 2.3Þ ¼ 1.5 holds.
For the first case we find y014 ¼ 0.030 from Fig. 5. Using
y4ðtÞ depicted in Fig. 4, y014 ¼ 0.030 converts into the t
value t01 ¼ 1.85 for the flow time, as indicated by a vertical
line. Its intersections with the yiðtÞ functions define our first
set of y0i target values

y010 ¼0.0376; y011 ¼0.0370; y014 ¼0.030: ð25Þ

Similarly, our second set of y0i values is derived from
t02 ¼ 3.61, which is the average value of t of the relevant
crossing points of the E0 and E1 observables. This t02 value
is also shown as a vertical line in Fig. 4 and leads to

y020 ¼ 0.0755; y021 ¼ 0.0748; y024 ¼ 0.061: ð26Þ

Length scale values

s0ji ðβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
t0ji ðβÞ

q
; i ¼ 0; 1; 4; j ¼ 1; 2 ð27Þ

are obtained when the gradient flow hits the corresponding
y0ji definitions of Eqs. (25) or (26). Our MCMC estimates
for them are reported in Tables V and VI. For later
convenience we label the length scales by L1 to L6 as
defined in the first row of the tables. We are led to

ffiffiffiffiffiffiffiffi
8t01

p
≈

3.85 and
ffiffiffiffiffiffiffiffi
8t02

p
≈ 5.37 as our smallest values for the

smoothing range. This is below and above the starting
value

ffiffiffiffiffiffi
8t0

p
≈ 4.77 of Ref. [3] taken at β ¼ 5.96 in the

SU(3) scaling region. Comparing the SU(3) deconfinement
transition values βc for Nτ ¼ 4, 6, 8 (see, e.g., Ref. [16])
with those for SU(2) and performing interpolations of the
βc values, this corresponds roughly to β ¼ 2.46 for SU(2),
where our lower smoothing range has increased to at least
6.64. So, our lower smoothing range is also effectively
larger than the one of [3].
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TABLE V. Gradient length scale for the y01i set (25).

β Lattice L1 ¼ s010 L2 ¼ s011 L3 ¼ s014
2.3 84 1.361 (13) 1.361 (13) 1.359 (15)
2.3 124 1.3538 (52) 1.3538 (50) 1.2955 (88)
2.3 164 1.3593 (28) 1.3589 (27) 1.2756 (75)

2.43 124 2.126 (20) 2.115 (20) 2.038 (20)
2.43 164 2.0961 (91) 2.0848 (90) 1.964 (14)
2.43 244 2.1066 (41) 2.0952 (40) 1.974 (11)
2.43 284 2.1023 (30) 2.0911 (30) 1.9666 (98)

2.51 164 2.730 (21) 2.715 (21) 2.603 (23)
2.51 204 2.766 (15) 2.750 (15) 2.585 (20)
2.51 284 2.7590 (73) 2.7428 (73) 2.570 (14)

2.574 204 3.389 (26) 3.369 (26) 3.166 (28)
2.574 244 3.395 (17) 3.374 (17) 3.175 (22)
2.574 324 3.406 (11) 3.385 (11) 3.193 (17)
2.574 404 3.4103 (72) 3.3896 (71) 3.149 (16)

2.62 244 3.993 (28) 3.968 (28) 3.711 (35)
2.62 24348 3.947 (22) 3.923 (21) 3.699 (26)
2.62 284 3.950 (20) 3.926 (20) 3.704 (24)
2.62 404 3.954 (10) 3.9293 (99) 3.672 (19)

2.67 284 4.680 (33) 4.651 (33) 4.350 (39)
2.67 324 4.651 (27) 4.622 (27) 4.350 (33)
2.67 404 4.622 (17) 4.593 (17) 4.297 (24)

2.71 324 5.217 (37) 5.185 (37) 4.867 (42)
2.71 364 5.252 (33) 5.220 (33) 4.852 (42)
2.71 404 5.199 (22) 5.167 (22) 4.817 (27)

2.751 32364 5.879 (35) 5.843 (34) 5.466 (39)
2.751 364 5.893 (38) 5.856 (38) 5.465 (48)
2.751 404 5.909 (34) 5.872 (34) 5.457 (41)

2.816 444 7.092 (48) 7.049 (47) 6.530 (54)

2.875 524 8.510 (64) 8.456 (65) 7.883 (68)
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For each β value several lattice sizes are listed in
Tables V and VI to control finite size corrections. In
most cases they are sufficiently weak to be swallowed
by the statistical error bars. Exceptions are the s0j4
estimates on 84 and 124 lattices at β ¼ 2.3 and 2.43,
which appear to be too small to accommodate E4. Up
to β ¼ 2.751, lattices of size 404 appear to be large
enough so that finite size corrections can be neglected.
Larger lattices would just increase statistics due to self-
averaging. For our largest lattices with β ¼ 2.816 and
2.875 the gradient flow was designed too short to reach
the y02i targets (26).

IV. COOLING SCALE

Our cooling sweeps are performed in the same system-
atic order as our MCMC sweeps.
Bonati and D’Elia [4] outlined that nc cooling (22)

sweeps correspond to a gradient flow time

tc ¼ nc=3: ð28Þ

TABLE VI. Gradient length scale for the y02i set (26).

β Lattice L4 ¼ s020 L5 ¼ s021 L6 ¼ s024
2.3 84 1.897 (24) 1.897 (24) 1.900 (25)
2.3 124 1.8905 (84) 1.8897 (83) 1.824 (12)
2.3 164 1.8963 (48) 1.8956 (48) 1.807 (11)

2.43 124 2.849 (34) 2.842 (33) 2.771 (34)
2.43 164 2.791 (15) 2.784 (15) 2.653 (20)
2.43 244 2.8044 (66) 2.7968 (65) 2.644 (15)
2.43 284 2.7994 (48) 2.7920 (47) 2.645 (13)

2.51 164 3.586 (34) 3.575 (34) 3.436 (34)
2.51 204 3.653 (25) 3.642 (25) 3.453 (29)
2.51 284 3.624 (12) 3.613 (12) 3.406 (19)

2.574 204 4.437 (39) 4.423 (39) 4.178 (44)
2.574 244 4.429 (26) 4.415 (26) 4.171 (29)
2.574 324 4.454 (15) 4.440 (15) 4.219 (22)
2.574 404 4.458 (12) 4.444 (11) 4.175 (21)

2.62 244 5.252 (46) 5.233 (45) 4.916 (49)
2.62 24348 5.135 (33) 5.119 (33) 4.868 (38)
2.62 284 5.145 (30) 5.129 (30) 4.849 (32)
2.62 404 5.156 (16) 5.140 (16) 4.827 (26)

2.67 284 6.131 (53) 6.110 (53) 5.740 (60)
2.67 324 6.057 (40) 6.038 (40) 5.719 (46)
2.67 404 6.020 (27) 6.000 (27) 5.645 (32)

2.71 324 6.776 (55) 6.754 (55) 6.357 (56)
2.71 364 6.831 (50) 6.809 (50) 6.401 (57)
2.71 404 6.773 (32) 6.751 (32) 6.334 (39)

2.751 32364 7.642 (51) 7.617 (51) 7.179 (57)
2.751 364 7.659 (60) 7.633 (59) 7.161 (68)
2.751 404 7.694 (50) 7.668 (50) 7.211 (59)
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TABLE VII. Cooling length scale for the y01i set (29).

β Lattice L7 ¼ s010 L8 ¼ s011 L9 ¼ s014
2.3 84 1.342 (12) 1.337 (12) 1.342 (14)
2.3 124 1.3391 (47) 1.3343 (45) 1.2730 (85)
2.3 164 1.3433 (24) 1.3385 (23) 1.2575 (74)

2.43 124 2.111 (19) 2.092 (18) 2.013 (20)
2.43 164 2.0837 (90) 2.0653 (90) 1.951 (13)
2.43 244 2.0929 (38) 2.0744 (38) 1.947 (11)
2.43 284 2.0892 (28) 2.0707 (28) 1.9446 (95)

2.51 164 2.728 (19) 2.703 (19) 2.587 (23)
2.51 204 2.753 (14) 2.727 (14) 2.567 (20)
2.51 284 2.7522 (68) 2.7267 (66) 2.548 (15)

2.574 204 3.396 (25) 3.365 (24) 3.157 (26)
2.574 244 3.389 (16) 3.357 (16) 3.155 (22)
2.574 324 3.4001 (97) 3.3686 (95) 3.153 (17)
2.574 404 3.4048 (69) 3.3730 (67) 3.137 (17)

2.62 244 3.988 (26) 3.949 (26) 3.717 (32)
2.62 24348 3.949 (20) 3.912 (19) 3.688 (25)
2.62 284 3.952 (19) 3.915 (19) 3.680 (23)
2.62 404 3.9509 (95) 3.9137 (93) 3.645 (22)

2.67 284 4.676 (32) 4.631 (31) 4.314 (39)
2.67 324 4.644 (27) 4.600 (26) 4.282 (31)
2.67 404 4.618 (17) 4.574 (16) 4.298 (26)

2.71 324 5.216 (36) 5.167 (35) 4.833 (41)
2.71 364 5.256 (31) 5.207 (31) 4.803 (42)
2.71 404 5.203 (21) 5.154 (21) 4.794 (28)

2.751 32364 5.874 (32) 5.819 (32) 5.437 (37)
2.751 364 5.892 (36) 5.836 (35) 5.478 (49)
2.751 404 5.913 (32) 5.857 (32) 5.434 (40)

2.816 444 7.105 (45) 7.039 (45) 6.511 (55)

2.875 524 8.514 (60) 8.433 (59) 7.825 (68)
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As we use ϵ ¼ 0.01 in our gradient flow steps, one
cooling sweep corresponds to 33:3̄ gradient sweeps. On
top of this (because of the Runge-Kutta), one gradient
sweep demands more CPU time than one cooling sweep,
so that the computational efficiency is improved by at
least a factor of 34. A priori it is not obvious that many
small gradient flow steps can be replaced by a large
cooling step without losing accuracy of scale setting.
A posteriori our results support that such a replacement is
permissible.
Figure 6 is the analogue of Fig. 4. Due to the large

cooling steps, gaps between them are clearly visible. They
also exist in Fig. 4, but are there too small to be noticeable.
Using linear interpolations, the crossing points of the ratio
functions (24) determine initial scales for the cooling flow
in precisely the same way as explained for the gradient
flow. The values are summarized by the equations
t01 ¼ 1.80, t02 ¼ 3.40,

y010 ¼0.0440; y011 ¼0.0430; y014 ¼0.0350; ð29Þ

y020 ¼0.0822; y021 ¼0.0812; y024 ¼0.0656: ð30Þ

The cooling scale s0ji ðβÞ values (27) are collected in
Tables VII and VIII for the same lattices and β values as
used for the gradient flow. For the analysis in the next
section these length scales are labeled by L7 to L12. A
detailed comparison of the scaling behavior of the decon-
finement, gradient and cooling scales follows in the next
section.

V. SCALING AND ASYMPTOTIC SCALING

In this section we analyze scaling and asymptotic scaling
for 13 length scales

Lk; ðk ¼ 0;…; 12Þ ð31Þ

defined as follows: the deconfining scale L0 ¼ NτðβcÞ (4);
six gradient length scales, L1;…; L6; and six cooling length
scales, L7;…; L12. First, we consider Oða2Þ scaling cor-
rections for length ratios in the usual way (e.g., [3]). Then,
we incorporate asymptotic scaling behavior along the lines
of Refs. [17,18] and show how this can be done in a way
consistent with Oða2Þ scaling corrections.

A. Scaling

To compare mass or length scales it is customary to fit
ratios to the linear form

Rij ¼
Li

Lj
¼ rijk þ cijk

�
a
lk

�
2

; lk ¼ aLk; ð32Þ

where a is the lattice spacing; lk the length scale in physical
units; and rijk, cijk are fit parameters of which the rijk
estimate the continuum limits and cijk the leading order
corrections. We report in Table IX continuum estimates rij
for the subset

TABLE VIII. Cooling length scale for the y02i set (30).

β Lattice L10 ¼ s020 L11 ¼ s021 L12 ¼ s024
2.3 84 1.846 (22) 1.844 (22) 1.843 (22)
2.3 124 1.8241 (74) 1.8217 (72) 1.743 (12)
2.3 164 1.8307 (39) 1.8282 (39) 1.728 (10)

2.43 124 2.769 (29) 2.759 (29) 2.669 (32)
2.43 164 2.725 (14) 2.715 (14) 2.572 (18)
2.43 244 2.7395 (57) 2.7287 (57) 2.561 (14)
2.43 284 2.7317 (43) 2.7212 (42) 2.565 (12)

2.51 164 3.531 (30) 3.516 (30) 3.370 (31)
2.51 204 3.571 (23) 3.555 (23) 3.359 (27)
2.51 284 3.552 (10) 3.5371 (99) 3.315 (18)

2.574 204 4.356 (37) 4.337 (37) 4.084 (38)
2.574 244 4.352 (24) 4.333 (24) 4.080 (29)
2.574 324 4.374 (14) 4.355 (14) 4.100 (21)
2.574 404 4.377 (11) 4.358 (10) 4.074 (20)

2.62 244 5.157 (40) 5.133 (39) 4.836 (44)
2.62 24348 5.070 (30) 5.047 (29) 4.788 (34)
2.62 284 5.059 (28) 5.037 (28) 4.751 (30)
2.62 404 5.068 (15) 5.045 (15) 4.725 (26)

2.67 284 6.021 (46) 5.993 (46) 5.603 (58)
2.67 324 5.950 (38) 5.923 (38) 5.532 (42)
2.67 404 5.910 (25) 5.884 (25) 5.536 (33)

2.71 324 6.656 (51) 6.626 (51) 6.208 (55)
2.71 364 6.724 (48) 6.692 (48) 6.223 (58)
2.71 404 6.656 (31) 6.626 (30) 6.188 (38)

2.751 32364 7.515 (49) 7.481 (48) 7.010 (52)
2.751 364 7.531 (53) 7.497 (53) 7.033 (66)
2.751 404 7.576 (46) 7.541 (46) 7.038 (54)

2.816 444 9.056 (65) 9.015 (64) 8.349 (73)

2.875 524 10.879 (87) 10.830 (86) 10.122 (92)

TABLE IX. Estimates of rij ratios defined by Eq. (33).

inj L1 L4 L7 L10

L0 2.8896 (71) 2.2290 (46) 2.8855 (68) 2.2618 (42)
L1 � � � 0.77382 (61) 0.99845 (38) 0.78433 (43)
L3 0.9250 (19) 0.7163 (17) 0.9241 (19) 0.7264 (16)
L4 1.2943 (11) � � � 1.29135 (99) 1.01520 (49)
L6 1.2090 (26) 0.9346 (20) 1.2081 (27) 0.9490 (21)
L7 1.00156 (38) 0.77398 (79) � � � 0.78570 (50)
L9 0.9222 (21) 0.7141 (19) 0.9213 (20) 0.7243 (17)
L10 1.27509 (70) 0.98508 (47) 1.27300 (80) � � �
L12 1.1835 (24) 0.9164 (21) 1.1825 (24) 0.9292 (19)
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Rij ¼ rij þ cij

�
a
lj

�
2

¼ rij þ cij

�
1

Lj

�
2

ð33Þ

with i ¼ 0, 1, 3, 4, 6, 7, 9, 10, 12 and j ¼ 1, 4, 7, 10. For
i ≥ 1 gradient and cooling scale fits, we use at each β value
our largest lattice and Rij error bars that rely on jackknife
binning. In the case of the L0 deconfinement scale, error
propagation is used, where the values of the gradient and
cooling scales at the βc values are obtained by interpolating
via an asymptotic scaling fit performed in the next
subsection.
The scales L2, L5, L8 and L11 are omitted from the

table, because they rely on the E1 energy definition, which
agrees for practical purposes with E0. For instance,
r11;10 ¼ 0.995397ð24Þ, where the error bar is very small
due to correlations between the E0 and E1 energy densities.
Data points from β ¼ 2.3 are eliminated from the fits for q
values smaller than 0.05. After applying this cut, q was in
the range 0.11 to 0.98.
To compare scaling corrections we divide the Rij data by

their continuum limits rij and choose as the reference scale
j ¼ 10 for reasons to be explained. A selection of the thus
resulting fits is plotted in Fig. 7.
The fit for the deconfinement scale Nτ relies on the five

βc data points of Tables I, II and has a goodness of fit
q ¼ 0.25. The q < 0.05 cut was applied to the fits
involving L11, L2, L1 and L7. For them deviations of
the β ¼ 2.3 data points from the fit lines are clearly visible
in Fig. 7 at ð1=L10Þ2 ≈ 0.3. The remaining seven fits
include their β ¼ 2.3 data points.
Essentially, the L11=L10 fit takes on the constant value 1.

Similarly, E0, E1 pairs stay together for the other scales.
Generally, we notice that gradient and cooling scales that
use the same energy observable and target value y01i or y02i

stay closer together than gradient scales using different
energy observables and target values or cooling scales
using different energy observables and target values. The
ratios of Table IX show the same pattern. So, it appears
perfectly legitimate to use cooling instead of gradient
scales. We opted for L10 as the reference scale, because
it centers rather nicely with respect to the other scales. At
ð1=L10Þ2 ≈ 0.3 in Fig. 7 we read off scaling violations of
about 10%, i.e., 0.94 to 1.04 for Ri;10=ri;10. That is larger
than the 5% reported by Lüscher [3] in his Fig. 3 for SU(3)
at β ¼ 5.96. As outlined, this corresponds to β ≈ 2.46 for
SU(2), which translates into ð1=L10Þ2 ≈ 0.11. In Fig. 7 this
is slightly left of the column of data at ð1=L10Þ2 ≈ 0.13 for
which we find the range 0.97 < Ri;10=ri;10 < 1.02; i.e.,
scaling violations are down to less than 5%.
A problem with plots like Fig. 7 is that data from large

lattices (close to the continuum limit) accumulate in a small
region, which is here below ð1=L10Þ2 < 0.05. It is enlarged
in Figs. 8 and 9. In Fig. 9 the length scales based on the E4

energy are plotted and seen to exhibit considerably larger
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error bars than the energy scales plotted in Fig. 8. With no
particular advantages to offset this lack of accuracy of the
E4 scales, all arguments converge in favor of using an E0

cooling scale.

B. Asymptotic scaling

For large β the scaling of any massm in pure SU(N) LGT
is determined by the asymptotic scaling function

am ¼ constfasðβÞ;

fasðβÞ ¼ αaΛL ¼ α

�
b0

2N
β

�
−b1=2b20

× exp

�
−

β

4Nb0

��
1þ

X∞
j¼1

qj

�
2N
β

�
j
�
; ð34Þ

where a is the lattice spacing, and b0 ¼ 11N=ð48π2Þ
and b1 ¼ ð34=3ÞN2=ð16π2Þ2 are, respectively, the univer-
sal 1-loop [19,20] and 2-loop [21,22] asymptotic scaling
coefficients. Universal means that all renormalization
schemes lead to the same b0 and b1 values. Non-
universal perturbative corrections are given by the qj
coefficients in the bracket. Computing up to 3 loops,
Allés et al. [23] calculated q1 for SU(N) LGT and

q1 ¼ 0.08324 for SUð2Þ: ð35Þ

Further, we introduce the factor α to enforce for SU(2) the
convenient normalization

fasð2.3Þ ¼ 1: ð36Þ

Higher order corrections in the lattice spacing a are
reflected by terms of the form

ðαaΛLÞi ¼ ½fasðβÞ�i; ði ¼ 2; 3;…Þ: ð37Þ

Following Allton [17] in the version of [18] we arrive at the
expansions

Lk ¼
ck

fasðβÞ
�
1þ

X∞
i¼1

aik½fasðβÞ�i
�

ð38Þ

for our length scales, where ck and the aik are parameters
that have to be calculated. In practice we have to truncate
the series (38) as well as the definition (34) of fasðβÞ.
Defining

f0asðβÞ ¼ α0
�
b0

2N
β

�
−b1=2b20

exp

�
−

β

4Nb0

�
; ð39Þ

f1asðβÞ ¼
�
α1

α0

�
f0asðβÞ

�
1þ 4q1

β

�
; ð40Þ

we have fmas with m ¼ 0, 1 at our disposal, where the
coefficients αm are defined to enforce as in (36) the
normalizations fmasð2.3Þ ¼ 1. Truncating the sum (38) by
fixed n, we end up with 26 fits (k ¼ 0;…; 12), (m ¼ 0, 1):

Lm;n
k ¼ cm;n

k

fmasðβÞ
�
1þ

Xn
i¼1

am;i
k ½fmasðβÞ�i

�
; ð41Þ

where the index n of am;i
k is suppressed. Due to the truncation

of fas there are perturbative corrections in 1=β when ratios
are taken with respect to the (inverse) lambda lattice
scale; i.e.,

Lm;n
k αmaΛL ¼ cm;n

k þ perturbative corrections ð42Þ

describes asymptotic scaling. Corrections to ratios of two
length scales are exponentially small in β; i.e.,

Lm;n1
k1

Lm;n2
k2

¼ cm;n1
k1

cm;n2
k2

þ nonperturbative corrections ð43Þ

holds. However, due to the am;1
k term in (41), corrections

would in general be of ordera in the lattice spacing and not of
order a2 as in (33). In [18] this problem was avoided by
combining several scales into one fit. This is only possible
when their relative scaling violations are so weak that
they become invisible within statistical errors. The solution
which we propose here is to fit all k ¼ 0; 1;…; 12 scales
with identical am;1

k coefficients so that the nonperturbative
corrections (43) become Oða2Þ.
Estimates of normalization constants for asymptotic

scaling fits are collected in Table X. As before, the gradient
and cooling scale fits use our largest lattice at each β value.
The last row of the table gives the am;1

k values taken for all
fits of their respective columns. Using the E0 and E4 scales
these values were determined by the maximum likelihood
method (E1 scales are left out because they would in
essence amplify weights of the E0 scales). On a technical
note, we remark that we eliminate the normalization
constants cm;n

k from the search for the χ2 minimum by
treating them as functions of the am;i

k parameters [24]. This
stabilizes the search considerably, for which we used the
Levenberg-Marquardt approach (e.g., [6]).
Fitting the gradient and cooling scales (k ≥ 1) with only

one additional parameter, a1;2k , the normalization constants
c1;2k of column 2 are obtained. Most q values of these fits are
too low. So, we decided to allow for one more fit parameter,
am;3
k . The results are shown in columns four and six (using

fmas with m ¼ 0, 1). Now, the q values for these fits would
be too good to be true if they were statistically independent.
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As they all rely on the same data set correlations can
explain that a whole series of fits exhibits q > 0.5, mostly
close to 0.9. Notably, consistent fits due to adding the am;3

k
parameters come at the price of about doubled error bars
compared to those of column two.
It is possible to include the deconfinement length

scale into these fits with fixed am;1
k and the results are

given in the second row of Table X. Despite the small
number of only five data points (Tables I and II) one needs
one more parameter, am;4

0 , to get acceptable q values. This
is accompanied by some instability discussed at the end of
this section.
Using the f1as instead of the f0as asymptotic scaling

function decreases all ck values by slightly less than 4%.
More prominent is the decrease between 6.7% and 9%
from column 2 to column 6 of Table X, which comes
from allowing one more free parameter. Together we take

this as an indication that the remaining systematic errors
may well reach 10%.
Dividing out the asymptotic scaling behavior

c1;nk =f1asðβÞ, we plot in Fig. 10 the resulting fits
f1asL

1;3
k =c1;3k (k ≥ 1) for column 6 of Table X. For the

curves on the left the abscissa is on top of the figure and
the ordinate on the left. At β ¼ 4 all fits have almost
reached the asymptotic value 1. The lower abscissa and
the right ordinate apply to the right part of Fig. 10, which
enlarges the range of our initial three β values. At β ¼
2.3 asymptotic scaling violations are seen to range from
28% to 37%. The relative differences reach only
0.72=0.63 ≈ 1.14, consistent with the ratio 1.04=0.93 ≈
1.12 observed at ð1=L10Þ2 ¼ 0.3 in Fig. 7.
Let us turn to the scaling behavior of ratios. Except for

the deconfinement length scale L0, which is statistically
independent from the other scales, we cannot use error
propagation. Instead, we calculate the Rij ratios (33) for
jackknife bins built from the individual gradient or
cooling flow runs (using jackknife bins of the asymptotic
scaling fits of Table X has the problem that these fits
have larger fluctuations than the Rij ratios).
For m ¼ 1 results are collected in Table XI. With the

exception of the L0 (as) row (to be discussed) all fits use

a1;1k ¼ 0 ð44Þ
to reflect that the leading scaling corrections for mass ratios
are Oða2Þ. We end up with

Rij ¼ rij þ
Xn
i¼2

a1;i½f1as�i: ð45Þ

Surprisingly, one additional free parameter a1;2k , besides the
ratio estimate rij, gives in more than half of the cases a
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TABLE X. Asymptotic scaling fits of normalization constants and goodness of fit q.

k c1;3k
q c0;4k

q c1;4k
q

0 6.6682 (56) 0.00 6.114 (29) 0.71 5.892 (27) 0.68

c1;2k c0;3k c1;3k

1 2.2481 (32) 0.04 2.1937 (64) 0.91 2.1083 (61) 0.91
2 2.2311 (32) 0.03 2.1812 (64) 0.92 2.0961 (60) 0.92
3 2.0743 (56) 0.17 2.022 (11) 0.66 1.9432 (98) 0.67
4 2.8945 (54) 0.08 2.846 (11) 0.98 2.735 (11) 0.98
5 2.8835 (53) 0.04 2.837 (11) 0.98 2.727 (11) 0.98
6 2.7068 (85) 0.95 2.658 (18) 0.95 2.555 (17) 0.95
7 2.2498 (30) 0.02 2.1996 (61) 0.93 2.1138 (57) 0.94
8 2.2254 (30) 0.01 2.1807 (60) 0.92 2.0956 (57) 0.93
9 2.0664 (58) 0.16 2.018 (11) 0.69 1.9397 (99) 0.69
10 2.8501 (46) 0.02 2.8037 (91) 0.89 2.6942 (86) 0.89
11 2.8357 (45) 0.01 2.7914 (89) 0.88 2.6824 (85) 0.89
12 2.6485 (74) 0.26 2.599 (14) 0.52 2.498 (13) 0.52

a1;1k ¼ −0.6209 a0;1k ¼ −0.38157 a1;1k ¼ −0.32536
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satisfying goodness of fit (0.13 ≤ q ≤ 0.99). For the other
cases, indicated by * in Table XI, the parameter a1;3k is also
needed (0.45 ≤ q ≤ 0.75 holds for these). Comparing with
our previous ratio estimates of Table IX, we see that the
error bars of the starred estimates are about two times
larger, while the error bars of the other estimates are similar
as before. Systematic errors due to the different fits are
around 1%, which is up to an order of magnitude larger
than the statistical errors. The latter can be extremely small
due to correlations between the estimators.
Using the asymptotic scaling function with m ¼ 0

instead of m ¼ 1, differences for ratios are about 2 orders
of magnitude smaller than those encountered for the
normalization constants of Table X. Asymptotic scaling
corrections drop out, as one expects. The systematic error
due to adding the am;3

k fit parameter can be considerably
larger, up to 1.3%. This is still about 1 magnitude smaller
than the same systematic uncertainty in the case of the
normalization constants.
Dividing the constants rij out, Figs. 11 and 12 give a

visual impression of the scaling of selected fitting curves
with reference scale L10. Superficially, curves for the same
scales look similar in Fig. 12 as before in Figs. 8 and 9.

However, there is a fundamental difference between the
fits. Equation (45) ensures that Li=L10 ∼ ð1=L10Þ2 is
correct in the limit ð1=L10Þ2 → 0, while in Eq. (33) it is
assumed to be already exact for the data at hand. Now, for
the fits (45) the straight line behavior is in some cases only
reached for very small ð1=L10Þ2. This is most pronounced
for the R1;10=r1;10 fit, which crosses the value 1 from below
and finally approaches 1 from above, once the region
ð1=L10Þ2 < 0.005 on the very left side of Fig. 12 is reached
(details are not visible on the scale of the figure). In view of
this it is reassuring that the estimates of Tables IX and XI
never differ by more than 1.3%. The two fitting approaches
supplement one another and give some insight into the
systematic errors one may expect.
We conclude this section by discussing the instabilities

encountered when fitting L0=Li. In the L0 (as) row of
Table XI we report estimates obtained from using the
constants of column 6 of Table X and error propagation.
Compared with the previous estimates of Table IX we find
a systematic decrease in the range 3.2% to 3.6%, larger than
the statistical error, which never exceeds 0.6%. As the
asymptotic scaling of L0 needs four parameters to fit just
five data points one may suspect “overfitting.” As a
tiebreaker we perform the fit of Eq. (45) for jackknifed
ratios of L0=Lj, j ¼ 1, 4, 7, 10, and obtain the estimates of

TABLE XI. Estimates of rij ratios from scaling fits of jackknifed Rij data.

inj L1 L4 L7 L10

L0 (as) 2.795 (16) 2.154 (14) 2.787 (15) 2.187 (13)
L0 *2.914 (15) 2.2393 (52) *2.903 (14) 2.2692 (48)
L1 � � � *0.7703 (12) 0.99808 (34) *0.78185 (77)
L3 0.9240 (20) 0.7187 (19) 0.9221 (20) 0.7275 (17)
L4 *1.2996 (21) � � � *1.2957 (27) 1.01373 (57)
L6 1.2000 (31) 0.9334 (23) 1.1972 (32) 0.9465 (24)
L7 1.00188 (34) *0.7728 (16) � � � *0.78419 (88)
L9 0.9214 (22) 0.7171 (21) 0.9197 (22) 0.7255 (18)
L10 *1.2795 (13) 0.98638 (55) *1.2760 (15) � � �
L12 1.1786 (26) 0.9167 (24) 1.1760 (26) 0.9283 (20)
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the L0 row of Table XI. The systematic errors with respect
to Table IX are now down to less than 1%.
Dividing the asymptotic ratios out, the three fits for

L0=L10 are shown in Fig. 13. The straight line fit from
Figs. 7 and 8 comes in as the second lowest. The lowest curve
corresponds toEq. (45) and theupper curve todividing theL0

fit of column 6 of Table X by the L10 fit of the same column.
As suspected this curve looks rather fanciful. However, using
a log scale for the abscissawould stretch the range on the left,
and one should keep in mind that the absolute differences
among all three fits are quite small. Systematic errors at
ð1=L10Þ2 ¼ 0.3 can be read off on the right-hand side of the
figure and are seen to be less than 4%.

VI. SUMMARY AND CONCLUSIONS

We have studied the approach of SU(2) LGT to its
quantum continuum limit by investigating the scaling
behavior of a number of length scales with definitions
based on the deconfinement phase transition, the gradient
flow and the cooling flow. While the deconfining scale
L0 ¼ Nτ is uniquely defined (4), one has considerable
freedom in the definition of gradient and cooling flow
scales. They depend on the choice of observables and target
values of the flow. We considered the following:
(1) Energy densities E0, E1, E4 defined by Eqs. (16),

(17), and (18). E0 is up to normalization the Wilson
action and E1 is in essence an equivalent definition.
E4, introduced in [3], averages over four plaquettes.

(2) Target values y01i and y02i (i ¼ 0, 1, 4) are defined by
Eqs. (25), (26), (29), and (30). They are constructed
so that the initial scaling behavior of either the
gradient or the cooling flow of E0, E1 or E4 matches
that of the deconfinement length Nτ (altogether
3 × 4 ¼ 12 distinct definitions).

For ratios of these length scales, corrections to scaling
are supposed to be of order a2 in the lattice spacing as
illustrated in Figs. 7, 8, 9, 12 and 13. In these figures the
cooling length scale L10, which relies on the E0 energy

density and a y020 target value (30), is used as a reference
scale for the following reasons:
(1) Scaling violations of ratios of scales are then rather

symmetrically distributed above and below 1.
(2) E0 is easier to calculate than E4 and estimates from

the same statistics result in smaller error bars for the
E0 length scale. No scaling advantages were found
for E4 scales. E1 is essentially equivalent to E0 with
the benefit for E0 that the Wilson action is imple-
mented in the program anyhow.

(3) The cooling flow is faster and easier to calculate than
the gradient flow and there is no noticeable loss of
accuracy as anticipated in Ref. [4]. As the cooling
method [5] was an answer to difficulties encountered
when trying to calculate the topological charge in a
paper by Lüscher and one of the authors [25], it
appears that the cooling scale could have been
introduced 30 years before the gradient scale [3].

The magnitude of scaling violations we find for ratios of
length scales is close to that reported in Ref. [3] for SU(3)
when comparing the E0 with the E4 flow. The SU(2)
scaling region begins at β ¼ 2.3 where we find corrections
to scaling in the 10% range. Deeper in the scaling region, at
β ¼ 2.46, they become reduced to slightly less than 5%.
Scaling corrections for the ratio Nτ=L10 fall into the

range provided by the other scales as is seen in Figs. 7 and
8. The significant advantage of the gradient scale, and to an
even greater extent the cooling scale, over the deconfine-
ment scale is that we can far more easily follow the scaling
behavior towards the continuum limit. On the other hand,
there are no ambiguities in the definition of the deconfine-
ment scale, which makes it kind of ideal to define initial
scaling values as discussed in Secs. III and IV.
We have used two rather different approaches for

analyzing our data. For Figs. 7 to 9 we simply calculate
Li=L10 from jackknife bins of the data and perform the
linear two-parameter fit (33) using the Oða2Þ dependence
ð1=L10Þ2 from the same data. While this is straightforward,
one does not connect with the asymptotic ΛL scale.
To connect with asymptotic scaling, we relied on

truncated forms of Eq. (34) based on Refs. [17,18]. The
normalization constants of our asymptotic scaling fits are
collected in Table X. A common fixed parameter ensures
that scaling corrections for ratios are Oða2Þ. Systematic
errors due to distinct truncations of the fits are found around
10%. For the gradient and cooling scales the finally
accepted fits of column 6 rely on three free parameters,
one of them being the normalization constant that yields the
continuum estimate. For L0 four fit parameters are needed
despite the fact that there are only five data points.
Comparing in Fig. 13 the ratio of the L0 and L10 fit with
direct fits of the R0;10 ratios indicates overfitting, though L0

data on larger lattices are needed to be conclusive.
While the lattice spacing is exponentially small in β,

asymptotic scaling corrections come in powers of 1=β. As is
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seen in Fig. 10, they range at β ¼ 2.3 from 30% to 36%. The
scales cluster together, so that the relative deviations at
β ¼ 2.3 reproduce the previously encountered 10% range.
For ratio estimates it turns out that one should not divide

the asymptotic scaling estimates by one another, but
perform the fit (45) for the jackknifed Rij ratios of the
data, where the common fixed parameter is set to zero to
enforce Oða2Þ corrections. A decisive difference to the
previous approach (33) remains: the Oða2Þ behavior is no
longer enforced for our data at hand, but only in the
continuum limit. Indeed, some of the fits make use of this
possibility. Compare Fig. 12 with Figs. 8 and 9. Despite the
differences in the approach to the continuum limit, the
obtained curves look similar.
The continuum limit estimates of our ratios are collected

in Tables IX and XI using, respectively, (33) and (45).
Differences due to the distinct fit forms stay below 1.3%.
This is in most cases larger than the statistical errors. The
different fit forms allow one to get an idea of the systematic
errors possible.

In conclusion, we hope that the methods outlined are also
of some value for studying the approach of physically
realistic theories like QCD to their continuum limits.
Though such data rely on large scale calculations on
supercomputers, it is presumably safe to assume that their
quality is not better than that of our SU(2) data. Therefore,
our results can be seen as a warning that one needs
simulations rather deep in the scaling region to achieve
an accuracy of about 1% scaling violations. Besides
statistical errors we find systematic uncertainties which
can easily outweigh them.
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