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We study the existence of Zð3Þ metastable states in the presence of the dynamical quarks within the
ambit of a Polyakov quark meson (PQM) model. Within the parameters of the model, it is seen that
for temperatures Tm greater than the chiral transition temperature Tc, Zð3Þ metastable states exist
(Tm ∼ 310 MeV at zero chemical potential). At finite chemical potential Tm is larger than the same at
vanishing chemical potential. We also observe a shift of (∼5°) in the phase of the metastable vacua at zero
chemical potential. The energy density difference between true and Zð3Þ metastable vacua is very large in
this model. This indicates a strong explicit symmetry-breaking effect due to quarks in the PQM model. We
compare this explicit symmetry breaking in the PQM model with small explicit symmetry breaking as a
linear term in a Polyakov loop added to the Polyakov loop potential. We also study the possibility of
domain growth in a quenched transition to quark gluon plasma in relativistic heavy ion collisions.
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I. INTRODUCTION

The structure of QCD vacuum and its modification under
an extreme environment has been a major theoretical and
experimental challenge in strong interaction physics.
Heavy ion collisions at the Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC)
provide an opportunity to investigate modification of the
vacuum structure of QCD as related to nonperturbative
aspects of QCD. There has been strong evidence that a
strongly interacting quark gluon plasma (QGP) is produced
in these experiments. With the increase in collision center-
of-mass energy from RHIC to LHC, a QGP state at higher
temperature ∼2Tc is expected to be formed at LHC [1]. At
such high temperature, it is important to study the nontrivial
vacuum structure of QCD arising from Zð3Þ center sym-
metry of QCD [2]. In pure SUð3Þ gauge theory, which can
be considered QCD with infinitely heavy quark masses, the
confining phase is center symmetric with a vanishing
expectation value of the Polyakov loop order parameter.
On the other hand, the deconfinement is characterized by a
nonvanishing value of the order parameter with three
degenerate vacua corresponding to three different phases
of Zð3Þ center symmetry. However, for real QCD with the
inclusion of dynamical quarks, Zð3Þ center symmetry is
explicitly broken in the deconfined phase with one true
vacuum and two metastable vacua [3–5]. It is generally
believed that the explicit symmetry-breaking effect due to
quarks is small and a linear term in the Polyakov loop is
added to the Polyakov loop potential to take this effect into
account [6,7]. For these models, metastable states exist at
any temperature greater than Tc. However, some recent
lattice QCD results [8] show that these metastable states do

not exist in the neighborhood of Tcð∼200 MeVÞ, but for
temperatures T ≥ 750 MeV. This leads to a strong explicit
symmetry breaking rather than small explicit symmetry
breaking due to quarks.
It has been studied that these Zð3Þ domains give a

microscopic explanation for the large color opacity (jet
quenching) and near perfect fluidity (small value of η=s) of
QGP [9,10]. Hence, it is important to study these domains
in the nonperturbative regime of QCD in which the system
exists in a strongly interacting QGP phase just after the
collision of two heavy nuclei in relativistic heavy ion
collisions. Due to the explicit symmetry effect of quarks,
there are huge oscillations in the Polyakov loop order
parameter field which give rise to large fluctuations in the
flow anisotropies in the quenched transition to QGP [11].
The importance of Zð3Þ walls has also been discussed as
nontrivial scattering of quarks from Zð3Þ walls. Its conse-
quences for cosmology as well as for heavy ion collision
have been explored [12–15], including the possibility of
CP-violating scattering of quarks from Zð3Þ walls leading
to interesting observational implications [16].
These Zð3Þ metastable states have been studied at high

temperatures in the presence of dynamical quarks [3,5]. It
has been shown that the contribution of massless quarks to
the one-loop effective potential leads to metastable states
and the free energy density difference between true and

metastable vacua is given by 2
3
π2T4 Nf

N3 ðN2 − 2Þ, with Nf

and N being the number of light flavors and number of
colors, respectively. Since the calculation of the effective
potential here is perturbative, it is only valid at temperatures
much larger than ΛQCD. We do not expect it to be valid near
Tc. However, a detailed description of such metastable
states near Tc is difficult both because of the nonperturba-
tive nature of QCD and the incompleteness of the theory of
thermodynamics of the nonequilibrium systems.
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Therefore, in the present work, we examine these
metastable states near Tc using the Polyakov quark meson
(PQM) model [17]. This model is based on the two
important aspects of the QCD phase transition, chiral
transition and confinement-deconfinement phase transition.
The Polyakov loop potential represents the SU(3) pure
gauge theory part which respects Zð3Þ center symmetry.
The linear sigma model is included to represent the chiral
symmetry of QCD. The quarks are minimally coupled to a
spatially constant temporal background gauge field A0. The
model thus cleverly uses the chiral as well as confining
properties of QCD. Since the constituent quark masses are
much larger than the mass of pions, the meson dynamics
dominate at low temperatures, reproducing the results of
chiral perturbation theory. Since this model describes an
interaction potential among quarks, mesons, and the
Polyakov loop, this is a very suitable model to study the
metastable states near Tc.
It has been shown that the sign of finite temperature

correction to the effective potential depends on the sign of
the real part of the Polyakov loop [5]. In general, it gives a
negative contribution to the energy density of the vacuum
when the real part of the Polyakov loop is positive (making
it a global minimum for θ ¼ 0). However, it gives a positive
contribution to the effective potential (making it metasta-
ble) when the real part of the Polyakov loop is negative.
This is also the case for the PQM model. The Polyakov
loop potential respects Zð3Þ symmetry and there are three
degenerate vacua at any temperature greater than the critical
temperature. However, when the interaction term between
the Polyakov loop and quarks is included as given in PQM
model, the θ ¼ 0 vacuum becomes true vacuum due to the
addition of a negative energy density, since the real part of
the Polyakov loop is positive. The other two Zð3Þ vacua
become metastable due to the addition of a positive energy
density, since the real part of the Polyakov loop is negative.
Since the interaction part between the Polyakov loop and
quarks in the PQM model also has chemical potential
dependence, we study these metastable states, along with
their temperature and chemical potential dependence, in
great detail in this model. In this paper, we also have shown
that, of different forms of the Polyakov loop potentials
those with a large barrier between different Zð3Þ vacuums
sustain the Zð3Þmetastability structure when the interaction
term between quarks and the Polyakov loop is added.
It is important and relevant to study nonequilibrium

effects since there are metastable states in the system. In
classical nonequilibrium thermodynamics, metastable
states play a crucial role in explaining various phenomena
like supercooling and supersaturation. In analogy, one
might expect interesting phenomenology of topological
supercooling of QGP in heavy ion collisions. This has been
already studied as a numerical simulation in Ref. [11],
where the phase transition from the confined to deconfined
phase is modeled by a quench to a very high temperature

within the Polyakov loop potential. The evolution of Zð3Þ
domains has been studied for different cases like those with
small or large explicit symmetry-breaking effects by put-
ting a small or large term as the coefficient of the linear
term in the Polyakov loop potential [11]. In the present
investigation, we discuss domain growth for the Polyakov
loop and the quark condensate order parameter in a quench
scenario. The nonequilibrium effects have been studied
using Langevin equations within different effective models
of QCD like the PQM model [18], as well as the Nambu–
Jona-Lasinio (NJL) model [19].
The paper is organized in the following manner. In

Sec. II, we discuss the essential aspects of the PQM model.
Here, we discuss the two different parametrizations used in
the literature for the Polyakov loop potential in SU(3) pure
gauge theory. Section III describes the metastable states at
higher temperature and chemical potential. It is shown that
the parametrization for the pure gauge part, which has a
larger barrier between different vacua, leads to the exist-
ence of metastable states when quarks are coupled to it. We
show that there is a large symmetry-breaking effect due to
quarks, which leads to the existence of metastable states at
higher temperature and a large shift (∼5°) in the phase of
metastable vacua. We compare the explicit symmetry
breaking of the PQM model with small explicit symmetry
breaking as a linear term in the Polyakov loop added to the
Polyakov loop potential. Section IV discusses the numeri-
cal techniques for the simulation to describe the phase
transition via quench and the results of the simulation.
Finally, in Sec. V, we summarize the results of the present
investigation and give a possible outlook.

II. THE POLYAKOV-QUARK-MESON MODEL

A. The Polyakov loop potential

The thermal expectation value of the Polyakov loop
represents the order parameter for the confinement-decon-
finement phase transition. The Polyakov loop operator is a
Wilson loop in the temporal direction

P ¼ P exp

�
i
Z

β

0

dx0A0ðx0Þ
�
; ð1Þ

where A0ðx0Þ is the temporal component of the gauge field
Aμ, P denotes path ordering in the Euclidean time τ, and
β ¼ 1=T, with T being the temperature. Within the
Polyakov gauge, the temporal component of the gauge
field is time independent, so that P ¼ expðiβA0Þ. Further,
one can rotate the gauge field in the Cartan subalgebra
Ac
0 ¼ A3

0λ3 þ A8
0λ8. The normalized Polyakov loop variable

Φ and its charge conjugate Φ̄ are defined as the color trace
of the Polyakov loop operator defined in Eq. (1):

Φ ¼ 1

Nc
trP; Φ̄ ¼ 1

Nc
trP†: ð2Þ
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Here the trace is taken in the fundamental representation.
Φ and Φ̄ are complex scalar fields and their mean values are
related to the free energy of infinitely heavy, static quarks or
antiquarks. The order parameterΦ vanishes in the confined
phase since an infinite amount of free energy is required to
put a static quark in that phase. However, the order
parameter is finite in the deconfined phase related to the
finite free energy of static quarks.
Under ZðNÞ center symmetry of SU(N) gauge symmetry,

the Polyakov loop order parameter transforms as

Φ → zΦ; z ∈ ZðNÞ ð3Þ

In pure SU(3) gauge theory which is the limit of QCD
with infinitely heavy quarks, the confining phase is center
symmetric so that hΦi ¼ 0, whereas deconfinement is
characterized by a nonvanishing value of the Polyakov
loop expectation value, since center symmetry is broken
spontaneously. In the physical world, with finite quark
masses, this symmetry is explicitly broken.
For SU(3) pure gauge theory, the effective potential of

the Polyakov loop has been proposed with the parameters
fitted to reproduce lattice results for pressure and energy
density. Let us note here that the explicit form of the
Polyakov loop is not known directly from first principle
calculations. The approach has been to choose a functional
form that reproduces crucial features of pure gauge theory
and adjust the parameters of the function so as to reproduce
the thermodynamical observables of lattice simulations.
Here, we will discuss two kinds of parametrization used in
the literature as discussed below. The parameter set 1 is
taken from Ref. [6] and the parameter set 2 is taken from
Refs. [17,20]. Both the potentials with the parameters given
below represent a first-order phase transition at the critical
temperature T0 ¼ 270 MeV. For the parameter set 1, the
effective Polyakov potential is given by

UðΦ; Φ̄Þ
T4

¼
�
−
b2
4
ðjΦj2 þ jΦ̄j2Þ − b3

6
ðΦ3 þ Φ̄3Þ

þ 1

16
ðjΦj2 þ jΦ̄j2Þ2

�
� b4: ð4Þ

The moduli of Φ and Φ̄ are the same for pure gauge theory.
By writing Φ ¼ jΦjeiθ, one can see that the b3 term in
Eq. (4) gives the cos 3θ term leading to Zð3Þ degenerate
vacua for a nonvanishing value for jΦj i.e. for temperatures
greater than the critical temperature T0. The coefficients b3
and b4 have been taken as b3 ¼ 2.0 and b4 ¼ 0.6016. The
temperature-dependent coefficient b2 is

b2ðTÞ ¼ ð1 − 1.11 � T0=TÞð1þ 0.265 � T0=TÞ2
× ð1þ 0.3 � T0=TÞ3 − 0.487: ð5Þ

With the coefficients chosen as above, the expectation
value of the order parameter approaches x ¼ b3=2þ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23 þ 4b2ðT ¼ ∞Þ

p
for temperature T → ∞. We use

the normalization such that the expectation value of the
order parameter Φ goes to unity for temperature T → ∞.
Hence the fields and the coefficients in the above potential
are rescaled as Φ → Φ=x, b2ðTÞ → b2ðTÞ=x2, b3 → b3=x,
and b4 → b4x4 to get the proper normalization of Φ.
For the parameter set 2, the effective Polyakov

potential is

UðΦ; Φ̄Þ
T4

¼ −
b2
4
ðjΦj2 þ jΦ̄j2Þ − b3

6
ðΦ3 þ Φ̄3Þ

þ b4
16

ðjΦj2 þ jΦ̄j2Þ2: ð6Þ

Here, the temperature-independent coefficients b3 ¼ 0.75,
b4 ¼ 7.5 and temperature-dependent coefficient b2 is
given by

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

ð7Þ

where a0 ¼ 6.75, a1¼−1.95, a2 ¼ 2.625, and a3 ¼ −7.44.
The difference between these two parametrizations is

that the barrier between Zð3Þ vacua for parameter set 1 is
very large compared to that of parameter set 2 at any
temperature greater than T0. Figure 1 shows the barrier
between different Zð3Þ vacua at a temperature T ¼
400 MeV at the corresponding vacuum expectation value
of the Polyakov potential. Here the parameters are such that
the vacuum expectation values of the Polyakov potential at
T ¼ 400 MeV for parameter set 1 and set 2 are 0.92 and
0.81, respectively. The energy density is almost equal for
different Zð3Þ vacua for both cases.
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FIG. 1. The Zð3Þ structure of the vacuum in the plot of the
Polyakov potential for both parameter sets as a function of θ at a
temperature 400 MeV.
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In the deconfined phase, due to the breaking of Zð3Þ
symmetry, one gets domain walls or interfaces that inter-
polate between different Zð3Þ vacua. We can also see that
the Zð3Þ interface profile will be different for the Polyakov
loop potential described by set 1 and set 2. The Zð3Þ
interface arises as one goes from one Zð3Þ vacuum to
another Zð3Þ vacuum. These interfaces have been well
studied in SU(3) lattice pure gauge theory [21]. The
interface solution for the Polyakov loop potential as a
time-independent solution is given in [12]. Here, we also
use the same energy minimization technique as in [12] to
get the interface profile. To determine the interface profile
one needs to consider the profile of the Polyakov loop in
one dimension (say along z). We fix the values of Φ at the
two boundaries of the one-dimensional lattice as the values
of the Polyakov loop corresponding to two distinct minima
[two Zð3Þ degenerate minima] of the Polyakov potential.
Field configuration is then fluctuated at each lattice point,
while fixing the boundary points, and energy is minimized.
The configuration with the lowest value of energy is
accepted (when the energy almost settles down to a definite
value) as the correct profile of the interface. We refer to [12]
for the details of the energy minimization technique. For
the Polyakov loop potential with parameter set 1, the
minimum energy configuration is such that the Polyakov
order parameter goes very close to Φ ¼ 0, since there is a
huge barrier between different Zð3Þ vacua. This is also seen
in lattice gauge theory [21]. However, for the potential with
parameter set 2, the barrier between different Zð3Þ vacua is
even smaller than the central bump near Φ ¼ 0. So for the
potential set 2, the minimum energy configuration going
from one vacuum to another vacuum never goes close to
Φ ¼ 0; rather it goes through a path where the modulus of
Φ remains almost constant and θ is continuously changing.
The profile of the interface in the complex plane of the

Polyakov loop order parameter at a temperature of
500 MeV (∼2T0) for both parameter sets is shown in Fig. 2.
There is another possible parametrization used in the

literature for the Polyakov loop potential called logarithmic
parametrization, given by [22]

U logðΦ; Φ̄Þ
T4

¼ −
1

2
AðTÞΦ̄Φþ BðTÞ ln½1 − 6ðΦ̄ΦÞ þ 4ðΦ3

þ ðΦ̄Þ3Þ − 3ðΦ̄ΦÞ2�: ð8Þ

Here, the temperature-dependent coefficients are given by

AðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

ð9Þ

and

BðTÞ ¼ b3

�
T0

T

�
3

: ð10Þ

The different parameters here are a0 ¼ 3.51, a1 ¼ −2.47,
a2 ¼ 15.2, and b3 ¼ −1.75.
In this parametrization, the barrier between different

Zð3Þ vacua is not well defined at a temperature greater than
T0 as the argument of the logarithm in Eq. (8) can become
negative. Further, the Zð3Þ structure of the vacuum at the
vacuum expectation value as a function of θ is not well
defined for this logarithmic potential. Since we are inter-
ested in the details of the Zð3Þ parametrization structure, we
do not consider this parametrization here.
In general, the Polyakov loop potential with parameter

set 2 is more commonly used in the context of the PQM
model because one is interested in the study of thermody-
namic equilibrium properties of the system along the true
vacuum [17,18,23]. On the other hand, since we are
interested in Zð3Þ metastability and the evolution of
Zð3Þ domains with dynamical quarks, we use the
Polyakov loop potential with parameter set 1 throughout
this paper. We will also see later in the paper that including
the quark contribution to the Polyakov loop potential
washes away Zð3Þ metastability structure for parameter
set 2. This is primarily because the barrier between different
Zð3Þ vacua is very small for the parameter set 2. Since the
barrier between different Zð3Þ vacua is very large for
parameter set 1, the quark effect does not wash away the
Zð3Þ metastability structure.

B. Quark-meson coupling to Polyakov loop

Chiral symmetry of QCD is an important symmetry to
understand low-energy hadronic properties [24]. There are
different phenomenological models like the NJL and quark-
meson (QM) model that are based on this chiral symmetry
of QCD. By combining the Polyakov loop model with the
QM model, both the confining and chiral properties of
QCD are included.
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FIG. 2. The path of the Polyakov order parameter Φ in the
complex plane when crossing the Zð3Þ interface at a temperature
of 500 MeV. This path corresponds to a minimum energy
configuration as one goes from one vacuum to another Zð3Þ
vacuum.
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The Lagrangian of the linear QMmodel for Nf ¼ 2 light
quarks q ¼ ðu; dÞ and N ¼ 3 color degrees of freedom
coupled minimally to a spatially constant temporal back-
ground gauge field is given by

L ¼ q̄½ðiγμ∂μ − igsγ0A0Þ − gðσ þ iγ5τ⃗ π⃗Þ�q

þ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπ⃗Þ2 −Uðσ; π⃗Þ − UðΦ; Φ̄Þ ð11Þ

where the linear sigma model potential reads

Uðσ; π⃗Þ ¼ λ

4
ðσ2 þ π⃗2 − v2Þ2 − cσ: ð12Þ

The parameters in Eq. (12) are chosen such that chiral
symmetry is spontaneously broken in vacuum, where
hσi ¼ fπ ¼ 93 MeV, and here fπ is the pion decay
constant. Since pions are pseudoscalar in character, the
expectation values vanish hπ⃗i ¼ 0. The explicit symmetry-
breaking term is c ∼ 1.77 × 106 MeV3 which produces a
pion mass of 138 MeV. The quartic coupling λ is given by
sigma mass mσ by the relation λ ¼ ðm2

σ −m2
πÞ=2f2π . In the

present calculations, we take mσ ¼ 600 MeV, leading to
λ≃ 20. The parameter v2 is found by minimizing the
potential in the radial direction v2 ¼ σ2 − c=ðλσÞ. Finally,
the Yukawa coupling constant g ¼ 3.2, which is fixed to
produce a constituent quark mass of 300 MeV in the
vacuum mq ¼ gfπ .
The partition function Z is written as a path integral over

quarks, antiquarks, mesons, and the temporal component of
the gauge field. We shall adopt here a mean field approxi-
mation of replacing the meson and the Polyakov loop fields
by their vacuum expectation values. This amounts to
neglecting both the quantum and thermal fluctuations of
all the fields other than the quark and antiquark fields.
Integrating over the quark degrees of freedom, one can get
the thermodynamic potential. The effective thermodynamic
potential is determined as the logarithm of the partition
function,

Veff ¼−
T
V
lnZ ¼ UðΦ; Φ̄ÞþUðσÞþΩq̄qðΦ; Φ̄;σÞ; ð13Þ

where

Ωq̄q ¼ −2NfT
Z

d3p
ð2πÞ3 ln ½1þ 3ðΦþ Φ̄e−ðEp−μÞ=TÞe−ðEp−μÞ=T þ e−3ðEp−μÞ=T�

þ ln ½1þ 3ðΦ̄þΦe−ðEpþμÞ=TÞe−ðEpþμÞ=T þ e−3ðEpþμÞ=T�: ð14Þ

In the above, Ep is the quark or antiquark quasiparticle

energy given by Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

q

q
with the constituent

quark mass mq ¼ gσ. Clearly in Eq. (14) above we have
written σ ¼ hσi, Φ ¼ hΦi, Φ̄ ¼ hΦi and have taken the
pion field as having a vanishing vacuum expectation value.
Further, in Eq. (14), we have omitted a zero temperature
and density contribution in Ωq̄q that can be absorbed partly
into parameter λ and a logarithmic term depending upon the
renormalization scale and effective quark mass. However,
the qualitative features of the phase diagram remain
unchanged as long as the mass of the sigma meson is
not too high [23,25]. We therefore proceed with our
analysis without the vacuum fluctuation terms for the
fermions in Ωq̄q.

III. Zð3Þ METASTABILITY IN PQM MODEL

In pure SU(3) gauge theory, the deconfined phase exists
in three degenerate states and these three states are related
to each other via Zð3Þ rotation. However, inclusion of
dynamical quarks breaks this Zð3Þ symmetry due to
antiperiodic boundary conditions on fermions. Thus, the
Zð3Þ symmetry is explicitly broken giving rise to one true
vacuum along θ ¼ 0 and two metastable vacua along
θ ¼ 2π=3 and 4π=3. In this section, we will discuss these

Zð3Þ metastable states in the context of the PQM model
where the effect of quarks is included in terms of the
QM model.
To study the dynamics of phase transition within PQM

model, it is convenient to write down the effective
thermodynamic potential Eq. (13) in terms of the real
and imaginary parts of the Polyakov order parameter
as in Ref. [23]. Defining α ¼ ðΦþ Φ̄Þ=2 ¼ jΦj cos θ
and β ¼ ðΦ − Φ̄Þ=ð2iÞ ¼ jΦj sin θ, the Polyakov potential
for parameter set 1, i.e., Eq. (4), and set 2, i.e., Eq. (6), can
be rewritten as functions of real variables α and β,
respectively, as

Uðα;βÞ
T4

¼ð−b2
2
ðα2þβ2Þ−b3

3
ðα3−3αβ2Þþ1

4
ðα2þβ2Þ2Þb4

ð15aÞ

Uðα;βÞ
T4

¼ð−b2
2
ðα2þβ2Þ−b3

3
ðα3−3αβ2Þþ b4

16
ðα2þβ2Þ2Þ:

ð15bÞ

Similarly, defining

xþ ≡ 1þ 3ðΦþ Φ̄e−ðE−μÞ=TÞe−ðE−μÞ=T þ e−3ðE−μÞ=T ð16Þ
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and

x−≡1þ3ðΦ̄þΦe−ðEþμÞ=TÞe−ðEþμÞ=Tþe−3ðEþμÞ=T; ð17Þ

xþx− ¼ Rþ iI; ð18Þ

the contribution Ωqq̄ from the quarks at finite temperature
and chemical potential can be written as

Ωqq̄ ¼ −2NfT
Z

d3p
ð2πÞ3 log½xþx−�: ð19Þ

It can be seen that the argument of the logarithm is complex
and xþx− ¼ Rþ iI, where

R≡ 1þ e−3ðE−μÞ=T þ e−3ðEþμÞ=T þ e−6E=T

þ 6αe−E=T
�
cosh

�
μ

T

�
þ e−E=T cosh

�
2μ

T

��

þ 6αe−4E=T
�
cosh

�
2μ

T

�
þ e−E=T cosh

�
μ

T

��

þ 9ðα2 þ β2Þð1þ e−2E=TÞe−2E=T

þ 18ðα2 − β2Þe−3E=T cosh
�
μ

T

�
ð20Þ

and

I ≡ 6βe−E=T
�
sinh

�
μ

T

�
− e−E=T sinh

�
2μ

T

��

þ 6βe−4E=T
�
e−E=T sinh

�
μ

T

�
− sinh

�
2μ

T

��

− 36αβ sinh
�
μ

T

�
e−3E=T: ð21Þ

In principle, one can write Rþ iI ¼ ρeiδ, where

ρ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

p
and δ≡ arctan

�
I
R

�
: ð22Þ

Thus the potential has an imaginary part and this is the
manifestation of the fermion sign problem in the context of
the PQM model [23,26]:

Ωqq̄ ¼ ΩR
qq̄ þ iΩI

qq̄; ð23Þ

with

ΩR
qq̄ ≡ −2NfT

Z
d3p
ð2πÞ3 ln½ρ� ð24Þ

and

ΩI
qq̄ ≡ −2NfT

Z
d3p
ð2πÞ3 δ: ð25Þ

A. Zð3Þ metastable states at zero chemical potential

The imaginary part of the potential, i.e., Eq. (25),
vanishes at μ ¼ 0 and the effective potential becomes real.
There is no fermion sign problem at zero chemical
potential. We will first consider the case with μ ¼ 0. For
two flavors, we take the value of T0 as 210 MeV [17].
When the real part of the Polyakov loop α is positive, β ¼ 0
(i.e., along θ ¼ 0) and the appropriate σ value correspond-
ing to the temperature ΩR

qq̄ in Eq. (24) becomes negative.
So, the total effective potential Veff along θ ¼ 0 is a global
minimum and it becomes the true vacuum. However, along
the other two Zð3Þ vacua, when α is negative, ΩR

qq̄ in
Eq. (24) is positive. Hence the total effective potential Veff
can have metastable vacua along these directions. For the
two different Polyakov loop potential sets 1 and 2,
the effective potential at the vacuum expectation value of
the Polyakov loop potential as a function of θ at temper-
ature 400 MeV is shown in Fig. 3.
From Fig. 3, it is clear that there are no metastable vacua

for Polyakov loop potential set 2 since the barrier between
different Zð3Þ vacua is very small for SU(3) pure gauge
theory as shown in Fig. 1 and the strong explicit symmetry-
breaking effect due to quarks completely washes away the
metastable structure. For parameter set 2, the potential is
tilted all the way to a θ ¼ 0 vacuum at all temperatures
greater than critical temperature. But, this is not the case for
the parameter set 1. One can clearly see the metastable and
true vacua in the PQM model for the Polyakov loop
potential corresponding to set 1. Since we are interested
in the Zð3Þ vacuum structure, we consider the Polyakov
loop potential set 1 throughout the paper.
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FIG. 3. Effective potential as a function of the phase of the
Polyakov loop for T ¼ 400 MeV and μ ¼ 0. Set 1 corresponds to
the Polyakov potential of Ref. [6], while set 2 corresponds to
Ref. [17].
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By minimizing the effective thermodynamic potential
Veff with respect to α, β, and σ,

∂Veff

∂α ¼ ∂Veff

∂β ¼ ∂Veff

∂σ ¼ 0; ð26Þ

we get the global minimum at finite values of α and σ and
β ¼ 0 (along the θ ¼ 0 direction). A comment regarding
the above may be relevant. The condition of Eq. (26) is a
necessary condition for a minimum and not a sufficient
condition. We have verified that the solution is indeed a
minimum and does not correspond to a maximum or a
saddle point. The variation of the modulus of the Polyakov
loop order parameter jΦj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2 þ β2Þ

p
and σ with respect

to temperature is shown in Fig. 4. Here, we can see a chiral
crossover is found at a temperature T ¼ 180 MeV as also
seen in [17]. We also find thatΦ reaches a higher value 1.11
as temperature increases [17].
Now using the same σ value at a given temperature that

minimizes the effective potential Veff , we scan all values of
(α, β) corresponding to the second and the third quadrant of
the Polyakov loop order parameter to find local minima
corresponding to Zð3Þ metastable vacua. We ascribe the
state as metastable when the corresponding pressure is
positive and is lower than the pressure at θ ¼ 0. We would
like to note here that this procedure is only an approximate
method to get a local minimum. In principle, there could be
a different pair of ðσ;ΦÞ which can still be metastable with
a value of σ other than the value of σ at the minimum with
θ ¼ 0. We do not see any Zð3Þ metastable vacua up to a
temperature of 310 MeV; i.e., the free energy density is still
higher than the free energy density in the confined phase.
At a temperature of 310 MeVand beyond, Zð3Þ metastable
vacua start appearing. However, there is a large difference
of free energy density (ϵ ∼ 4.0 GeV fm−3) between true
and Zð3Þ metastable vacua at this temperature. This
energy difference between metastable and true vacua
increases as temperature increases as shown in Fig. 5. It

has been already shown that the free energy density
difference between true and metastable vacua varies as
2
3
π2T4 Nl

N3 ðN2 − 2Þ using the perturbative calculation [3].
Here, Nl ¼ 2 is the number of massless fermions and
N ¼ 3 is the number of colors. In Fig. 5, we have fitted the
plot by using the same function fðTÞ ¼ 2

3
π2T4 Nl

N3 ðN2 − 2Þ.
This function fits with the PQM model extraordinarily well
beyond temperature 550 MeV (as shown in the inset).
However, near temperature ∼310 MeV when Zð3Þ meta-
stable vacua start appearing, this function does not fit well
with data. The difference in the free energy density is
∼0.3 GeV fm−3 near temperature 310 MeV. This is mainly
because the functional dependence given above comes
from perturbative calculations, which is valid at higher
temperatures.
Further, there is a shift in the phase of the Polyakov loop

for the metastable vacua of the order of 5° (metastable
vacua appear at angles 115° and 245°). The magnitude ofΦ
along the metastable vacua is also smaller than the
magnitude along the true vacuum. We show contour plots
of the effective potential Veff as a function of real and
imaginary parts of the Polyakov loop at different temper-
atures in Fig. 6. Here the value of σ is taken as the value
which minimizes the effective potential Veff at the corre-
sponding temperature. The maximum value of Veff is set as
6.3 GeV fm−3 in all figures to show the true, metastable
vacua and the barrier between them distinctively. Figure 6(a)
shows the contour plot of the effective potential at temper-
ature 300 MeVand we can clearly see that there are no Zð3Þ
metastable vacua at this temperature since the energy density
of metastable vacuum is still positive (i.e., larger than the
energy density in the confined phase). Figure 6(b) represents
the effective potential at temperature 400 MeV, and Zð3Þ
metastable vacua and true vacuum are clearly seen at this
temperature.
Next, we examine another case where the explicit

symmetry-breaking effect due to quarks is included as a
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FIG. 4. The normalized chiral condensate σ and the Polyakov
loop Φ as a function of temperature.
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linear term in the Polyakov loop in the Polyakov potential
given in Eq. (4) [6]. We will compare here the explicit
symmetry-breaking effects for this case with the PQM
model. The Polyakov loop potential with an explicit
symmetry-breaking term is given by [6]

UeðΦ; Φ̄Þ
T4

¼
�
−b1ðjΦjÞ cos θ − b2

4
ðjΦj2 þ jΦ̄j2Þ

−
b3
6
ðΦ3 þ Φ̄3Þ þ 1

16
ðjΦj2 þ jΦ̄j2Þ2

�
� b4:

ð27Þ

Here, b1 is the explicit symmetry-breaking term that
takes values in the range from 0 to 0.12, as shown in
Ref. [6]. While for small b1 (b1 < 0.026), the weakly first-
order transition of pure gauge theory persists, the same
becomes a crossover for larger values of b1. For compari-
son with the PQM model where the transition is a cross-
over, we have taken a value b1 ¼ 0.1. Further, to take into
account the flavor effect, the parameter b4 is multiplied by a
factor 37=16 to its pure gauge value. In Ref. [6], it was
shown that this explicit symmetry-breaking linear term is
sufficient to describe the dependence of the chiral

symmetry restoration temperature on pion mass. For this
potential given in Eq. (27), Zð3Þ metastable vacua are there
at all temperatures greater than the critical temperature and
the phase shift of the metastable vacuum is negligible.
In Fig. 7 we have plotted the explicit symmetry-breaking

potential Ue of Eq. (27) for θ ¼ 0 corresponding to the
stable vacuum and for θ ¼ 2π=3 corresponding to meta-
stable vacuum at a temperature 400 MeV as a function of
the order parameter jΦj. These are shown by the red lines.
In the same figure we have also plotted the Veff of Eq. (13),
along with the corresponding curves for the stable (θ ¼ 0)
and metastable (θ ¼ 115°) vacuum. This is because, as
mentioned earlier, the metastable vacuum for the PQM case
occurs with a shift of 5°.
It is clear from the figure that the free energy density

difference between true and Zð3Þ metastable vacuum is
very small in the case of the small explicit symmetry-
breaking term used in [6], as compared to the PQM model.
Thus, the PQM model shows strong explicit breaking
effects due to quarks. Further, the energy density difference
along metastable and true vacuum near Φ ¼ 0 is large in
the PQM model compared to the potential in Eq. (27). This
will have important consequences for the phase transition
kinetics for these two cases as we shall see in the next
section. We will see later in the simulation that when the
explicit symmetry breaking is small [6] with b1 ¼ 0.1, Zð3Þ
domains are formed during the initial time of evolution
after quenching the system to a higher temperature of
400 MeV. Subsequently the metastable domains collapse
and true vacuum domains expand due to the difference in
free energy between them. On the other hand, for the PQM
model, after the quench the whole system evolves into true
vacuum rapidly. For the large explicit symmetry breaking
in the PQM model, we do not get any metastable domains
in the simulation. However, this is not the case with the
small explicit symmetry-breaking effect used in [6]. This
will be discussed later in detail in the next section.

FIG. 6. Contour plot of effective potential at temperatures
(a) 300 MeV and (b) 400 MeV. The legend bar represents energy
density in GeV fm−3.
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Here we would like to explore another interesting
possibility of the dependence of the existence of metastable
states on the number of flavors. The variation of the
effective potential on the number of flavors was discussed
in Refs. [3,10]. It has been shown in these references that as
the number of flavors increases, the free energy density of
metastable vacua increases at any temperature. For Nf ≥ 3,
no metastability at any temperature was seen. However,
these are essentially perturbative calculations that are
not applicable near Tc. In the PQM model discussed here,
the flavor dependence comes from the third term in the
effective potential Veff [Eq. (13)]. The parameters of the
linear sigma model potential part in Eq. (13) are fixed to
reproduce the results of chiral symmetry restoration for
Nf ¼ 2. For simplicity, we take this linear sigma model
part in Eq. (13) for different values of Nf. For the Polyakov
loop part of the potential in Eq. (13), the parameter T0

depends on the number of flavors and chemical potential as
in [17],

T0ðμ; NfÞ ¼ Tτe−1=ðα0bðμÞÞ: ð28Þ

Here,

bðμÞ ¼ 1

6π
ð11Nc − 2NfÞ − bμ

μ2

T2
τ

ð29Þ

where Tτ ¼ 1.770 GeV, α0 ¼ 0.304, and bμ ¼ 16Nf=π.
The flavor dependence of the effective potential normalized
by T4 is shown in Fig. 8 for μ ¼ 0 and T ¼ 400 MeV. As
may be noted from Fig. 8, the absolute value of the free
energy difference between the true vacuum (θ ¼ 0) and the
minima at nonzero θ increases with the flavor number. It
may also be noted that beyond Nf ≥ 3, the metastable
minima become unphysical as the pressure becomes
negative. Such an observation was also noted in
Refs. [3,10] within a perturbative approach. For higher

temperatures also we did not find any metastable state (up
to T ¼ 600 MeV).

B. Metastable states at finite chemical potential

From Eq. (25), it is clear that there is a nonvanishing
contribution from the imaginary part of Ωq̄q at finite
chemical potential [23]. However, as argued in Ref. [23],
we neglect this part in our calculation at finite temperature
so that the effective potential is real where a minimization
procedure can be applied. The critical temperature
decreases as chemical potential increases as seen in [17].
The variation of both the order parameters at different
chemical potentials with respect to temperature is the same
as seen in [17]. The free energy density of true vacuum at
finite chemical potential is more negative than the same at
zero chemical potential at any temperature greater than the
critical temperature. But, the energy density of Zð3Þ
metastable vacua at finite chemical potential increases
compared to zero chemical potential. Hence, the threshold
temperature for metastability increases with the chemical
potential. The temperature Tm beyond which the Zð3Þ
metastable vacuum arises is shown as a function of
chemical potential in Fig. 9.
Here, we have taken the temperature parameter T0 for the

Polyakov loop potential to have a μ dependence as given in
Eq. (28). From Fig. 9, one can see that the metastability
temperature remains almost constant (Tm ¼ 310 MeV) up
to μ ¼ 170 MeV and it increases beyond μ ¼ 170 MeV.
Generally, the metastability temperature should increase
with the increase in chemical potential since we are adding
more dynamical quark degrees of freedom by increasing
the chemical potential; however, the cause for this sharp
increase of metastability temperature beyond μ¼ 170MeV
is not very clear. We expect that there must be drastic
change in phase transition dynamics beyond this chemical
potential. It has been already observed that the critical point
exists at ðTc; μcÞ ¼ ð150 MeV; 168 MeVÞ [17]. When the
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chemical potential is less than the critical chemical poten-
tial, it is a crossover in the QCD phase diagram. Beyond
critical chemical potential, there is a first-order phase
transition between the confined and deconfined phases
where the dynamics of the phase transition are very
different than the crossover. So, the temperature depend-
ence of metastable states at higher chemical potential might
reveal the phase transition dynamics and hints at the
existence of a critical point. These metastable states have
a phase of 115° as already seen for zero chemical potential.

IV. PHASE TRANSITION KINETICS
AND NUMERICAL SIMULATION

The thermalization time scale at RHIC is very small
(∼0.2 fm). In this short time scale an equilibrium dynamics
of the transition from confined phase to deconfined phase
appears very unlikely. Hence in this work, we carry out a
2þ 1 dimensional field theoretical simulation of the
dynamics of the confinement-deconfinement transition in
a quench as in Ref. [11]. Here we use the framework of
Bjorken’s boost invariant longitudinal expansion model
[27] for the central rapidity region in relativistic heavy ion
collisions. To model the quench, we take the initial field
configuration to constitute a small patch around Φ ¼ 0,
which corresponds to confining vacuum configuration near
zero temperature. We take the initial phase of Φ to vary
randomly between 0 and 2π from one lattice site to the
other, while the magnitude of Φ is taken appropriately to
obtain the Zð3Þ domain structure. In principle, the initial
magnitude of Φ (i.e., ϵ ¼ 0.1 × VEV) should be smaller
than the vacuum expectation value (VEV) of Φ at Tmax ¼
400 MeV (i.e., maximum temperature obtained at LHC).
This initial field configuration, which represents the

equilibrium field configuration of a system with T ≪ Tc,
is evolved using the effective potential with T¼Tmax >Tc.
This represents the transition dynamics of a quench. Here,
we will compare the two different cases:

(i) Polyakov potential with an explicit symmetry-
breaking term as in Eq. (27).

(ii) PQM model effective potential as given in Eq. (13).
First we will consider the situation of the Polyakov loop

potential with an explicit symmetry-breaking term as given
in Eq. (27). The kinetic energy term for the Polyakov loop
field is represented by N

g2 j∂μΦj2T2. The field configuration

of the Polyakov loop field is evolved by the time-dependent
equation of motion in the Minkowski space as appropriate
for Bjorken’s longitudinal scaling model [28]:

∂2Φj

∂τ2 þ1

τ

∂Φj

∂τ −
∂2Φj

∂x2 −
∂2Φj

∂y2 ¼−
g2

2NT2

∂Veff

∂Φj
; j¼ 1;2;

ð30Þ

withΦ ¼ Φ1 þ iΦ2. The evolution of the field was numeri-
cally implemented by a stabilized leapfrog algorithm of

second-order accuracy both in space and in time with the
second-order derivatives of Φ approximated by a diamond-
shaped grid. Here, we have used a square lattice of 2000 ×
2000 points and the physical size of the lattice is 20 fm.
Hence, the lattice spacing is Δx ¼ 0.01 fm. We take Δt ¼
Δx=

ffiffiffi
2

p
to satisfy the Courant stability criteria. The stability

and accuracy of the simulation is checked using the
conservation of energy during simulation. The total energy
fluctuations remain a few percent without any net increase
or decrease of total energy in the absence of the dissipative
term _Φ in the equation of motion. This is the only
dissipative term used here due to Bjorken’s longitudinal
expansion. Here the temperature varies as τ−1=3 due to
Bjorken’s longitudinal expansion.
It has already been shown that for a very small explicit

symmetry-breaking term with b1 ¼ 0.005 (for a first-order
phase transition), Zð3Þ domains are formed via bubble
nucleation, then expand, and Zð3Þ walls and strings are
produced [14]. Zð3Þ domains also have been studied in a
quench scenario with this symmetry-breaking term, where
it has been seen that the true vacuum domain dominates
over the other two Zð3Þmetastable domains [11]. However,
in this work as mentioned in the previous section, we
consider the case with b1 ¼ 0.1, which is suitable for a
crossover transition between the confined and deconfined
phase at zero chemical potential. With this symmetry-
breaking term, the plot of the potential along true and
metastable vacua is given in Fig. 7. As we have mentioned
earlier, the potential along metastable vacua is higher
compared to true vacuum near the origin Φ ¼ 0. So, if
we choose the initial patch for the Polyakov loop field near
Φ ¼ 0 to be very small, i.e., ϵ ¼ 0.01 × VEV, then the field
always rolls down to the true vacuum. In this case, we do
not get any Zð3Þ domain structures in the simulation.
The patch size for the initial configuration of the

Polyakov loop depends upon the flatness of the potential
near Φ ¼ 0 (Polyakov correlation length) at a temperature
less than the critical temperature. The initial Polyakov loop
field can take large value for a flat potential near Φ ¼ 0
compared to a narrow potential. We choose a larger initial
patch, i.e., ϵ ¼ 0.1 × VEV for this potential; the field
already sits on the top of the barrier along the metastable
vacua near Φ ¼ 0. Then the field rolls down to all vacua.
Since the potential is more tilted towards the true vacuum,
the larger fraction of the region is occupied by domains of
true vacuum inside, as shown in Fig. 10. Here, we have
shown the values of the phase of Φ around the three Zð3Þ
vacua in terms of different colors (shades) to focus on the
evolution of the Zð3Þ domain structure. Thus all the values
of the phase θ ofΦ are separated into three ranges, between
−2π=6 and 2π=6 (θ ¼ 0 vacuum), between 2π=6 and π
(θ ¼ 2π=3 vacuum), and between π and −2π=6 (θ ¼ 4π=3
vacuum). As the field evolves, the angular variation of Φ
becomes less random over small length scales, leading to a
sort of Zð3Þ domain structure. Zð3Þ domains become more
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well defined and grow in size by coarsening, as shown in
the sequence of figures in Fig. 10. The boundaries of
different Zð3Þ domains represent Zð3Þ walls, and the
junction of three different Zð3Þ domains gives rise to the
QGP strings.
Here, we would like to mention that at temperature

400 MeV as shown in Fig. 7, the potential along the
metastable vacuum has a small barrier between the confined
vacuum and metastable vacuum. So, there is a possibility of
metastable domain formation via bubble nucleation. Since
the barrier height is much smaller than the energy density
difference between the confined and metastable vacua, these
will be thick wall bubbles. But, there is no barrier between
confined vacuum and true vacuum at this temperature and
true vacuum domains are formed due to the roll down of the
Polyakov loop field. Hence, this raises a new possibility of
Zð3Þ domain formation where the transition dynamics are
different along different vacua.Wewould like to study this in
detail in the future.
Next, we discuss the situation for the PQM model. The

plots of the potential for thismodel along true andmetastable
vacua at T ¼ 400 MeV have been shown in Fig. 7. It is clear
from the figure that the energy density difference between
the true and metastable vacua of this model is very large

compared to the previous case with b1 ¼ 0.1. Since it is a
large explicit symmetry-breaking case for Veff, with the
initial field configuration mentioned above for b1 ¼ 0.1
(i.e., ϵ ¼ 0.1 × VEV), the field Φ always rolls down
completely along the θ ¼ 0 vacuum. There is no metastable
domain formation for this case. When the field always rolls
down to true vacuum, it has been observed that large field
oscillations lead to large fluctuations in the evolution of flow
anisotropies in the quench case compared to the equilibrium
transition case [11].We expect similar results for this case as
in [11]. Here, the order parameter σ is a dynamic field which
evolves as the Polyakov loop field in the quench scenario.
The initial field configuration for σ is chosen appropriately
(VEV value ∼93.0 MeV at zero temperature and sigma
value fluctuating around this value from one lattice site to
another). The equations of motion for the two order
parameters are now coupled through Veff . While the
dynamical equation for the Polyakov loop order parameter
is given by Eq. (30), the equation of motion for the σ field is
given by

∂2σ

∂τ2 þ
1

τ

∂σ
∂τ −

∂2σ

∂x2 −
∂2σ

∂y2 ¼ −
∂Veff

∂σ : ð31Þ

FIG. 10. Field configurations at different times with explicit symmetry-breaking effect. The shading (color) representing the dominant
region in (d) corresponds to the true vacuum with θ ¼ 0. (a)–(d) show the growth of domains for τ ¼ 1.2, 1.6, 2.2, and 2.4 fm (with
corresponding values of temperature T ¼ 368, 335, 311, and 298 MeV), respectively.
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Here we would like to study true vacuum and sigma
domain growth in a noncentral collision. It is a limitation of
the current study to use hydrodynamic simulation. In
contrast to the previous case, here we use a more realistic
temperature profile of Woods-Saxon shape with the size in
the X and Y directions being different and representing an
elliptical shape for a noncentral collision. The Woods-
Saxon temperature profile is given by the following:

TðrÞ ¼ Tcenter=½1þ exp½ðr − RÞ=a��; ð32Þ

where Tcenter is the temperature at the center of the QGP
region. R represents the radius of the elliptical QGP region
for the noncentral collision and a ¼ 0.56 fm is the thick-
ness of the transition layer to the vacuum. Here r represents
the distance from the center of the lattice at which
temperature is measured using the above equation. At τ ¼
1 fm (the thermalization time scale used here), the temper-
ature at the center of the QGP region is Tcenter ¼ 400 MeV.
This allows us to have a well-defined size for the central
QGP region, with temperature smoothly decreasing at the
boundary of this region [11]. The transverse size R of this
system is taken to increase with uniform acceleration of

0.015 c per fm, starting from an initial value of R [29]. The
initial transverse expansion velocity is taken to be zero.
This expanding background of the temperature profile is
supposed to represent the hydrodynamically expanding
quark gluon plasma. The central temperature of the
Woods-Saxon profile is taken to decrease by assuming
that the total entropy (integrated in the transverse plane)
decreases linearly as appropriate for the Bjorken dynamics
of longitudinal expansion. The physical lattice size is
30 fm × 30 fm. The Woods-Saxon temperature profile
(representing the QGP region) is taken to have a diameter
of about 16 fm as appropriate for Au-Au collision for
RHICEs. The large physical size of the lattice allows for the
evolution of the QGP region to be free from boundary
effects. Here we have taken the eccentricity of the QGP
region to be 0.8. We have presented the Polyakov loop and
sigma domain growth at time τ ¼ 3 fm in Fig. 11.
Figure 11(a) represents the true vacuum domain and
Fig. 11(b) presents sigma domain growth at τ ¼ 3 fm,
respectively. Here the ringlike structure at the boundary of
the noncentral QGP region represents the large fluctuations
in the field value due to the huge temperature gradient
corresponding to the tail part of the Woods-Saxon temper-
ature profile. However, we are only interested in the domain
growth inside the QGP region (neglecting the boundary
effects). The background is in the confined phase (outside
of the elliptical QGP region). So, the Polyakov loop field
and sigma field value outside the QGP region are accord-
ingly in the confined phase.
We also study the variation of the average Polyakov loop

and sigma field (normalizedwith respect to vacuum) over the
whole lattice with τ as shown in Fig. 12. This is very
important to study the relaxation behavior of the Polyakov
loop and sigma field in a quenched scenario. The average
Polyakov loop and sigma field over the lattice are defined as

hjΦji ¼ 1

N2

X
l;m

jΦjl;m and hσi ¼ 1

N2

X
l;m

σl;m: ð33Þ

FIG. 11. (a) Polyakov loop. (b) Sigma field (in units of MeV)
domain growth at τ ¼ 3 fm.
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FIG. 12. Plot of average Polyakov loop and normalized sigma
field value with τ.
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Here N represents the number of lattice points in one
direction and (l,m) represents the coordinates of the lattice.
We can observe from Fig. 12 that the average Polyakov
loop initially increases up to τ ¼ 2 fm, approaching the
equilibrium value; however, at the same time, temperature
decreases with τ due to longitudinal expansion and the
equilibrium value of the Polyakov decreases as temperature
decreases. Hence, there is a turnover after τ ¼ 2 fm where
the Polyakov loop decreases. This is also the case for the
normalized sigma field value, where it initially decreases,
approaching the equilibrium value, and increases slightly
after τ ¼ 2 fm. We would like to point out that the central
temperature is Tcenter ¼ 313 MeV at τ ¼ 2 fm and there is
a large fraction of the lattice which is at low temperature
due to the Woods-Saxon temperature profile. We would
also like to point out that as the temperature decreases
further at τ ¼ 3 fm, the shape of the effective potential is
very flat near the minimum. So, the equilibrium value
of the Polyakov loop oscillates slightly near the VEV,
which is shown as an increase in the Polyakov loop around
τ ¼ 3 fm.
As we have described above for b1 ¼ 0.1, there is a

possibility of Zð3Þmetastable domain formation via bubble
nucleation due to the barrier between false vacuum and
Zð3Þ metastable vacuum for this case in the PQM model.
However, here the barrier height is of the same order as the
energy density difference between confined vacuum and
metastable vacua at a temperature 400 MeV, as shown in
Fig. 7. But, there is no barrier between false vacuum and
true vacuum at this temperature. So, there is a possibility of
Zð3Þ domain formation in this model via mixed transition
dynamics, i.e., roll-down of the Polyakov loop field along
true vacuum and bubble nucleation along metastable vacua.
One needs to calculate the nucleation probability for this
bubble formation and to study the phase transition dynam-
ics with a suitable bubble profile as in [13,14]. We would
like to study this case in the future.

V. CONCLUSIONS

We have presented the possibility of the existence of
Zð3Þ metastable states in the PQM model. The metastable
states exist for the Polyakov loop potential with large
barriers between different Zð3Þ vacua. The metastable

vacua are not present near the critical temperature, but
they appear around temperature 310 MeV at zero chemical
potential due to the strong explicit symmetry-breaking
effect of quarks. There is also a shift in the phase of
metastable vacua and they appear at 115° and 245°,
respectively. This explicit symmetry-breaking effect in
the PQM model is strong compared to the small explicit
breaking effect of quarks discussed in different Polyakov
loop models [6]. We have observed that this metastability
temperature remains almost constant up to finite chemical
170MeV, and it increases after this chemical potential. This
might be due to the difference in phase transition dynamics
after the critical chemical potential 170 MeV. The phase
transition between the confined and deconfined phase is a
crossover up to the critical chemical potential and it is a
first-order phase transition beyond this chemical potential.
In other words, one can say that the metastability temper-
ature as a function of chemical potential is sensitive to the
phase transition dynamics.
It has been suggested that Zð3Þ domains give a micro-

scopic explanation for the large color opacity (jet quench-
ing) and near perfect fluidity (small value of η=s) of QGP
[9,10]. Therefore, it is very important to study these
domains near the critical temperature in effective models
like the PQM or Polyakov loop extended Nambu-Jona-
Lasinio (PNJL) model. We expect the results will be similar
in the PNJL model. Here we have observed in a quench
scenario that due to strong explicit symmetry breaking of
quarks in the PQM model, there is no metastable domain
formation. The whole region is occupied only by a true
vacuum domain. Hence, it is very unlikely to explain jet
quenching or the perfect fluidity of QGP due to Zð3Þ
domains in the PQM model. However, this nature of the
QGP can be described well in models with a small explicit
symmetry-breaking effect of quarks.
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