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We investigate both the theoretical and computational aspects of using wavelet bases to perform an exact
decomposition of a local field theory by spatial resolution. The decomposition admits natural volume and
resolution truncations. We demonstrate that flow equation methods can be used to eliminate short-distance
degrees of freedom in truncated theories. The method is tested on a free scalar field in one dimension,
where the spatial derivatives couple the degrees of freedom on different scales, although the method is
applicable to more complex field theories. The flow equation method is shown to decouple both distance
and energy scales in this example. The response to changing the volume and resolution cutoffs and the mass
is discussed.
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I. INTRODUCTION

In this paper we investigate the use of wavelet methods
[1–20] to decouple degrees of freedom on different distance
scales in local quantum field theory. The Daubechies
wavelets and scaling functions can be used to construct
an orthonormal basis of compactly supported functions
[21–35]. The basis includes functions that vanish outside of
any arbitrarily small open set. They are generated from a
single function using translations and unitary scale trans-
formations. These basis functions decompose the Hilbert
space into a direct sum of orthogonal subspaces associated
with different resolutions. Expanding local fields in this
basis leads to an exact representation of the field as an
infinite linear combination of operators with different
spatial resolutions. This expansion replaces the operator-
valued distributions by infinite linear combinations of basis
functions with operator-valued coefficients. The operator-
valued coefficients are defined by smearing the local fields
with the basis functions. While the full expansion is exact,
there are natural volume and resolution truncations that are
defined by retaining only terms in the expansion that have
support intersecting a given volume and with a specified
finest resolution.
We limit our considerations to the use of Hamiltonian

methods; however the representations used in this paper
could also be employed in any field theory framework to
provide natural volume and resolution truncations. They
could also be utilized in alternative wavelet approaches
[8,10,12,13,16–18]. When the fields are replaced by these
expansions in field-theory Hamiltonians, local products of
field operators are replaced by infinite linear combinations

of products of well-defined operators. The singularities that
arise from the local operator products reappear as non-
convergence of sums, so the renormalization problem takes
on a different form. The theory is naturally regularized by
truncating the basis in both resolution and volume.
The problem of constructing a local limit involves first

solving the field equations for truncated theories with
different volume and resolution cutoffs and adjusting the
dimensionless parameters of each truncated field theory to
preserve some common observables. Since the truncated
theories are systems with a finite number of degrees of
freedom, they can in principle be solved, just like lattice
truncations. The problem is to identify a sequence of
truncated theories and a limiting procedure that results
in a well-defined infinite-volume, infinite-resolution limit
that satisfies the axioms of a local field theory. The general
existence of such a limit is an unsolved problem, and is
beyond the scope of this paper.
However, for measurements involving a fixed energy

scale and finite volume, the number of relevant degrees of
freedom is finite. Under these conditions both the acces-
sible volume and resolution are limited. Truncated field
theories that include degrees of freedom associated with
this volume and resolution should describe physics on this
scale after determining the parameters of the truncated
theory by experiment. The predictions at this scale should
be improvable as the volume and resolution are increased
by finite amounts. This is independent of the existence of
an infinite-volume, infinite-resolution limit that describes
physical phenomena on all scales.
While it is possible to work at successively finer

resolutions, there are reasons to eliminate short-distance
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degrees of freedom that are much smaller than the scales
accessible to a given experiment. This reduces the number
of degrees of freedom, where the effects of the eliminated
degrees of freedom appear in a more complicated effective
Hamiltonian that only involves the physically relevant
degrees of freedom. This is similar in spirit to the program
initiated by Glöckle and Müller to eliminate explicit pion
degrees of freedom in a field theory of interacting pions and
nucleons [36] using an “Okobu” transformation [37].
A feature of the wavelet representation is that the

commutation relations among the field operators are all
discrete, and there are irreducible canonical pairs of
operators associated with each resolution and volume.
The truncated Hamiltonians with different resolutions have
the same form, with coefficients that are rescaled as a
function of the resolution. There is a natural transformation
that transforms the high-resolution truncated Hamiltonian
to the sum of the corresponding low-resolution truncated
Hamiltonian and corrections that involve the missing high-
resolution degrees of freedom. These corrections include
operators that couple the high- and low-resolution degrees
of freedom.
Block diagonalizing this Hamiltonian according to

resolution gives an effective Hamiltonian entirely in the
low-resolution degrees of freedom that includes the physics
of the eliminated high-resolution degrees of freedom. This
can be compared to the original low-resolution Hamiltonian
to see how it must be modified to include the effects of the
eliminated degrees of freedom. In this representation
explicit high-resolution degrees of freedom are replaced
by more complicated effective interactions in the low-
resolution degrees of freedom. While this process generates
new effective operators, the coefficients of these operators
are well-defined functions of the parameters of the original
theory, so in a renormalizable theory there is no need to
introduce new parameters associated with the new effective
operators, although this can always be done to improve
convergence.
In this paper we investigate the use of flow equation

methods [38–46] to perform the block diagonalization of
the high-resolution Hamiltonian. In general the flow
equation will generate an infinite collection of complicated
effective operators. In order to separate the problem of
convergence of the flow equation from an analysis of the
scaling properties of the effective interactions, we consider
the case of a free field. For free fields the different
resolution degrees of freedom are coupled by spatial
derivatives, but the structure of the operators generated
by the flow equation remain quadratic functions of the
fields, which restricts the structure of the operators that are
generated by the flow equation to a finite number of classes.
Because of this, the flow equation can be solved without
addressing the problem of how to manage the generated
effective interactions. This provides a first test of the
proposed flow equation method to separate scales.

II. BACKGROUND: WAVELET BASIS

In this section the basis of functions that will be used to
expand the field operators are defined. The basis functions
on the real line are the Daubechies scaling functions
[21,22,30,32–34] on a fixed scale and the Daubechies
wavelets on all smaller scales.
Our preference for the Daubechies basis is because the

basis functions are orthonormal and have compact support.
The scale is associated with the size of the support of
different basis functions. In higher dimensions the basis
functions are products of the one-dimensional basis func-
tions defined in this section. This leads to a representation
of the theory in terms of local observables. The structure of
the truncated theory is similar to lattice truncations which
are also formulated in terms of local degrees of freedom.
One advantage of wavelet truncations is that it is possible
to include independent degrees on different scales, so large-
scale degrees of freedom do not have to be generated by
the collective dynamics of many small-scale degrees of
freedom.
One useful property of the scaling-wavelet basis is that

all of the basis functions can be constructed from a single
function, sðxÞ, called the scaling function, by integer
translations and dyadic scale transformations. The scaling
function, sðxÞ, is the solution of the following linear
renormalization group equation:

sðxÞ ¼ S

�X2K−1
l¼0

hlTlsðxÞ
�

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
block average|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rescale

: ð1Þ

The normalization of the solution of this homogeneous
equation is fixed by the conditionZ

dxsðxÞ ¼ 1: ð2Þ

In Eq. (1) T is a unitary integer translation operator and S is
a unitary scale transformation operator that shrinks the
support of a function by a factor of 2. These operators are

TsðxÞ ¼ sðx − 1Þ SsðxÞ ¼
ffiffiffi
2

p
sð2xÞ: ð3Þ

Equation (1) implies that sðxÞ is the fixed point of the
operation of taking a weighted average of a finite number of
translated copies of sðxÞ scaled to half of the original
support. K is a fixed integer that is related to the smooth-
ness of the basis functions. The weights, hl, are real
numbers determined by the three conditions:
(1) Orthonormality of integer translations of sðxÞ:Z

sðxÞsðx − nÞdx ¼ δn0: ð4Þ
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(2) Consistency:

X2K−1
l¼0

hl ¼
ffiffiffi
2

p
: ð5Þ

(3) Ability to locally pointwise represent low-degree
polynomials:

xn ¼
X∞

m¼−−∞
cmsðx −mÞ 0 ≤ n ≤ K: ð6Þ

Although the sum in (6) is infinite, there are no
convergence problems because only a finite number
of terms in this sum are nonzero at any given point.

There are two solutions of Eqs. (4)–(6) for the hl. They
are related by h0l ¼ h2K−1−l. The corresponding fixed
points, sðxÞ, are mirror images of each other. The resulting
sðxÞ has compact support on the finite interval ½0; 2K − 1�.
The values for K ¼ 3, which are used in this work, are
given in Table I. These hl values are simple algebraic
numbers.
Scaling functions are defined by translating and rescal-

ing sðxÞ:

sknðxÞ ≔ SkTnsðxÞ ¼ 2k=2sð2kðx − 2−knÞÞ: ð7Þ

It follows from (4) and the unitarity of S that the functions
sknðxÞ are orthonormal for each fixed k.
Subspaces SkðRÞ ⊂ L2ðRÞ of resolution 1=2k are

defined by

Sk ≔ ffðxÞjfðxÞ ¼
X∞
n¼−∞

cnsknðxÞ;
X∞
n¼−∞

jcnj2 < ∞g:

It follows from (1) that these subspaces are related by

Sk ≔ SkS0 Sk ⊂ Skþn n ≥ 0

or more generally they are nested:

� � �Sk−1 ⊂ Sk ⊂ Skþ1 ⊂ � � � : ð8Þ
The inclusions in (8) are proper in the sense that they have
nonempty orthogonal complements:

Skþ1 ¼ Sk ⊕ Wk Wk ≠ f∅g:
The spaceWk is the orthogonal complement of Sk in Skþ1.
From a physical point of view Skþ1 is a finer-resolution
subspace than Sk, and Wk fills in the missing degrees of
freedom that are in Skþ1 but not in Sk. Combining these
decompositions we have the following relation between the
subspaces Skþn and Sk of different resolutions:

Skþn ¼ Sk ⊕ Wk ⊕ Wkþ1 ⊕ � � � ⊕ Wkþn−1: ð9Þ

The limit of this chain as n → ∞ leads to an exact
decomposition of L2ðRÞ by resolution:

L2ðRÞ ¼ Sk ⊕ Wk ⊕ Wkþ1 ⊕ Wkþ2 ⊕ Wkþ3 ⊕ � � � :
ð10Þ

The subspaces Wk are called wavelet spaces. Orthonormal
bases for the subspaces Wk are constructed from the
mother wavelet, wðxÞ, which is defined by taking a
different weighted average of translations of the scaling
function sðxÞ scaled to half of the support of sðxÞ:

wðxÞ ≔
X2K−1

l¼0

glSTlsðxÞ gl ¼ ð−Þlh2K−1−l: ð11Þ

The weights gl in Eq. (11) are related to the weights hl used
in (1) except the signs alternate and the order of the indices
is reversed.
Applying powers of the dyadic scale transformation

operator, S, and integer translation operator, T, to wðxÞ
gives the following basis functions for Wk:

wk
mðxÞ ≔ SkTmwðxÞ ¼ 2k=2wð2kðx − 2−kmÞÞ: ð12Þ

The functions wk
mðxÞ are called wavelets. It can be shown

that for each fixed k, fwk
mðxÞg∞m¼−∞ is an orthonormal basis

for the subspaceWk. Because of (9) the wk
nðxÞ for different

values of k are also orthogonal.
From (7), (11), and (12) it follows that both skmðxÞ and

wk
mðxÞ can be constructed from the fixed point, sðxÞ, of the

renormalization group equation (1), using elementary
transformations.
The decomposition (10) implies that for any fixed

starting scale 2−k,

fsknðxÞg∞n¼−∞∪fwl
nðxÞg∞;∞

n¼−∞;l¼k

is an orthonormal basis for L2ðRÞ consisting of compactly
supported functions. The support of both skmðxÞ and wk

mðxÞ
is ½2−km; 2−kðmþ 2K − 1Þ�. For any point on the real line

TABLE I. Scaling coefficients for the Daubechies K ¼ 3
wavelets.

h0 ð1þ ffiffiffiffiffi
10

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h1 ð5þ ffiffiffiffiffi
10

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h2 ð10 − 2
ffiffiffiffiffi
10

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h3 ð10 − 2
ffiffiffiffiffi
10

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h4 ð5þ ffiffiffiffiffi
10

p
− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h5 ð1þ ffiffiffiffiffi
10

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p
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there are basis functions of arbitrarily small support that
include that point.
The basis functions sknðxÞ are associated with degrees of

freedom of scale 2−k and the wl
nðxÞ are associated with

degrees of freedom of scale 2−ðlþ1Þ that are not of scale 2−l.
Thus they are identified with localized degrees of freedom
with distance scales 2−k−l for all integers, l ≥ 0.
Equation (9) implies that the functions

fskþm
n ðxÞg∞n¼−∞ and fsknðxÞg∞n¼−∞∪fwl

nðxÞg∞;kþm−1
n¼−∞;l¼k

are related by an orthogonal transformation. This trans-
formation is called the wavelet transform. It can be
computed more efficiently than a fast Fourier transform,
using the hl and gl as weights that define “low-pass” and
“high-pass” filters:

sk−1n ðxÞ ¼
X

hlsk2nþlðxÞ wk−1
n ðxÞ ¼

X
glsk2nþlðxÞ:

The inverse of this orthogonal transformation is

sknðxÞ ¼
X
m

hm−2nsk−1m ðxÞ þ
X
m

gm−2nwk−1
m ðxÞ:

It is precisely these transformations (or their three-
dimensional generalization) that relate a fine-resolution
Hamiltonian to the sum of a coarse-resolution Hamiltonian
plus fine scale corrections.
The Daubechies wavelets and scaling functions are fractal

functions. This is because sðxÞ is the solution of a renorm-
alization group equation, and all of the basis functions are
obtained by applying a finite number of scale transforma-
tions, translations, and sums to sðxÞ. In spite of their fractal
nature, these basis functions have a finite number of
derivatives that increase with increasing K. This paper uses
the K ¼ 3 basis. These basis functions have one continuous
derivative. This allows for an exact representation of
Hamiltonians that have fields with at most one derivative.
It explicitly avoids the need for finite difference approx-
imations to derivatives. IncreasingK leads to smoother basis
functions at the expense of larger support and increasing
overlap with basis functions on the same scale.
Quantum fields are generally assumed to be operator-

valued tempered distributions. This suggests that field
operators smeared with test functions that only have a
finite number of derivatives might not be well-defined
operators; however free-field Wightman functions smeared
with Daubechies K ≥ 3 wavelets or scaling functions are
well defined. This follows from the analytic expressions for
the free-field Wightman functions [47] and the fact that the
basis functions have compact support and a continuous
derivative. This is analogous to the observation that a delta
function, which is a distribution, is also a well-defined
linear functional on the space of continuous functions.

Equation (6) shows that certain linear combinations of
these functions can be much smoother. In Ref. [20] it is
shown specifically that vacuum expectation values of the
Daubechies-wavelet-smeared free fields converge to the
exact free-field Wightman functions in the limit of infinite
resolution. For theories truncated to a finite number of
degrees of freedom, the Stone–von Neumann theorem
[48,49], which establishes the unitary equivalence of all
representations of the canonical commutation relations,
makes it possible to formulate the dynamics of the
truncated theory in terms of the well-defined algebra of
wavelet-smeared free fields on the free-field Fock space.
This ensures that the fractal nature of the basis does not
cause any problems in the treatment of the truncated theory.
If there are any issues with the fractal nature of the wavelet
basis functions, they must arise when one tries to establish
the existence of a local limit.
Since the Daubechies basis functions have compact

support, their Fourier transforms are analytic. Thus,
expanding the field in a coordinate-space wavelet basis
is equivalent to expanding the Fourier transform of the field
in an analytic basis. The Fourier transformed basis func-
tions are infinitely differentiable. They fall off like inverse
powers of the momentum, similar to Feynman diagrams.
None of them have compact support.
Another potential issue with fractal basis functions

involves their computation. This turns out to be a nonissue
because they have compact support and integrals of products
of these functionswith polynomials of arbitrarily high degree
can be computed exactly (reduced to finite linear algebra)
using the renormalization group equation (1). Since any
continuous function on a compact interval can be approxi-
mated by a polynomial, it is possible to accurately compute
integrals of products of these basis functions with any
continuous function. The renormalization group equation
can also be used to reduce the computation of arbitrary
products of these basis functions and their derivatives to finite
linear algebra. It is even possible to use these methods to
evaluate integrals of products of these basis functions with
functions having logarithmic or principal-value singularities
[32–35]. The computational methods relevant to this work
are discussed in the Appendix.

III. WAVELET DISCRETIZED FIELDS

Given a pair of scalar fields ΦðxÞ and ΠðxÞ satisfying
canonical equal-time commutation relations

½Πðx; tÞ;Φðy; tÞ� ¼ −iδðx − yÞ
½Φðx; tÞ;Φðy; tÞ� ¼ ½Πðx; tÞ;Πðy; tÞ� ¼ 0;

discrete fields satisfying the discrete form of these com-
mutation relations can be constructed by smearing the
spatial coordinates of the fields with an orthonormal set of
basis functions.
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For the scaling-wavelet basis [we consider the (1þ 1)-
dimensional case for notational simplicity] the discrete
fields are defined by

Φkðs; n; tÞ ≔
Z

dxΦðx; tÞsknðxÞ

Φlðw; n; tÞ ≔
Z

dxΦðx; tÞwl
nðxÞ ðl ≥ kÞ

Πkðs; n; tÞ ≔
Z

dxΠðx; tÞsknðxÞ

Πlðw; n; tÞ ≔
Z

dxΠðx; tÞwl
nðxÞ ðl ≥ kÞ:

These fields represent degrees of freedom localized on the
support of the associated basis function.
As a result of the orthonormality of the basis functions

the discrete equal-time commutators are

½Φkðs; n; tÞ;Φkðs;m; tÞ� ¼ 0

½Πkðs; n; tÞ;Πkðs;m; tÞ� ¼ 0 ð13Þ

½Φkðs; n; tÞ;Πkðs;m; tÞ� ¼ iδnm ð14Þ

½Φrðw; n; tÞ;Φsðw;m; tÞ� ¼ 0

½Πrðw; n; tÞ;Πsðw;m; tÞ� ¼ 0 ð15Þ

½Φrðw; n; tÞ;Πsðw;m; tÞ� ¼ iδrsδnm ð16Þ

½Φrðw; n; tÞ;Φkðs;m; tÞ� ¼ 0

½Πrðw; n; tÞ;Πkðs;m; tÞ� ¼ 0 ð17Þ

½Φrðw; n; tÞ;Πkðs;m; tÞ� ¼ 0

½Πrðw; n; tÞ;Φkðs;m; tÞ� ¼ 0: ð18Þ

The field operators have the exact representation in terms of
these discrete operators

Φðx; tÞ ¼
X
n

Φkðs; n; tÞsknðxÞ þ
X
l≥k;n

Φlðw; n; tÞwl
nðxÞ

ð19Þ

Πðx; tÞ ¼
X
n

Πkðs; n; tÞsknðxÞ þ
X
l≥k;n

Πlðw; n; tÞwl
nðxÞ:

ð20Þ

These expansions can be inserted in the free-field
Hamiltonian,

H ¼ 1

2

Z
ðΠðx; 0ÞΠðx; 0Þ þ ∇Φðx; 0Þ · ∇Φðx; 0Þ

þ μ2Φðx; 0ÞΦðx; 0ÞÞdx; ð21Þ

which can be expressed exactly in terms of the t ¼ 0
discrete fields. The discrete form of the exact Hamiltonian
is the sum of an operator with only scaling-function fields,
Hs; one with only wavelet fields, Hw; and one that has
products of both types of fields, Hsw:

H ¼ Hs þHw þHsw ð22Þ
where

Hs ≔
1

2

�X
n

Πkðs; n; 0ÞΠkðs; n; 0Þ

þ
X
mn

Φkðs;m; 0ÞDk
s;mnΦkðs; n; 0Þ

þ μ2
X
n

Φkðs; n; 0ÞΦkðs; n; 0Þ
�
; ð23Þ

Hw ≔
1

2

�X
n;l

Πlðw; n; 0ÞΠlðw; n; 0Þ

þ
X
m;l;n;j

Φlðw;m; 0ÞDlj
w;mnΦjðw; n; 0Þ

þ μ2
X
l;n

Φlðw; n; 0ÞΦlðw; n; 0Þ
�
;

Hsw ≔
1

2

X
m;l;n

Φlðw;m; 0ÞDlk
sw;mnΦkðs; n; 0Þ:

The coefficients Dk
smn, D

lj
w;m;n and Dlk

sw;m;n that couple near
neighbor fields and fields with different scales are the
constant matrices given by

Dk
s;mn ¼

Z
dx

d
dx

skmðxÞ
d
dx

sknðxÞ ð24Þ

Dlj
w;mn ¼

Z
dx

d
dx

wl
mðxÞ

d
dx

wj
nðxÞ ð25Þ

Dlk
ws;mn ¼ 2

Z
dx

d
dx

wl
mðxÞ

d
dx

sknðxÞ: ð26Þ

The support properties of the basis functions imply that
the matrices Dx

y;mn vanish if the support of the functions in
the integrand have empty intersection, so they have a
structure similar to a finite difference approximation. For a
free field the matrices Dlk

ws;mn and Dlj
w;m;n for l ≠ j are

responsible for the coupling of physical degrees of freedom
on different resolution scales. In interacting theories there
are additional couplings that come from local products of
more than two fields. For exampleZ

ϕ4ðx; tÞdx ¼
X

n1n2n3n4

Γk
s;n1���n4Φ

kðs; n1; tÞΦkðs; n2; tÞΦk

× ðs; n3; tÞΦkðs; n4; tÞ þ � � �

MULTIRESOLUTION DECOMPOSITION OF QUANTUM … PHYSICAL REVIEW D 95, 094501 (2017)

094501-5



where

Γk
s;n1���n4 ≔

Z
skn1ðxÞskn2ðxÞskn3ðxÞskn4ðxÞdx ð27Þ

and the � � � represent additional terms in the sum that
also involve the wavelet basis functions and fields. Like the
Dk

s;mn, the coefficients Γk
s;n1���n4 are almost local in the sense

that they vanish unless all of the functions in the integral
(27) have overlapping support. They also include operators
that couple degrees of freedom on different scales.
The other important feature of the fractal nature of the

scaling-wavelet basis is that these constant coefficients
have simple scaling properties. For example

Dk
s;mn ¼ 22kD0

s;mn ¼ 22kD0
s;0;n−m ð28Þ

Γk
s;n1���n4 ¼ 2kΓ0

s;n1���n4 ¼ 2kΓ0
s;0;n2−n1;n3−n1;n4−n1 ; ð29Þ

where we have used translational invariance to
express these coefficients in terms of D0

s;0;n−m and
Γ0
s;0;n2−n1;n3−n1;n4−n1 . In addition, these constant coefficients

can all be computed exactly (i.e. reduced to finite linear
algebra) using (2)–(3) and the scaling equation (1). This is
discussed in detail in [11] and the Appendix. See also
[23,24,27,28] for general methods to compute integrals
involving wavelets and scaling functions. The result is that
for a free field all of the coupling coefficients can be
expressed in terms of the nine nonzero coefficients D0

s;0m

with −4 ≤ m ≤ 4. These can be computed exactly [11,27].
The results are rational numbers. Their computation is
discussed in the Appendix.

IV. FLOW EQUATION

The wavelet basis decomposes the field into a sum of
operators that are localized in different finite volumes. Each
of these operators are also associated with different reso-
lutions. For free fields the coefficients Dkl

sw;mn, Dkl
ws;mn,

and Drs
ww;mn in the Hamiltonian couple degrees of freedom

with different resolutions.
One can think of 1=2k as the physically relevant

resolution scale. The canonical scaling-function fields
Φkðs; n; tÞ and Πkðs; n; tÞ are an irreducible set of operators
for degrees of freedom on this scale. The wavelet fields also
appear in the Hamiltonian; they are associated with finer-
scale degrees of freedom. Finally products of wavelet and
scaling-function fields represent terms that couple degrees
of freedom on the physical scale to those on smaller scales.
From a physics point of view, while the smaller scales

may not be experimentally relevant, they may represent
important contributions to the dynamics. One can imagine
integrating them out in a functional integral representation
to get an effective theory involving only the experimentally
relevant degrees of freedom. This is a difficult calculation
in the wavelet representation.

A more direct approach would be to decouple the scaling-
function part of the Hamiltonian from the wavelet part. This
would also lead to an effective Hamiltonian involving only
the physically relevant degrees of freedom Φkðs; n; tÞ and
Πkðs; n; tÞ and a complementary Hamiltonian that acts only
on the remaining degrees of freedom. The decoupling will
necessarily generate more complicated effective interactions
among the physically relevant degrees of freedom.
We also remark that the free-field Hamiltonian (21) is

still a many-body Hamiltonian. Decoupling at the operator
level is a stronger condition than decoupling on a finite
number of particle subspace.
Flow equations were introduced by Wegner [38] as a

method to continuously evolve a Hamiltonian to a unitarily
equivalent simpler form. Flow equationmethods [39–46] are
an alternative to direct diagonalization or block diagonaliza-
tion methods [37]. They have been applied to problems in
quantum field theory and quantummechanics. They have the
advantage that they are simpler to implement than integrating
out short-distance degrees of freedom in a functional integral.
Flow equations are designed to perform this diagonalization
using a continuously parametrized unitary transformation,
UðλÞ. The transformed Hamiltonian has the form

HðλÞ ¼ UðλÞHU†ðλÞ:
HereHð0Þ ¼ H is the original Hamiltonian; the generator of
the flow equation is chosen to continuously evolve the initial
Hamiltonian into the desired form as λ increases. Here λ is
called the flow parameter. As λ increases from 0 the
Hamiltonian evolves towards the desired form.The evolution
is constructed to exponentially approach the desired form,
but it is possible for the exponent to become small.
Nevertheless, evaluating HðλÞ at any value of λ still yields
a Hamiltonian that is unitarily equivalent to the original
Hamiltonian with weaker scale-coupling terms.
The preference for flow equation methods in the wavelet

representation is that the simple form of the commutators of
the discrete canonical fields, (13)–(18), reduces the inte-
gration of the flow equation to simple algebra. The problem
is to find a generator of the flow that leads to the desired
outcome.
In general the unitarity ofUðλÞ implies that it satisfies the

differential equation

dUðλÞ
dλ

¼ dUðλÞ
dλ

U†ðλÞUðλÞ ¼ KðλÞUðλÞ

where

KðλÞ ¼ dUðλÞ
dλ

U†ðλÞ ¼ −K†ðλÞ ð30Þ

is the anti-Hermitian generator of this unitary transforma-
tion. We are free to choose a generator that leads to the
desired outcome. It follows that HðλÞ satisfies the differ-
ential equation
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dHðλÞ
dλ

¼ ½KðλÞ; HðλÞ�:

For this application it is useful to choose a generator, KðλÞ,
that is a function of the evolved Hamiltonian:

KðλÞ ¼ ½GðλÞ; HðλÞ� ð31Þ
where GðλÞ is the part of HðλÞ with the operators that
couple different scales turned off. With this choice
GðλÞ ¼ G†ðλÞ so KðλÞ is anti-Hermitian.
It follows that

dHðλÞ
dλ

¼ ½KðλÞ; HðλÞ� ¼ ½½GðλÞ; HðλÞ�; HðλÞ�
¼ ½HðλÞ; ½HðλÞ; GðλÞ��: ð32Þ

Equation (32) is the desired flow equation for our free-field
Hamiltonian. A fixed point, λ�, of this equation occurs
when

½Hðλ�Þ; ½Hðλ�Þ; Gðλ�Þ�� ¼ 0:

It follows from the structure of the equation that the
generator KðλÞ only contains operators that couple the
wavelet and scaling-function degrees of freedom. Below
we discuss the argument that this nonlinear equation
drives this commutator to zero for the case of a free-field
Hamiltonian.
The following considerations are limited to the case of a

free field. This is because for interacting fields integrating
the flow equation generates an infinite number of new
operators. The nonzero commutators of polynomials of
field operators of degree n andm are polynomials of degree
nþm − 2. Each iteration of the flow equation increases
the degree of the polynomials. The new operators represent
many-body interactions in the transformed Hamiltonian.
A separate analysis of the scaling properties of these many-
body polynomial operators is needed to determine the
relative strength of these operators, and which, if any,
operators can be safely discarded. This analysis is separate
from considerations about the flow equation and needs to
be developed in applications to realistic systems.
To understand what happens in the case of the free-field

Hamiltonian (21) first note that for the starting Hamiltonian
all of the operators are quadratic in the Φkðs=w; n; tÞ
and Πkðs=w; n; tÞ operators, and commutators of these
quadratic polynomials remain quadratic polynomials.
The decomposition HðλÞ ¼ GðλÞ þHswðλÞ implies that
the right hand side of equation (32) can be expressed
as a sum of two terms, ½GðλÞ; ½HswðλÞ; GðλÞ�� and
½HswðλÞ; ½HswðλÞ; GðλÞ��. An examination of the operator
structure of each of these terms indicates that the first term
only contains operators the couple the two scales while the
second term only contains operators that preserve scales.
Likewise the commutator of different scale-coupling oper-
ator parts gives zero or a product of two scaling or two

wavelet function operators. This allows us to separate the
flow equation into separate equations for the scale-coupling
term HswðλÞ and uncoupled terms GðλÞ ¼ HsðλÞ þHwðλÞ.
Defining

HAðλÞ ¼ GðλÞ HBðλÞ ¼ HswðλÞ;
the flow equations can now be separated into coupled
equations for the mixed (B) and nonmixed (A) parts of the
Hamiltonian:

dHAðλÞ
dλ

¼ ½HBðλÞ; ½HBðλÞ; HAðλÞ��;
dHBðλÞ

dλ
¼ ½HAðλÞ; ½HBðλÞ; HAðλÞ��
¼ −½HAðλÞ; ½HAðλÞ; HBðλÞ��:

These equations have a symmetric form under HAðλÞ ↔
HBðλÞ except for a sign, which can be seen by changing the
order in the commutator in the second equation.
To understand how these equations evolve the

Hamiltonian to the desired form, we express the first
equation in a basis of eigenstates ofHBðλÞwith eigenvalues
ebnðλÞ and the second in a basis of eigenstates of HAðλÞ
with eigenvalues eanðλÞ. The equations for the matrix
elements in each of these bases have the form

dHAmnðλÞ
dλ

¼ ðebmðλÞ − ebnðλÞÞ2HAmnðλÞ ð33Þ

and

dHBmnðλÞ
dλ

¼ −ðeamðλÞ − eanðλÞÞ2HBmnðλÞ: ð34Þ

These equations can be integrated exactly:

HAmnðλÞ ¼ e
R

λ

0
ðebmðλ0Þ−ebnðλ0ÞÞ2dλ0HAmnð0Þ ð35Þ

HBmnðλÞ ¼ e−
R

λ

0
ðeamðλ0Þ−eanðλ0ÞÞ2dλ0HBmnð0Þ: ð36Þ

These solutions show that matrix elements of HA increase
exponentially while matrix elements of HB decrease
exponentially as the flow parameter λ is increased. This
evolution can stall if there are degeneracies in the eigen-
values, if there are approximate degeneracies, or if the
eigenvalues cross for some value of λ.
It is also apparent from these equations that in the high-

resolution, large-volume limit, where the spectrum of the
block diagonal operators approaches a continuous spectrum,
there will be closely spaced eigenvalues, which will lead to
slow convergence of some parts of the scale-coupling
operator.
To solve these equations numerically the Hamiltonian

needs to be truncated to a finite number of degrees of
freedom. This means that it is necessary to truncate both the

MULTIRESOLUTION DECOMPOSITION OF QUANTUM … PHYSICAL REVIEW D 95, 094501 (2017)

094501-7



volume and resolution. Any system with a finite energy in a
finite volume is expected to be dominated by a finite
number of degrees of freedom [50]. These can be separated
into degrees of freedom associated with an experimental
scale and additional relevant degrees of freedom at smaller
scales. We can use scaling-function fields as the degrees of
freedom on the experimental scale and wavelet degrees of
freedom on the smaller scales that are still relevant to the
given volume and energy scale.
While similar remarks apply to Hamiltonians with inter-

actions, in general a different flow generator may be needed
to separate the different-scale degrees of freedom. Itmay also
be necessary to first project the truncated Hamiltonian on a
subspace before solving the flow equation.

V. TEST

To determine if solving the flow equation eliminates the
coupling terms, we consider a truncation of the free-field
Hamiltonian (21) to a finite volume with two resolutions,
using 32 basis functions: 16 scaling functions and 16
wavelets to expand the fields. For simplicity, we only keep
wavelets on one scale. The coefficients Dk

s;mn, D
lj
w;mn, and

Dlk
sw;mn, in (24), (25), and (26) are given in [11] and

computed in the Appendix. The truncated fields are defined
by an expansion in a finite number of basis functions of two
resolutions:

ΦðxÞ ¼
X15
n¼0

snðxÞΦðs; n; tÞ þ
X15
n¼0

wnðxÞΦðw; n; tÞ ð37Þ

ΠðxÞ ¼
X15
n¼0

snðxÞΠðs; n; tÞ þ
X15
n¼0

wnðxÞΠðw; n; tÞ: ð38Þ

The truncated fields in (37) and (38) vanish smoothly
at x ¼ 0 and x ¼ 20, corresponding to the edge of the
support of the leftmost and rightmost basis functions.
While a more complicated boundary condition could be
used, this choice is the most straightforward to implement,
and corresponds to the projection of the wavelet basis on a
finite-dimensional subspace.
The truncated Hamiltonian is constructed by inserting

these truncated fields in the free-field Hamiltonian. The
resulting Hamiltonian is quadratic in these fields, and has
the form

H ¼
X
mn

assmnðλÞΦðs;m; 0ÞΦðs; n; 0Þ þ
X
mn

bssmnðλÞΠðs;m; 0ÞΠðs; n; 0Þ

þ
X
mn

cssmnðλÞΦðs;m; 0ÞΠðs; n; 0Þ þ
X
mn

dssmnðλÞΠðs;m; 0ÞΦðs; n; 0Þ

þ
X
mn

awwmnðλÞΦðw;m; 0ÞΦðw; n; 0Þ þ
X
mn

bwwmnðλÞΠðw;m; 0ÞΠðw; n; 0Þ

þ
X
mn

cwwmnðλÞΦðw;m; 0ÞΠðw; n; 0Þ þ
X
mn

dwwmnðλÞΠðw;m; 0ÞΦðw; n; 0Þ

þ
X
mn

awsmnðλÞΦðw;m; 0ÞΦðs; n; 0Þ þ
X
mn

bwsmnðλÞΠðw;m; 0ÞΠðs; n; 0Þ

þ
X
mn

cwsmnðλÞΦðw;m; 0ÞΠðs; n; 0Þ þ
X
mn

dwsmnðλÞΠðw;m; 0ÞΦðs; n; 0Þ

þ
X
mn

aswmnðλÞΦðs;m; 0ÞΦðw; n; 0Þ þ
X
mn

bswmnðλÞΠðs;m; 0ÞΠðw; n; 0Þ

þ
X
mn

cswmnðλÞΦðs;m; 0ÞΠðw; n; 0Þ þ
X
mn

dswmnðλÞΠðs;m; 0ÞΦðw; n; 0Þ: ð39Þ

The initial condition (λ ¼ 0) corresponds to the original truncated Hamiltonian, including all of the wavelet-scale-
coupling terms:

assmnð0Þ ¼
1

2
ðμ2δmn þDssmnÞ bssmnð0Þ ¼

1

2
δmn cssmnð0Þ ¼ 0 dssmnð0Þ ¼ 0

awwmnð0Þ ¼
1

2
ðμ2δmn þDwwmnÞ bwwmnð0Þ ¼

1

2
δmn cwwmnð0Þ ¼ 0 dwwmnð0Þ ¼ 0

awsmnð0Þ ¼ Dwsmn bwsmnð0Þ ¼ 0 cwsmnð0Þ ¼ 0 dwsmnð0Þ ¼ 0

aswmnð0Þ ¼ Dswmn bswmnð0Þ ¼ 0 cswmnð0Þ ¼ 0 dswmnð0Þ ¼ 0:
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To test the flow equation method the mass μ was set to 1.
The mass sets the energy scale for the parameter λ.
An attempt to solve the flow equation by perturbation theory
did not to converge. Convergence was achieved by solving
the flow equation using the Euler method, which uses the
differential equation to step to successive values of λ. The
step size was determined by examining the size and number
of matrix elements, to ensure that the errors remain small.
A step size of 0.001 was used in our calculations. While the
efficiency could be improved with a higher-order solution
method, in this test the Euler methodwas sufficient to see the
that flow equation drives the coupling term to zero.
To illustrate the evolution of the coefficients in the

expansion (39) we plot the Hilbert-Schmidt norms of the
nonzero coefficients

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

a�xyijaxyji

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

b�xyijbxyji

s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

c�xyijcxyji

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

d�xyijdxyji

s

as functions of λ.
There are four types of operators, Φðs; n; 0Þ;Πðs; n; 0Þ;

Φðw;m; 0Þ; andΠðw;m; 0Þ, leading to 16 types of quadratic
expressions. Figures 1–8 show theHilbert-Schmidt norms of
the coefficients of each of the nonzero quadratic expressions
as a function of the flow parameter.
The norms of coefficients involving all scaling or all

wavelet fields evolve to nonzero values, while the norms of
the coupling matrices all evolve to zero. The plots show that
initially the size of the coupling terms falls off very fast, but
the rate of decrease slows significantly as λ gets larger. For
λ ¼ 20 the Hilbert-Schmidt norms of the coupling coef-
ficients are reduced by about 2 orders of magnitude from
their original values.
The Hilbert-Schmidt norms of the coefficients are domi-

nated by the largest matrix elements. It is also useful to
understand how the individual matrix coefficients converge.
Figures 9–12 provide a graphical representation of the

coefficient matrices for different values of λ. The figures

should be viewed as a montage of sixteen 16 × 16matrices.
Indices 0–15 correspond toΦðsÞ, 16–31 correspond toΠðsÞ,
32–47 correspond to ΦðwÞ, and 48–63 correspond to ΠðwÞ.
The gray scale shows the size of the coefficients of the
quadratic expressions in the Hamiltonian as a function of λ.
The four figures correspond to different values of the

flow parameter: λ ¼ 0, λ ¼ 0.2, λ ¼ 2, and λ ¼ 20.
Figure 9 represents the initial values. The two narrow

diagonal bands in the 16–31 and 48–63 blocks represent
the coefficients bssmnð0Þ and bwwmnð0Þ respectively. The
fatter diagonal bands in the upper left-hand part of this figure
are associated with the scale-scale and wavelet-wavelet

FIG. 2. Hilbert-Schmidt norm: Φ wavelet-Φ wavelet.

FIG. 3. Hilbert-Schmidt norm: Φ scale-Φ scale.

FIG. 1. Hilbert-Schmidt norm: Φ scale-Φ scale.

FIG. 4. Hilbert-Schmidt norm: Φ scale-Φ wavelet.
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derivative terms. They are almost diagonal because the
matricesDx;mn only couple neighboring degrees of freedom.
The terms above and below the diagonal are the

coefficients of the scale-wavelet and wavelet-scale deriva-
tive terms, aswmnð0Þ and awsmnð0Þ. These are responsible
for the coupling of the two scales and are the terms that the
flow equation is designed to suppress.
Figure 10 shows the value of these coefficients for

λ ¼ 0.2. For this value of λ the coupling terms have
become smaller and more nonlocal. This is because
repeated applications of the derivative matrix widen the
support of the degrees of freedom that are coupled together.
Figure 11 shows that by λ ¼ 2 the scale-coupling terms

have essentially disappeared.
Figure 12 show that integrating the flow equation out to

λ ¼ 20 does not lead to any big changes. This is consistent

FIG. 6. Hilbert-Schmidt norm: Π wavelet-Π wavelet.

FIG. 7. Hilbert-Schmidt norm: Π wavelet-Π scale.

FIG. 8. Hilbert-Schmidt norm: Π scale-Π wavelet.

FIG. 9. Full matrix, λ ¼ 0, mass ¼ 1.

FIG. 10. Full matrix, λ ¼ 0.2, mass ¼ 1.

FIG. 5. Hilbert-Schmidt norm: Π scale-Π scale.
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with the behavior shown in Figs. 1–8, that the exponential
suppression slows as λ is increased. It is worth noting that
thewidth of the diagonal band in the uncoupled Hamiltonian
at λ ¼ 20 is about the same size as the width of the
corresponding band in the original Hamiltonian. This shows
that at least for this example the flow equation approximately
preserves the local nature of the truncated theory.
The figures support the contention that flow equation

methods can be successfully applied to separate scales in
wavelet discretized field theory.
For any value of the flow parameter the flow equation

generates a new equivalent Hamiltonian. Ignoring the small
terms that couple the wavelet to the scaling-function fields,
the Hamiltonian becomes a sum of two commuting
operators that have degrees of freedom associated with
different scale degrees of freedom, but each operator

includes the effects of the eliminated degrees that appear
in the other operator.
In the free-field case the Hamiltonians are quadratic

functions of the canonical fields for any value of the flow
parameter. For sufficiently large values of the flow param-
eter the Hamiltonian becomes sums of two Hamiltonians
involving different scale degrees of freedom.
It is still necessary to solve for the vacuum and solve

the field equations of the truncated theory. In this case there
are two independent systems of field equations using the
decoupled Hamiltonians:

_Φðs; n; tÞ ¼ i½HsðλÞ;Φðs; n; tÞ�
_Πðs; n; tÞ ¼ i½HsðλÞ;Πðs; n; tÞ�

and

_Φðw; n; tÞ ¼ i½HwðλÞ;Φðw; n; tÞ�
_Πðw; n; tÞ ¼ i½HwðλÞ;Πðw; n; tÞ�:

The effectiveHamiltonianHsðλÞ is the effectiveHamiltonian
with the relevant (scaling-function) degrees of freedom.
For the free field, the dynamics corresponds to a set of
coupled Harmonic oscillators. This can be used to solve the
Heisenberg equations, compute the vacuum, and compute
approximate correlation functions for the coarse scale block
Hamiltonian. This is discussed in more detail in the next
section.

VI. ANALYSIS

The results of the previous section show that in the free-
field case that flow equation methods can be used to
approximately block diagonalize the truncated Hamiltonian
by scale. To better understand properties of the solution it is
helpful to first consider properties of the exact solution of
the truncated equations and how they respond to changes in
volume and resolution truncations. Volume truncations
change the number of canonical pairs of fields while
resolution truncations only change the overlap matrices
of the spatial derivatives (24)–(26). In general the initial
truncated Hamiltonian can be expressed in matrix form as

H ¼ 1

2
½ðΠs;ΠwÞ

�
Is 0

0 Iw

�� Πs

Πw

�

þ ðΦs;ΦwÞ
�
μ2I þDs Dsw

Dws μ2I þDw

�� Φs

Φw

��

where the upper components represent the scaling-function
fields and the lower components represent the wavelet
fields. Because the matrix

M ≔
�
μ2I þDs Dsw

Dws μ2I þDw

�

FIG. 11. Full matrix, λ ¼ 2.0, mass ¼ 1.

FIG. 12. Full matrix, λ ¼ 20.0, mass ¼ 1.
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is a real symmetric matrix it can be diagonalized by a real
orthogonal matrix O:

OtMO ¼
�
ms 0

0 mw

�
ð40Þ

where ms and mw are diagonal matrices consisting of
eigenvalues of the matrix M.
Transformed discrete fields are defined by

� Φ0s

Φ0w

�
≔ O

� Φs

Φw

�
and

� Π0s

Π0w

�
≔ O

� Πs

Πw

�
:

The orthogonality of O implies that the transformed fields
satisfy canonical commutation relations. It follows from the
Stone–von Neumann uniqueness theorem that this trans-
formation of the field operators can be implemented by a
unitary transformation W:

W

� Φs

Φw

�
W† ¼

� Φ0s

Φ0w

�
¼ O

� Φs

Φw

�

and W

� Πs

Πw

�
W† ¼

� Π0s

Π0w

�

¼ O

� Πs

Πw

�
:

If this transformation is applied to the truncated
Hamiltonian it is transformed into the sum of uncoupled
harmonic oscillator Hamiltonians, where the squares of the
oscillator frequencies are exactly the eigenvalues of the
matrix M:

H0 ¼ UHU† ¼ 1

2

�
ðΠs;ΠwÞ

�
I 0

0 I

�� Πs

Πw

�

þ ðΦs;ΦwÞ
�

ms 0

0 mw

�� Φs

Φw

��

or

H ¼ 1

2

X
n

ðΠðs; n; 0ÞΠðs; n; 0Þ þms
nΦðs; n; 0ÞΦðs; n; 0ÞÞ

þ 1

2

X
n

ðΠðw; n; 0ÞΠðw; n; 0Þ

þmw
nΦðw; n; 0ÞΦðw; n; 0ÞÞ:

The ground state of the truncated Hamiltonian is the state
annihilated by the annihilation operators

asn ≔
1ffiffiffi

2
p

ms1=4
n

X
j

ð
ffiffiffiffiffiffi
ms

n

p
Φðs; n; 0Þ þ iΠðs; n; 0ÞÞ ð41Þ

awn ≔
1ffiffiffi

2
p

mw1=4
n

X
j

ð
ffiffiffiffiffiffiffi
mw

n

p
Φðw; n; 0Þ þ iΠðw; n; 0ÞÞ ð42Þ

where ms
n and mw

n are the eigenvalues of the diagonal
matrices ms and mw. It follows that the unitary operator
U does a complete diagonalization that separates differ-
ent scale degrees of freedom. The transformation O is
not unique, since permutations of the columns of O
permute the eigenvalues. This means that the identifi-
cation of a given oscillator frequency with a wavelet or
scaling-function degree of freedom depends on the
choice of O.
The advantage of this representation is that it can be used

to understand the behavior of the truncated Hamiltonian
with respect to changes in volume and resolution as well as
the role of the mass parameter. The key observation is that
the truncated system is equivalent to a set of uncoupled
harmonic oscillators where (1) the number of oscillators is
proportional to the cutoff volume and the oscillator
frequencies are square roots of the eigenvalues of the
matrix M. The matrix M is μ2I þD, where D is a positive
symmetric matrix with eigenvalues di. The matrix D is the
only quantity in the truncated Hamiltonian that changes
under scale changes. If we double the resolution, D → 4D.
This means that the eigenvalues of M have the form mi ¼
μ2 þ di and under a change of resolution by a factor of 2
they become mi → μ2 þ 4di. This means that doubling the
resolution increases the separation between the squares of
the oscillator frequencies by a factor of 4. The other
property of D is that, up to boundary terms, it is transla-
tionally invariant. If we think of it as representing the
kinetic energy of particles in a box, we expect that doubling
the box size will introduce new modes with half of the
frequency. Thus, while increasing the resolution increases
the separation between oscillator frequencies, if the volume
is increased, new lower-frequency modes are added that fill
in the gaps generated by increasing the resolution. The
mass μ provides a lower bound for the oscillator frequen-
cies. Since the spectrum of the exact free-field Hamiltonian
is continuous, in order to get a continuum limit, it is
necessary to simultaneously increase both the volume and
resolution in a manner that the separation between adjacent
normal mode frequencies vanishes.
The resolution for a fixed scale can also be improved

by increasing the order K of the scaling-function-wavelet
basis. For a fixed scale, basis functions with higher
values of K can locally pointwise represent higher-degree
polynomials than the K ¼ 3 basis functions [51]. The
cost is that the basis functions have larger support and are
thus less local for a given level of truncation. The
improvement in efficiency by increasing K for a fixed-
scale wavelet-truncated free-field theory was demon-
strated in [20].
It is also interesting to note that the scaling properties of

the Hamiltonian can be misleading. Specifically, for the
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free-field Hamiltonian, in the infinite-resolution limit it
looks like the matrix D → 4kD which should eventually
dominate the fixed mass for large k. However it is clear that
the mass cannot be ignored, since it fixes the minimum
value of the energies for any scale. This suggest that it
might be more useful to consider the properties’ correlation
functions under change of volume and scale, since these
quantities also depend on the vacuum. These issues will
clearly become more complex for interacting theories. The
correlation function (Wightman function) for the discrete
field is

h0jΦðx; txÞΦðy; tyÞj0i
¼ h00jΦ0ðxÞΦ0ðyÞj00i

¼
X
mnk

snðxÞsmðyÞOnkOmk
1

2
ffiffiffiffiffiffi
mk

p eimkðty−txÞ:

These are discussed in [20].
The discussion above does not directly apply to the block

diagonal Hamiltonian constructed by the flow equation;
however the transformation UðλÞ generated by the flow
cannot change the spectrum of the Hamiltonian. It can only
determine which of the exact eigenvalues get assigned to
each of the two blocks. The scaling properties of the
eigenvalues are the same as in the exact case.
We can understand what happens in the flow equation

case. For mass μ ¼ 1 and λ ¼ 20 the coefficients bssmn and
bwwmn are within about 2% of their initial values. This
means that the squares of the normal mode frequencies of
the scaling block diagonal Hamiltonian are approximately
eigenvalues of the matrix 2assmnðλ ¼ 20Þ. These can be
compared to the corresponding normal mode frequencies of
the full truncated Hamiltonian.
In Table II we display the squares of the λ ¼ 20 normal

mode frequencies in column 1, the squares of the normal
mode frequencies of the Hamiltonian obtained by simply
throwing away the wavelet degrees of freedom without
eliminating them in column 2, and the squares of the
normal mode frequencies of the full truncated Hamiltonian
in columns 3 and 4. Inspection of this table shows that the
frequencies in the first column are approximately equal to
the frequencies in the third column. This shows that the
flow equation block diagonalizes the Hamiltonian into a
block with the 16 lowest-frequency modes (the coarse scale
block) and another block with the 16 highest-frequency
modes (fine scale block). The properties of these matrices
under change of scale or resolution follow from the
behavior of the normal mode frequencies—increasing
the volume adds more low-frequency modes, while increas-
ing the resolution increases the separation between the
different normal mode frequencies. The mass sets the
lowest normal mode frequency.
In thiswork only two scales that differ by a factor of 2were

considered. Flow equation methods easily generalize to treat
truncated theories with many different scales. While the goal

of this paper was to construct an equivalent effective theory
by eliminating fine-resolution degrees of freedom that are not
explicitly needed, the calculation is equivalent to either
truncating the Hamiltonian using a fixed fine-scale truncated
Hamiltonian of the form (23) or using the equivalence (9) of
the fine-scale truncated Hamiltonian to the multiscale trun-
cated Hamiltonian (22). This is a canonical transformation
that can be realized unitarily. In this work the fine- and
coarse-scale degrees of freedom are decoupled. In [20] the
other two equivalent representations are used. They interpret
the relation between the fine-scale scaling-function repre-
sentation and the multiscale scaling-function-wavelet repre-
sentation, which is given by the wavelet transform, as an
explicit example of an AdS-CFT-like bulk boundary duality,
where the multiple scales in the multiscale Hamiltonian (22)
represent the discretization of an extra dimension. For the
free-field example, at a given level of fine scale and volume
truncation, all three Hamiltonians represent coupled oscil-
lators with the same normal mode frequencies.
Each of these representations has different advantages.

The representation discussed in this work is focused on
developing a formulation of the theory using only
degrees of freedom on one coarse scale, which would
ideally be identified with a physical scale. The multiscale
representation has the advantage that it initially leads to a
discrete representation of the exact (untruncated) theory
that can be subsequently truncated. The direct fine scale
truncations are similar to lattice truncations. While they
are never exact, the scaling properties of the basis
functions make this representation the most natural one
to study the limit to an arbitrarily fine resolution. This is
done explicitly in [20] where the truncated Daubechies’
free-field scaling-wavelet vacuum correlation functions
in both the massive and massless case are shown to
converge to the corresponding free-field Wightman
functions in [20].

TABLE II. Normal mode frequencies

λ ¼ 20, μ ¼ 1 Truncated Exact 1:16 Exact 17:32

1.037 1.037 1.041 16.65
1.145 1.146 1.153 19.25
1.326 1.333 1.340 22.08
1.583 1.609 1.604 25.12
1.919 1.995 1.947 28.34
2.341 2.525 2.373 31.67
2.861 3.236 2.890 35.07
3.493 4.161 3.508 38.46
4.263 5.317 4.243 41.78
5.201 6.689 5.112 44.95
6.346 8.232 6.134 47.89
7.722 9.859 7.332 50.53
9.309 11.45 8.729 52.79
11.02 12.89 10.34 54.62
12.74 14.03 12.19 55.97
14.35 14.76 14.29 56.79
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The one thing that was not discussed is what happens to
the numerical methods when the mass is changed. In this
free-field example the mass fixes the lower limit of the
spectrum and also fixes the dimensions of the flow
parameter. One might expect that since the exponential
falloff in (34) is determined by the separation of the evolved
normal mode eigenvalues of the block diagonal part of the
Hamiltonian, that the convergence of the flow equation will
not be significantly affected by changing the mass. To test
this we solved the flow equation for μ2 ¼ 0 and μ2 ¼ 16 for
λ ¼ 0.2 and λ ¼ 2. The results are shown in Figs. 13–16.
These figures look very similar to the matrices in Figs. 10
and 11 for μ2 ¼ 1. This suggests that the flow equation has
no special difficulties in treating truncated theories even
when m ¼ 0.

VII. SUMMARY, CONCLUSIONS
AND OUTLOOK

The purpose of this work is to examine the use of flow
equation methods to separate the physics on different
resolution scales in an exact wavelet discretization of
quantum field theory. While quantum field theory couples
all distance scales, there is a physically relevant scale (or
resolution) and it is desirable to formulate the theory
directly in terms of the degrees of freedom associated with
the physically relevant degrees of freedom. This can be
done by eliminating the short-distance degrees of freedom.
While it may not be possible to get a well-defined local

theory by eliminating all arbitrarily small distance degrees
of freedom, it is possible formulate an effective theory
that includes the important short-distance physics by

FIG. 13. Full matrix, λ ¼ 0.2, mass ¼ 0.

FIG. 14. Full matrix, λ ¼ 2.0, mass ¼ 0.

FIG. 15. Full matrix, λ ¼ 0.2, mass ¼ 4.

FIG. 16. Full matrix, λ ¼ 2.0, mass ¼ 4.
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eliminating degrees of freedom between the physically
relevant scale and a chosen minimal resolution scale. The
justification for this is that for a given application there is a
relevant volume and energy scale. These restrictions gen-
erally imply that the dynamics is dominated by a finite
number of degrees of freedom. This can be understood in a
number of ways. For a free-field theory restricting the
energy leads to a subspace of the Fock space with an upper
bound on the number of particles. If this system is put in a
finite volume, the free particles in a finite volume have
discrete energies and only a finite number of these states
have energy less than the energy scale. These degrees of
freedom are sufficient to formulate the dynamics relevant to
the system.
In the scaling-wavelet representation this provides a

justification for a volume/resolution truncation of the field
theory. The smallest scales that influence the physics can be
eliminated by block diagonalizing the Hamiltonian. In this
representation the field was expressed as a linear combi-
nation of almost local operators classified by position and
resolution.
These operators satisfy simple discrete canonical commu-

tation relations. In this representation the exact Hamiltonian
is a finite-degree polynomial with known constant coeffi-
cients in an infinite number of these operators. Resolution
and volume truncations lead to truncated Hamiltonians
involving a finite number of degrees of freedom.
The approach taken in this paper differs from other

wavelet approaches to quantum field theory [2,4] [8–10,12,
13,16]. The basis functions that are used in this work are
orthonormal with compact support, but they have a limited
amount of smoothness. In most wavelet approaches the
wavelet functions are overcomplete, smooth functions that
do not have compact support. The justification for smearing
fields with functions that have a limited amount of smooth-
ness is that when these basis functions are integrated
against free-field Wightman functions the results are well
defined. This means the resulting operators are well defined
on the free-field Fock space, and for theories truncated to a
finite number of degrees of freedom it is not necessary to
pass to an inequivalent representation of the field algebra in
order to solve the field equations.
While there are a number of potential methods to eliminate

the short-distance degrees of freedom, the simple nature of the
commutation relations of the discrete field operators suggests
using flow equation methods, where the generator of the
desired unitary transformation involves commutators of prod-
ucts of canonical pairs of operators. These methods have been
proposed to be used in QCD [39–41], as well as in potential
theory [44–46].Those applications focusonmomentumscales
and the equations are designed to drive the Hamiltonian to a
diagonal form. In thiswork thegoal is to formulate the problem
in terms of distance scales and to block diagonalize [42] the
Hamiltonian rather than diagonalize it. In this example the
transformed theory consists of two sets of a canonically

conjugate set of operators that operate on different distance
scales. The generator of the flow equation is chosen to
eliminate the terms that couple these scales in theHamiltonian.
This method was tested using the Hamiltonian for a free

scalar field. While the free field is trivial, in the wavelet
representation the space derivatives in the Hamiltonian
generate nontrivial terms that couple the degrees of free-
dom on different scales. This Hamiltonian has the advan-
tage that the flow equation applied to this Hamiltonian does
not generate an infinite number of new types of many-body
operators. This allows us to focus on testing the flow
equation as a method to separate scales without the
complication of understanding the relative importance of
the generated interactions. What we found can be summa-
rized by the following observations:
(1) It was demonstrated that flow equation methods with

a suitable generator could be used to separate scales
in a wavelet truncated theory.

(2) The truncated free-field Hamiltonian is equivalent to
a system of coupled harmonic oscillators. The flow
equation block diagonalized the Hamiltonian with
the coarse-scale block containing the 16 lowest-
frequency normal modes and the fine-scale block
containing the 16 highest-frequency modes.

(3) Increasing the truncated volume generated new low-
frequency modes, while increasing the resolution
increased the separation between modes. The mass
set a lower bound on the normal mode frequencies.

(4) The flow equation exhibited convergence for masses
between 0 and 4.

(5) For this problem, the flow equation was successfully
applied directly to the Hamiltonian, without projec-
ting on a subspace.

(6) We found the that flow equation could be integrated
using the Euler method, but perturbation theory
failed to converge.

(7) The evolved Hamiltonian was approximately local.
(8) The spectral properties suggest the in order to

approach the continuous spectrum of the exact
theory, the volume and resolution truncations need
to be removed together.

(9) In our test the coefficients of the coupling terms
initially fell off quickly, but the rate of falloff slowed
down significantly as the flow parameter increased.
The method reduced the coupling coefficients by a
factor of about 100 for a modest value of the flow
parameter.

The next step in this program is to consider models with
interactions and to consider models in 3þ 1 dimensions.
The complication with interactions is that integrating the
flow equation generates new operators with each step of the
Euler method. A different flow generator will need to be
formulated in order to get results comparable to the results
outlined above. This is because the analysis that led to
(33)–(34) does not apply to the interacting case. On the
other hand, the truncations suggest that in the interacting
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case only a finite-dimensional subspace of the Fock space
is relevant. Flow equation methods are more naturally
designed to work on subspaces and diagonalize or block
diagonalize operators projected on subspaces. These pro-
jections limit the types and nature of the many-body
operators that are generated by solving the flow equations.
Generalizations to 3þ 1 dimensions are straightforward.
Single basis functions are replaced by products of three
basis functions. While the bookkeeping becomes more
difficult, the basic structure is essentially unchanged.
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APPENDIX: COMPUTATION OF
OVERLAP INTEGRALS

The Daubechies wavelets and scaling functions are
fractal functions. Integrals involving these functions cannot
be computed using conventional methods; however the
scaling equation (1) and normalization condition (2) lead to
linear constraints that reduce the exact integration of all of
the relevant integrals to finite linear algebra.
These integrals were computed in [11]. In this Appendix

we calculate them using a method introduced by Beylkin
[27]. While the equations are identical to Beylkin’s, we
derive them without computing second derivatives of the
K ¼ 3 scaling functions, which only have continuous first
derivatives.
Repeated application of the scaling equation (1) and the

definition of the mother wavelet (11) can be used to express
the coefficients Dk

s;mn;Dkl
sw;mn, and Dw;jl

mn in terms of D0
s;mn

and the hl in Table I:

Dk
s;mn ¼

Z
sk0mðxÞsk0n ðxÞdx

¼ 22k
Z

s0ðx −mÞs0ðx − nÞ ¼ 2kD0
s;mn

Dkl
sw;mn ¼

Z
sk0mðxÞwl0

nðxÞdx

¼ 22ðlþ1ÞX
m0n0

Hlþ1−k
mm0 Gnn0D0

s;m0n0

Dw;jl
mn ¼

Z
wj0
mðxÞwl0

nðxÞdx

¼ 22ðlþ1ÞX
m0n0

ðGHl−jÞmm0Gnn0D0
s;m0n0 ðl ≥ jÞ

where the primes denote derivatives, the matrices Hmn and
Gmn are defined in terms of the scaling-function and
wavelet weights by

Hmn ¼ hn−2m Gmn ¼ gn−2m

and

D0
s;mn ¼

Z
s0mðxÞs0nðxÞdx:

Translational invariance implies that D0
s;mn can be

expressed in terms of

D0
s;mn ¼ D0

s;0;n−m:

For K ¼ 3 there are nine nonzero coefficients

D0
s;0m ≔

Z
s0ðxÞs0ðx −mÞdx − 4 ≤ m ≤ 4: ðA1Þ

Letting x0 ¼ x −m gives D0
s;0−m ¼ D0

s;0m so there are only
five independent integrals that need to be evaluated.
Differentiating the scaling equation (1) gives a renormal-
ization group equation for the derivatives

s0ðx −mÞ ¼ 2
ffiffiffi
2

p X
l

hls0ð2x − 2m − lÞ: ðA2Þ

Using (A2) in (A1) gives homogeneous equations relating
the nonzero D0

s;0m’s:

D0
s;0m ¼ 4

X
l;n

hlhlþnD0
s;02mþn: ðA3Þ

The coefficients

an ≔ 2
X
l

hlhlþn

are called autocorrelation coefficients. It follows from the
orthogonality constraint on translations of the scaling
function (4) that a0 ¼ 2.0 and a2n ¼ 0 for n ≠ 0. The
remaining autocorrelation coefficients for odd n are
rational. For the Daubechies K ¼ 3 hl in Table I the
nonzero autocorrelation coefficients can be computed
and they are

a0 ¼ 2 a1 ¼ a−1 ¼
75

64
a3 ¼ a−3 ¼ −

25

128

a5 ¼ a−5 ¼
3

128
:

The homogeneous equation (A3) can be expressed in terms
of an:
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D0
s;0m ¼

X
2anD0

s;02mþn: ðA4Þ

In order to solve this system for D0
s;0m an inhomogeneous

equation is needed. To derive an inhomogeneous equation
note that for K ¼ 3, 1, x and x2 can be expressed pointwise
as locally finite expansions in the scaling functions. The
expansions have the form

1 ¼
X
n

snðxÞ ðA5Þ

x ¼
X
n

ðnþ hxiÞsnðxÞ ðA6Þ

x2 ¼
X
n

ðn2 þ 2nhxi þ hx2iÞsnðxÞ ðA7Þ

where hxni ¼ R
sðxÞxn are moments of the scaling func-

tion. While the moments can also be computed exactly,
they are not needed to calculateD0

s;0m. Differentiating (A6),
using (A5), gives

1 ¼
X
n

ns0nðxÞ:

Differentiating (A7) using (A6) gives

2x ¼
X
n

ðn2 þ 2nhxiÞs0nðxÞ ¼
X
n

n2s0nðxÞ þ 2hxi:

Multiplying by s0ðxÞ and integrating givesZ
2xs0ðxÞ ¼ −2

¼
X
n

n2
Z

s0nðxÞs0ðxÞdxþ 2hxi
Z

s0ðxÞdx

¼
X
n

n2
Z

s0nðxÞs0ðxÞdx:

This gives the inhomogeneous equationX
n

n2D0
s;n0 ¼ −2: ðA8Þ

The linear system consisting of Eqs. (A4) and (A8) has
rational coefficients and can be solved exactly for rational
solutions:

D0
s;40 ¼ D0

s;−40 ¼ −3=560

D0
s;30 ¼ D0

s;−30 ¼ −4=35

D0
s;20 ¼ D0

s;−20 ¼ 92=105

D0
s;10 ¼ D0

s;−10 ¼ −356=105

D0
s;00 ¼ 295=56:

Similar methods [32] can be used to compute the overlap
integrals (27) that appear in interacting theories.
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