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We propose and test a new approach to computation of canonical partition functions in lattice QCD at
finite density. We suggest a few steps procedure. We first compute numerically the quark number density
for imaginary chemical potential iμqI . Then we restore the grand canonical partition function for imaginary
chemical potential using the fitting procedure for the quark number density. Finally we compute the
canonical partition functions using high precision numerical Fourier transformation. Additionally we
compute the canonical partition functions using the known method of the hopping parameter expansion and
compare results obtained by two methods in the deconfining as well as in the confining phases. The
agreement between two methods indicates the validity of the new method. Our numerical results are
obtained in two flavor lattice QCD with clover improved Wilson fermions.
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I. INTRODUCTION

One of the most important research targets in high
energy and nuclear physics is to reveal the hadronic
matter phase structure at finite temperature and density.
Experiments at most important modern accelerators RHIC
(BNL) [1], LHC (CERN) [2] and future experiments FAIR
(GSI) and NICA (JINR) are devoted to such studies.
Towards this goal, experimental, observational and theo-
retical efforts have been made. The lattice QCD numerical
simulations have a mission to provide data from the
first principle calculations. Indeed, at finite temperature
with zero chemical potential, the phase structure was

satisfactorily investigated. But it is very difficult to study
lattice QCD at finite density because of the infamous “sign
problem”: The fermionic determinant at nonzero baryon
chemical potential μB, detΔðμBÞ, is in general not real.
This makes impossible to apply standard Monte Carlo
techniques to computations with the partition function

ZGCðμq; T; VÞ ¼
Z

DUðdetΔðμqÞÞNfe−SG; ð1Þ

where SG is a gauge field action, μq ¼ μB=3 is
quark chemical potential, T ¼ 1=ðaNtÞ is temperature,
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V ¼ ðaNsÞ3 is volume, a is lattice spacing, Nt, Ns is
number of lattice sites in time and space directions. There
have been many trials (see e.g. reviews [3–5]) and yet it
is still very hard to get reliable results at μB=T > 1,
see Ref. [6].
In this paper, we consider two approaches: canonical

approach and analytical continuation from imaginary
chemical potential. Our motivation is to develop a method
of computations in finite density lattice QCD applicable at
large μB=T to compute theoretically and experimentally
interesting physical quantities such as number density, its
susceptibility and higher cumulants as well as pressure and
energy density. The canonical approach was studied in a
number of papers [7–14]. The analytical continuation was
also found a useful tool to compute the listed above
physical quantities [5] or the curvature in the transition
temperature as a function of the chemical potential [5].
We suggest a new method to compute canonical partition

functions ZCðn; T; VÞ including large values of nwhere n is
a net number of quarks and antiquarks. We will show that
results for ZCðn; T; VÞ obtained with the new method are
in good agreement with results obtained with the known
method of hopping parameter expansion (HPE). Then we
will argue that the analytical continuation might work
beyond the validity of the Taylor expansion method.
The newmethod is based on simulations at the imaginary

chemical potential. We explain the details of the new
method in the next section. In Sec. III details of numerical
simulations including explanation of main features of the
hopping parameter expansion are presented. Numerical
results for a few values of temperature in both confinement
and deconfinement phases and comparison with the hop-
ping parameter expansion are presented in Sec. IV. Finally,
we formulate our conclusions in Sec. V.

II. NEW APPROACH TO COMPUTATION OF
CANONICAL PARTITION FUNCTION

The canonical approach is based on the following
relations. First, this is a relation between grand canonical
partition function ZGCðμq; T; VÞ and the canonical one
ZCðn; T; VÞ,

ZGCðμq; T; VÞ ¼
X∞
n¼−∞

ZCðn; T; VÞξn; ð2Þ

where ξ ¼ eμq=T is the fugacity and Eq. (2) is called
fugacity expansion. The inverse of this equation can be
presented in the following form [15]:

ZCðn; T; VÞ ¼
Z

2π

0

dθ
2π

e−inθZGCðθ; T; VÞ: ð3Þ

In the right-hand side of Eq. (3) we see the grand canonical
partition function ZGCðθ; T; VÞ for imaginary chemical
potential μq ¼ iμqI ≡ iTθ. It is known that standard

Monte Carlo simulations are possible for this partition
function since the fermionic determinant is real for
imaginary μq.
The QCD partition function ZGC is a periodic function of

θ: ZGCðθÞ ¼ ZGCðθ þ 2π=3Þ. As a consequence of this
periodicity the canonical partition functions ZCðn; T; VÞ
are nonzero only for n ¼ 3k. This symmetry is called
Roberge-Weiss symmetry [16]. QCD possesses a rich
phase structure at nonzero θ, which depends on the number
of flavors Nf and the quark mass m. This phase structure is
shown in Fig. 1. Tc is the confinement/deconfinement
crossover point at zero chemical potential. The line
ðT ≥ TRW; μI=T ¼ π=3Þ indicates the first order phase
transition. On the curve between Tc and TRW, the transition
is expected to change from the crossover to the first order
for small and large quark masses, see e.g. [17].
Quark number density nq for Nf degenerate quark

flavors is defined by the following equation:

nq
T3

¼ 1

VT2

∂
∂μq lnZGC

¼ NfN3
t

N3
sZGC

Z
DUe−SGðdetΔðμqÞÞNf tr

�
Δ−1 ∂Δ

∂μq=T
�
:

ð4Þ

It can be computed numerically for imaginary chemical
potential. Note that for the imaginary chemical potential nq
is also purely imaginary: nq ¼ inqI .
From Eqs. (2) and (5) it follows that densities nq and nqI

are related to ZCðn; T; VÞ [below we will use the notation
Zn for the ratio ZCðn; T; VÞ=ZCð0; T; VÞ] by equations

nq=T3 ¼ N
2
P

n>0nZn sinhðnθÞ
1þ 2

P
n>0Zn coshðnθÞ

; ð5Þ

FIG. 1. Schematical figure of Roberge-Weiss phase structure
in the pure imaginary chemical potential regions. Tc is the
confinement/deconfinement crossover point at zero chemical
potential, L is the Polyakov loop. The vertical line ðT ≥
TRW; μI=T ¼ π=3Þ shows the first order phase transition. The
dashed line is a crossover which can change to the first order
phase transition for large or small quark masses.
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nqI=T3 ¼ N
2
P

n>0nZn sinðnθÞ
1þ 2

P
n>0Zn cosðnθÞ

; ð6Þ

where N is a normalization constant, N ¼ N3
t

N3
s
. Our sug-

gestion is to compute Zn using Eq. (6).
One way to do this is to fit numerical data for nqI to this

functional form with a finite number of terms in both
numerator and denominator with Zn treated as a fitting
parameters. We tried this method and found that it is
difficult to obtain reliable values of Zn.
We found more successful the following approach.

One can compute ZGCðθ; T; VÞ using numerical data for
nqI=T3 via numerical integration over the imaginary
chemical potential:

LZðθÞ≡ log
ZGCðθ; T; VÞ
ZGCð0; T; VÞ

¼ −V
Z

θ

0

d~θnqIð~θÞ; ð7Þ

where we omitted T and V from the grand canonical
partition function notation. Then Zn can be computed as

Zn ¼
R
2π
0

dθ
2π e

−inθeLZðθÞR
2π
0

dθ
2π e

LZðθÞ : ð8Þ

In the present work we use a modified version of this
approach. Instead of numerical integration in (7) we fitted
nqI=T3 to theoretically motivated functions of μqI.
It is known that the density of noninteracting quark gas is

described by

nq=T3 ¼ Nf

�
2
μq
T

þ 2

π2

�
μq
T

�
3
�
: ð9Þ

This allows one to assume that in the deconfinement
phase the density can be fitted to the polynomial function.
Indeed, it was shown in Ref. [18], where the same lattice
action was simulated, that such a function describes the
number density in the deconfinement phase quite well.
This observation was also confirmed in Ref. [19] where
Nf ¼ 2þ 1 lattice QCD with physical quark masses was
studied. We thus fit the data for nqI to an odd power
polynomial of θ,

nqIðθÞ=T3 ¼
Xnmax

n¼1

a2n−1θ2n−1; ð10Þ

in the deconfining phase.
It is well known that in the confining phase (below Tc)

the hadron resonance gas model provides a good descrip-
tion of the chemical potential dependence of thermody-
namic observables [20]. Thus it is reasonable to fit the
density to a Fourier expansion,

nqIðθÞ=T3 ¼
Xnmax

n¼1

f3n sinð3nθÞ: ð11Þ

Again this type of fit was used in Ref. [18] and a conclusion
was made that it works well.
Using these fits and Eqs. (7) and (8), we obtained very

promising results for the canonical partition functions Zn as
will be shown in Sec. IV.

III. SIMULATION SETTINGS

To demonstrate our method we make simulations of the
lattice QCD with Nf ¼ 2 clover improved Wilson quarks
and Iwasaki improved gauge field action:

S ¼ Sg þ Sq; ð12Þ

Sg ¼ −β
X
x;μν

ðc0W1×1
μν ðxÞ þ c1W1×2

μ;ν ðxÞÞ; ð13Þ

Sq ¼
X
f¼u;d

X
x;y

ψ̄f
xΔx;yψ

f
y ; ð14Þ

where β ¼ 6=g2, c1 ¼ −0.331, c0 ¼ 1–8c1,

Δx;y ¼ δxy − κ
X3
i¼1

fð1 − γiÞUx;iδxþî;y þ ð1þ γiÞU†
y;iδx;yþîg

− κfeaμqð1 − γ4ÞUx;4δxþ4̂;y

þ e−aμqð1þ γ4ÞU†
y;4δx;yþ4̂g

− δxycSWκ
X
μ<ν

σμνPμν; ð15Þ

Pμν is the clover definition of the lattice field strength
tensor, and cSW ¼ ðW1×1Þ−3=4 ¼ ð1 − 0.8412β−1Þ−3=4 is
the Sheikholeslami-Wohlert coefficient.
We simulate 163 × 4 lattices at temperatures T=Tc ¼

1.35, 1.20 and 1.08 in the deconfinement phase and
0.99,0.93,0.84 in the confinement phase along the line
of constant physics with mπ=mρ ¼ 0.8. All parameters
of the action, including cSW value, were borrowed from the
WHOT-QCD collaboration paper [21]. We compute the
number density on samples of Nconf configurations with
Nconf ¼ 1800, using every tenth trajectory produced with
the hybrid Monte Carlo algorithm.
We employ the hopping parameter expansion to compute

Zn and compare with Zn values obtained with our new
method. Below we describe the hopping parameter expan-
sion. The hopping parameter expansion was invented to
estimate the dynamical quark loop effects [22,23], and
since then, this method has been accepted as an effective
tool for the lattice QCD with heavy quarks [24–27]. In
Ref. [28], the fugacity expansion of the fermion determi-
nant is obtained for the Wilson fermions and the canonical
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partition functions, Zn are evaluated. This means that
ZGCðμq; T; VÞ can be computed in the lattice QCD for
finite μq via Eq. (2). Therefore, the question is whether we
can obtain reliable Zn or not in numerical simulations. The
Wilson Dirac operator from (1) may be written in the form

Δ ¼ I − κQ; ð16Þ

both in the case of standard and clover improved Wilson
fermions. Then one can rewrite the fermionic determinant
in the following way [14]:

detΔ ¼ exp½Tr lnðI − κQÞ� ¼ exp

�
−
X∞
n¼1

κn

n
TrQn

�
: ð17Þ

The chemical potential is introduced in the Dirac operator
in the form of e�aμq multipliers in the temporal direction
links Ux;4. The expansion in (17) is in fact expansion over
the closed paths on the lattice, and thus (17) can be
rewritten as

detΔ ¼ exp
� X∞
n¼−∞

Wnξ
n

�
; ð18Þ

where n is number of windings in the temporal direction,
and Wn are complex coefficients which are called winding
numbers. They satisfy the property W−n ¼ W�

n. In the case
of the imaginary chemical potential the expansion (18) will
become

detΔ ¼ eW0e2
P

∞
n¼1

ðRe½Wn� cosðnθÞ−Im½Wn� sinðnθÞÞ: ð19Þ

It is important to note that the hopping parameter
expansion (17) and the winding number expansion (18)
converge properly only for the heavy quark masses [14].
Our simulations were performed for the quark masses from
this range. The hopping parameter expansion is used to
compute the winding numbers Wn introduced in Eq. (18).
We cut the summation in Eqs. (17) and (18). The effects of
these cuts are discussed in detail in Ref. [29], see in
particular Fig. 2 of Ref. [29]. In particular we found thatWn
do not change within statistical error bars for jnj ≤ 15 if we
use nhpe ≥ 300 terms in the hopping parameter expansion
Eq. (17). Furthermore, we found that using nwne ¼ 15
terms in Eq. (18) is enough to obtain Zn for n ≤ 150 in the
deconfinement phase at T=Tc ¼ 1.35 and Zn for n ≤ 30 in
the confinement phase at T=Tc ¼ 0.93 (in the confinement
phase we encounter a substantial overlap problem).
We compute the traces in (17) and in computation of the

number density [see Eq. (4)] using the stochastic estimator
method. Nstoch ¼ 1000 stochastic vectors are used to
compute the traces in (17) in the deconfinement phase
and 200 stochastic vectors in the confinement phase. For
the number density computations we take Nstoch ¼ 600.

We have checked that further increasing of Nstoch does not
change our results.

IV. FITS OF THE NUMBER DENSITY
TO EQS. (10) AND (11)

In Ref. [18] it was shown that the number density can be
well described by a polynomial of θ in the deconfining
phase (above TRW) and by a few terms of the Fourier
expansion below Tc. We will use this analysis and improve
it in a few directions. First, we collected higher statistics
and reduced the statistical errors substantially in compari-
son with Ref. [18]. Second, we simulate larger lattices: 163

in spatial directions instead of 162 × 8 in Ref. [18]. As a
result we come to more solid statements about fitting.
In Fig. 2 we show results for nqI as a function of θ for

T=Tc ¼ 1.35, 1.20, 1.08 for the range of θ values between
0.0 and π=3. nqI is a continuous function over this range of
θ. Results of the fits to function (10) are presented in Table I
and also shown in the figure. For T=Tc ¼ 1.35 we obtained
a very good fit with nmax ¼ 2 with χ2=Ndof ¼ 0.67 for
Ndof ¼ 24. An attempt to take nmax ¼ 3 and compute a5
gave a5 ¼ 0.008ð20Þwith practically unchanged a1 and a3.
Thus a5 is not computable in this case. In opposite, at lower
temperature T=Tc ¼ 1.20 we needed fitting function with
nmax ¼ 3. We obtained a good fit in this case.
The behavior of nqI at T=Tc ¼ 1.08 is different from that

at higher temperatures discussed above. This temperature is
below TRW and at θ ¼ π=3 there is no first order phase
transition, nqI is continuous. Instead there is a crossover to
the confinement phase at about θ ¼ 0.92ð2Þ as is indicated
by the Polyakov loop susceptibility, see Fig. 3.
It is not yet clear how to fit the data over the range of μqI

covering both the deconfining and the confining phase.
Our data can be well fitted to various functions which
give rise to very different behavior of the number density at
real chemical potential. We need to increase our statistics

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.2  0.4  0.6  0.8  1

n q
I/T

3

μqI/T

T/Tc=1.35
T/Tc=1.20
T/Tc=1.08

FIG. 2. Imaginary density as a function of θ in the deconfine-
ment phase at temperatures T=Tc ¼ 1.35, 1.20, 1.08. The curves
show fits to function (10).
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substantially to reduce the number of functions suitable
for fitting of our data. For this reason in this work we
made fit to function (10) over the range [0, 0.8], i.e. for
deconfining phase. In this case we should consider the fit
as a Taylor expansion. We needed again nmax ¼ 3 to
obtain a good fit. Further increasing of nmax produced no
reasonable results.
Now we can compare our results for constants ai with

the Taylor expansion results obtained in [21] (Table IV,
lower part) for the same parameters of lattice QCD action as
we used in our work. We find that there is an agreement
between our values for a1;3 and respective values obtained
in [21] within error bars (note that relations between
our constants a1;3 and constants c2;4 used in [21] are
c2 ¼ a1=2; c4 ¼ −a3=4). It should be noted that for
T=Tc ¼ 1.35 and 1.20 where we produced many data
points our error bars are substantially lower than error
bars quoted in [21] (at T=Tc ¼ 1.08 smaller error bars can
be also achieved after increasing the number of data
points). Furthermore, we were able to compute coefficient
a5 while in [21] corresponding coefficient c6 was not
computed due to complexity of the problem. This useful-
ness of simulations at the imaginary chemical potential to
compute the Taylor expansion coefficients for pressure was
suggested in [30–32]. This was recently confirmed in [19]
where 2þ 1 lattice QCD with physical quark masses and in
the continuum limit was studied. We confirm here their
observations for a completely different set of parameters
and different action of lattice QCD.

Next we compute Zn using the procedure described in
the previous section. Equation (8) now becomes

Zn ¼
R
2π
0

dθ
2π cosðnθÞe−

1
N

P
m
a2m−1θ

2m=ð2mÞ
R
2π
0

dθ
2π e

− 1
N

P
m
a2m−1θ

2m=ð2mÞ : ð20Þ

We computed these integrals numerically using the
multiprecision library [33]. It has been shown in [34] that
there is a strong cancellation in the Fourier integral so using
multiprecision in calculations is unavoidable. In fact we
figured out that the number of precision digits needed
depends on the phase because in different phases Zn have
different decreasing rates when n increases. In our calcu-
lations we used up to 1200 digits to be sure that results do
not depend on precision. Results for Zn are presented in
Fig. 4 for n up to 300.
As a first check of the results for Zn we computed nqI=T3

using Eq. (6) for T=Tc ¼ 1.35 and 1.20. We found that
the original data presented in Fig. 2 were reproduced
nicely. The deviation for the full interval [0.0;1.0] was
less than 0.6%.
As a more important check we compare our results for

Zn with Zn obtained via hopping parameter expansion
which was described in the previous section. The number
of terms in Eq. (19) was taken equal to 60. Results obtained
with the HPE method are also presented in Fig. 4. We
use only 54 configurations to compute Zn with HPE. For
this reason the statistical error is much higher for this

TABLE I. Results of fitting data for nqI=T3 in the deconfinement phase to function (10). Results for the Taylor
coefficients c2 and c4 from Ref. [21] are shown for comparison with our results for a1 and a3, respectively.

T=Tc a1 a3 a5 χ2=Ndof ; Ndof 2c2 −4c4
1.35(7) 4.671(2) −0.991ð4Þ � � � 0.67, 24 4.682(11) −0.97ð8Þ
1.20(6) 4.409(6) −1.032ð31Þ −0.165ð32Þ 0.70, 16 4.403(14) −1.30ð15Þ
1.08(5) 3.880(17) −1.62ð21Þ −0.59ð0.47Þ 1.10, 9 3.877(19) −1.33ð17Þ
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FIG. 3. The absolute value of the Polyakov loop (multiplied by
factor 3) and its susceptibility vs μqI at T=Tc ¼ 1.08.
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FIG. 4. Zn vs n computed using two methods at T=Tc ¼ 1.35.
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method and we show only data up to n ¼ 162when relative
statistical error reaches 50%.
One can see very nice agreement between two results

although the values of Zn change by almost 20 orders of
magnitude. As a more careful check of this agreement we
show in Fig. 5 the relative deviation of two results:

R ¼ Zn;1 − Zn;2

Zn;1
; ð21Þ

where Zn;i; i ¼ 1, 2 are for the new method and HPE,
respectively. One can see that the relative deviation is
compatible with zero for all presented values of n. Large
statistical errors for large values of n come from the HPE
result and can be reduced when full available statistics
is used.
Although both methods we use to compute Zn are

approximate their systematic errors are of different nature.
Thus agreement of results is not a coincidence. The fact that
we obtained correct values for Zn implies that the fit (10)
with nmax ¼ 2 is not just a Taylor expansion valid for small
values of the chemical potential only but rather a good
approximation valid also for large values of the chemical
potential. The range of validity depends on the range of
values of index n for which the agreement between two
methods extends. This statement should be further checked
by computation of Zn via the HPE method for higher n as
well as for other temperatures in the deconfinement phase.
We fitted Zn to function ePðnÞ where PðnÞ is a poly-

nomial function,

PðnÞ ¼ p2n2 þ p4n4 þ p6n6: ð22Þ

We found that this function fits the data extremely well:
χ2=Ndof ¼ 0.028 for Ndof ¼ 97. Small χ2=Ndof might
indicate overestimated statistical errors or strong correla-
tions between Zn. Parameter values obtained are as follows:

p2 ¼ −0.00167592ð6Þ, p4 ¼ 1.909ð4Þ × 10−9, p6 ¼
−5.08ð6Þ × 10−15. The relative deviation of the fitting
function from the data is less than 0.08%. When the fit
is made over the range n ∈ ½0; 100� then the prediction for
100 < n < 300 has a relative deviation from the true result
less than 1.5%. This illustrates the usefulness of the fitting
of the data for Zn in the deconfinement phase to function
ePðnÞ when the data are known only for the restricted range
of index n values. One can make extrapolation to much
higher values of nwith a rather small error of extrapolation.
Next we come to the confining phase results. In Fig. 6 we

show nqI for θ ∈ ½0; π=3� together with fits to Eq. (11). The
fit results are presented in Table II. We found good fits with
nmax ¼ 1 for T=Tc ¼ 0.84, 0.93 while for T=Tc ¼ 0.99 fit
with nmax ¼ 2 is necessary.
In Table II we also show coefficients a1, a3 and a5 of the

Taylor expansion of Eq. (11) as well as respective results
from [21]. We see again agreement within error bars with
Ref. [21] for the first two Taylor expansion coefficients and
substantially smaller error bars in our work than in [21].
The third coefficient was not computed in [21]. We shall
note that dependence of our third Taylor coefficient a5 on
the temperature is in qualitative agreement with results of
Refs. [19,35] where Nf ¼ 2þ 1 lattice QCD was studied.
In both papers this coefficient (c6 in notations of [19,35],
c6 ¼ a5=6) was found positive slightly below Tc, negative
slightly above Tc and zero otherwise.
Equation (8) to compute Zn now looks as follows:

Z3n ¼
R
2π
0

dθ
2π cosð3nθÞe

P
nmax
m¼1

~f3m cosð3mθÞ
R
2π
0

dθ
2π e

P
nmax
m¼1

~f3m cosð3mθÞ ð23Þ

¼
R
6π
0

dx
6π cosðnxÞe

P
nmax
m¼1

~f3m cosðmxÞ
R
6π
0

dx
6π e

P
nmax
m¼1

~f3m cosðmxÞ ; ð24Þ

-1

-0.5

 0

 0.5
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 0  30  60  90  120  150

R

n

FIG. 5. Relative deviation of results for Zn obtained by new and
HPE methods vs n at T=Tc ¼ 1.35.
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FIG. 6. Imaginary density as a function of θ at three
temperatures in the confining phase. The curves show fits
to function (11) with nmax ¼ 1 for T=Tc ¼ 0.84, 0.93 and
nmax ¼ 2 for T=Tc ¼ 0.99.
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where ~f3n ¼ N3
s

N3
t

f3
3n. In case nmax ¼ 1 this can be

expressed as

Z3n ¼
Inð ~f3Þ
I0ð ~f3Þ

; ð25Þ

where InðxÞ is the modified Bessel function of the first
kind. Results for Zn at T=Tc ¼ 0.93 are presented in Fig. 7.
Again, we first check if computed Zn reproduce data for

nqI=T3 and find nice agreement between data and values of
nqI=T3 computed via Eq. (6). The deviation for the full
interval [0.0; π=3] was less than 0.3%.
Next we compare with hopping parameter expansion,

respective results are also presented in Fig. 7. We used full
statistics (1800 configurations at μqI ¼ 0) and Wn up to
n ¼ 15 in Eq. (18) for this computation. One can see
agreement between two results up to n ¼ 21. We believe
that the disagreement for higher n is explained by inaccur-
acy in computation of Zn computed by HPE. The statistical
errors for Zn grow very fast with n. It is necessary to
improve the HPE method accuracy before the conclusion
about agreement at large n can be made.
Still our result indicates that at T=Tc ¼ 0.93 the fit

function (11) provides correct values of Zn and thus its
analytical continuation should be valid up to values of
μq=T beyond Taylor expansion validity range. Precise
determination of the range of validity of this analytical

continuation will be made in the future after getting more
precise results for the HPE method. In Fig. 8 we show
results for Zn for all three temperatures below Tc. We stop
to show data in this figure when the relative statistical error
reaches 100%.
Let us note that one can derive a recursion relation for Zn

when nqI is presented by function (11) with finite nmax. For
derivation see Appendix A. In particular for nmax ¼ 1 the
recursion is just a recursion for In which is of the form

~f3ðZ3ðn−1Þ − Z3ðnþ1ÞÞ ¼ 2nZ3n: ð26Þ

Also one can get asymptotics for Zn at large n. For
nmax ¼ 1 it is

Z3n ¼ B
ð ~f3=2Þn

n!
; ð27Þ

where B is some constant. This asymptotics is shown in
Fig. 8 for T=Tc ¼ 0.84 and 0.93 with constant B obtained
by fitting over the range 400 < n < 600: B ¼ 0.02813ðð1Þ
for T=Tc ¼ 0.93 and B ¼ 0.219ð2Þ for T=Tc ¼ 0.84.
For nmax ¼ N it is different:

Z3n ¼ B
ð ~f3NÞn=N

Γðn=N þ 1Þ ; ð28Þ

TABLE II. Results of fitting data for nqI=T3 in the confinement phase to function (11) together with respective
Taylor coefficients a1, a3, a5. Results for the Taylor coefficients c2 and c4 from Ref. [21] are shown for comparison
with our results for a1 and a3, respectively.

T=Tc f3 f6 a1 a3 a5 χ2=Ndof ; Ndof 2c2 −4c4
0.99 0.7326(25) −0.0159ð21Þ 2.102(5) −2.719ð17Þ 0.453(55) 0.83, 18 2.071(34) −2.9ð8Þ
0.93 0.2608(8) � � � 0.7824(24) −1.1736ð36Þ 0.5281(16) 0.93, 37 0.713(40) −0.3ð8Þ
0.84 0.0844(7) � � � 0.2532(21) −0.3798ð31Þ 0.1709(14) 0.41, 18 0.251(35) −0.0ð6Þ
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see Appendix A for derivation. From this asymptotics it
follows in particular that the coefficient f3N has to be
positive, otherwise the condition of positivity of Z3n will
not hold. Our current fitting function for T=Tc ¼ 0.99
which has f3N ≡ f6 < 0 does not satisfy this requirement.
We need to improve statistics for this temperature to obtain
the coefficient for the next harmonics in Eq. (11). Evidently
with the present fitting function we cannot go to large
values of μq for this temperature.
At the end of this section we show in Fig. 9 ratio nq

μqT2 as a

function of μ2q for negative and positive values. The
analytical continuation to positive μ2q values was made in
Eqs. (10) and (11) by the change of θ to iθ. The range of
validity of this analytical continuation is discussed in the
Sec. V. This way of presentation, borrowed from [19],
allows one to show in one plot the simulation results
obtained at μ2q < 0 and analytical continuation of our fitting
functions to μ2q > 0. One can see that analytical continu-
ation has reasonable statistical errors up to large values of
ðμq=TÞ2 for the two highest temperatures and the two
lowest temperatures. For temperatures T=Tc ¼ 0.99, 1.08
we need to improve statistics.
Let us note that another possibility to check the range of

validity of the new method suggested in this paper is to
make simulations in a model without the sign problem like
QC2D [36,37]. We are planning to do such checks in the
future.

V. CONCLUSIONS

We have presented a new method to compute the
canonical partition functions Zn. It is based on fitting of
the imaginary number density for all values of imaginary
chemical potential to the theoretically motivated fitting
functions: polynomial fit (10) in the deconfinement

phase for T above TRW and Fourier-type fit (11) in the
confinement phase. The proper fit for temperatures between
Tc and TRW has not been found in this work and is a subject
of future study. For this temperature range we used the
polynomial fit for the restricted range of μqI .
Using fit results we compute the canonical partition

functions Zn ≡ ZCðn;T;VÞ
ZCð0;T;VÞ at five values of T=Tc (all temper-

atures apart from T=Tc ¼ 1.08) via Fourier transformation
(8). It was necessary to use the multiprecision library [33]
to compute Zn which change over many orders of magni-
tude. For all temperatures we have checked that precision
of computation of Zn was high enough to reproduce the
imaginary number density nqI via Eq. (6).
At temperatures T=Tc ¼ 1.35 and 0.93 we compared our

results for Zn with Zn computed by hopping parameter
expansion. We found that the new method works in both
confinement and deconfinement phases: two sets of Zn
computed by completely independent methods agree well,
see Figs. 4 and 7. This means that the fitting functions used
in this work are proper approximations for the imaginary
number density in the full range of μqI values. Furthermore,
this means that the analytical continuation to the real
chemical potential can in principle be done beyond the
Taylor expansion validity range since this analytical con-
tinuation coincides with nq computed with the help of
correctly determined Zn via Eq. (5). Thus the new method
allows one to compute the number density nq beyond
Taylor expansion. The range of validity of the new method
including the analytical continuation presented in Fig. 9 is
implicitly determined by the number of correctly computed
Zn. This number can be increased by increasing the quality
of approximation of imaginary number density. This can be
achieved when more terms in Eqs. (10) and (11) are
determined via the fitting procedure or via direct numerical
computation of the integral (7).
The agreement of the new method and the HPE method

is especially remarkable in the deconfining phase, see
Figs. 4 and 5. The deconfinement region is being explored
extensively by ALICE experiments at LHC [2]. Note that
our new method is not limited to the heavy quark mass
values like HPE, nor small μ values like Taylor expansion.
Once we calculate Zn using the new method, we can
calculate any thermodynamical quantities, pressure, num-
ber density and its higher moments. Thus the new method
can provide very reliable theoretical basis for LHC results.
We plan to calculate these quantities with much smaller
quark mass in order to give first-principle theoretical results
for comparison with LHC data.
We believe that the new method will also help to

determine the transition line in the temperature-chemical
potential plane. Respective results will be presented in a
forthcoming publication after data with higher statistics
will be accumulated and results for lower quark masses will
be obtained.
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Using our results for the number density nqI we
computed the Taylor expansion coefficients for the number
density from which respective coefficients for the pres-
sure are easily restored. We found good agreement with
earlier results obtained in [21] via direct computation of
these coefficients. Moreover, we found that our error bars
for these coefficients are in general substantially smaller
than error bars quoted in [21]. Thus we confirmed
analogous observation made in [19]. Our estimation
for sixth order Taylor coefficients c6 which were not
computed in [21] are in good qualitative agreement with
results of Refs. [19,35].
We found that obtained at T=Tc ¼ 1.35 Zn values are

nicely described by the exponential behavior with poly-
nomial (22) in the exponent. We checked that this fit works
over the range of n up to 300 which corresponds to quark
density nq=T3 ≈ 5. For T < Tc we obtained asymptotics of
Zn at large n which indicates slower decreasing of Zn with
n than in the deconfining phase, see Eq. (28). Still this
decreasing is fast enough to provide convergence of the
infinite sums in Eqs. (2) and (5).
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APPENDIX: RECURSION RELATIONS FOR Z3n

In this Appendix we derive a recursion relation for
Z3n in the confinement phase. Let us introduce notations
3θ ¼ x, ~fn ¼ fn=ð2CÞ.
For the case of nmax > 1 in Eq. (11) it is possible to

derive a recursion relation similar to relation (26). Let us
show this for nmax ¼ 2. We have

~f3 sinðxÞ þ ~f6 sinð2xÞ ¼
P

nnZ3n sinðnxÞ
1þ 2

P
nZ3n cosðnxÞ

: ðA1Þ

Then

ð ~f3 sinðxÞ þ ~f6 sinð2xÞÞ
�
1þ 2

X
n

Z3n cosðnxÞ
�

¼
X
n

nZ3n sinðnxÞ:

Computing Fourier modes on both sides we get

~f3

Z
π

−π
dx sinðxÞ

�
1þ 2

X
n

Z3n cosðnxÞ
�
sinðmxÞ

þ ~f6

Z
π

−π
dx sinð2xÞ

�
1þ 2

X
n

Z3n cosðnxÞ
�
sinðmxÞ

¼
Z

π

−π
dx

X
n

nZ3n sinðnxÞ sinðmxÞ ðA2Þ

~f3ðZ3ðm−1Þ − Z3ðmþ1ÞÞ þ ~f6ðZ3ðm−2Þ − Z3ðmþ2ÞÞ ¼ mZ3m

ðA3Þ

or

Z3ðmþ2Þ ¼ Z3ðm−2Þ −
m
~f6
Z3m þ

~f3
~f6
ðZ3ðm−1Þ − Z3ðmþ1ÞÞ:

ðA4Þ

We need f3, f6, Z3, Z6 to compute all Z3m;m > 2.
The asymptotical behavior in this case is

Z3n ¼ B
ð ~f6Þn=2

Γðn=2þ 1Þ : ðA5Þ

It is easy to get the recursion relation and asymptotics for
nmax ¼ N. The recursion relation is

Z3ðnþNÞ ¼ Z3ðn−NÞ −
n
~f3N

Z3n

þ
XN−1

m¼1

~f3ðn−mÞ
~f3N

ðZ3ðn−mÞ − Z3ðnþmÞÞ ðA6Þ

and the asymptotics

Z3n ¼ B
ð ~f3NÞn=N

Γðn=N þ 1Þ : ðA7Þ

Some conclusions might be drawn from this expression.
The asymptotics is determined by the highest mode. Thus
f3N has to be positive. Decreasing of Zn becomes weaker
with increasing N.
The numerical data for nqIðθÞ indicate that in the

confinement phase the number of modes N necessary to
describe the data is finite. Then the above considerations
apply. We can make a statement that the radius of
convergence is infinite. In the deconfinement phase at
temperatures T > TRW where first order Roberge-Weiss
transition takes place N is definitely infinite. In the range of
temperature Tc < T < TRW the situation is unclear.
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