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In this paper, we study the B — K* transition form factors (TFFs) within the QCD light-cone sum rules
(LCSR) approach. Two correlators, i.e., the usual one and the right-handed one, are adopted in the LCSR
calculation. The resultant LCSRs for the B — K* TFFs are arranged according to the twist structure of the
K*-meson light-cone distribution amplitudes (LCDAs), whose twist-2, twist-3, and twist-4 terms behave
quite differently by using different correlators. We observe that the twist-4 LCDAs, though generally small,
shall have sizable contributions to the TFFs A, 2V, and T';; thus, the twist-4 terms should be kept for a
sound prediction. We also observe that, even though different choices of the correlator lead to different
LCSRs with different twist contributions, the large correlation coefficients for most of the TFFs indicate
that the LCSRs for different correlators are close to each order, not only for their values at the large recoil
point g> = 0 but also for their ascending trends in the whole ¢ region. Such a high degree of correlation is
confirmed by their application to the branching fraction of the semileptonic decay B — K*u"u~. Thus, a
proper choice of correlator may inversely provide a chance for probing uncertain LCDAs; i.e., the
contributions from those LCDAs can be amplified to a certain degree via a proper choice of correlator, thus

amplifying the sensitivity of the TFFs and, hence, their related observables, to those LCDAs.
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I. INTRODUCTION

The heavy-to-light B-meson decay provides an excellent
platform for testing the CP-violation phenomena and for
seeking new physics beyond the Standard Model (SM). The
heavy-to-light transition form factors (TFFs) are key
components in those studies which, however, are nontrivial
due to the fact that, for practical values of the momentum
transfer and the b-quark mass (m,), the soft contributions
are always numerically important and are often dominant.

The Shifman-Vainshtein-Zakharov (SVZ) sum rules [1,2]
provide an important step forward for studying the non-
perturbative hadron phenomenology. It is a method of
expanding the correlation function (correlator) into the
QCD vacuum condensates with subsequent matching via
dispersion relations. The vacuum condensates are nonper-
turbative but universal, whose contributions follow from the
usual power-counting rules at the large g*-region and the first
several ones are enough to achieve the required accuracy.
Many successful hadron properties have been achieved since
its invention, and the SVZ sum rules becomes a useful tool
for studying the hadron phenomenology.

Following its strategy, one has to deal with the two-point
correlator for the heavy-to-light transition form factors
(TFFs) [3-5], which however will meet specific problems
such as the breaking of power-counting and the contami-
nation of sum rules by ‘“nondiagonal” transitions [6],
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severely restricting the precisions and applicabilities of
the SVZ sum rules.

To avoid the problems of the two-point SVZ sum rules, the
QCD light-cone sum rules (LCSR) has later been suggested
to deal with the heavy-to-light TFFs [7—12]. Its main idea is
to make a partial resummation of the operator product
expansion (OPE) to all orders and reorganize the OPE
expansion in terms of the twists of relevant operators rather
than their dimensions. The vacuum condensates of the SVZ
sumrules are then substituted by the light-meson’s light-cone
distribution amplitudes (LCDAS) of increasing twists. The
LCDA, which relates the matrix elements of the nonlocal
light-ray operators sandwiched between the hadronic state
and the vacuum, has a direct physical significance and
provides the underlying links between the hadronic phenom-
ena at small and large distances.

Generally, contributions from the LCDAs suffer from the
power counting rules basing on the twists; i.e., the high-
twist LCDAs are usually powered suppressed to the lower
twist ones in large Q%-region, and the first several LCDAs
shall usually provide dominant contributions to the LCSR.
Since its invention, the LCSR approach has been widely
adopted for studying the B — light meson decays. In the
paper, we shall concentrate our attention on its application
to the B — K* decays, which is helpful for studying the K*-
meson LCDAs.

How to “design” a proper correlator is a tricky problem
for the LCSR approach. By choosing a proper correlator,
one can not only study the properties of the hadrons but
also simplify the theoretical uncertainties effectively.
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Usually, the correlator is constructed by using the currents
with definite quantum numbers, such as those with definite
J?, where J is the total angular momentum and P is the
parity of the bound state. Such a direct way of constructing
the correlator is not the only choice adopted in the
literature, e.g. the chiral correlator with a chiral current
in between the matrix element has also been suggested so
as to suppress part of the hazy contributions from the
uncertain LCDAs [13-18].

The LCDAs of the K* meson have a much complex
structure than that of the light pseudoscalar mesons. It
contains two leading-twist (or twist-2) LCDAs qﬁz{K* and

Q;K*, seven twist-3 LCDAS ¢, W3-, d)g;,(x, &)!;K*,

| koo Wi and @5, and twelve twist-4 LCDAs ¢,
Ve W, e, D 012 020 @HD gl 1
d)ﬂ; k- and ‘i’ﬂ; x+ [12]. By taking the usual correlator, we
shall show that at the twist-4 accuracy, the LCSRs of the
B — K* TFFs shall contain almost all of the mentioned
LCDAs, where the twist-3 and twist-4 LCDAs shall have
sizable contributions to the B — K* TFFs. At the present,
some of the high-twist LCDAs have been studied within the
QCD sum rules [19,20], which, however, still are of large
errors and shall produce large errors to the TFFs.

As an attempt, we have suggested to use a chiral
correlator with a right-handed chiral current to deal
with the B — K* TFFs to suppress the uncertainties from
the high-twist LCDA contributions [21]. The resultant
LCSRs derived there show the contributions from most
of the high-twist LCDAs are suppressed by
8% ~ (m}/my)* ~ 0.03; thus, uncertainties from high-twist
|
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LCDAs themselves are effectively suppressed. In previous
discussions [21], some of the terms that are proportional to
high-twist LCDAs have been omitted due to the 5-power
counting rule. In the paper, as a sound prediction, we shall
keep all of them in our present calculations; as will be
shown later, those terms shall provide sizable contributions
for certain TFFs.

It is interesting to show whether the LCSRs under
different choices of the correlator are consistent with each
other. In the paper, as a step forward, we shall compare the
LCSRs for the TFFs under the usual correlator and the
right-handed chiral correlator with the help of the corre-
lation coefficient pyy [22].

The remaining parts of the paper are organized
as follows. In Sec. II, we present the calculation
technology for the B — K* TFFs within the LCSR
approach, where the results for the usual correlator are
presented. The results for the right-handed chiral correlator
are presented in the Appendix. In Sec. III, we make a
comparative study on various LCSRs for the B — K* TFFs,
and their application for the branching fraction dB(B —
K*utu~)/dq?* is also presented. Sec. IV is reserved for a
summary.

II. THE B — K* TFFS WITHIN THE LCSR
APPROACH

The B — K* TFFS, V(qz), AO.]’Q(QZ) and T]’2.3(q2),
are related with the matrix elements (K*|5y*b|B),
(K*[5yy°b|B), (K*[50"q,b|B) and (K*[56y q,b|B)
via the following way [12],

. B} 2 L (2p+4)
K (D] 511 =118+ ) = =iei s+ mi (@) + (e - 0) L g
: *(4) | K Ax(?) = An(g? *(Mv an,p_Z7 \1 T 1

+ l‘bt(e q) q2 [ 3(61 ) O(q )] +€ﬂ1./(lﬁe q P mp + my- ( )

and
* < v . *(Mv ,a *(4
(K (.| 50,4 (1 +75)b|B(p + 0)) = 2icuape g To(?) + € (mh = m )T (q?)
—(2p+9), (W - 9)T5(4%) + g (e - 9)T5(¢?). (2)

where p is the momentum of the K* meson and g =
pp—Ppis thf: momentum tr.ansfer, 'e(‘). stands for the K*- o mp+mge L\ Mg —mg )
meson polarization vector with 4 being its transverse (L) or As(q°) = T omg A(q°) - TmAz(CI ). (4)

longitudinal (||) component, respectively. The following
relations are helpful,

and Ay(0) = A5(0) and T, (0) = T,(0) = T5(0).
To derive the LCSRs for the B — K* TFFs, we introduce
the following correlator,

094023-2



RECONSIDERATION OF THE B —» K* ...
M (p.q) = =i [ dxes* (K (p. AT ). 75(0)}0)
w \P-q l xe p, Jw \X). Jp ’

(5)

where the currents jy, (x) = 5(x)y, (1 —ys)b(x) and Jy, (x) =
5(x)o,,q" (1 4 75)b(x). The current Jjk(x) is usually chosen
as im,b(x)ysq(x), which has the same quantum state as the
pseudoscalar B meson with J¥ =0~. For simplicity,
we call its corresponding LCSR as LCSR-U/. As mentioned
in the Introduction, the current j; (x) can also be chosen
as a chiral current, e.g. the right-handed chiral current
imub(x)(1 + y5)q(x). We call its corresponding LCSR as
LCSR-R. The calculation technology for the LCSR are the
same for both cases, and we take jj, (x) = im,b(x)ysq(x) as
an explicit example to show how to derive the LCSRs for the
B — K* TFFs up to twist-4 accuracy.

The correlator (5) is analytic in the whole ¢ region. In
the timelike region, one can insert a complete series of the
intermediate hadronic states in the correlator and obtain its
hadronic representation by isolating out the pole term of the
lowest pseudoscalar B meson. More explicitly, the corre-

lator HE(D can be written as

(K*[5y,(1—75)b|B)(B|bimyysq;|0)
my—(p +q)°
K*|§7/,4(1 - 75)b|BH><BH|Bimb}’SQI 0)
mys —(p+49)°

" (p,q) =

+Z<

H(I) #(2 HI),
:H1()eﬂ(>+nz<)(6’ w“])(zP‘HI)y

H() H(D) vap +(2)

+1I5 (e*(/1> 'Q)qﬂ+iH4 €u €v "qalps

(6)

where the matrix element (B|bim,ysq,|0) = m%fy, where
fp 1s the B-meson decay constant. By replacing the
contributions from the high resonances and continuum
states with the dispersion relations, the invariant amplitudes
can be written as

o _ m%fg(mp + mK‘)Ai( 2)

: my — (p+ q)
H(1)
+/°°’)i2ds+~~~, (7)
S0 S_(p+Q)

where i = (1,...,4), s is the threshold parameter, and the
ellipsis stands for the subtraction constant or the finite g*-
polynomial which has no contribution to the final sum

rules. The reduced functions Ai are
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A] :Al,
- A,
2= T 5
(mg + mg)?
~ 2m g
Az = K [A5(4%) — Ao(q%)],

q*(mg + my-)

~ 2V(q?

Ay = % (8)
(mp + mg-)

The spectral densities le(I) (s) are estimated by using the

ansatz of the quark-hadron duality [2], i.e., p?(l)(s) =

PEPM($)0(s = o).

In the spacelike region, the correlator can be calculated
by using the operator production expansion (OPE). With
the help of the b-quark propagator [13],

(OIT{b(x)b(0)}/0)

- l/ d4k e—ik‘x k—l—mb
B (27)* mi; — k2

. / d*k —ik~x/1d 1 k+my,
-1 e V|l

9s (271)4 A 2 (mi _ k2)2
x G*(vx)o,, + oo

Lkz vxﬂG"”(vx)yy} . 9)

The correlator can be expressed as

(1) (p, q)
4 d? ei(q—k)~x
- / d(z—j)fm{k”<l(*(p,/1)|T{§(X)7,,}’,,}’SQ(0)}|O>
+k“(K*(p.A)| T{3(x)7,7,4(0)}|0)
+m, (K*(p,A)|T{3(x)7,r59(0) }|0)

—my(K*(p, A)|T{5(x)7,,4(0)}/0) +---}. (10)

The nonlocal matrix elements in the right-hand side of
the above equation can be reexpressed by the LCDAs of
various twists [12,20]. We present the relations for the
nonlocal matrix elements to the LCDAs in the Appendix.

The correlator IT}} (p, ¢) can be treated via a similar way.
With the help of the analytic property of the correlator in
different g?-region, the LCSRs for the B — K* TFFs are
ready to be derived.

As a further step, we apply the usual Borel trans-
formation to the sum rules, which removes the subtraction
terms in the dispersion relation and effectively suppresses
the contributions from the unknown excited resonances and
continuum states heavier than K* meson. After applying
the Borel transformation, our final LCSRs read
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1
A%{(qz) _ Mgy, )A due mB—s(u))/MZ{mK fK @( (u, So))(ﬁip(u) " mefK* @(c(u, So))

fema(mg + my- 2ulms. 2u

W 0+ K O, 1) e [ S 50) + e Dl 50)
L L o ey B
x@(c(u,so))}IL(u)—mpr [2%;2@( (u,so))+$®(c(u,s0 } } / dv / du / dD
lopostpe QL s0)) Mo et ) 10w () — 209y (a)

wM?  12fg m%(m3+me)
+ 20,0 (@) - 20, ) (@) + 400, (@) (mh — m. + 2um?.) + 2mym [ (D). (a)
+12(D3;K*(Q)>}’ (11)

myg-my(mg +mg+) [ m2—s(u))/M>? mK*fL* mhfL* 5
AY(g?) = Ao A duemi=sw)/M uT{I{@(C(u’SO)WiK*(u)_ uM12< O(c(u,sg))
2 = Zmbfl,l(* ~

) =T | Bl 50) + Ol 50D e () + 220 Bl 50)

2 3l =
My, f s 2mmef
WQ( (”,So))BK*(”)+27M4

 [Com (el 50)) = s Olclin o) [ 1100 = "L Sc(u st b+ [ [

@( (u,50))Cx (1) + 2mg-f.

urM? uM?

: m2—s(u 2 mhm%(*fll(* mp + m g« -
“ A ADemy=s(u)/M Tty Ol ) e (@) + 12(20%L,. (@)

— Wi (@) + (40 - 2)04 (@) + 20,0 (@), "

2 — fL -~
A1) = () = [t T et () - EETE B )

2f3m% 0 2umg-
mbflll(

I mk*ff m% L~ 1 _ A
() + | Ol 0)) + Ol 50) | e () = Bl o)) A (1)

8 |udm?

I = I —_ ) =
S 61, 50)) B (1) + mbm’(;fﬁg S (c(u50))Cie () + mic £ [(4 —2u)

2 ~

(s Ol s0) = gy (etus0) ) + (ki (etus0) + -y Betso) ) | 1)

(2—u)fE = 2fL 0(c(u,
——mK( u)fi O(c(u,s0))Hs(u } / dv/ du/ dDe(my—s())/M? ’Zl;}qc f,; (C(zb;wio))
BMp u

X [1220% - (@) = Wh (@) + (40 = 2)@, ¢ (a) + 20, (a)) + Pix- ()], (13)
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1
Tlf(qz) _ mymg+ /1 due(M%;—s(u))/Mz{wK;fK*@( (u SO))d’zK (u) —l—f [ fMZ (")( (u,so)) -|_i

2m%fs Jo UM 4u

x ©(c(u, so»]w,%;m(u) LT i, 50) () + £ Ot 50)by (1) + 15
2 ~

z 2mymy- f1-
bl [ e () - 2T

x O(c(u, 50))11 (u) - %6( (u,s0))Hs(u } /dv/ du/ dDe(ma—su /lez’]’:#
B
O(c(u.50))

x = miemy [ (Wi (2) = 12(¥g- (@) + 205 (@) = 2030 (@))] + fe [um.

x (12(1 = 20)@ . (@) + @4 (@) = 20u®l 4. (@) + v(=120) 4. () + Pl (@) (mf — m3.)]}, (14)

x O(c(u, $0)) A (u) = O(c(u, 50)) +

[4u2M 2

() = 2 [ aeritenoe LI ) )+ 1+ 2]

2my [ Jo % u

UM
x O(c(u, o))y g (1) +

F(l-H)- 4umKH~ H
O T )+ (el | e o

II*(l —H)

- H>é<c<u,so)>¢¢,ﬁ(u) + 1K 1-H -

My-m [
_ M e 4—u2M2®(c(u,s0))

43 M?

— m2 =
%@( (u’so)):| m%(*flll(*BK*(M) -

O (c(u,50))Ax- (1) — [

2mymy fr. (1 = H)
u*M?

1
O(c(u.50))1, (u) - S

! ! ! m2—s(u 2 Mg (:)(C(M, SO))
(——1) } (C(u»s0>)H3(M)}+/) dvA duA dDemy=s)/M ET—Y

| B clu,s
s {me [ (@) - 1208 (0) 2040 @) — 200 @) + 5 S0 Ol

x [1;((1)21(* (@) - 12@2;1(* (@) (mf — mg-)* + umg. ((I)! k(@) +12(1 - 21})¢2;K* (@) (mp — mg.)

+ 4l M?

X

#2208 (@) + Bl ) + 120 @), (15)
+ mge )
Vi) = o8 ) [ i et s )+ "I )

b ) = [ et + s (etuso | "L g |+ [ ao [ a

1 2 L@ , -
[ apetine ML S 15, )i (o) + 1208 (@) -200 - 1)

x (@i (@) — @3 (@)))]. (16)
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TZ/f q2
5 (7) 2m%}f3 0

Il f + 41/{}’}1%{*
4u*M?

UMy

2 (m%. + Q)m

O(c(u. 50)) + 4 Oclu so>>} i (1) -

22
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O(c(u. 50))
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mpympg- 1 _ mymg-f. 2
=t [ et LT a5 )+ e (12 ) Ol (1)

3l ~
Mgy froe =
gt O(c(u o) by () + 27k

1 =~ 2q2 + mi + 209
M2 @(C(u, SO)) + W

Wé(c(u,so))

2 1
w*M?*  uM?

Jetetsnts(o |

/ dv/ du/ dDelmi=stwym K
127 i3

u>M?

{mg-my f-Vig- (@) = 12(¥i4 (@)

+ 20,0 (@) = 20, (@)] + S [k (@l - (a) (40 — 1 = 2) + 120 . () (200 — u - 2))

— v(m} — my ) (@ . (@) — 120 4. ()]},

where the superscript U/ indicates those LCSRs are for the
usual correlator with j}(x) = im,b(x)ysq(x). The LCDAs
are generally scale dependent, and for convenience
we have implicitly omitted the factorization scale y in
the LCDAs. [dD = fdaldanogé(l—Zl 10:) H—

2/(mB mx.), E= m,7 wmi.+q*, C= m,,—l—u m%. —q>,

Q=m}—m% —q*, F= mlz7 —uzm%(* —q%, c(e.50)=
05o—m2+0g*>—0om%. and s(0)=[m2—a(g*—om%.)]/0

(0 =u) with g =1-0.0(c(u,sy)) is the usual step

function. ©(c(u, s)) and O(c(u, so)) come from the sur-
face terms S(c(ug, s9)) and A(c(ug, sg)), whose explicit
forms have been given in Ref. [21].

The reduced functions 1 (u), Hy(u), Ag+(u), Bg-(u),
and Cg-(u) are defined as

[ i

-5k )] 19

4)21«( w)

() = [ ol (0) = e ). (19)

A = ["@lde ()= die ). (20)

By (u) = /0 dvgl . (v). 1)

(17)

Cie- (u /d”/ dW‘/’4K +¢2K*( w)

2y (W) (22)

By using the same correlator and keeping only the first
term of the b-quark propagator (9), Ref. [11] calculated the
LCSRs for the B — p TFFs A, A, and V, and Ref. [23]
calculated the LCSRs for the B — K* TFFs A;, A,,
Ay —Ag, V, Ty, T, and T3. All those LCSRs are given
up to twist-3 accuracy..1 As a cross-check, we find if
keeping the terms up to the same twist-3 accuracy and
transforming to the same definitions for the form factors,
we return to the same expressions listed in Refs. [11,23].

Up to twist-4 accuracy, we present the required K*-
meson LCDAs in Table 1. All of those LCDAs are emerged
in the LCSRs (11), (12), (13), (14), (15), (16), (17). The
accuracy of the LCSRs thus depend heavily on how well
we know those LCDAs.

In general cases, the contributions from the twist-4 terms
are numerically small, thus the uncertainties from the twist-
4 LCDAs themselves are highly suppressed. We shall
directly adopt the twist-4 LCDAs derived by applying
the conformal expansion of the matrix element [20] to do
the numerical calculation.

The twist-3 contributions are generally suppressed by
certain §-powers (8 = mg./m;, ~0.17) and 1/M?-powers
to the leading twist-2 terms. For example, the twist-3
contributions from the LCDAs ¢4y, yig., ®ls. and

'In those two references the surface terms have not be taken
into consideration, and because only the 2-particle terms have
been kept in the matrix elements, the twist-3 LCDAs involving
3-particle contributions have also been missed in the LCSRs.
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TABLE 1. Following the idea of Ref. [12], we rewrite the K*-
meson LCDAs with different I"-structures in the nonperturbative
hadronic matrix elements.

Twist-2 Twist-3 Twist-4
Y50 brge !K ) 1/13 K" bk Wik Vi
LETS Wi, Oy, @
OL0), oLl
V> Vuls g[( ¢§_;K" Wi_;K* Alil( ) ‘/’41(
ol bl bl

dsg - are suppressed by &' and the twist-3 contributions

from the LCDAs gb3 K+ 1//3 - and <I>3{ k- are suppressed by
5%. However, the twist-3 contributions are sizable and
important in certain kinematic region, a special effect
should be paid for a precise prediction.

On the one hand, one may use more accurate twist-2
LCDAs to predict the twist-3 contributions. This can be
achieved by applying the relations among the twist-2 and
twist-3 LCDAs. For example, under the Wandzura-Wilczek
approximation [24], the 2-particle twist-3 LCDAs 1//3{1(*,

453{ K 1//2; and ¢3 k- can be related to the twist-2 LCDAs
qﬂ; - and ¢y via the following relations [11]

u . II )
W3L;K*(“) :Z{IZA dv Z;KE(U)JruAIdv Z;I;(U)},

u Il . ”. )
b3 (u) I% [A dUZ;’i_'j(Z})leldv z,l(v(”)]’

“ Pk L
Vi (1) :Z{EA dvd;z”;(v)Jru[dvqﬁZJj}(”)}

L (u) = (1-20) {Aude—ll dv@}

where # =1 —u and ¥ = 1 — v. The contributions from
the remaining three 3-particle twist-3 LCDAs to the
B — K* TFFs are numerically small, thus as the same as
the twist-4 LCDAs, we shall directly take them as the ones
from Ref. [20].

On the other hand, it has been suggested that by using the
improved LCSR approach [13,14] and by taking a chiral
correlator, the less certain high-twist contributions could be
highly suppressed. Ref. [21] has shown that by taking a
right-handed correlator with j§(x) = im,b(x)(1 + y5)q(x),
the twist-3 LCDAS, ¢4, Wix., ®hx.. @l¢., and even the

twist-2 LCDA ¢g;,(* disappear in the LCSRs. Thus the
uncertain twist-3 contributions can be highly suppressed.
Following the standard LCSR procedures, and by
keeping all the terms that contribute to the LCSRs up to
twist-4 accuracy, we recalculate the B — K* TFFs for the
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right-handed chiral correlator. Our final LCSRs are pre-
sented in the Appendix.

The hadronic representation of the chiral correlator
contains an extra resonance J© = 0" in addition to the
usual one with J¥ = 07, introducing extra uncertainty to
the LCSR-R. The LCSR-R eliminates the large uncertain-
ties from the twist-2 and twist-3 structures which are at the
5'-order and we can also suppress its pollution by a proper
choice of continuum threshold s, thus it is worthwhile to
use a chiral correlator. Numerically, we confirm our
previous observation that the final LCSRs have slight s,
dependence [21], thus the uncertainties from J* = 0F
resonance are small.

III. NUMERICAL ANALYSIS
A. Basic inputs

In doing the numerical calculation, we take the
K*-meson decay constants fi. = 0.185(9) GeV and

|,|(* = 0.220(5) GeV [20], the b-quark mass m;, = 4.80+
0.05 GeV, the K*-meson mass mg- = 0.892 GeV, the
B-meson mass mg = 5.279 GeV [22], and the B-meson
decay constant fp = 0.160 £ 0.019 GeV [25]. The fac-
torization scale y is set as typical momentum of the heavy
b-quark, ie., u= (m3 —m?)"/?~2.2 GeV [26,27], and
we predict its error by taking Ay = +1.0 GeV.

The choices of twist-3 and twist-4 LCDAs have been
explained in the last subsection. As for the twist-2 LCDA:s,
we adopt the model, following the idea of Wu-Huang
model for the pion LCDA [28], to do the calculation [21]

A% V/3xXY
)
82 fi- D

xm; +xmg — Yz}

b (x) = (14 By €2 (E) + CLpn & (8)]

X exp [_b/g]{*

XX
[Erf <b2 X %) —Erf (bg;,(* :—;ﬂ
(23)
where 2 = || or L, fx- = fi./v/3 and flt. = £l /\/5 are

reduced decay constants, cf =2x—1,Y = Xm, + xm,, the

—l‘

error function, Erf(x) = dt. The model cooper-

=z =lie
ates the transverse momentum dependence with the longi-
tudinal one under the Brodsky-Huang-Lepage prescription
[29] and the Wigner-Melosh rotation [30-32]. Such a
cooperation of transverse effect in the light meson wave
function is helpful for an effective suppression of the end-
point singularity for high-energy processes involving light
mesons, cf. a review [33].

The model parameters A%; K B%; x> Ch and b%; £ can
be fixed by applying the following criteria,
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(i) The normalization condition of the twist-2 LCDA,
ie., fqﬁ’%;K* (x)dx = 1;

(i1) As shown by Ref. [21], the average of the squared
transverse momentum <ki>}(/2 could be determined
from the light-cone wave function which is related to
the LCDA by integrating out its transverse momen-
tum dependence. To fix the parameter, we adopt
(K2)//? = 0.37(2) GeV [28,34].

Generally, the twist-2 LCDA can be expanded as a
Gegenbauer polynomial,

(iif)

¢’21;K*(x):6x5c<1+ > aiC?,/z(f)), (24)

n=12,

whose Gegenbauer moment a/, can be calculated via
the following way due to the orthogonality of the
Gegenbauer functions, i.e.,

o o e ()G (Q)
te(a@P

Generally, the behavior of the twist-2 LCDA is
dominated by its first several terms. We adopt the
first two Gegenbauer moments derived from the
QCD sum rules [20] to fix the parameters, i.e.,
ai(1GeV)=0.04(3) and a5 (1GeV)=0.10(8) for
¢rx» and a](1GeV)=0.03(2) and al(1 GeV) =
0.11(9) for ¢ ..

This way, we get the LCDA at the scale of 1 GeV, and its

behavior at any other scale can be achieved via the

renormalization group evolution [35].

The parameters of ¢4 for ai-(1 GeV) = 0.04(3) and
ay (1 GeV) = 0.10(8) have been given in Ref. [21]. We
present the parameters of ¢g; k- for a'll(l GeV) = 0.03(2)
and al(1 GeV) = 0.11(9) in Table II, and the correspond-
ing LCDA behavior in Fig. 1.

(25)

B. Criteria for the LCSRs

The Borel parameter M? and the continuum threshold s,
are determined by the following criteria:

(i) The continuum contribution, which is the part of the

dispersive integral from s, to oo, should not be too

TABLE II.  Parameters of the twist-2 LCDA qﬁg; ¢+ determined
for a!(1 GeV) = 0.03(2) and al(1 GeV) = 0.11(9).

PHYSICAL REVIEW D 95, 094023 (2017)

L5
1,
O
X N/ WH-DA for a| = 0.03(2) A,
= N WH-DA for all = 0.11(9) 1
x +
osp [ — WH-DA for o] =0.03,al =0.11 x
s -'= WH-DA for ] =0.01,a} =0.11 \
A - - -WH-DA for a! = 0.05,a} =0.11 X
i + WH-DA for al =0.03,a] =0.20
. * WH-DA for a] =0.03,al =0.02

0 0.1 02 03 04 05 06 07 08 09 1
T

FIG. 1. The twist-2 LCDA qﬁg; k- (x) at the scale 1 GeV.

large. We take it to be less than 50% of the total
LCSR,

- —s/M?
o dsp“’t(s)e s/M

5 dsp™(s)e=

<50%.

(i) All high-twist LCDAs’ contributions are less than
35% of the total LCSR, qualitatively ensuring the
usual power counting of twist contributions.

The derivatives of the TFFs with respect to 1/M?>
give the LCSRs for mp. We require all predicted B-
meson masses to be fulfilled with high accuracy,
e.g. [mLCSR — mSP|/mSP < 0.1%.

The determined continuum threshold s, and the Borel
parameter M? for various B — K* TFFs at the large recoil
point g*> = 0 are listed in Table III.

(iii)

C. Properties of the LCSRs

We present the sum rules for the B — K* TFFs
T1’2’3(q2), A0’1’2(q2) and V(q2) for the right-handed
chiral correlator (LCSR-R) and for the usual correlator
(LCSR-U) in Figs. (2, 3), in which the solid line stands
for its central value and the shaded band is the theore-
tical error. The error is squared average of errors
caused by all the mentioned error sources, e.g. we

TABLE III. The Borel parameter M?> and the continuum
threshold s, (in units: GeV?) for the B — K*utu~ TFFs at
g*> = 0. The subscripts R and U/ stand for the cases of the right-
handed and the usual correlators, respectively.

a @ BQ;K* CQ;K‘ AQ;K* bg;K*

0.03 0.11 -0.007 0.178 26.645 0.629
0.01 0.11 -0.029 0.180 26.7717 0.630
0.05 0.11 -0.014 0.176 26.519 0.628
0.03 0.20  —0.008 0.275 24.256 0.599
0.03 0.02  —0.001 0.078 27.530 0.642

A Ay Az 14 T, T
M%a 6.0 4.5 5.0 4.5 3.0 8.5
SOR 36.0 33.0 30.0 32.0 33.0 34.0
MI%( 25.0 24.0 25.0 4.5 32.0 28.0
Sou 38.0 37.0 39.0 37.0 37.0 37.0
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FIG. 2. The B — K* TFFs T;,3(q*) for the right-handed chiral correlator (lower ones) and the usual correlator (upper ones),
respectively. The solid lines are central values and the shaded bands are their errors.

1.2]
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506

3
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0.4
03
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(=] =]
= e
Alf(¢%)
)
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03]

1.2
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< = 0.4
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0.4

0 2 4 6 8 10
¢*(GeV?)

12 14 0 2 4 6 8 10
¢*(GeV?)

12 14 0 2 4 6 8 10 12 14 2 4 6 8 10 12 14

¢ (GeV?) ¢*(GeV?)

FIG. 3. The B — K* axial-vector and vector TFFs Ay ,(¢*) and V(g?) for the right-handed chiral correlator (Lower ones) and the
usual correlator (Upper ones), respectively. The solid lines are central values and the shaded bands are their errors.

adopt AM%,,, = +0.5 GeV? and Asg gy = +0.5 GeV??
Figures 2 and 3 indicate that all the TFFs increase with the
increment of g>. We present the LCSRs together with their
errors at the large recoil region g> — 0 in Table IV. As a
comparison, the Ball and Zwicky (BZ) prediction [12], the
AdS/QCD prediction [37], and the LCSR prediction [38]
are also presented. Those TFFs are consistent with each
other within errors.

A smaller Borel parameter indicates a larger M? depend-
ance due to a weaker convergence over 1/M?, and a larger

The TFFs .cha}nge.s very slightly by taking AM % u=
£0.5GeV?, which is still ~3% by setting AM7, ,, =+1.0GeV>.
Thus our predictions are consistent with the usual flatness criterion
for determining the Borel window [36].

M?-uncertainty could be observed. This explains why a
larger M?-uncertainty than our present one is observed in
Ref. [38], whose Borel parameter is taken as M?> = 1.00 &
0.25 GeV? by using a rough scaling relation, M? ~ 2m,7 ~
1 GeV [1,2,39], which is much smaller than the M2-values
shown by Table III.

We present the contributions from the K*-meson LCDAs
up to twist-4 in Table V. For the LCSR-U/ of the usual
correlator, the relative importance among different twist
LCDAs follows the trends, twist-2 > twist-3 > twist-4;
For the LCSR-R of the right-handed chiral correlator, we
have, twist- 2 > twist- 3~ twist-4. The dominance of the
twist-2 term indicates a more convergent twist expansion
could be achieved by using the chiral correlator. In Table V, a

somewhat larger twist-4 contribution is observed for AF/ u
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TABLEIV. The B — K* TFFs at g> = 0. As a comparison, the Ball and Zwicky (BZ) prediction [12], the AdS/QCD prediction [37],
and the LCSR prediction [38] are also presented. y = 2.2 GeV.

A(0) A;(0) V(0) T1(0)[T5(0), T5(0)] T5(0)
LCSR-R 0.31070:030 0.260709% 0.332:003! 0.2547004¢ 0.1527303
LCSR-U 0.3080:932 0.257150% 0.307-505% 0.251709% 0.14570:0%
LCSR [38] 0.2559-18 0.237918 0.36° 0% 0.317018 0.225310
BZ [12] 0.292 + 0.028 0.259 + 0.027 0.411 +0.033 0.333 +0.028 0.202 + 0.018
AdS [37] 0.249 0.235 0.277 0.255 0.155

TABLE V. Different twist contributions for the B — K* TFFs.
The results for LCSR-R and LCSR-U/ are presented.

taking 4 = (2.2 £ 1.0) GeV. Table VI shows when setting
u > 2.2 GeV, TFFs are almost unchanged. This negligible
dependence for larger scale value is consistent with the fact

Twist-2 Twist-3 Twist-4 Total that the K* LCDAs change slightly when running from
AR 1607 0.029 1267 0310 z\ihiie;rfl E;)Sl]ligher value via the renormalization group
Al 0.433 0.088 -0.214 0.308 ’
A%z 0.810 —0.634 0.084 0.260
AU 0.404 —0.137 ~0.010 0.257 D. An extrapolation of the TFFs and the correlation

2 .

VR 0.359 0 —0.027 0.332 coefficient pyy for the two LCSRs
v 0.207 0.119 —0.019 0.307 The LCSRs are valid when the K*-meson energy has
TRITR, TF] 0.505 =0.127 -0.124 0.254  large energy in the rest-system of the B-meson,
T[Ty, T¥] 0253 0.002 —0.004 0251 Ex. > Agep; using the relation, ¢> = m} — 2mgEg-, one
Tg 0.384 —0.275 0.043 0.152° ysually adopts 0 < g2 < 14 GeV2. We adopt the simplified
3 0.339 —0.199 0.005 0.145 series expansion (SSE) to extrapolate the TFFs to all

and T?/ U which comes from the twist-4 LCDA Wik~ in the
reduced function Hy = [¢ dv[yg-- (v) — ¢ (v)]; because
of large suppression from the twist-2 LCDA qﬁz{ x+» the net

contribution of H5 is small, which is about 0.5% of the twist-
2 ones. Except for H;, the remaining twist-4 contributions are

still about 10% of the twist-2 ones for A?/Zu, VR/U and T?/ u,
thus the twist-4 terms are important and should be kept for a
sound prediction.

As shown by Table VI, the factorization scale depend-

ence is small for all the B — K* TFFs, e.g. less than 3% by

TABLE VI. The factorization scale dependence of the B — K*
TFFs at large recoil region. y = (2.2 £ 1.0) GeV.

physically allowable g*-region; i.e., the TFFs F;(q*) are
expanded as [40]

Y G -O0)F, (26)

F(¢g?)=—
l(q ) 1 _ qZ/m%al )

where F; stands for Ay ,(¢?), V(¢*) and T,,3(q%),
respectively. The function

RV e A
A0 = Vi =1+ V=1 @7

with 7, = (mp £ mg)? and 1y =1t.(1—+/1—1_/t,).
The resonance masses myg,; have been given in
Ref. [40]. The coefficients a) = F;(0), a} and a) are
determined such that the quality of fit (A) is around several
percents. The quality of fit is defined as [22]

u=12GeV pu=22GeV u=32GeV e Fit
(1) — Flit(¢

AR 0.307 0.310 0.310 A= LEi(1) — F7(0)] x 100, (28)
Al 0.301 0.308 0.308 2lFi(1)]

R
ﬁg[ g;gg 8;2(7) 8;2(7) where 7 € [0,1, ...,277, 14] GeV2. We put the determined
V%z 0.329 0332 0332 parameters aj, in Table VII, in which all the LCSR
yu 0:302 0:307 02307 parameters are set to be their central values.
TRITR, 7] 0.254 0.254 0.254 We present the extrapolated B — K* TFFs in Fig.(4) and

Uil 7 0247 0251 0,952 Fig.(5), where the AdS/QCD prediction [37] and the Lattice
AUERE ' ' ' QCD prediction [41] Iso given mparison
i we om0 pdton [1] e dbo sven s o comaron,

igs.(4, 5) show the sum rules o -R an -

T4 0.142 0.145 0.145 &

are close in shape. We adopt the correlation coefficient pyy
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TABLE VII. The fitted parameters ail’z}. (RU} for the B - K*
TFFs, where all the LCSR parameters are set to be their central
values. Ap and Ay, are the qualities of fits for the right-handed
correlator and the usual correlator, respectively.

PHYSICAL REVIEW D 95, 094023 (2017)

to show to what degree those LCSRs are correlated. The
correlation coefficient is defined as [22]

Cov(X,Y)

Pxy =——_— -
Ox0Oy

(29)

A A \% A T T T
: ! 2 0 ! 2 3 X and Y stand for the LCSR-R and LCSR-U/ sum rules for
ayp 1.058 0382 —1.025 1477 -0.900 0.730 —0.714  the TFFs, respectively. The covariance Cov(X,Y) =
al, 0.130 —5.008 0318 14.238 —3.330 -0399 -3.715  E[(X — E(X))(Y — E(Y))] = E(XY) — E(X)E(Y) with E
Az 09 1.0 003 1.5 0.4 2.8 22 being the expectation value of a function. oy and oy are
ayy 1.059 0275 -0.531 -0.019 -0.136  0.719 —0.294  standard deviations of X and Y. The rang of |py y|is 0 ~ 1,
ayy 1.031 1339 —0.115 -0.169 —0.708 —0.205 —1.144  alarger |py y| indicates a higher consistency among X and
Ay 0.1 0.2 0.3 1.2 0.2 0.3 0.1 Y. The correlation coefficients for various TFFs are listed in
—TLOSRY 08T —TCoRu |2 =T GSRU
L8 4 Lattice2014 + Lattice2014 4 Lattice2014
LelL:_AdS/QCD 0.7) + AdS/QCD 1fl_+ AdS/QCD
. 0.8
§ 06
0.4 _
o
0.2
0
0 2 4 6 8 10 12 14 16 18
¢*(GeV?) ¢*(GeV?) ¢*(GeV?)
—T.CSRR O3 =TCorR L2 =TCoR R
1.8} 4 Lattice2014 4 Lattice2014 4 Lattice2014
+ AdS/QCD 07y . QCD 1l + AdS/QCD
s s 0.8
= = 06
&~ IS
0.4
0.2
0 2 4 6 8 10 12 14 16 18 ) 2 4 6 10 12 14 16 18 00 2 4 6 8 10 12 14 16 18
¢*(GeV?) ¢*(GeV?) ¢*(GeV?)

FIG. 4. The extrapolated B — K* tensor TFFs T’ ,3(g*). The left and right figures stand for LCSR with the usual and right current,
respectively. The solid lines are central values and the shaded bands are their errors. As a comparison, the AdS/QCD [37] and the lattice

QCD [41] and predictions are presented.

0.
—TLCSRU —LOSRU 25 LCSRu
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2,51 .+ AdS/QCD 0.7 + Aadswcr) . A?ismeCD
2
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0.5
02
0 2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 e & 10 1z 13 16 1% s o ¢ s 10 12 17 15 13
¢*(GeV?) ¢*(GeV?) *(Gev?) ¢*(GeV?)

FIG. 5. The extrapolated B — K* axial-vector and vector TFFs Aoyliyz(qz) and V(g?). The Upper and Lower figures stand for LCSRs
with the usual and right-handed correlators, respectively. The solid lines are central values and the shaded bands are their errors. As a
comparison, the AdS/QCD [37] and the lattice QCD [41] predictions are presented.
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TABLE VIII. The correlation coefficient pxy for the sum rules
LCSR-R and LCSR-U.

pxy 089 079  0.71 059 054 049 037

Table VIII. The magnitudes of the covariance for most of
the TFFs are larger than 0.5, implying those TFFs are
consistent with each other, or significantly correlated, even
though they are calculated by using different correlators. In
the LCSRs, the twist-2, the twist-3, and the twist-4 terms
behave differently for different correlators. A larger py
shows the net contributions for LCSR-R and LCSR-U/ from
various twists are close to each order, not only for their
values at the large recoil point ¢g> = 0 but also for their
ascending trends in whole g*-region.

E. The branching fraction of B - K*'u*pu~

As an application, we adopt the present TFFs to calculate
the branching fraction of the semi-leptonic decay
B — K*u"pu~. We adopt the differential branching fraction
derived in Ref. [23] as our starting point, where the relations
among the coefficients to the TFFs have also been presented.

We present the branching fraction dBB/dg?* of the semi-
leptonic decay B — K*u* u~ in Fig. (6), where the Belle data

20

PHYSICAL REVIEW D 95, 094023 (2017)

[42] and the LHCb data [43—45] are presented. The branch-
ing fractions for B* — K**utuy~ (B*-type) and B’ —
K Outu~ (B°-type) are shown separately. Fig.(6) shows
the differential branching fractions from LCSR-I/ and
LCSR-R are close in shape, both of which are consistent
with the LHCb data. Numerically, we find the correlation
coefficient for the branching fractions for the channels BT —
K*u*tp~ and B - K*%u*u~ by using the LCSR-U/ and the
LCSR-R are the same, both of which have a significant
covariance with pyy = 0.64. This is due to the fact that the
TFFs A; and A, dominate the branching fraction, whose
correlation coefficients, as shown by Table VIII, are large.

IV. SUMMARY

In this paper, we have studied the B — K* TFFs under the
LCSR approach by applying two correlators, i.e., the usual
one with jj(x) = im,b(x)ysq(x) and the right-handed
chiral one with jf(x) = im,b(x)(1 + y5)q(x), which lead
to different light-cone sum rules for the TFFs, i.e., LCSR-U
and LCSR-R, respectively. The LCSRs for the B — K*
TFFs are arranged according to the twist structure of the K*-
meson LCDA, whose twist-2, twist-3 and twist-4 terms
behave quite differently by using different correlators.

The 2-particle and 3-particle LCDAs up to twist-4 accu-
racy have been kept explicitly in the LCSRs. For the LCSR-
U, almost all of the LCDAs come into the contribution, and

— LCSR-U
* LHCb
Belle

%)

dB/dg* x 103[GeV 2]
S

20

— LCSR-R
e LHCb
15+ Belle

dB/dg® x 103[GeV 2]
s

5 r\_j i 5 i
0 L 0 A
0 2 4 6 3 10 12 14 16 18 0 2 4 6 3 10 12 14 16 18
¢ @
20 : : : 20 : : :
— LCSR-U — LCSR-R
« LHCb e LHCb
a5 CDF g 15 CDF
= Belle = Belle
< v BaBar wg v BaBar
=10 S 10
X X
= )
S| g

4y
!

-
!

FIG. 6. Differential branching fraction d13/dq? as a function of g*. The upper figures are for the B* type and the lower ones are for the
BO type. The solid lines are central values and the shaded bands are their errors. The AdS/QCD prediction [37], the Belle data [42], and

the LHCb data [43-45] are presented as a comparison.
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the relative importance among different twists follows the
usual trends, twist-2 > twist-3 > twist-4. For the LCSR-R,
only part of the LCDAs are emerged in the TFF, the
uncertainty from the unknown high-twist LCDAs are thus
greatly suppressed; Moreover, the relative importance among
different twists changes to twist- 2 > twist- 3~ twist-4. The
dominance of the twist-2 term indicates a more convergent
twist expansion could be achieved by using a chiral correlator.
Two exceptions for the power counting rule over twists are
caused by the twist-4 LCDA l//i‘; x> however it contributes to
the TFFs via the reduced function Hy = [¢ dv[ygy-(v)—
¢3:x-(v)], whose net contribution is negligible. Except for
H;, the remaining twist-4 contributions are about 10% of the

twist-2 ones for the TFFs A?/zu, V and T?/ u; thus, the twist-4
terms should be kept for a sound prediction.

We have observed that different LCSRs for the B — K*
TFFs, i.e., LCSR-U/ and LCSR-R, are consistent with each
other even though they have been calculated by using
different correlators. As shown by Table VIII, large

correlation coefficients for most of the TFFs show the

PHYSICAL REVIEW D 95, 094023 (2017)

net twist contributions for LCSR-R and LCSR-U/ are close
to each order, not only for their values at the large recoil
point g> = 0 but also for their ascending trends in the
whole g?-region. The high correlation of those LCSRs is
further confirmed by their application to the branching
fraction of the semi-leptonic decay B — K*u™u~; i.e., they
are significantly correlated with pyy = 0.64.

The K*-meson LCDAs contribute differently in the
LCSRs by using different correlators. The consistency of
different LCSRs inversely provide a suitable platform for
probing unknown or uncertain LCDAs; i.e., the contribu-
tions from those LCDAs to the TFFs can be amplified to a
certain degree via a proper choice of correlator, thus
amplifying the sensitivity of the TFFs, and hence their
related observables, to those LCDAs.
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APPENDIX A: THE RELATIONS BETWEEN THE LCDAs AND THE NONLOCAL MATRIX ELEMENTS

The nonlocal matrix elements in the right-hand side of the above equation can be reexpressed by the LCDAs of various

twists [12,20], i.e.,

(K" (p. 2)[5(x)q1 (0)]0) = =3 - (") - x)mr. / due Pyl . (u), (A1)
* = 1 (1) ! iup-x,,,L
(K" (p. A)5(x)7,r591(0)[0) = 7 ¢ mg-fi- A due™ Py (x), (A2)
K (p. D5 00 — e £l d iu(p2) W ox  mp
(K*(p. A)|5(x)75q:1(0)] >—mK*fK* ue Dox 21(*(“) ¢3K*( )] + Dox P 6 s (1)
1 €*u> x I 2 n A3
b 0= ke )+ 0l )~ 204 ] (A3)
“() W my-x>
(K (. 5o 0)0) = -isk. [ due'"M{(eﬂ — p,,>[¢2%,«<u>+ & ¢iz<*(u)}
W x 1 1
+ (P, Puxy)m [¢3 k(1) = §¢2;K*(u)_§l//4;1(*(u):|
1 ., 2.
5 (60, = ) () = i ] (A4)
(013(0)9G,, (vx)s(=x)|K*(P. 2)) = if . m. ) p, =€) p, Wik (v, px) (AS)
(017(0)igG, (v)75s(—x)[K*(P.2)) = if k. [e) p, — ) p,]Whx (v, px) (A6)
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(01 (x)7759Gap(vx)s(=x) |[K* (P, 2))

Wy
= puleps— ei,;pa)f Ve @l (v, px) + (Paghy — PpTb) —f b @l (v, px)

+pﬂ(pax[)’ _pﬂxa) ( )sz*mK*LleiK (U pX) (A7)

(01g(x)ir,9Gop(vx)s(—x) |K* (P, 1))

@
2 2 ev’x
= pulelpy - ei};pa)f gl (v, px) + (Pagp, — Ppda) Ff';'«m?c @ . (v, px)

+ Pﬂ(paxﬂ - p/;’xa) ( )2 fK*mK*‘lei K*(U px) (AS)

.
_ . e . x
(01g(x)04pgG (vx)s(=x) | K*(P,2)) = fr-mi. ) (PaPud, = PpPuban = PaluT5, + PpPudau] Py (v, pX)

A A A A 1(1
+f%*m%(* [Paei,zg/i - Pﬁeg_,),giu - paeﬁ_z),g/}i, + pﬁeﬁ_zgiy]q)4 5(*) (Ua PX)
T flm? [ e(/l) 1 ) 1 ) 1 () 1 ](I)L( (v, px)

KMk \Pu€1a9p — Pu€ip9a — Pr€1a9pu T Pv€ p9auPax+ (V> PX
m[ () ) 0

1(3
+ pap;leip’x —PpPu€artv papueL/}x +pﬁpueg_c)z ]@4;3(2(1),[?)6)

px
fL*m2 * yl ! 1(4
+ % Papue)xs— pppueina—papiel)rs+ pppiellx] @i (v.px)  (A9)
_ . ~ N eu) 1 1 L 1
(01g(x)icapgG (vx)s(=x)|K* (P, 4)) = frmi- 2p %) [PaPulp = PpPula = PaPudp + PpPudau] P (v, px)

A A A = 1(1
+ frem [peegh, — ppell s — paelah, + ppell bl @ik (v, px)
A A A A z1(2
+ frmy (puelhas, = puelyoh = puellgh, + poejom) @i (v, p)
fl*m 1(3
+ l; . xK [papyeizx - pﬂpﬂeir)x papyeizx + pﬂpyeii ](1)4;5(*)(7}7 px)
fl* m2 * 2 g
+ K o puelxy = pppuellng = papvellag + pppoellx @ (v, px)

px
(A10)

Here, f%. and fy(* are K*-meson decay constants, which are defined as (K*(P,4)[5(0)y,q(0)|0) = f'IL*mK*e;W

and (K*(P,2)[5(0)0,,4(0)[0) = if £ (e;” p, — es“' p,).

APPENDIX B: LCSRs FOR THE B — K* TFFs BY USING THE RIGHT-HANDED CHIRAL CORRELATOR
We list the LCSRs for the B — K* TFFs by using the right-handed chiral correlator in the following:

2 e 'du | , [ C C =
A?(qz):anZb(n;;I; ﬁn K*){ A L syt {um%(*@(c(u,so))(ﬁé-;K*(u,/A)—}—@(c(u,so))(u)l//g;l{*—Z[n:;ﬂ@( (.50))
C—2m3? ~ 1 C = 1
+TMmzb®(c(u,s0))—;@(c(u,so))]qu;K*(u)—Z{W(*D(c(u,so))—;@(c(u,so))]IL(u)
2m iy TEmyme O(c(us,))
L{M2®( (1:50))+6(e(u 50) } } /dv/ du/ D g ) M
X [P (@) = 12(40@, ) (@) = 20W L. (o) + 203 (@) — 20, (@) + Wiy ()] (mf = +2um.).  (B1)
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my,(mg + my-)m%. fr- Vdu (o 1 1
o, e s Ol so )b () = 4
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2 me% u <

3 —-2m3
@(c(u s0)) + ﬁG(C(”’ So))} brg (1) +2 {Cuzl\z,ﬂb

< B(ctuso ) - ¢ [
xcf)(c(u,so))—Lzé(c(u,so))]h(u)—#é(c(u,so)mxm} —l—AldvAlduAldD
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x el

(B2)
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2~

©(c(u. 50))

2M4

frm%. ~
/MZ 61;2[\41(2 @(C(M,S()))

D)@, (@) - 0, ()], (B7)

To compare with previous LCSRs given by Ref. [21], in the above formulas, we keep all the three-particle, twist-4 terms

in the LCSRs.
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