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The unpolarized, helicity and transversity parton distribution functions of the nucleon are studied within a
convolution model where the bare nucleon is dressed by its virtual meson cloud. Using light-front time-
ordered perturbation theory, the Fock states of the physical nucleon are expanded in a series involving a bare
nucleon and two-particle (meson-baryon) states. The bare baryons andmesons are described with light-front
wave functions (LFWFs) for the corresponding valence-parton components. Using a representation in terms
of overlap of LFWFs, the role of the nonperturbative antiquark degrees of freedom and the valence-quark
contribution at the input scale of the model is discussed for the leading-twist collinear parton distributions.
After introducing perturbative QCD effects through evolution to experimental scales, the results are
compared with available data and phenomenological extractions. Predictions for the nucleon tensor charge
are also presented, finding a very good agreement with recent phenomenological extractions.
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I. INTRODUCTION

A successful approach in high energy physics to describe
the partonic structure of the nucleon is based on light-front
quantization, where hadrons are described in terms of light-
front wave functions (LFWFs) [1,2]. Representation of
parton distribution functions in terms of overlap integrals of
LFWFs has proven to be a powerful framework to unveil
the underlying physical picture and provide the support for
theoretical modeling. At fixed light-front time, the nucleon
state can be decomposed in terms of various quark (q),
antiquark (q̄) and gluon (g) Fock components, i.e.

jNi ¼ ψ ð3qÞjqqqi þ ψ ð3qþqq̄Þjqqqqq̄i þ ψ ð3qþ1gÞjqqqgi
þ…; ð1Þ

where the LFWFs ψ ð…Þ represent the probability ampli-
tudes to find the different parton configurations in the
nucleon. A general model-independent classification of the
LFWFs for the 3q and 3qþ 1g components has been
worked out in Refs. [3,4]. However, to probe the parton
content of the nucleon, suitable models have to be invented
to give explicit expressions for the LFWFs. Most of the
applications have focused on the minimum parton content,
providing a description of the valence-quark contribution to
the leading-twist parton distribution functions entering in
various deep inelastic scattering processes [5,6]. A step
forward to include also the Fock state with one additional
gluon has been performed in Ref. [7], allowing one to
extend the discussion to higher-twist parton distribution

functions. Recently, works have been done to describe also
the nonperturbative structure of the nucleon sea encoded in
the 3qþ qq̄ component of the LFWF by integrating
meson-cloud effects into the valence-quark contribution.
Along the lines originally proposed in Refs. [8,9], a meson-
baryon Fock-state expansion is used to construct the
state j ~Ni of a dressed physical nucleon. In the one-meson
approximation the state j ~Ni is pictured as being part of the
time a bare nucleon, jNi, and part of the time a baryon-
meson system, jB;Mi. Using light-front quantization to
resolve the structure of the nucleon core jNi and of the
bare meson and baryon in the jB;Mi state in terms of the
constituent partons, one can build up the corresponding 3q
and 3qþ qq̄ components of the LFWFs. Explicit expres-
sions for the LFWFs within a light-front meson-cloud
model have been constructed in Refs. [10,11], with
applications to the description of the leading-twist unpo-
larized generalized parton distributions (GPDs) [10,12],
electroweak form factors of the nucleon [11], and nucleon-to-
pion transition distribution amplitudes [13]. More recently, a
detailed study has been presented in Refs. [14,15] for the
unpolarized parton distribution function (PDF) within a
light-frontmeson-cloudmodel including perturbative effects
up to next-to-next-to-leading-order (NNLO) accuracy. These
works enter in the class of an extensive literature within the
meson-cloud model (see Refs. [16–19], and references
therein), by introducing the novel approach of a fully
relativistic light-front formalism for the description of both
the kinematics of the N → BM fluctuations and the quark
dynamics encoded in the LFWFs of the core baryon and
meson states. As a matter of fact, the meson-cloudmodel has
received a great deal of attention, since it was realized that it
can give an explanation of the flavor-symmetry violation in
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the sea-quark distributions of the nucleon [20] by accounting
for the excess of d̄ antiquarks over ū antiquarks as observed
through the violation of the Gottfried sum rule [21,22].
Although the nucleon’s nonperturbative antiquark sea cannot
be ascribed entirely to its virtual meson cloud [23], the role of
mesons in deep inelastic scattering (DIS) is of primary
importance [24].
In this work, we review the application of the meson-

cloud model within light-front quantization to the leading-
twist PDFs. This approach has been recently discussed in
the case of the unpolarized PDF [14,15] and will be
extended here to consider also the longitudinally and
transversely polarized PDFs. In particular, the transversity
distribution has never been discussed so far in the context
of meson-cloud models, and we will present here for the
first time the convolution formalism to account for the sea-
quark contribution to transversity within a meson-cloud
picture of the nucleon. The calculation is performed using
LFWFs for the bare nucleon and bare mesons, which have
proven to give a faithful description of the core structure of
the hadrons as probed in various observables. Another
important ingredient that will be discussed is the matching
scale of our hadronic model consistent with QCD evolu-
tion. Once the input scale of the model is identified, we will
be able to apply evolution equations to evolve our results at
the relevant scale of experiments.
The paper is organized as follows: In Sec. II the relevant

formulas for the LFWF of the dressed nucleon in the
meson-cloud model are collected. The convolution formal-
ism for the calculation of the three leading-twist collinear
PDFs within the meson-cloud model is discussed in
Sec. III, while the ingredients for the explicit calculation
of the PDFs in terms of overlap of LFWFs are presented in
Sec. IV. In Sec. V, after fixing the input scale of the model,
we present our results for the valence-quark and sea-quark
contributions at the hadronic scale of the model as well as
after leading-order (LO) evolution to the experimental
scales. We then compare our findings with available
experimental measurements and phenomenological extrac-
tions. Finally, we discuss our results for the tensor charge of
the nucleon in comparison with various theoretical calcu-
lations and recent phenomenological extractions. In Sec. VI
we summarize our conclusions. Technical details necessary
to derive the convolution formulas for the PDFs in the
meson-cloud model are given in Appendix.

II. THE MESON-CLOUD MODEL
OF THE NUCLEON

The basic assumption of the meson-cloud model is that
the physical nucleon state j ~Ni can be expanded (in the
infinite-momentum frame and in the one-meson approxi-
mation) in a series involving a bare nucleon jNi and two-
particle (meson-baryon) states jB;Mi. The wave function
of the physical nucleon is then expanded in terms of the
bare nucleon and meson-baryon Fock states, i.e.

j ~pN; λ; ~Ni ¼
ffiffiffiffi
Z

p
j ~pN; λ;Ni

þ
X
B;M

Z
dyd2k⊥
2ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp

×
X
λ0;λ00

ϕλðN;BMÞ
λ0λ00 ðy;k⊥Þj ~pB; λ0;Bij ~pM; λ00;Mi;

ð2Þ
where the light-front momenta of the baryon, ~pB ¼
ðpþ

B ;pB⊥Þ and the meson, ~pM ¼ ðpþ
M;pM⊥Þ, can be written

in terms of the intrinsic (nucleon rest-frame) variables as1

pþ
B ¼ ypþ

N; pþ
M ¼ ð1 − yÞpþ

N;

pB⊥ ¼ k⊥ þ ypN⊥; pM⊥ ¼ −k⊥ þ ð1 − yÞpN⊥: ð3Þ
In Eq. (2) we introduced the function ϕλðN;BMÞ

λ0λ00 ðy;k⊥Þ to
define the probability amplitude for a nucleon with helicity
λ to fluctuate into a virtual BM system with the baryon
having helicity λ0, longitudinal momentum fraction y
and transverse momentum k⊥, and the meson having
helicity λ00, longitudinal momentum fraction 1 − y and
transverse momentum −k⊥, respectively. As explained
in Refs. [10,11], this function can be calculated using
time-ordered perturbation theory (TOPT) in the infinite-
momentum frame, which is equivalent to light-front time-
ordered perturbation theory. The final result reads

ϕλðN;BMÞ
λ0λ00 ðy;k⊥Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp Vλ

λ0λ00 ðN;BMÞ
M2

N −M2
BMðy;k⊥Þ

; ð4Þ

where MBM is the squared invariant mass of the baryon-
meson fluctuation

M2
BMðy;k⊥Þ≡M2

B þ k2⊥
y

þM2
M þ k2⊥
1 − y

: ð5Þ

In Eq. (4), Vλ
λ0λ00 ðN;BMÞ is the vertex function describing

the transition of the nucleon into a baryon-meson state,
which has been explicitly calculated for various transitions
and helicity combinations, e.g., in Refs. [10,11]. The
hadron states are normalized as

hp0þ;p0⊥; λ0;Hjpþ;p⊥; λ;Hi ¼ 2ð2πÞ3pþδðp0þ − pþÞ
× δð2Þðp0⊥ − p⊥Þ: ð6Þ

By imposing the normalization on the hadron state of
Eq. (2), we obtain the following condition on the normali-
zation factor Z:

1 ¼ Z þ
X
B;M

PN=BM; ð7Þ

1Light-front coordinates of a generic four-vector a ¼
ðaþ; a−; a⊥Þ are defined by aþ ¼ 1ffiffi

2
p ða0 þ a3Þ, a− ¼

1ffiffi
2

p ða0 − a3Þ and a⊥ ¼ ða1; a2Þ, in terms of the standard
Minkowski four-vector components.
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with2

PN=BM ¼
Z

dyd2k⊥
2ð2πÞ3

X
λ0;λ00

jϕþðN=BMÞ
λ0λ00 ðy;k⊥Þj2: ð8Þ

Here PN=BM is the probability that a nucleon fluctuates
into a baryon-meson state, and, accordingly, Z gives the
probability to find the bare nucleon in the physical nucleon.

III. CONVOLUTION MODEL FOR THE PARTON
DISTRIBUTION FUNCTIONS

According to the Sullivan description [9], in a DIS process
there are no interactions among the particles in amultiparticle
Fock state during the interaction with the hard photon.
Therefore, the virtual photon can hit either the bare proton3

p or one of the constituents of the higher Fock states. As a
consequence, a generic quark parton distribution function
jðxÞ can be obtained by the sum of two contributions

jq=pðxÞ ¼ ZjqV=pbare ðxÞ þ δjqðxÞ; ð9Þ

where jqV=pbare is the valence-quark distribution in the bare
proton described by 3q Fock states, and δjq=p includes both
valence and sea contribution coming from the BM Fock
component of the proton state, i.e. q ¼ ðuV þ ū; dV þ d̄Þ
(see Fig. 1). As we consider only the minimal 3q and qq̄
configurations for the baryon and meson components in the
BM fluctuation, respectively, only the meson can contribute
to the sea of the physical proton.
The last term in Eq. (9) can be further split into two

contributions, with the active parton belonging either to the
baryon (δjq=BM) or to the meson (δjq=MBÞ, i.e.

δjqðxÞ ¼
X
B;M

½δjq=BMðxÞ þ δjq=MBðxÞ�: ð10Þ

The higher Fock state contribution to the different parton
distribution functions of the proton can be written as the
following convolutions:

1. For the unpolarized PDF,

δfq=p1 ðxÞ ¼
X
B;M

�Z
1

x

dy
y
fp=BMðyÞfq=B1

�
x
y

�

þ
Z

1

x

dy
y
fp=MBðyÞfq=M1

�
x
y

��

þ
X
B;V

Z
1

x

dy
y
fp=VBLL ðyÞf1LL

�
x
y

�
; ð11Þ

where the sum over B involves baryons of spin 1=2
andM stands for both scalar and vector mesons, while
V refers to the contribution of only vector mesons.
In Eq. (11) the splitting functions are given by

fp=BMðyÞ ¼ fp=MBð1 − yÞ

¼
Z

d2k⊥
2ð2πÞ3

X
λ0;λ00

jϕþðp=BMÞ
λ0λ00 ðy;k⊥Þj2; ð12Þ

fp=VBLL ðyÞ ¼
X
λB

�
−
1

3
jϕþðp;BVÞ

λB1
ð1 − y;−k⊥Þj2

þ 2

3
jϕþðp;BVÞ

λB0
ð1 − y;−k⊥Þj2

−
1

3
jϕþðp;BVÞ

λB−1 ð1 − y;−k⊥Þj2
�
: ð13Þ

The description of a nucleon as a sum of BM Fock
components is independent of whether the photon
couples to the baryon or to the meson, so on general
grounds the relation fN=BMðyÞ ¼ fN=MBð1 − yÞ must
hold. It simply means that when a baryon, which
carries a momentum fraction y, is struck by the
photon, the remaining meson carries a momentum
fraction 1 − y. Furthermore, this relation ensures
charge conservation and momentum conservation
automatically.

FIG. 1. Deeply virtual scattering from the bare nucleon (left figure), from the virtual baryon (middle figure, with the meson as
spectator) and from the virtual meson (right figure, with the baryon as spectator) of the dressed nucleon.

2For better legibility we denote the helicities of spin 1=2
particles with � instead of � 1

2
.

3We can restrict our discussion about the PDFs to the proton,
since the PDFs of the neutron can be related to those of the proton
by isospin invariance.
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1. For the longitudinally polarized PDF,

δgq=p1 ðxÞ ¼
X
B;M

Z
1

x

dy
y
ΔLfp=BMðyÞgq=B1

�
x
y

�

þ
X
B;V

Z
1

x

dy
y
ΔLfp=VBðyÞgq=V1

�
x
y

�
; ð14Þ

with the splitting functions

ΔLfp=BMðyÞ

¼
Z

d2k⊥
2ð2πÞ3

X
λ0λ00

ð−1Þ12−λ0 jϕþðp=BMÞ
λ0λ00 ðy;k⊥Þj2; ð15Þ

ΔLfp=VBðyÞ

¼
Z

d2k⊥
2ð2πÞ3

X
λ0
½jϕþðp=BVÞ

λ0þ1
ð1 − y;−k⊥Þj2

− jϕþðp=BVÞ
λ0−1 ð1 − y;−k⊥Þj2�: ð16Þ

1. For the transversity,

δhq=p1 ðxÞ ¼
X
B;M

Z
1

x

dy
y
ΔTfp=BMðyÞhq=B1

�
x
y

�

þ
X
B;V

Z
1

x

dy
y
ΔTfp=VBðyÞ

ffiffiffi
2

p
hq=V1

�
x
y

�
;

ð17Þ
with the splitting functions

ΔTfp=BMðyÞ

¼
Z

d2k⊥
2ð2πÞ3

×
X
λ00

½ϕ−ðp=BMÞ
−λ00 ðy;k⊥Þðϕþðp=BMÞ

þλ00 ðy;k⊥ÞÞ��;

ð18Þ
ΔTfp=VBðyÞ

¼
Z

d2k⊥
2ð2πÞ3

X
λ0
½ϕ−ðp=BVÞ

λ00 ð1 − y;−k⊥Þ

× ðϕþðp=BVÞ
λ0þ1

ð1 − y;−k⊥ÞÞ��: ð19Þ
We note that in the convolution model an active meson
(the photon couples to the meson in the BM Fock
component) with spin zero can only contribute to the
unpolarized quark PDF f1.

IV. MODELING AND LFWF OVERLAP
REPRESENTATION OF THE PDFS

In this section we specify the ingredients of the model
calculation for the PDFs in the meson-cloud model.

The lowest-mass fluctuations for the proton which we
include in our calculations are

pðuudÞ → nðuddÞπþðud̄Þ;

pðuudÞ → pðuudÞπ0
�

1ffiffiffi
2

p ½dd̄ − uū�
�
;

pðuudÞ → nðuddÞρþðud̄Þ;

pðuudÞ → pðuudÞρ0
�

1ffiffiffi
2

p ½dd̄ − uū�
�
: ð20Þ

For the vertex function we use the results which have
been explicitly derived in Refs. [10,11]. These results were
obtained using TOPT in the infinite-momentum frame.
In TOPT the intermediate particles are on their mass shell.
However, an additional off-shell dependence is introduced
in the vertex function for a vector meson due to the
derivative coupling. So, even using TOPT, we have a
freedom in how to choose the meson energy in the vertex.
In principle, there are two possible prescriptions:
(A) pμ

V ¼ ðEV;pVÞ, with the on-shell meson energy
EV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V þ p2
V

p
,

(B) pμ
V ¼ ðEV;pVÞ, with the off-shell meson energy

EV ¼ EN − EB.
We will adopt choice (B), following the arguments of
Ref. [25] to establish a correspondence between time-
ordered perturbation theory in the infinite-momentum frame
and light-front perturbation theory. Furthermore, because of
the extended structure of the hadrons involved, one has also
tomultiply the coupling constant for pointlike particles in the
vertex function by phenomenological vertex form factors.
These form factors parametrize the unknown microscopic
effects at the vertex and have to obey the constraint
FNBMðy; k2⊥Þ ¼ FNBMð1 − y; k2⊥Þ to ensure basic properties
like charge and momentum conservation simultaneously
[26]. To this aim we will use the following functional form:

FN×BMðy; k2⊥Þ ¼ exp

�
M2

N −M2
BMðy;k⊥Þ

2Λ2
BM

�
; ð21Þ

where ΛBM is a cutoff parameter. Following the recent
analysis of Refs. [14,27], we take ΛBM ¼ 0.8 GeV for all
the baryon-meson fluctuation entering into our calculation.
For theNBM coupling constants at the interactionvertex, we
used the numerical values given in Refs. [28,29], i.e.
g2NNπ=4π ¼ 13.6, g2NNρ=4π ¼ 0.84 and fNNρ ¼ 6.1gNNρ.

4

With this choice of the parameters, in the case of the
p → Nπ and p → Nρ transitions, one finds

Pp=Nπ ¼ Pp=pπ0 þ Pp=nπþ ¼ 3Pp=pπ0 ¼ 13.17%; ð22Þ

4Note that we follow Ref. [11] for the vertex interaction, where
the coupling constant fNNρ is dimensionless. In order to compare
with the definition adopted in Refs. [30], fNNρ has to be
multiplied by a factor 4MN.
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Pp=Nρ ¼ Pp=pρ0 þ Pp=nρþ ¼ 3Pp=pρ0 ¼ 2.17%: ð23Þ

For the hadron states of the bare nucleon and baryon-
meson components in Eq. (2) we adopt the light-front
constituent quark model of Ref. [11], that we briefly
summarize here for convenience. A hadron state with
momentum ~p and helicity Λ is given by

j ~pH;Λ;Hi ¼
X
qi;λi

Z �
dxffiffiffi
x

p
�
N

× ½d2k⊥�NΨ½H�;Λ;q1…qN
λ1…λN

ðf~kigi¼1;…;NÞ

×
YN
i¼1

jxipþ
H;pi⊥; λi; qii; ð24Þ

where Ψ½H�;Λ;q1…qN
λ1…λN

ðfxi;ki⊥gÞ is the LFWF which gives
the probability amplitude for finding in the hadron with a
light-front helicityΛ,N partons with momenta (xip

þ
H;pi⊥¼

ki⊥þxip⊥H), with xi being the momentum fraction of the
ith parton (the index i runs from 1 to N) with respect to its
parent hadron and ki⊥ being its intrinsic transverse
momentum. The index λi labels the helicity and qi the
isospin of the ith parton, respectively. In Eq. (24) and in the
following, the integration measures are defined by

�
dxffiffiffi
x

p
�
N
¼

�YN
i¼1

dxiffiffiffiffi
xi

p
�
δ

�
1 −

XN
i¼1

xi

�
; ð25Þ

½d2k⊥�N ¼ 1

ð2ð2πÞ3ÞN−1

�YN
i¼1

d2k⊥i

�
δ

�XN
i¼1

k⊥i

�
: ð26Þ

By taking into account the minimal Fock-state component,
one has N ¼ 3 and N ¼ 2 for the baryon and meson,
respectively.

As explained in Ref. [31], the wave functionΦ½H�;Λ;q1…qN
λ1…λN

can be obtained by transforming the ordinary equal-time
(instant-form) wave function into that in the light-front

dynamics. The instant-form wave function Φ½H�;Λ;q1…qN
μ1…μN is

constructed as the product of a momentum wave function
~ψ ½H�ðf~kigÞ, which is spherically symmetric and invariant
under permutations, and a spin-isospin wave function
ϕ½H�ðfμig; fqigÞ, which is uniquely determined by
SUð6Þ-symmetry requirements, i.e.

Φ½H�;Λ;q1…qN
μ1…μN ðf~kigÞ ¼ ~ψ ½H�ðf~kigÞ ⊗ ϕ½H�ðfμig; fqigÞ;

ð27Þ

where μi is the canonical (instant-form) helicity of the ith
parton. The transformation to the light-front form can be
obtained by taking into account relativistic effects such as
the Melosh-Wigner rotation

Ψ½H�;Λ;fqig
fλig ðfxi;k⊥igÞ

¼ ~ψ ½H�ðf~kigÞ
X

μ1;…;μN

ϕ½H�ðfμig; fqigÞ
YN
i¼1

D1=2
μiλi

ðRcfð~kiÞÞ;

ð28Þ

where D1=2
μiλi

ðRcfð~kiÞÞ are the Melosh rotations defined
in Ref. [31].
In the case of the nucleon, we consider two different

models for the momentum wave function. The first one
(hereafter referred to as model 1) is based on a phenom-
enological Ansatz for the momentum dependence of the
light-front wave function that has been originally assumed
to fit the electroweak form factors [32,33]. Recently, it has
been applied to the calculation of a variety of parton
distributions [5], including leading-twist GPDs and collin-
ear PDFs [12,31,34–37], leading- and higher-twist trans-
verse-momentum-dependent parton distributions (TMDs)
[38–42], and electroweak form factors [11]. The momen-
tum wave function is given by

~ψ ½N�ðf~kigi¼1;2;3Þ ¼ 2ð2πÞ3
�
1

M0

ω1ω2ω3

x1x2x3

�
1=2 N0

ðM2
0 þ β2Þγ ;

ð29Þ

where ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2
i

q
is the energy of the ith quark,

M0 ¼
P

iωi is the free mass of the system of N non-
interacting quarks and N0 a normalization factor such thatR
d½x�3d½k⊥�3jψðf~kigi¼1;2;3Þj2 ¼ 1. In Eq. (29), the scale β,

the parameter γ for the power-law behavior, and the quark
mass mq are taken from the fit to the nucleon electroweak
form factor in the light-frontmeson-cloudmodel ofRef. [11],
i.e. γ ¼ 3.21, β ¼ 0.489 GeV, and mq ¼ 0.264 GeV.
As alternative model (hereafter referred to as model 2),

we will discuss the predictions obtained within a relativistic
hypercentral quark model [43], which extends the non-
relativistic version of Ref. [44] and has been recently
applied within a light-front meson-cloud model for the
unpolarized PDF [14,15]. The hypercentral model is based
on the mass operator M ¼ M0 þ V, with the interaction
given by

V ¼ τ

y
þ κly; ð30Þ

where y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ λ2

p
is the radius of the hypersphere in six

dimensions, and ρ and λ are the intrinsic Jacobi coordinates
ρ ¼ ðr1 − r2Þ=

ffiffiffi
2

p
and λ ¼ ðr1 þ r2 − 2r3Þ=

ffiffiffi
6

p
. The

model depends on two parameters, τ and κl, which have
been fixed to reproduce the basic features of the low-lying
nucleon spectrum (τ ¼ 3.3 and κl ¼ 1.80 fm−2, from
Refs. [14,43]). The momentum-dependent wave function
is taken with orbital angular momentum L ¼ 0, and reads

COLLINEAR PARTON DISTRIBUTIONS AND THE … PHYSICAL REVIEW D 95, 094015 (2017)

094015-5



~ψ ½N�ðf~kigi¼1;2;3Þ ¼ 2ð2πÞ3
�
1

M0

ω1ω2ω3

x1x2x3

�
1=2

× ψ0;0ðyÞYð0;0Þ
½0;0;0�ðΩÞ; ð31Þ

where ψγ;νðyÞ is the hyperradial wave function solution of
the eigenvalue problem for the mass operator M, which is
expanded on a truncated set of hyperharmonic oscillator

basis states, and YðL;MÞ
½γ;lρ;lλ�ðΩÞ are the hyperspherical har-

monics defined on the hypersphere of radius one.
For the pion, we choose the LWFW proposed in

Refs. [45,46], which has been applied to calculate
GPDs [47] and leading- and higher-twist TMDs [48,49].
The explicit expression for the momentum-dependent part
of the LFWF reads

~ψ ½π�ðx̄;k⊥Þ ¼ ½2ð2πÞ3�1=2
�

M0

4x̄ð1 − x̄Þ
�
1=2

×
i

π3=4α3=2
exp ½−k2=ð2α2Þ�; ð32Þ

with k ¼ k1 ¼ −k2, x̄ ¼ x1 ¼ 1 − x2, and the two param-
eters α ¼ 0.3659 GeV andmq ¼ 0.22 GeV from Ref. [11].
The phase of the pion wave function [Eq. (32)] is consistent
with that of the antiquark spinors of Ref. [50].
The wave function of the ρ differs from the pion only in

the spin component, with the canonical spin states of the qq̄
pair coupled to J ¼ 1 instead of J ¼ 0.
The light-front formalism allows us to obtain a conven-

ient representation of the hadron PDFs in terms of overlap
of LFWFs. Choosing to label the active quark with i ¼ 1,
the hadron light-front helicity amplitudes introduced in
Appendix can be obtained as

Aq=H
Λ0λ0;Λλ ¼

Z
d½1…N�

×
X

λ2;…;λN

X
q1…qN

ðψ ½H�;Λ0;q1…qN
λ0λ2…λN

Þ�ψ ½H�;Λ;q1…qN
λλ2…λN

:

ð33Þ

For N ¼ 3

d½123� ¼ ½dx�3½d2k⊥�33δðx − x1Þ; ð34Þ

and for N ¼ 2

d½12� ¼ ½dx�2½d2k⊥�2δðx − x1Þ: ð35Þ

From the relations in Eq. (A9), we then find the
following LFWF overlap representation for the contribu-
tion of the 3q Fock state to the proton PDFs:

fq=p1 ¼
Z

d½123�
X
λ2λ3

X
q2q3

½jΨ½p�þ;qq2q3
þλ2λ3

j2 þ jΨ½p�þ;qq2q3
−λ2λ3 j2�;

ð36aÞ

gq=p1 ¼
Z

d½123�
X
λ2λ3

X
q2q3

½jΨ½p�þ;qq2q3
þλ2λ3

j2 − jΨ½p�þ;qq2q3
−λ2λ3 j2�;

ð36bÞ

hq=p1 ¼
Z

d½123�
X
λ2λ3

X
q2q3

ðΨ½p�þ;qq2q3
þλ2λ3

Þ�Ψ½p�−;qq2q3
−λ2λ3 : ð36cÞ

Analogously, the contribution of the qq̄ Fock state to the
pion PDF reads

fq=π1 ðxÞ ¼ fq̄=π1 ðxÞ ¼
Z

d½12�
X
λ2

½jΨ½π�;qq̄
þλ2

j2 þ jΨ½π�;qq̄
−λ2 j2�;

ð37aÞ
where fq=π1 ¼ fq=π

þ
1 refers to the parton distribution in

the charged pion πþ, while the other PDFs can be obtained

by isospin symmetry and charge symmetry, i.e. fu=π
þ

1 ¼
fd̄=π

þ
1 ¼fd=π

−

1 ¼fū=π
−

1 ¼2fu=π
0

1 ¼2fū=π
0

1 ¼2fd=π
0

1 ¼2fd̄=π
0

1 .
Using the relations in Eq. (A10) for the vector meson, we

also obtain the following LFWF overlap representation for
the contribution of the qq̄ Fock state to the PDFs of the
ρ meson:

fq=ρ1 ðxÞ ¼ fq̄=ρ1 ðxÞ ¼ 2

3

Z
d½12�

X
λ2

½jΨ½ρ�0;qq̄
þλ2

j2 þ jΨ½ρ�þ1;qq̄
þλ2

j2 þ jΨ½ρ�−1;qq̄
−λ2 j2�; ð38aÞ

fq=ρ1LLðxÞ ¼ fq̄=ρ1LLðxÞ ¼
Z

d½12�
X
λ2

½2jΨ½ρ�0;qq̄
þλ2

j2 − jΨ½ρ�þ1;qq̄
þλ2

j2 − jΨ½ρ�−1;qq̄
−λ2 j2�; ð38bÞ

gq=ρ1 ðxÞ ¼ gq̄=ρ1 ðxÞ ¼
Z

d½12�
X
λ2

½jΨ½ρ�þ1;qq̄
þλ2

j2 − jΨ½ρ�−1;qq̄
−λ2 j2�; ð38cÞ

hq=ρ1 ðxÞ ¼ hq̄=ρ1 ðxÞ ¼ 1ffiffiffi
2

p
Z

d½12�
X
λ2

½Ψ½ρ�0;qq̄
−λ2 ðΨ½ρ�þ1;qq̄

þλ2
Þ� þ Ψ½ρ�−1;qq̄

−λ2 ðΨ½ρ�0;qq̄
þλ2

Þ��; ð38dÞ
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where jq=ρ ¼ jq=ρ
þ

refers to the generic PDF j in the
charged ρ meson ρþ, while the other PDFs can be obtained
by isospin symmetry, i.e. ju=ρ

þ ¼ jd̄=ρ
þ ¼ jd=ρ

− ¼ jū=ρ
− ¼

2ju=ρ
0 ¼ 2jū=ρ

0 ¼ 2jd=ρ
0 ¼ 2jd̄=ρ

0

.

V. RESULTS AND DISCUSSION

In this section we discuss the results from the light-front
meson-cloud model for the leading-twist PDFs of the
proton, in comparison with available experimental extrac-
tions for the valence-quark and sea-quark contribution as
well as for the flavor asymmetries in the unpolarized and
polarized sea. Furthermore, we present predictions for the
nucleon tensor charge in comparison with other model
calculations and phenomenological extractions.
Parton distribution functions are defined within a certain

regularization scheme at a given factorization scale. The
results within the light-front meson-cloud model refer to an
assumed initial scale Q2

0, where the nucleon state is
expanded in the Fock space in terms of the minimum
(valence) and next-to-minimum (with an extra qq̄ pair)
components, as described in Sec. II. To determine the initial
matching scale consistent with QCD evolution, we follow a
standard procedure, which we shortly review.
We restrict our discussion at leading order (LO) in

perturbation theory, and we evolve back at LO the unpolar-
ized parton distributions until themomentum fraction carried
by the valence quark matches the value calculated in the
model. Themomentum fraction carried by the valence quark
is obtained from theN ¼ 2Mellin moment of the nonsinglet
(NS) combination of the unpolarized PDFs, hqNSðQ2ÞiN ¼P

q

R
dxxN−1ðfq1 − fq̄1Þðx;Q2Þ, which evolves at LOaccord-

ing to the following equation

hqNSðQ2ÞiN
hqNSðQ2

0iN

����
LO

¼
�
αsðQ2Þ
αsðQ2

0Þ
�P

ð0ÞðNÞ
NS
2β0

: ð39Þ

In Eq. (39), β0 ¼ 11 − 2Nf

3
is the lowest-order expansion

coefficient of the QCD beta function, and the N moment of

the LO-NS splitting function Pð0Þ
NSðNÞ has the following

expression:

Pð0Þ
NSðNÞ ¼ 8

3

�
1 −

2

NðN þ 1Þ þ 4
XN
j¼2

1

j

�
: ð40Þ

We work in the scheme of variable flavor number Nf,
with heavy-quark mass thresholds mc ¼ 1.4 GeV, mb ¼
4.75 GeV, mt ¼ 175 GeV and the strong coupling constant

αsðM2
zÞ ¼ 0.13939 corresponding to Λð3;4;5Þ

LO ¼ 359, 322,
255MeV. Taking the phenomenological value hqNSðQ2Þi2 ¼
0.35 at Q2 ¼ 10 GeV2 from the Martin-Stirling-Thorne-
Watt (MSTW) LO parametrization [51], we reproduce the
value of the model hqNSðQ2Þi2 ¼ 0.94 at the scale Q2

0 ¼
0.186 GeV2. The effect of introducing a nonperturbative

quark sea carrying 6% of the nucleon momentum is to
produce a higher input scale with respect to the scenario
with a bare nucleon consisting of only a 3q valence
component, where the hadronic scale of themodel was found
μ2 ¼ 0.176 GeV2 [41].
In Fig. 2 we show the valence-quark and the sea-quark

contribution to f1 for up and down quarks, using both
model 1 and model 2 for the bare nucleon LFWF. The
difference between the two model calculations for the
valence contributions are more pronounced at the initial
scale of the model Q2

0 (dotted curves) and becomes smaller
after evolution to the scale Q2 ¼ 2.4 GeV2. The evolved
results are overall in reasonable agreement with the MSTW
parametrization atQ2 ¼ 2.4 GeV2. However, in the case of
the up-quark distribution, we notice that both models have a
peak position at lower value of x with respect to the
phenomenological parametrization, while the falloff at
higher x is better reproduced in model 2. In the case of
the distribution for down quarks, the peak position is well
reproduced in both models with a very good agreement
between model 1 and the phenomenological parametriza-
tion for x > 0.3.
The sea-quark distributions are the same in the two

models at the input scale, as they are generated by the
antiquarks of the π and ρ in the N → NM fluctuations.
After LO evolution, the difference for the sea-quark
unpolarized distributions in the two models turns out to
be so small that is practically indistinguishable in the plot.
Therefore, we decided to show only the result for model 1.
The perturbative evolution plays an important role at
x < 0.1 once the nonperturbative content is introduced at
the hadronic scale Q2

0, while for both flavors the distribu-
tions miss strength at intermediate values of x with respect
to the phenomenological parametrization. However, the
Sullivan process is one of the most successful nonpertur-
bative mechanisms in explaining the flavor asymmetry of
the unpolarized sea (see Refs. [16–19] for comprehensive
reviews about different applications of the meson-cloud
model).
In Fig. 3 we show our results after LO evolution for the

sea-quark unpolarized flavor asymmetry fd̄=p1 ðxÞ − fū=p1 ðxÞ
and the ratio fd̄=p1 ðxÞ=fū=p1 ðxÞ in comparison with the
experimental data from the E866 experiment at Q2 ¼
54 GeV2 [52]. It is well known that a QCD evolution at
LO with an SUð6Þ symmetric input can not generate an
asymmetric sea. The excess of d̄ in the light-front meson-
cloud model at the input scale is responsible for the
observed asymmetry, and it is in good agreement with
the experimental data after evolution to the relevant
experimental scale. More sophisticated meson-cloud mod-
els including also the contribution from N → Δπ fluctua-
tions have been discussed in literature [14,26,53–56].
Owing to the freedom in the choice of the cutoff in the
baryon form factors at the NBM vertices, the contributions
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of the opposite sign from the Nπ and Δπ fluctuations
accommodates to produce very similar results as in our
approach. Furthermore, the NΔπ fluctuations do not
contribute to the polarized quark sea contribution, and
therefore they will not further be discussed in the following.

It is also encouraging to observe that our treatment with
perturbative evolution at LO produces very similar results
of more complex calculations at NLO and NNLO [14].
The results for the ratio of the d̄ over the ū contribution to
f1 do not reproduce the rapid decrease of the data towards

FIG. 2. The unpolarized parton distribution xf1 for the up (upper panels) and down (lower panels) quark as function of x. The left and
right panels show the results for the valence- and sea-quark contributions, respectively. The red and blue curves are obtained within the
light-front meson-cloud model from models 1 and 2 for the nucleon LFWF, respectively, at the input scale Q2

0 (dotted curves) and after
LO evolution to Q2 ¼ 2.4 GeV2 (solid curves). In the case of the sea quark contribution the results from model 2 are indistinguishable
from model 1 and are not shown. The grey bands show the phenomenological results from the MSTW08 parametrization of Ref. [51] at
Q2 ¼ 2.4 GeV2.

FIG. 3. Results from the light-front meson-cloud model for the flavor asymmetry of the sea distribution fd̄=p1 ðxÞ − fū=p1 ðxÞ (left panel)
and the ratio fd̄=p1 ðxÞ=fū=p1 ðxÞ (right panel) as function of x, after LO evolution to the scale Q2 ¼ 54 GeV2 of the E866 experiment.
The red and blue curves are obtained with models 1 and 2 for the nucleon LFWF, respectively, and are indistinguishable in the case of the
sea-quark flavor asymmetry. The E866 experimental data are from Ref. [52].
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and below unity for x > 0.2. This finding is common to
different calculations within meson-cloud models and
nonperturbative models including chiral perturbation
theory and instanton models [57–62]. On the other side,
among the most recent sets of parton distribution fits, CT14
[63] and MMHT14 [64] reproduce this trend of the data, at
variance with the PDF fit provided by the statistical model
[65] that predicts a ratio larger than one at larger x.
However, as x increases beyond 0.25, the data become
less precise. The new Drell-Yan measurements of the
Fermilab E906/SeaQuest experiment will help to under-
stand this region better [66]. By now, only preliminary
results from the 2015 data set of the E906 experiment have
been shown at conferences [67], and they support the
predictions of a ratio larger than one at larger x.
We now turn to discuss the distributions for longitudi-

nally polarized protons. In Fig. 4 we show our results for
both the valence-quark and sea-quark contributions to the
polarized PDF g1. The difference between the predictions at
the input scale for the valence-quark distributions from the
two models for the bare nucleon LFWFs is more pro-
nounced than in the case of the unpolarized distributions,
and persists also after LO evolution. On the other side, the
polarized sea-quark distributions are generated at the input
scale only from the antiquark of the ρ in the N → ρN
fluctuation, and therefore they are the same in both models

at the input scale. The effect of perturbative evolution leads
to a small difference in the two models. The LO evolved
results at Q2 ¼ 3 GeV2 are compared with the experimen-
tal data from COMPASS [68]. Our predictions for the
valence down-quark contribution are in fair agreement with
the experimental data, within error bars, while both models
fail in reproducing the larger x behavior of the data for the
up-quark contribution. The huge error bars of the exper-
imental data do not allow a conclusive remark about the
behavior of the sea contribution to g1.
The large flavor asymmetry in the unpolarized sea

naturally leads to the question whether the polarized sea
is also asymmetric. We note right away that within our
model this asymmetry cannot be very large, as the ρ
fluctuation contributing to the polarized sea is suppressed
because of the large ρ mass, see Eq. (4). Our results for

the polarized flavor asymmetry xðgū=p1 ðxÞ − gd̄=p1 ðxÞÞ are
shown in Fig. 5 in comparison with the experimental data
from COMPASS [68] and HERMES [69]. We predict a

small and negative value for xðgū=p1 ðxÞ − gd̄=p1 ðxÞÞ at vari-
ance with the data, that, despite the poor accuracy, seem to
favor a small positive value. Our results are similar to the
predictions within different variants of the meson-cloud
model where the ρmeson is responsible of the polarized sea
asymmetry [30,70–72]. They differ in sign and by one

FIG. 4. The polarized parton distribution xg1 for the up (left panels) and down (right panels) quark as function of x. The upper and
lower panels show the results for the valence and sea quark contributions, respectively. The red and blue curves are obtained within the
light-front meson-cloud model from models 1 and 2 for the nucleon LFWF, respectively, at the input scale Q2

0 (dotted curves) and after
LO evolution to Q2 ¼ 3 GeV2 (solid curves). The experimental data at Q2 ¼ 3 GeV2 are from the COMPASS collaboration [68].
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order of magnitude from the findings within quark based
models, such as the chiral quark soliton model [73–77] and
the statistical approach [78]. Recently, it has been sug-
gested that a possible way to restore this difference in
meson-cloud models is to include the contributions from
the interference of πN and σN components in the handbag
diagram of the polarized PDFs [79]. Such a contribution
has been studied at the qualitative level within an effective
low-energy model by matching the QCD operator of the
polarized parton distribution with an effective operator built
from the π and σ fields. It would be interesting to further
explore such an approach within a light-front meson-cloud
model by incorporating these effective pion and sigma
components in the nucleon LFWF consistently with a light-
front Fock space expansion.
Finally, we discuss the transversity distribution. In Fig. 6

we show our model calculations for the valence transversity
distribution at the input scaleQ2

0 ¼ 0.19 GeV2 and after LO
evolution to Q2 ¼ 2.4 GeV2. The darker bands are the
results fromRef. [80], obtained by a simultaneous extraction
of the transversity and Collins function from azimuthal
asymmetries in SIDIS and eþe− data, implementing evo-
lution effects at LO in the collinear framework.
The dashed green curve is the results from the extraction
of Ref. [81], where evolution equations have been computed
in the TMD framework at NLO. The lighter bands refer to
the extraction of Ref. [82], where transversity has been
extracted in the standard framework of collinear factoriza-
tion using SIDISwith two hadrons detected in the final state,
including evolution effects at LO. All the phenomenological
extractions refer to the scale Q2 ¼ 2.4 GeV2 and, despite
the different frameworks of analysis and the different data
sets used in the fits, give similar results for the valence
up-quark contribution, while showing discrepancies for the

down-quark contribution, which are presumably induced by
the data set of the deuteron target employed in the analysis of
Ref. [82]. Our results from the light-front meson-cloud
model using different LFWFs for the bare nucleon are
compatible, within error bars, with the various extractions
for the up quark, and in agreement with the extractions of
Refs. [80,81] for the down quark.
The results for the sea-quark contribution to the trans-

versity are shown in Fig. 7. The transversely polarized sea
is generated only by the ρ fluctuations and evolves
independently of the quark contribution, thanks to the
chiral-odd nature of the transversity. Therefore, the sea
distributions are independent of the model for the bare
nucleon LFWF both at the input scale and after LO
evolution. The results are very small, even one order of
magnitude smaller than in the case of the longitudinally
polarized distributions. Furthermore, we find negative
results for both the up and down antiquark, with a larger
contribution in absolute value for the down antiquark.
These predictions are the first calculations for the antiquark
transversity distributions within a meson-cloud approach.
We can compare our results with different approaches in

FIG. 5. The flavor asymmetry of the polarized sea xðgū=p1 ðxÞ−
gd̄=p1 ðxÞÞ within the light-front meson-cloud model after LO
evolution to Q2 ¼ 3 GeV2 in comparison with the experimental
data from COMPASS [68] at Q2 ¼ 3 GeV2 and HERMES [69] at
Q2 ¼ 2.4 GeV2. The results refer tomodel 1 for thenucleonLFWF,
and are indistinguishable from the predictions from model 2.

FIG. 6. The transversity distribution xh1 as function of x for the
valence up (upper panel) and down (lower panel) quark. The red
and blue curves are obtained within the light-front meson-cloud
model from models 1 and 2 for the nucleon LFWF, respectively,
at the input scale Q2

0 (dotted curves) and after LO evolution to
Q2 ¼ 2.4 GeV2 (solid curves). The phenomenological extrac-
tions at Q2 ¼ 2.4 GeV2 are from Ref. [80] (darker bands),
Ref. [81] (dashed green curves) and Ref. [82] (lighter bands).
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literature, such as the chiral quark soliton model [83]
and a chiral chromodielectric model [84,85]. In the
chromodieletric model, the transversity antiquark distribu-
tion is also quite small although it differs both in sign and
in the relative magnitude of the antiup and antidown
contributions with respect to our predictions. On the other
side, the chiral quark soliton model predicts much larger
contributions. According to the expectation from the large
Nc limit, the chiral quark soliton model satisfies the
following inequalities [61,86,87]:

jgū1 − gd̄1j > jgū1 þ gd̄1j;
jhū1 − hd̄1j > jhū1 þ hd̄1j: ð41Þ

Analogous relations hold for the quark distributions. In the
case of the antiquark distributions, the hierarchy in Eq. (41)
is not supported from either the chromodielectric model or
the light-front meson-cloud model (see Fig. 8), while it
holds for the quark contributions.
The first moment of the flavor nonsinglet combination of

the transversity gives the quark tensor charge

FIG. 7. The transversity distribution xh1 as function of x for the up (left panel) and down (right panel) antiquark. The dotted curves
show the results at the input scale Q2

0, and the solid curves are the results after LO evolution to Q2 ¼ 2.4 GeV2.

FIG. 8. The transversity (upper panels) and longitudinally polarized (lower panels) antiquark distributions as function of x from the
light-front meson-cloud model with model 1 for the nucleon LFWF. The left panels show the isoscalar contributions for the flavor
combination ūþ d̄, and the right panels are the isovector contributions for the flavor combination ū − d̄. The dotted curves refer to the
model results at the input scale Q2

0, while the solid curve is the model results after LO evolution to Q2 ¼ 2.4 GeV2.
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δq ¼
Z

1

0

dxðhq1ðxÞ − hq̄1ðxÞÞ: ð42Þ

In Fig. 9 we collect the results for the up- and down-quark
tensor charges from the light-front meson-cloud model
along with the estimates from other theoretical approaches
and data analysis. The results in Ref. [35] and Refs. [36,88]
have been obtained by taking into account only the three-
quark component of the nucleon state, using model 1 and
model 2 for the bare nucleonLFWF, respectively. Therefore,
comparing these results with the present calculations in the
meson-cloudmodel, we can estimate the effects of including
the five-parton component in the nucleon LFWF. This
comparison in Fig. 9 is performed after evolution of the
results to the scaleQ2 ¼ 10 GeV2, which coincideswith the
scale of the phenomenological extractions [80–82]. We
notice that the inclusion of the meson-cloud contribution
give small corrections, improving the agreement of our
results with the data analysis, especially for the up quark.
The results in other theoretical frameworks have been
reported at different scales, as given in the original works.

They correspond to: Q2 ¼ 1 GeV2 in the QCD sum rule
approach [89] and the axial-vector dominance model [90];
Q2 ¼ 2.4 GeV2 in the chiral quark soliton model of
Ref. [91]; Q2 ¼ 4 GeV2 in the Dyson-Schwinger model
[92] and lattice QCD calculations [93,94];Q2 ¼ 0.36 GeV2

in the chiral quark solitonmodel calculation of Ref. [83] and
the light-front chiral quark soliton model, truncated to the
five-parton component in the Fock space, of Ref. [95];
Q2 ¼ 25 GeV2 in the chromodielectric model of Ref. [84].
However, the dependence on the scale of the tensor charge is
quite weak, and, in general, all the model calculations are
consistent with the data analysis for the down-quark tensor
charge, while distinctions among the various models appear
for the up-quark contribution.

VI. CONCLUSIONS

The convolution model for the physical nucleon, where
the bare nucleon is dressed by its virtual meson cloud, has
seen a wealth of applications to describe the nonperturba-
tive origin of the sea-quark structure. In this paper this
approach has been revisited and applied to the leading-twist
collinear parton distribution functions within a light-front
formalism, in particular discussing the formalism necessary
for the calculation of the valence- and sea-quark trans-
versity distribution. The dressing of the physical nucleon is
obtained through fluctuations of the bare nucleon into
baryon and meson states, which are calculated in the one-
meson approximation, using light-front time-ordered per-
turbation theory. Furthermore, the bare baryon and meson
states are described in terms of light-front wave functions,
taking into account the corresponding valence-parton
configurations. In the explicit calculation, we consider
baryon-meson fluctuations with the baryon being a nucleon
and the meson being either a pion or a rho. Within this
model, the sea contribution can be generated only from
the antiquark constituent of the mesons. In particular,
both the pion and rho participate in the unpolarized sea
distributions, while in the case of longitudinally and
transversely polarized sea, only the vector meson rho
contributes. As the probability amplitude for the nucleon
to fluctuate into a baryon-meson state depends on the
inverse of the squared invariant mass of the baryon-meson
state, the contribution of the rho is suppressed with respect
to the pion. Accordingly, the polarized sea-quark distribu-
tions are much smaller than the unpolarized sea distribu-
tions and the sea-quark contribution to the transversity is
even more suppressed. The three-quark component of the
nucleon state has been described using two different
models for the LFWF. This component gives the main
contribution to the valence part of the parton distributions
and produces quite different predictions at the hadronic
scale within the two models.
QCD evolution effects have been taken into account ap-

plying standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

FIG. 9. Comparison of our model calculation of the tensor
charges of up (upper panel) and down quark (lower panel) after
LO evolution to Q2 ¼ 10 GeV2 with the results from different
models and phenomenological extractions: He and Ji [89]
(Q2 ∼ 1 GeV2), Barone et al. [84] (Q2 ¼ 25 GeV2), Gamberg
et al. [90] (Q2 ∼ 1 GeV2), Pasquini et al. 2005 [35]
(Q2 ¼ 10 GeV2), Wakamatsu [91] (Q2 ¼ 2.4 GeV2), Pasquini
et al. 2007 [36,88] (Q2 ¼ 10 GeV2), Lorcé [95]
(Q2 ¼ 0.36 GeV2, Pitschmann et al. [92] (Q2 ¼ 4 GeV2),
Anselmino et al. [80] (Q2 ¼ 0.8 GeV2), Radici et al. [82]
(Q2 ¼ 10 GeV2), Kang et al. [81] (Q2 ¼ 10 GeV2), our results
within models 1 and 2 for the bare nucleon LFWF
(Q2 ¼ 10 GeV2), Abdel-Rehim et al. [93] (Q2 ¼ 4 GeV2),
Bhattacharya et al. [94] (Q2 ¼ 4 GeV2).
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equations at leading order. In the case of the unpolarized
and transversity distributions, the differences between the
two models for the valence contributions become much
smaller after evolution to higher scales and the results in
both models are well compatible with the available para-
metrizations and phenomenological extractions. In the case
of the helicity distribution, the differences between the two
models remain more pronounced also after LO evolution,
especially for the valence up contribution where the agree-
ment with the available experimental data is not very
satisfactory.
Starting with the same input for the sea-quark contri-

bution, the different evolution equations for the nonsinglet
and singlet combinations of the unpolarized and helicity
distributions generate different results for the sea distribu-
tions at higher scales, when using the two different models
for the bare nucleon LFWF. Vice versa, in the case of the
transversity, the nonsinglet and singlet evolution equations
are equal, and therefore the distribution of the sea-quark
transversity is independent of the model for the bare
nucleon LWFW both at the input and higher scales. The
results for the unpolarized sea-quark distributions confirm
the findings of previous calculations within different
variants of the meson-cloud model, where the excess of
the d̄ over ū has a pure nonperturbative origin at the input
scale of the model and is able to explain the main features
of the observed sea-quark flavor asymmetry after QCD
evolution to the relevant experimental scales. The situation
for the ratio of the d̄ over the ū unpolarized parton
distributions is less clear. In this case, the experimental
data become less precise at larger values of x. However,
they seem compatible with a rapid decrease of this ratio
towards and below unity at larger values of x, at variance
with the predictions within our light-front meson-cloud
model and the findings of previous meson-cloud models
and other nonperturbative models, as well as the PDF fit
provided by a statistical model. New results from the recent
Drell-Yan measurements of the Fermilab E906/SeaQuest
experiment are expected soon, and hold the promise to
reduce the experimental uncertainties of the data at higher
values of x, providing a better understanding of the
behavior of the ratio in this region. We also confirm the
findings within different variants of the meson-cloud
approach which predict a very small flavor asymmetry
of the longitudinally polarized sea-quark distributions, with
an excess of the ū over the d̄ contribution. These results are
at variance with the experimental data, which, despite the
poor accuracy, seem to favor the opposite trend for the sign
of the polarized flavor asymmetry.
The results for the sea-quark transversity distribution

within a meson-cloud approach are discussed here for the
first time. The small sea-quark contribution at the input
scale is further suppressed after evolution to larger scales.
The sign for the flavor asymmetry of the sea-quark trans-
versity distributions is opposite to the predictions from

different approaches such as the chromodielectric model
and the quark soliton model. On the other side, the relative
order of magnitude for the absolute values of the helicity
and transversity flavor asymmetry is the same in our model
and the chromodielectric model, but it is not consistent with
the large Nc expectations of the quark soliton model.
Finally, we discussed the results for the tensor charge of

the nucleon. Although the effects of introducing the meson-
cloud contribution to the three-quark component of the
nucleon state are small, they improve the agreement of our
results with recent phenomenological extractions. This is
more evident in the case of the up-quark contribution,
where, in general, the differences among different quark-
model calculations are more pronounced.
More elaborated meson-cloud models for the sea-quark

transversity distributions could be discussed, introducing
the effects of higher-mass baryon-meson fluctuations
beyond the nucleon-rho contribution. However, such con-
tributions with larger invariant mass are expected to be
further suppressed with respect to the already small con-
tribution from the nucleon-rho component and would not
change the overall findings of our model calculation.
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APPENDIX: DEFINITION OF PARTON
DISTRIBUTION FUNCTIONS

We introduce the following definition of the quark-quark
correlator for a hadron target H:

Φabðx; SÞ ¼
Z

dξ−

2π

× eik
þξ−hP; S;Hjψ̄bð0ÞψaðξÞjP; S;Hijξþ¼ξ⊥¼0;

ðA1Þ

where kþ ¼ xPþ, and ψ is the quark field operator with a,
b indices in the Dirac space. The target state is charac-
terized by its four-momentum P and covariant spin four-
vector S satisfying P2 ¼ M2, S2 ¼ −1 and P · S ¼ 0. We
choose a reference frame where the hadron momentum has
no transverse components P ¼ ½Pþ; M2

2Pþ ; 0⊥�, and so S ¼
½Sz Pþ

M ;−Sz M
2Pþ ;S⊥� with S2 ¼ 1. From now on, we replace

the dependence on the covariant spin four-vector S by
the dependence on the unit three-vector S ¼ ðS⊥; SzÞ. The
parton distribution functions can be obtained by performing
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the trace of the correlator, Eq. (A1), with suitable Dirac
matrices. Using the abbreviationΦ½Γ� ≡ Tr½ΦΓ�=2, we have

Φ½γþ�ðx;SÞ ¼ f1; ðA2Þ

Φ½γþγ5�ðx;SÞ ¼ Szg1; ðA3Þ

Φ½iσjþγ5�ðx;SÞ ¼ Sj⊥h1: ðA4Þ

It is convenient to represent the correlator in terms of
light-front helicity amplitudes, which treat in a symmetric
way both quark and target polarization,

Aq=H
Λ0λ0;Λλ ¼

Z
dz−

2π
eix̄p̄

þz−hp;Λ0;NjOq
λ0λjp;Λ;Nijzþ¼z⊥¼0;

ðA5Þ
where the quark field operators are defined by

Oq
þþ ¼ 1

4
ψ̄q

�
−
z
2

�
γþð1þ γ5Þψq

�
z
2

�
;

Oq
−− ¼ 1

4
ψ̄q

�
−
z
2

�
γþð1 − γ5Þψq

�
z
2

�
;

Oq
−þ ¼ −

i
4
ψ̄q

�
−
z
2

�
σþ1ð1þ γ5Þψq

�
z
2

�

¼ −
i
4
ψ̄q

�
−
z
2

�
ðσþ1 − iσþ2Þψq

�
z
2

�
;

Oq
þ− ¼ i

4
ψ̄q

�
−
z
2

�
σþ1ð1 − γ5Þψq

�
z
2

�
;

¼ i
4
ψ̄q

�
−
z
2

�
ðσþ1 þ iσþ2Þψq

�
z
2

�
: ðA6Þ

The decomposition of the helicity amplitudes in terms of
PDFs can be obtained by decomposing the target states
jP;�S;Hi with light-cone polarization parallel or opposite
to the generic direction S¼ðsinθScosϕS;sinθSsinϕS;cosθSÞ
in terms of the target light-cone helicity states jP;Λ;Hi,

ðP;þSi; jP;−SiÞ ¼ ðP;þi; jP;−iÞuðθS;ϕSÞ; ðA7Þ

where the SUð2Þ rotation matrix uðθS;ϕSÞ is given by

uðθS;ϕSÞ ¼
�
cos θS

2
e−iϕS=2 − sin θS

2
e−iϕS=2

sin θS
2
eiϕS=2 cos θS

2
eiϕS=2

�
: ðA8Þ

For a spin 1=2 target like the proton, one has

Aq=p
Λ0λ0;Λλ ¼

0
BBBBBB@

1
2
ðfq=p1 þ gq=p1 Þ 0 0 hq=p1

0 1
2
ðfq=p1 − gq=p1 Þ 0 0

0 0 1
2
ðfq=p1 − gq=p1 Þ 0

hq=p1 0 0 1
2
ðfq=p1 þ gq=p1 Þ

1
CCCCCCA
; ðA9Þ

where the row entries are ðΛ0λ0Þ ¼ ðþþÞ; ðþ−Þ; ð−þÞ; ð−−Þ and the column entries are likewise ðΛλÞ ¼
ðþþÞ; ðþ−Þ; ð−þÞ; ð−−Þ.
For a spin 1 target like the ρ, one has [96]5

Aq=ρ
Λ0λ0;Λλ¼

1

2

0
BBBBBBBBBBBBB@

f1þg1−
f1LL
3

0 0 0
ffiffiffi
2

p ðh1− ih1LTÞ 0

0 f1þ 2f1LL
3

0 0 0
ffiffiffi
2

p ðh1þ ih1LTÞ
0 0 f1−g1−

f1LL
3

0 0 0

0 0 0 f1−g1−
f1LL
3

0ffiffiffi
2

p ðh1þ ih1LTÞ 0 0 0 f1þ 2f1LL
3

0

0
ffiffiffi
2

p ðh1− ih1LTÞ 0 0 0 f1þg1−
f1LL
3

1
CCCCCCCCCCCCCA

; ðA10Þ

5Note that the definition of the helicity amplitudes in Ref. [96] differs from our definition in Eq. (A10) by a factor of two.
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where the elements of the 3 × 3 block matrices refer to the ρ
helicity ðΛ0;ΛÞ, with Λ0;Λ ¼ þ1; 0;−1, whereas different
blocks belong to different combinations of quark helicities
ðλ0; λÞ, with λ0; λ ¼ þ;−.
For a spin 0 target like the π, one has only one

independent helicity amplitude, corresponding to the unpo-
larized PDF, i.e.

fq=π1 ¼ Aq=π
0þ;0þ þ Aq=π

0−;0− ¼ 2Aq=π
0þ;0þ: ðA11Þ

The convolution model for the helicity amplitudes reads

Aq=p
Λ0λ0;Λλ ¼ Aq=p;bare

Λ0λ0;Λλ þ δAq=p
Λ0λ0;Λλ; ðA12Þ

where Aq=p;bare is the contribution from the bare proton,
described in terms of three-valence quarks, and δAq=p is the

contribution from the BM fluctuation in the proton, which
can be further decomposed as

δAq=p
Λ0λ0;Λλ ¼

X
B;M

δAq=BM
Λ0λ0;Λλ þ δAq=MB

Λ0λ0;Λλ; ðA13Þ

with δAq=BM and δAq=MB corresponding to the active quark
coming from the baryon or meson, respectively.
Taking the appropriate combinations of the proton

helicity amplitudes in the convolution model, giving the
proton PDFs according to Eq. (A9), and taking into account
the relations Eqs. (A10) and (A11) between the meson
helicity amplitudes and the PDFs, one can deduce the
convolution model for the proton PDFs of Eqs. (11), (14)
and (17).
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