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In this paper the dynamical spin effects of the light-front holographic wave functions for light
pseudoscalar mesons are studied. These improved wave functions are then confronted with a number of
hadronic observables: the decay constants of π and K mesons, their ξ-moments, the pion-to-photon
transition form factor, and the pure annihilation B̄s → πþπ− and B̄d → KþK− decays. Taking fπ , fK , and
their ratio fK=fπ as constraints, we perform a χ2 analysis for the holographic parameters, including the

mass scale parameter
ffiffiffi
λ

p
and the effective quark masses, and find that the fitted results are quite consistent

with the ones obtained from the light-quark hadronic Regge trajectories. In addition, we also show that the
end point divergence appearing in the pure annihilation B̄s → πþπ− and B̄d → KþK− decays can be
controlled well by using these improved light-front holographic distribution amplitudes.

DOI: 10.1103/PhysRevD.95.094025

I. INTRODUCTION

Light-front (LF) quantization is the natural frame-
independent framework for the description of nonpertur-
bative relativistic bound-state structure in quantum field
theory. In principle, one can solve QCD by diagonalizing
the LF QCD Hamiltonian HLF, by using, for example, the
discretized light-cone quantization method [1]. Both the
spectrum and the LF wave functions (LFWFs), which
encode all the hadronic information, are then obtained from
the eigenvalues and eigenfunctions of the Heisenberg
equation HLFjψi ¼ M2jψi. The result is an infinite set
of coupled integral equations for the LF components in a
Fock expansion [1]. Unfortunately, solving these equations
is a formidable computational task for the case of a non-
Abelian quantum field theory such as QCD in four-
dimensional spacetime. Consequently, we have to resort
to the alternative methods, recent comprehensive reviews of
which could be found in Refs. [1,2].
In recent years, a semiclassical first approximation to

strongly coupled QCD—light-front holographic AdS/QCD
—has been developed [3–7]. This approach to hadron
dynamics in physical four-dimensional spacetime at fixed
LF time τ ¼ xþ ¼ x0 þ x3 is holographically dual to the
dynamics of a gravitational theory in five-dimensional anti-
de Sitter (AdS) space. The LF eigenvalue equation can be
reduced in this theoretical framework to an effective single-
variable quantum-mechanical wave equation for ϕðζÞ
which is given by [7]

�
−

d2

dζ2
−
1 − 4L2

4ζ2
þ UðζÞ

�
ϕðζÞ ¼ M2ϕðζÞ: ð1Þ

The function UðζÞ is the effective potential acting on the
valence states [8]; it is holographically related to a unique
dilation profile in AdS space. As a result, one arrives
at a concise form of a color-confining harmonic oscillator
in impact space after the holographical mapping,
Uðζ; JÞ ¼ λ2ζ2 þ 2λðJ − 1Þ. The emergence of the mass
scale λ is consistent with the procedure of de Alfaro et al.
[9] in which a mass scale can appear in a Hamiltonian
without affecting the conformal invariance of the action [2].
With only one mass scale in addition to the quark masses,
this color-confining approach predicts successfully the
spectroscopy and some dynamical observables (like form
factors and structure functions) of light-quark hadrons
[3–6], as well as the behavior of the running coupling in
the nonperturbative domain [10–12].
The eigenvalues of the light-front Schrödinger equation,

Eq. (1), are the squares of the meson masses. The
remarkably simple features of the empirical Regge trajec-
tories for both meson and baryon families are correctly
reproduced by LF holographic QCD with only one param-
eter, the mass scale λ [13–17]. The eigensolutions of Eq. (1)
provide the qq̄ light-front wave functions which control the
dynamics of the mesons. After factoring out the longi-
tudinal and orbital dependence, the LFWF can be written as

ψðx; ζ;φÞ ¼ eiLφXðxÞ ϕðζÞffiffiffiffiffiffiffiffi
2πζ

p ; ð2Þ

where ζ2 ¼ xð1 − xÞb2⊥ is the Poincaré invariant radial
variable of the LF Hamiltonian and b⊥ is the invariant
transverse impact variable. The hadronic LFWF ϕðζÞ in
the soft-wall holographic model encodes the dynamical
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properties of the mesons. If one also includes the light-
quark masses, it is given by [5,18]

ψðx; ζÞ ¼
ffiffiffi
λ

π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
e−

λζ2

2 e−
1
2λð

m2
q
x þ

m2
q̄

1−xÞ ð3Þ

in impact space. Note that the LF kinetic energy
P

iðk
2⊥þm2

x Þi
is also the invariant mass squared M2 ¼ ðPik

μ
i Þ2 of the

hadronic constituents.
The holographic LFWF given by Eq. (3) has been

successfully used to describe diffractive ρ meson electro-
production at HERA [19] as well as the spectroscopy and
distribution amplitudes of light and heavy mesons [20–24].
After introducing the LF spinor structure of the wave
functions for light vector mesons in analogy with that of the
photon, the authors of Refs. [25,26] have predicted the
light-front distribution amplitudes (LFDAs) of the ρ andK�
vector mesons, which were then used to evaluate the
branching fractions of B → ργ and B → K�γ decays. In
addition, the B → ρ; K� form factors are computed and
applied to rare B → K�μþμ− and B → ρlν̄l decays
[27–31]. Traditionally, the helicity dependence of the
holographic LFWF is assumed to decouple from the
dynamics, which leads to simple factorizable formulas
for physical quantities, such as the decay constants
[22,23]. In Refs. [19,25–31], the helicity dependence of
the LFWFs for the vector mesons is introduced in order to
predict specific helicity-dependent observables.
In this paper, we will explore helicity-improved LFWFs

for light pseudoscalar mesons and then test their predictions
for hadronic observables including the decay constants of π
and K mesons, their ξ-moments, and the pion-to-photon
transition form factor. We will also explore their applica-
tions to two-body nonleptonic B-meson decays, focusing
especially on the measured pure annihilation B̄s → πþπ−

and B̄d → KþK− decay channels.
In the past few years, several QCD-inspired approaches,

such as QCD factorization (QCDF) [32–34], perturbative
QCD (pQCD) [35,36] and soft-collinear effective theory
(SCET) [37–40], have been developed in order to evaluate
the hadronic matrix elements of local operators which
control two-body nonleptonic B-meson decays. However,
the convolution integrals of the hard kernels with the
asymptotic forms of distribution amplitudes of light final
states suffer from an end point divergence, such as

R
1
0 du=u

or
R
1
0 du=ð1 − uÞ. This divergence limits the prediction

power of the theoretical approaches and introduces large
theoretical uncertainties.
Several schemes for regulating the end point divergences

have been previously proposed. In the SCET approach, a
zero-bin subtraction [41] is assumed, and the annihilation
diagrams are found to be factorizable and bring no strong
phase in the leading order of OðαsðmbÞΛQCD=mbÞ [42]. In
the pQCD approach, the end point singularity is avoided by

introducing parton transverse momentum kT , but at the
expense of having to model the additional kT dependence
of the meson distributions; this predicts a large complex
annihilation correction [35,36,43]. In the QCDF approach,
the end point divergent integrals are treated as signals of
infrared-sensitive contributions which are parametrized by
introducing a complex quantity XA [44,45]. Alternatively,
one can also introduce an infrared-finite dynamical gluon
propagator which moves the end point singularity into an
integral over the timelike gluon momentum; the divergence
then vanishes, and a large strong phase is predicted [46,47].
In contrast, in the LF holographic QCD, it can be seen from
Eq. (3) that the end point behavior is naturally suppressed
by the exponential factor in LFWF due to nonvanishing
effective quark masses, mq and mq̄. Therefore, it is
expected that the problem of end point divergences can
possibly be mitigated by the improved behavior of the
LFWF near the end points. In this paper, we will test if the
effective quark mass regulation of the end point divergen-
ces can provide viable predictions for the pure annihilation
heavy hadron decays.
Our paper is organized as follows. In Sec. II, the

connections between holographic LFWFs and LFDAs
for light pseudoscalar mesons are explored within the
framework of LF quantization. Sections III and IV are
devoted to numerical results and discussions in which the
decay constants, the ξ-moments, and the pion-to-photon
transition form factor are evaluated using the helicity-
improved LFWFs and LFDAs. In Sec. V, the pure anni-
hilation B̄s → πþπ− and B̄d → KþK− decays are studied in
detail using the LFDAs. Finally, we give our summary
in Sec. VI.

II. HOLOGRAPHIC LIGHT-FRONT WAVE
FUNCTIONS AND DISTRIBUTION AMPLITUDES

Our starting point is the definition of the distribution
amplitudes (DAs) of light pseudoscalar mesons [1,48]. The
DAs parametrize the operator product expansion of meson-
to-vacuum matrix elements [49],

h0jq̄ð0Þγμγ5qðxÞjPðpÞi ¼ ifPpμ

Z
1

0

due−iup·xΦðuÞ; ð4Þ

h0jq̄ð0Þiγ5qðxÞjPðpÞi ¼ fPμP

Z
1

0

due−iup·xϕðuÞ; ð5Þ

where μP ¼ m2
P=ðm̄q þ m̄q̄Þ, fP is the decay constant of a

pseudoscalar (P) meson, and ΦðuÞ and ϕðuÞ are the twist-2
and twist-3 DAs, respectively.
In the following derivation, we will adopt the Lepage-

Brodsky (LB) convention [1,48] and assume the light-front
gauge, Aþ ¼ 0. At equal LF time, the DAs can be
expressed using Eqs. (4) and (5) as
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fPΦðz; μÞ ¼ −
i
2

Z
dx−eizp

þx−=2h0jq̄ð0Þγþγ5qðx−ÞjPðpÞi;

ð6Þ

μPfPϕðz; μÞ ¼
i
2
pþ

Z
dx−eizp

þx−=2h0jq̄ð0Þγ5qðx−ÞjPðpÞi;

ð7Þ

by performing the Fourier transformation with respect to
x− ¼ x0 − x3. The remaining main task is to cope with the
hadronic matrix elements involved in Eqs. (6) and (7).
In the framework of LF quantization [1,48], a hadronic

eigenstate jPi can be expanded on a complete Fock-state
basis of noninteracting two-particle states as

jPi¼
X
h;h̄

Z
dkþd2k⊥

ð2πÞ32 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþðpþ−kþÞp

×ΨP
h;h̄
ðkþ=pþ;k⊥Þjkþ;k⊥;h;pþ−kþ;−k⊥; h̄i; ð8Þ

in which ΨP
h;h̄

is the LFWF of the pseudoscalar meson with

the helicity dependence included and h and h̄ denote the
helicities of quark and antiquark, respectively. The one-
particle state is defined, for instance, by jkþi ¼

ffiffiffiffiffiffiffiffi
2kþ

p
b†j0i.

The Dirac (quark) field is expanded in terms of particle
creation and annihilation operators as

ψþðxÞ ¼
Z

dkþffiffiffiffiffiffiffiffi
2kþ

p d2k⊥
ð2πÞ3

×
X
h

½bhðkÞuhðkÞe−ik·x þ d†hðkÞvhðkÞeik·x�; ð9Þ

with uh and vh being the LF helicity spinors. The equal
LF-time anticommutation relations are given by

fb†hðkÞ;bh0 ðk0Þg¼fd†hðkÞ;dh0 ðk0Þg
¼ð2πÞ3δðkþ−k0þÞδ2ðk⊥−k0⊥Þδhh0 : ð10Þ

Equipped with the above formulas, the hadronic matrix
element in Eqs. (6) and (7) is then expressed as

h0jq̄ð0ÞΓqðx−ÞjPðpÞi

¼
ffiffiffiffiffiffi
Nc

p X
h;h̄

Z
dkþd2k⊥Θðjk⊥j < μÞ
ð2πÞ32 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþðpþ − kþÞp ΨP
h;h̄
ðkþ=pþ;k⊥Þ

× v̄h̄ðpþ − kþ;−k⊥ÞΓuhðkþ;k⊥Þe−ikþx−=2; ð11Þ

in which Γ ¼ γþγ5 and γ5 and the scale μ is introduced as
an ultraviolet cutoff on transverse momenta. Using Eq. (11)
and integrating over x− and kþ, we can further obtain a
general expression for the rhs of Eqs. (6) and (7),

Z
dx−eizp

þx−=2h0jq̄ð0ÞΓqðx−ÞjPðpÞi

¼
ffiffiffiffiffiffi
Nc

p
pþ

X
h;h̄

Z jk⊥j<μ d2k⊥
ð2πÞ3Ψ

P
h;h̄
ðz;k⊥Þ

×
�
v̄h̄ðð1 − zÞpþ;−k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − zÞp Γ

uhðzpþ;k⊥Þffiffiffi
z

p
�
: ð12Þ

To proceed with the derivation, we will need the explicit
form of the holographic LFWF, ΨP

h;h̄
. As mentioned in the

Introduction, the helicity dependence of the holographic
LFWF has been assumed in previous works to decouple
from the dynamics, and hence ΨP

h;h̄
ðz;k⊥Þ ¼ ψðz;k⊥Þ.

This assumption leads to a universal formula for different
kinds of mesons; however, it is obviously disfavored by
experiment. In order to restore the proper helicity depend-
ence, the holographic LFWF in the k⊥ space needs to be
modified as

Ψh;h̄ðz;k⊥Þ ¼ NSh;h̄ðz;k⊥Þψðz;k⊥Þ; ð13Þ

where Sh;h̄ðz;k⊥Þ is the helicity-dependent wave function,
N is the normalization factor determined by the normali-
zation condition

X
h;h̄

Z
dz

d2k⊥
2ð2πÞ3 jΨh;h̄ðz;k⊥Þj2 ¼ 1; ð14Þ

and ψðz;k⊥Þ is the radial wave function obtained by
performing the Fourier transformation of Eq. (3),

ψðz;k⊥Þ ¼
4πffiffiffi
λ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp e−

k2⊥
2λzð1−zÞe−

1
2λð

m2
q
z þ

m2
q̄

1−zÞ: ð15Þ

In the case of a vector meson, one can work in analogy
with the lowest-order helicity structure of the photon
LFWF in QED; the following structure of SV

h;h̄
is thus

assumed [19]:

SV;λ
h;h̄

ðz;k⊥Þ ¼ ūhðzpþ;k⊥Þϵλvh̄ðð1 − zÞpþ;−k⊥Þ: ð16Þ

This form has been successfully used to study the pro-
duction of ρ and K� mesons and the decays involving the
B → ρ; K� transitions [27,28].
In the case of a pseudoscalar meson, following such a

strategy, ϵλ in Eq. (16) would be replaced simply by γ5
[50–52]. Very recently, this spin structure has been used to
evaluate the pion holographic DA in Ref. [24]. The helicity-
dependent wave function is written explicitly as

SP
h;h̄
ðz;k⊥Þ¼ ūhðzpþ;k⊥Þðiγ5Þvh̄ðz̄pþ;−k⊥Þ; Scenario1;

ð17Þ
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where the factor “i” is now added to be consistent with the
convention used in Eqs. (4) and (5), and the abbreviation
z̄ ¼ 1 − z is introduced for convenience. An additional
multiplying factor “MP” kept in Ref. [24] has now been
absorbed into the normalization constant in Eq. (13). It
should be noted, however, that this spin structure requires
the light quark and antiquark of the pseudoscalar meson to
have parallel spin projections, and thus Lz ¼ �1. This
state has twist ¼ 2þ L ¼ 3 and is thus not the meson
eigenstate of the AdS/QCD theory. Instead of γ5, the Dirac
structure like pγ5 is also allowed. We therefore consider an
alternative form of SP

h;h̄
,

SP
h;h̄
ðz;k⊥Þ¼ ūhðzpþ;k⊥Þ

�
i
~mP

2pþγ
þγ5þiγ5

�
vh̄ðz̄pþ;−k⊥Þ;

Scenario 2; ð18Þ

in which, the structure γþγ5 implies that the light quark
and antiquark have only opposite helicities. This is the
helicity assignment that couples the pion to the axial-
vector current and thus the pion decay constant fπ in
π− → W�− → l−ν̄. It is thus the leading-twist LFWF and
is the solution from AdS/QCD for light quarks. Since ~mP
is the invariant mass of the qq̄ pair in the P meson, the
dimensions of the two terms in SP

h;h̄
, Eq. (18), are also

consistent.
In the following, for convenience of discussion, the two

helicity-dependent wave functions defined by Eqs. (17) and
(18) will be referred to as scenario 1 (S1) and scenario 2
(S2), respectively. They are related by the Gell-Mann-
Oakes-Renner relation and are thus not independent [53].
Using the LB convention [48], the two helicity-dependent
wave functions SP

h;h̄
are given explicitly as

SP
h;h̄
ðz;k⊥Þ ¼

8<
:

iffiffiffi
zz̄

p ½−jk⊥je∓iθkδh�;h̄� � ðzmq̄ þ z̄mqÞδh�;h̄∓�; S1

iffiffiffi
zz̄

p ½−jk⊥je∓iθkδh�;h̄� � ðzmq̄ þ z̄mq þ zz̄ ~mPÞδh�;h̄∓�; S2
ð19Þ

and the spinor currents in Eq. (12) can be written as

v̄h̄ffiffiffī
z

p γþγ5
uhffiffiffi
z

p ¼ �2pþδh�;h̄∓; ð20Þ

v̄h̄ffiffiffī
z

p γ5
uhffiffiffi
z

p ¼ 1

zz̄
½jk⊥je�iθkδh�;h̄� ∓ ðzmq̄ þ z̄mqÞδh�;h̄∓�; ð21Þ

in which k⊥ ¼ jk⊥je�iθk is specified.
Finally, in the k⊥ space, using the building blocks given above, the holographic DAs of P meson can be written as

Φðz; μÞ½S1� ¼
ffiffiffiffiffiffi
Nc

p
πfP

Z jkj<μ d2k⊥
ð2πÞ2

N1

ðzz̄Þ1=2 ðz̄mq þ zmq̄Þψðz;k⊥Þ; ð22Þ

ϕðz; μÞ½S1� ¼
ffiffiffiffiffiffi
Nc

p
2πμPfP

Z jkj<μ d2k⊥
ð2πÞ2

N1

ðzz̄Þ3=2 fk
2⊥ þ ðzmq̄ þ z̄mqÞ2gψðz;k⊥Þ ð23Þ

for S11 and

Φðz; μÞ½S2� ¼
ffiffiffiffiffiffi
Nc

p
πfP

Z jkj<μ d2k⊥
ð2πÞ2

N2

ðzz̄Þ1=2 ðz̄mq þ zmq̄ þ zz̄ ~mPÞψðz;k⊥Þ; ð24Þ

ϕðz; μÞ½S2� ¼
ffiffiffiffiffiffi
Nc

p
2πμPfP

Z jkj<μ d2k⊥
ð2πÞ2

N2

ðzz̄Þ3=2 fk
2⊥ þ ðzmq̄ þ z̄mqÞðzmq̄ þ z̄mq þ zz̄ ~mPÞgψðz;k⊥Þ ð25Þ

for S2, where N1 and N2 are the corresponding normalization factors determined by Eq. (14). The expression in the impact
space can be obtained through Fourier transformation. These formulas exhibit the connections between holographic LFDAs
and LFWFs. Using the theoretical framework given above, we will present numerical results and applications of these
holographic LFDAs and LFWFs in the following sections.

1Very recently, in Ref. [24], the pion twist-2 holographic LFDA is also evaluated with a SP
h;h̄

similar to S1.
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III. INPUT PARAMETERS AND
DECAY CONSTANTS

A. Inputs

Before presenting our numerical results, we now clarify
the values of input parameters used in our evaluation. One of
the most important inputs is the mass scale parameter

ffiffiffi
λ

p
,2

which could be extracted from many observables. For
example, to fit the light-quark mass spectrum, the valuesffiffiffi
λ

p ¼ 0.59 GeV and 0.54 GeVare suggested in Ref. [2] for
light pseudoscalar and vector mesons, respectively. A mean
value,

ffiffiffi
λ

p ¼ 0.523 GeV, is obtained inRef. [16] by fitting all
of the slopes of the different Regge trajectories for mesons
and baryons including all excitations. This result is also
favored by the recent high accuracy computation of the
perturbative QCD scale parameter ΛMS [10]. The fit to the
Bjorken sum-rule data at low Q2 yields

ffiffiffi
λ

p ¼ 0.496�
0.007 GeV [54]. In Ref. [12], the value

ffiffiffi
λ

p ¼ 0.51�
0.04 GeV is used for determining the freezing value of
αsðQ2Þ and the interface between perturbative and non-
perturbativeQCD. In addition, in order to describe theHERA
data on diffractive ρ and ϕ electroproduction, the valuesffiffiffi
λ

p ¼ 0.55 GeV and 0.56 GeV are suggested [19,55].
Besides

ffiffiffi
λ

p
, the light-quark masses appearing in the holo-

graphic LFWFs are the other important inputs, which will be
specified below.
In this paper, for S1, we follow entirely the inputs

suggested by the recent study of the pion twist-2 holo-
graphic DAwith a similar LFWF of S1 [24]. Explicitly, the
following input values are used [24],ffiffiffi

λ
p

¼ 523 MeV; ms ¼ 450 MeV;

mu;d ¼ 330 MeV; S1 ð26Þ
where the constituent quark masses are adopted and are
also used for studying the ρ and K� mesons [27,28]. It
should be noted that, as pointed out in Ref. [2], the light-
quark masses introduced in the holographic LFWF are not
the traditional constituent masses in the nonrelativistic
theories but the effective quark masses from the reduction
of higher Fock states as functionals of the valence states.
Such effective quark masses, in principle, should be
universal in a specific theoretical framework of holographic
QCD.
For S2, on the other hand, we take

ffiffiffi
λ

p
¼ 590� 15 MeV; ms ¼ 272þ69

−37 MeV;

mu;d ¼ 79þ7
−5 MeV; S2; ð27Þ

which are obtained by fitting to the π− and K− decay
constants (see the next subsection for detail). It is noted that
such input values are very similar to the results,

ffiffiffi
λ

p
¼ 590MeV; ms¼ 357MeV; mu;d ¼ 46MeV;

ð28Þ

obtained by fitting the masses of ground states in the
framework of LF holographic QCD [2].

B. Decay constants

The values of holographic parameters can be well
determined by the meson decay constants. So, first, we
present our predictions for the decay constant of pseudo-
scalar meson, which is defined as

h0jq̄γμγ5qjPðpÞi ¼ ifPpμ: ð29Þ

Expanding the hadronic state in the same manner as in
Sec. II, we can finally arrive at

fP ¼
ffiffiffiffiffiffi
Nc

p
π

Z
1

0

dz
Z

d2k⊥
ð2πÞ2

z̄mq þ zmq̄ffiffiffiffiffi
zz̄

p N1ψðz;k⊥Þ; S1

ð30Þ

fP ¼
ffiffiffiffiffiffi
Nc

p
π

Z
1

0

dz
Z

d2k⊥
ð2πÞ2

z̄mq þ zmq̄ þ z̄z ~mPffiffiffiffiffi
zz̄

p

× N2ψðz;k⊥Þ; S2: ð31Þ

With the inputsmentioned above, our numerical results for
fπ , fK , and their ratio fK=fπ are summarized in Table I, in
which the theoretical errors in S2 are obtained by evaluating
separately the uncertainties induced by each input parameter
in Eq. (27) and then adding them in quadrature. For
comparison, the latest experimental data [56],3 the recent
results based on lattice QCD (LQCD) with Nf ¼ 2þ 1þ 1

obtained by ETM [57], HPQCD [58], Fermilab Lattice and
MILC (FL/MILC) [59] Collaborations and the world aver-
aged results of LQCD [56,60] are also listed in Table I.
In S1, our result fπ ¼ 132.84 MeV is comparable with

the data and, as found in Ref. [24], achieves a much better
agreement than that obtained without helicity improve-
ment. However, S1 results in very small results for the
kaon, fK ¼ 136.04 MeV and fK=fπ ¼ 1.024, which devi-
ate far from the data. In fact, no matter what values of the
light-quark masses are used, the predicted fK=fπ in S1 is
always much smaller than the data and the LQCD results.
This implies that S1 cannot provide sufficient flavor-
asymmetry resources. It is, however, very interesting to
note that this deficiency in S1 can be remarkably improved
in S2. From Table I, it can be seen that all the results in S2
are in good agreement with the data and the LQCD results.
The decay constants fπ and fK are very sensitive to the

holographic parameters,
ffiffiffi
λ

p
, ms and mu;d, and we can,

2In some references, the parameter κ ¼ ffiffiffi
λ

p
is used.

3The values jVudj ¼ 0.9758� 0.0016 and jVusj ¼ 0.2248�
0.0006 [56] are used to obtain the experimental data on fπ and fK .
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therefore, perform a χ2 fit for these parameters using the
experimental data on fπ , fK , and fK=fπ listed in Table I. Our
fitting results for

ffiffiffi
λ

p
,ms andmu;d at 95% C.L. are shown in

Fig. 1(a). Even though the parameter spaces could not be
seriously constrained due to the limited constraining con-
ditions, we do obtain some useful bounds, ms ≳ 100 MeV,
mu;d ≲ 100 MeV, and

ffiffiffi
λ

p
> 550 MeV. The bound

ffiffiffi
λ

p
>

550 MeV confirms the finding in Ref. [2] that a relatively
larger

ffiffiffi
λ

p
∼ 590 MeV for pseudoscalar mesons is required

compared with
ffiffiffi
λ

p
∼ 540 MeV for vector mesons. Thus, in

our evaluation, we take the value
ffiffiffi
λ

p ¼ 590 MeV and assign
a conservative uncertainty �15 MeV.
With

ffiffiffi
λ

p
fixed at

ffiffiffi
λ

p ¼ 590� 15 MeV, our fitted results
for ms and mu;d are shown in Fig. 1(b), and the corre-
sponding numerical results are given by Eq. (27); another
solution with unacceptably large ms ∼ 700 MeV, which is
allowed in principle [see Fig. 1(a)], is discarded. It can be
seen from Fig. 1(b) that the allowed spaces are strongly
constrained. Comparing Eqs. (27) with (28), we note that
the fitted results for the holographic parameters match those
obtained by fitting the Regge trajectories of hadrons and the
ground-state masses [2].

IV. HOLOGRAPHIC DAS AND PION-TO-PHOTON
FORM FACTOR

A. Results of holographic DAs

Using the decay constants obtained above and the
formulas given in Sec. II, we now present in Fig. 2
our predictions for the LF holographic DAs of π and
K mesons at μ ¼ 1 GeV and 0.5 GeV in both S1 and S2.

For comparison, the asymptotic forms, ΦðzÞ ¼ 6zz̄ and
ϕðzÞ ¼ 1, and the DAs predicted by QCD sum-rule
(QCDSR) approach [61] are also plotted in Fig. 2.
Using the normalization factor N determined by the

normalization condition for LFWF, Eq. (14), and the decay
constant given by Eqs. (30) and (31), we find that our
extracted twist-2 holographic DAs,Φðz; μÞ, for both S1 and
S2 satisfy automatically the normalization conditionR
1
0 dzΦðz; μÞ ¼ 1. However, the extracted twist-3 holo-
graphic DAs satisfy the condition only approximately.
One of the main reasons is that, in contrast to the case
of twist-2 DAs, the normalization of twist-3 holographic
DAs is affected by the scale-dependent running masses of
light quarks, m̄q;q̄ðμÞ, appearing in μP, which have large
uncertainties and are not determined well at low scales. In
our evaluation, the values m̄sð1 GeVÞ ¼ 128 MeV and
m̄s=m̄u;d ¼ 24 are used. It should be noted that, in the
evaluation of hadronic matrix elements using the holo-
graphic DAs, the effect of m̄qðμÞ vanishes because the
factor μP is cancelled, which can be clearly seen from, for
instance, Eqs. (5) and (23). It also can be clearly seen from
our following discussions of pure annihilation B̄s → πþπ−

and B̄d → KþK− decays.
Comparing the curves of holographic DAs at μ ¼

0.5 GeV and 1 GeV with each other, we can see that
the effect of evolution is significant only at low scale. The
evolution at large scale is, however, not obvious, as found
also in the previous works [25,26], and the perturbative
evolution could be in principle recovered through the
Efremov-Radyushkin-Brodsky-Lepage equation [62–64]
as has been done in Ref. [65].

TABLE I. Numerical results of the π− and K− decay constants in unit of MeV.

Experiment [56] S1 S2 ETM [57] HPQCD [58] FL=MILC [59] LQCD Average [56,60]

fπ 130.28� 0.26 132.84 130.10þ3.23
−3.77 — 130.39� 0.20 — 130.2� 1.7

fK 156.09� 0.49 136.04 156.04þ5.09
−4.45 154.1� 2.1 155.37� 0.34 155.92þ0.43

−0.36 155.6� 0.4
fK
fπ

1.198� 0.004 1.024 1.199þ0.032
−0.030 1.184� 0.016 1.1916� 0.0022 1.1956þ0.0028

−0.0021 1.1928� 0.0026

ms

mu,d

0.55 0.60 0.65 0.70 0.75 0.80
0.0

0.2

0.4

0.6

0.8

GeV

m
G

eV

(a)

: best fit point
: 68 C.L.
: 95 C.L.

0.05 0.06 0.07 0.08 0.09 0.10
0.0
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m
s

G
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(b)

FIG. 1. The fitted spaces for the holographic parameters in S2 under the constraints from the decay constants fπ and fK and their ratio
fK=fπ . (a): the allowed spaces of

ffiffiffi
λ

p
, ms and mu;d at 95% C.L.; (b): the allowed spaces ofms andmu;d with

ffiffiffi
λ

p ¼ 0.590� 0.015 GeV.
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We can also see from Fig. 2 that the twist-2 holographic
DA in S2 is considerably broader than the asymptotic form,
which is also expected in the other theories like QCDSR,
while the one in S1 is much narrower than in S2. For the
twist-3 holographic DA, its behavior in S2 at low scale is
similar to the QCDSR result, while at large scale, it is
similar to the asymptotic form except at the regions near the
end point. In contrast to the asymptotic form and the
QCDSR results, the essential feature of LF holographic
DAs is that they all fall rapidly to zero when z → 0 and 1,

which is due to the exponential term, e−
1
2λð

m2
q
x þ

m2
q̄

1−xÞ, in the
LFWF given by Eq. (15).

B. Moments and inverse moment

In order to further compare the predictions based on the
holographic DAs with the ones from other nonperturbative
methods, we compute the expectation values of the longi-
tudinal momentum fraction, the ξ-moments and the inverse
moment, which are defined, respectively, by

hξni ¼
Z

1

0

dzð2z − 1ÞnΦðz; μÞ;

hz−1i ¼
Z

1

0

dzz−1Φðz; μÞ: ð32Þ

Using the central values of input parameters, our numerical
results are listed in Tables II (for π−) and III (for K−). The
theoretical predictions based on the LF quark model
(LFQM) [52], the QCDSR [61,66], the LQCD [67], the
nonlocal chiral quark model (NLCQM) [68], the Dyson-
Schwinger equations (DSE) [69], as well as the renormalon
method (RM) [70] are also summarized in Tables II and III
for comparison.
Compared to the predictions for moments in the other

theoretical models listed in Tables II and III, we can see
that, although the results based on the holographic DA in
S1 result in a better agreement than the ones without
helicity improvement as found in Ref. [24], they are still
very small (even much smaller than the results obtained by

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

,

(a) (b)

(c) (d)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5
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K
,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

K
,

FIG. 2. The holographic DAs of π and K mesons in S1 (blue) and S2 (red) at 0.5 GeV (dashed) and 1 GeV (solid), compared with the
asymptotic forms (black dashed) and the DAs at 1 GeV in the QCDSR approach (black solid).

TABLE II. The predictions for the (inverse) moments of π− meson in S1, S2, and previous works. The results are evaluated at 1 GeV
except for the ones of QCDSR [66] and LQCD [67] given at 2 GeV.

S1 S2 Asymmetry LFQM [52] QCDSR [61] QCDSR [66] LQCD [67] NLCQM [68] DSE [69] RM [70]

hξ2i 0.172 0.238 0.2 0.24 0.286 0.343 0.269 0.21 0.28 0.28
hξ4i 0.062 0.116 0.086 0.11 0.143 0.181 — 0.09 0.15 0.13
hz−1i 2.61 3.50 3 — 3.75 4.25 — — 5.5 —
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using the asymptotic DA). As argued in Ref. [24], such
discrepancies might be attributed to the fact that the
dynamical spin effects are not fully captured by S1.
Fortunately, as exhibited in Tables II and III, we find that
such discrepancies are eliminated in S2.

C. Pion-to-photon transition form factor

The pion-to-photon transition form factor can be
extracted from the process γ�ðq1Þγ�ðq2Þ → π. In the case
of only one photon being off shell, the transition form
factor is denoted as FπγðQ2Þ and, to the leading order in αs,
is given as [48,65]

FπγðQ2Þ ¼
ffiffiffi
2

p

3
fπ

Z
1

0

dz
Φπðz; z̄QÞ

z̄Q2
: ð33Þ

With both the asymptotic DA and the holographic DAs
of S1 and S2, the dependence of the rescaled form factor,
Q2FπγðQ2Þ, on the photon virtuality, Q2, are plotted in
Fig. 3, in which the data from CELLO [71], CLEO [72],
BABAR [73], and Belle [74] Collaborations are also shown
for comparison. Even though the holographic DA of S1
does a better job than the traditional one [24], its prediction
forQ2FπγðQ2Þ is always smaller than the one obtained with
asymptotic DA and is, therefore, disfavored by the BABAR
[73] and Belle [74] data at the large Q2 domain. Such an

inconsistency could be significantly improved by the
holographic DA of S2. As shown clearly in Fig. 3, the
holographic DA of S2 can explain the current data in the
whole Q2 domain, except for the BABAR result.4

V. PURE ANNIHILATION B̄s → π +π −
AND B̄d → K +K − DECAYS

The two-body pure annihilation B-meson decays have
attracted much theoretical attention during the past years,
for instance, in Refs. [47,75–86]. The experimental evi-
dence for pure annihilation B̄s → πþπ− and B̄d → KþK−

decays was reported first by the CDF Collaboration [87]
and was soon confirmed and updated by both Belle [88]
and LHCb [89,90] Collaborations. The Heavy Flavor
Averaging Group presents the following averaged results
for the branching ratios [91],

BðB̄s → πþπ−Þ ¼ ð6.71� 0.83Þ × 10−7; ð34Þ

BðB̄d → KþK−Þ ¼ ð0.84� 0.24Þ × 10−7; ð35Þ

with the corresponding significance at the levels of about
5σ and 3σ, respectively. These measurements motivate
accurate theoretical evaluations in different frameworks.
However, due to the appearance of end point singularities,
the annihilation amplitudes are hard to calculate reliably.
Motivated by the end point behavior of the LF holographic
DAs, we now try to evaluate the annihilation amplitudes
and check if the end point divergence can be properly
controlled by LF holographic DAs.
Following the prescription proposed in Ref. [48], the

hadronic matrix elements of annihilation topologies can be
written as the convolution integrals of the scattering kernel
with the DAs of the participating mesons [32],

hP1P2jOijB̄i ¼ fBfP1
fP2

×
Z

dxdydξT iðx; y; ξÞφP1
ðxÞφP2

ðyÞφBðξÞ;

ð36Þ

TABLE III. The predictions for the (inverse) moments of K− meson in S1, S2, and previous works. The results are evaluated at 1 GeV
except for the ones of LQCD [67] given at 2 GeV.

S1 S2 Asymmetry LFQM [52] QCDSR [61] LQCD [67] NLCQM [68]

hξ1i 0.060 0.010 0 0.06 0.036 — 0.057
hξ2i 0.155 0.212 0.2 0.21 0.286 0.260 0.182
hξ3i 0.025 0.014 0 0.03 0.015 — 0.023
hξ4i 0.052 0.093 0.086 0.09 0.143 — 0.070
hz−1i 2.28 2.79 3 — 3.57 — —

CELLO
CLEO
BaBar
Belle
Asym.
S1
S20.00
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0.10

0.15
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0.35
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Q
2
F

G
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0 5 10 15 20 25 30 35

FIG. 3. Theoretical predictions for Q2FπγðQ2Þ with asymptotic
DA (black dashed); holographic DAs of S1 (blue) and S2 (red);
together with the comparison to the experimental data from
CELLO (green) [71], CLEO (cyan) [72], BABAR (purple) [73],
and Belle (orange) [74].

4It should be noted that the BABAR and Belle measurements
for Q2FπγðQ2Þ at the large Q2 domain are not consistent with
each other.
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where Oi is the local four-quark operator; x, y and ξ are
(anti)quark momentum fractions; and the kernel T iðx; y; ξÞ
is obtained by calculating the leading-order Feynman
diagrams shown in Fig. 4. In the heavy-quark limit and
using the collinear factorization scheme, the nonzero basic
building blocks relevant to B̄s → πþπ− and B̄d → KþK−

decays have been fully evaluated and can be written
as [44]

A1 ¼ παs

Z
1

0

dxdy

�
ΦP2

ðxÞΦP1
ðyÞ

�
1

yð1 − xȳÞ þ
1

x̄2y

�

þ 4

m̄2
bðμÞ

2 ~ϕP2
ðxÞ ~ϕP1

ðyÞ
x̄y

�
; ð37Þ

A2 ¼ παs

Z
1

0

dxdy

�
ΦP2

ðxÞΦP1
ðyÞ

�
1

x̄ð1 − xȳÞ þ
1

x̄y2

�

þ 4

m̄2
bðμÞ

2 ~ϕP2
ðxÞ ~ϕP1

ðyÞ
x̄y

�
; ð38Þ

in which

~ϕPðzÞ≡ μPϕPðzÞ; ð39Þ

and the subscripts 1 and 2 correspond to the Dirac current
structures ofOi, ðV−AÞ⊗ ðV−AÞ and ðV−AÞ⊗ ðVþAÞ,
respectively.Asmentioned already, using theLFholographic
DAs, Eq. (23) in S1 or Eq. (25) in S2, one can see that the
chiral factor μP in Eq. (39) is cancelled out. This implies that
the hadronic matrix elements, A1;2, do not depend on the
running masses of light quarks when one uses the extracted
LF holographic DAs.
The full amplitudes of B̄s → π−πþ and B̄d → K−Kþ

decays are given as

AðB̄ → P1P2Þ ¼
X
p¼u;c

Bp
P1P2

�
ðδpubp1 þ bp4 þ bp4;EWÞP1P2

þ
�
bp4 −

1

2
bp4;EW

�
P2P1

�
; ð40Þ

with P ¼ π, K, and

Bp
ππ ¼ i

GFffiffiffi
2

p VpbV�
psfBs

fP1
fP2

;

Bp
KK ¼ i

GFffiffiffi
2

p VpbV�
pdfBd

fP1
fP2

; ð41Þ

bp1 ¼ CF

N2
c
C1A1;

bp4 ¼ CF

N2
c
½C4A1 þ C6A2�;

bp4;EW ¼ CF

N2
c
½C10A1 þ C8A2�; ð42Þ

in which VpbV�
ps and VpbV�

pd (p ¼ u, c) are the product of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
[92,93] and Ci is the scale-dependent Wilson coefficients.
We use the subscripts P1P2 and P2P1 in Eq. (40) to indicate
that the first meson contains the antiquark emitted from the
weak vertex and has momentum fraction ȳ, while another
quark emitted from the weak vertex has momentum
fraction x.
From Eqs. (37) and (38), one finds that the end point

divergence appears when the asymptotic DA, ϕðzÞ ¼ 1, or
any other forms of DA having nonvanishing end point
behavior are adopted, i.e.,

lim
x̄ or y→0

ϕP2
ðxÞϕP1

ðyÞ
x̄y

∼ lim
x̄ or y→0

1

x̄y
→ ∞: ð43Þ

Traditionally, these integrals are usually parametrized by a
complex parameter XA, according to

R
1
0 dx=x → XA ¼

ð1þ ρAeiϕAÞ lnðmB=ΛhÞ [44]. As mentioned already, in
the framework of LF holographic QCD, the end point
divergence can be controlled well because it is regulated
naturally by the exponential factor involving the effective
quark masses in the LFWF.
In the numerical evaluations, we will use the values of

CKM parameters fitted by the CKMfitter group [94],

A ¼ 0.8227þ0.0066
−0.0136 ;

λ ¼ 0.22543þ0.00042
−0.00031 ;

ρ̄ ¼ 0.1504þ0.0121
−0.0062 ;

η̄ ¼ 0.3540þ0.0069
−0.0076 ; ð44Þ

the averaged values of the B-meson decay constants [56],

(a) (b) (c) (d)

FIG. 4. The leading-order Feynman diagrams for pure annihilation B-meson decays.
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fBs
¼ 227.2� 3.4 MeV;

fBd
¼ 190.9� 4.1 MeV; ð45Þ

and the central values of the other inputs, such as the well-
determined masses and lifetimes of B mesons, the Fermi
constant, etc., given by Particle Data Group [56]. Using
these inputs, our numerical results for the CP-averaged
branching ratios of B̄s → πþπ− and B̄d → KþK− decays
are listed in Table IV, in which the experimental data and
the previous theoretical results based on the QCDF with the
parametrization scheme [44] and the pQCD [76]
approaches are also given for comparison. Our results
are evaluated at the renormalization scale μ ∼ m̄b=2 ¼
2.09 GeV with an assigned uncertainty �1 GeV. The
theoretical errors caused by the CKM parameters and B-
meson decay constants, the holographic inputs given by
Eq. (27), and the renormalization scale μ are obtained by
evaluating separately the uncertainties induced by each
input parameter and then adding them in quadrature.
From Table IV, we find that the results in S1 are similar

to the ones obtained by using the traditional parametriza-
tion scheme with ρA ¼ 1 [44] but are about 1 order of
magnitude smaller than the data, which is mainly due to the
fact that the holographic DAs in S1 are relatively narrow as
shown in Fig. 2, and the contributions with z; z̄≲ 0.2 are
strongly suppressed. In contrast, our prediction for BðB̄s →
πþπ−Þ in S2 is in good agreement with the data; within the
experimental and theoretical uncertainties, our prediction
for BðB̄d → KþK−Þ also agrees with the data. This implies
that S2 is much more favored by the data on BðB̄s →
πþπ−Þ and BðB̄d → KþK−Þ. In the following discussions,
we will focus only on the results of S2.
Comparing with the previous evaluations in QCDF by

using the parametrization scheme for the end point diver-
gence with ρA ¼ 1, we find that the theoretical predictions
are remarkably improved by using the holographic DAs.
Comparing our predictions with the ones in pQCD, we find
good agreement for BðB̄s → πþπ−Þ; however, our result for
BðB̄d → KþK−Þ is smaller than that obtained in pQCD.
The significant difference between BðB̄s → πþπ−Þ and
BðB̄d → KþK−Þ in our evaluation can be well understood
due to the following facts:

(i) For the B̄s → πþπ− decay, because jVubV�
usj∼

jAλ4ðρ − iηÞj ≪ jVcbV�
csj ∼ Aλ2, its decay ampli-

tude, Eq. (40), can be simplified as

AðB̄s → πþπ−Þ ∼ Bc
ππ2ðbc4Þπ−πþ ; ð46Þ

in which ðbc4Þπ−πþ ¼ ðbc4Þπþπ− because the u- and
d-quark difference is not distinguished in this paper.
For the B̄d → KþK− decay, on the other hand, its
amplitude can be simplified as

AðB̄d → KþK−Þ ∼ Bu
KKðbu1ÞK−Kþ þ Bc

KK½ðbc4ÞK−Kþ

þ ðbc4ÞKþK− �: ð47Þ

Comparing with Eq. (46), one can easily find that the
first and second terms in Eq. (47) are relatively
suppressed by additional Cabibbo factors λ ∼ 0.2
and λ2∼0.048, respectively. Thus, a large ratio
Rπ=K ¼BðB̄s→πþπ−Þ=BðB̄d→KþK−Þ is generally
expected.

(ii) Moreover, for theK−ðþÞmeson, as shownbyFig. 2, the
holographic DAs near the end point where the (anti)
strange quark carries a small momentum fraction is
suppressed due toms > mu;d. As a result, both twist-2
and twist-3 contributions are relatively suppressed for
the B̄d → KþK− compared to the B̄s → πþπ− decay.
In addition, since fBs

> fBd
and the phase space of

B̄s → πþπ− decay is larger than that of B̄d → KþK−

decay, the ratio Rπ=K is further enhanced.
It should be noted that our evaluations are performed at
leading order and the theoretical uncertainties, especially
the one induced by the renormalization scale, are still
quite large. Moreover, the refined measurements, especially
for the B̄d → KþK− decay, are required for a definite
conclusion.
From the phenomenological point of view, an annihila-

tion amplitude with a large strong phase is generally
welcome in order to fit experimental data and to explain
some puzzles observed in B-meson decays [79–84]. As a
result, a complex parameter XA has been introduced in the
traditional parametrization scheme within the framework of
QCDF [44]. By using the dynamical gluon mass mgðq2Þ in
the QCDF approach [47] or by introducing transverse
momentum kT in the pQCD approach [35,36,43], a large
imaginary part in the annihilation amplitudes is also
obtained because the singularities exist in the integral over
momentum fractions. In contrast to the above regulation
schemes, the leading-order annihilation contributions are
real by using the holographic DAs. This result is under-
standable due to the fact that, although the leading-order

TABLE IV. The CP-averaged branching ratios of B̄s → πþπ− and B̄d → KþK− decays in the unit of 10−7. For the results of S2, the
first, second, and third theoretical errors are caused by uncertainties of the CKM parameters and B-meson decay constants, the
holographic parameters in Eq. (27), and the renormalization scale μ, respectively.

Decay mode Experiment [91] S1 S2 QCDF [44] pQCD [76]

B̄s → πþπ− 6.71� 0.83 0.220 6.81þ0.54þ1.33þ18.41
−0.46−1.29−3.44 0.24þ0.03þ0.25þ1.63

−0.03−0.12−0.21 5.10þ1.96þ0.25þ1.05þ0.29
−1.68−0.19−0.83−0.20

B̄d → KþK− 0.84� 0.24 0.023 0.23þ0.03þ0.06þ0.42
−0.02−0.06−0.09 0.13þ0.05þ0.08þ0.87

−0.05−0.05−0.11 1.56þ0.44þ0.23þ0.22þ0.13
−0.42−0.22−0.19−0.09
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annihilation corrections are evaluated at the order αs, they
are in fact “tree” contributions and there is no independent
internal momentum, while the strong phases are generally
induced by the loop integration, such as in the vertex and
penguin diagrams. In the SCET approach, real annihilation
contributions of the order ofOðαsðmbÞΛQCD=mbÞ have also
been predicted [42]. In addition, it should be noted that
complex annihilation contributions are of course possible
if, for instance, final-state interactions or higher-order
corrections are taken into account.

VI. SUMMARY

Motivated by the development of the LF holographic
QCD, the LFWFs for light pseudoscalar mesons and their
applications are studied in this paper. In order to restore the
dynamical spin effects of quarks and to improve the
predictability of LFWFs for different pseudoscalar mesons,
the traditional LFWFs are modified according to two
assumptions for the helicity-dependent wave functions,
corresponding to the structures ūhðiγ5Þvh̄ (named S1) and
ūhð ~mP

2pþ iγþγ5 þ iγ5Þvh̄ (named S2), respectively. The LF
holographic DAs of pseudoscalar mesons are then extracted
using the helicity-improved LFWFs. The decay constants,
the ξ-moments, the pion-to-photon transition form factor,
as well as the B̄s → πþπ− and B̄d → KþK− decays are then
evaluated and compared with experiment. Our main find-
ings are summarized as follows:

(i) In contrast to the LFWF for S1, we find that the
LFWF for S2 can provide sufficient flavor-asym-
metry resources for predicting fπ , fK and their ratio
fK=fπ . Moreover, the results based on S2 for all of
the observables considered in this paper are in a
much better agreement with experiment than the
ones based on S1.

(ii) Taking the π and K decay constants as constraints,
we perform a χ2-fit for the holographic parameters,
the mass scale

ffiffiffi
λ

p
, and the effective quark masses

mu;d and ms. Interestingly, our fitted results are
remarkably consistent with the ones obtained by
fitting the Regge trajectory of light hadrons.

(iii) A new scheme with LF holographic DAs for
regulating the end point divergence in the annihila-
tion amplitudes of B → PP decays is presented. In
this scheme, the leading-order annihilation contri-
butions are real. Numerically, our predictions for the
branching fractions BðB̄s → πþπ−Þ and BðB̄d →
KþK−Þ by using the LF holographic DAs in S2
agree well with current data and result in a relatively
large flavor-symmetry breaking effect. These pre-
dictions will be further tested by future refined
measurements.
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