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We report on a numerical study of the Boltzmann equation including 2 ↔ 2 scatterings of gluons and
quarks in an overoccupied glasma undergoing longitudinal expansion. We find that when a cascade of
gluon number to the infrared occurs, corresponding to an infrared enhancement analogous to a transient
Bose-Einstein condensate, gluon distributions qualitatively reproduce the results of classical-statistical
simulations for the expanding glasma. These include key features of the distributions that are not
anticipated in the “bottom-up” thermalization scenario. We also find that quark distributions, like those of
gluons, satisfy self-similar scaling distributions in the overoccupied glasma. We discuss the implications of
these results for a deeper understanding of the self-similarity and universality of parton distributions in the
glasma.
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I. INTRODUCTION

There are several remarkable and puzzling features of the
early time nonequilibrium evolution of quark-gluon matter
in ultrarelativistic heavy-ion collisions. A systematic study
of its properties is feasible in the limit where the QCD
coupling is very weak and the occupancies of gluons are
correspondingly large such that their product g2fg ∼Oð1Þ.
In this limit, the spacetime evolution of the overoccupied
matter—the glasma [1,2]—can be studied employing real-
time classical-statistical simulations [3,4] of the Yang-Mills
equations. Recent large scale 3þ 1-dimensional Yang-Mills
simulations of the expanding glasma clearly demonstrate
that it flows to a nonthermal turbulent fixed point charac-
terized by a self-similar gluon distribution [5,6]. Rather
unexpectedly, the simulations showed that key properties of
the gluon distribution were identical to those anticipated in
the bottom-up thermalization scenario of Baier et al. [7].
The results of the classical-statistical simulations are

unexpected because gluon dynamics in the expanding
glasma shows no trace of late time plasma instabilities—
these should be present in weak coupling kinetic frame-
works [8–10]. Further, the ratio of the longitudinal pressure
to the transverse pressure PL=PT deviates from the expect-
ation from kinetic theory—including as well, that from the
bottom-up scenario. Finally, and most remarkably, the
properties of the nonthermal glasma fixed point are, in a
wide inertial range of momenta, identical to those of self-
interacting scalar fields prepared with the same geometry
[11]. Put together, these observations pose a challenge for
straightforward kinetic descriptions of the expanding
glasma [12].
In this paper, we investigate the nonequilibrium

early time evolution of quark and gluon matter in the

longitudinally expanding geometry of an ultrarelativistic
heavy-ion collision by numerically solving the Boltzmann
equation with an overoccupied glasma initial condition.
Such a study was previously performed1 by Kurkela and
Zhu [15], who implemented the effective kinetic theory of
Arnold et al. [16] including both elastic 2 ↔ 2 scattering
and soft splitting processes. They however restricted their
simulations to include only gluons. Further, their focus was
to follow the evolution of the glasma all the way to
thermalization a la the bottom-up scenario.
Our interest here is primarily the classical stage of the

glasma and we perform simulations for a wider range of
couplings than those presented in [15]. First, by including
only elastic 2 ↔ 2 processes, we investigate how well these
kinetic studies reproduce the self-similar scaling behavior
of the gluon distribution that has been obtained by the
classical-statistical simulations. We employ the small angle
approximation to the Boltzmann equation whereby, as
shown by Landau [17,18], the collision integral is approxi-
mated by a Fokker-Planck-like diffusion term.2 We dem-
onstrate that a flow of gluon number to the infrared (IR)
generates an IR enhancement that is often interpreted as a
transient Bose-Einstein condensate (BEC) in the literature.
We present results for both the longitudinal and transverse
momentum distributions as well as the behavior of PL=PT ,
demonstrating the influence of this IR enhancement.

1There are studies of the Boltzmann equation with an expand-
ing geometry but they have not included yet the (1þ f) Bose
enhancement factor that is essential to match the classical Yang-
Mills simulations to kinetic theory [13,14].

2The Landau kinetic equation was first applied to the glasma
by Mueller [19] and simulated numerically in [20]. However in
Refs. [19,20], the Bose enhancement factor, important for the
description of overoccupied gluons, was not taken into account.
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We should emphasize at the outset that the IR enhancement
is unlikely to capture key features of BEC formation as
studied and quantified in detail for identical overoccupied
conditions in off-equilibrium scalar theories [11,12].
The generation of such an IR enhancement is unsurpris-

ing for a system of overoccupied gluons, as argued in a
number of papers [21–23]. What is surprising is that, when
the BEC becomes manifest, our results reproduce important
qualitative features of the classical-statistical simulations of
the glasma. If inelastic scattering processes played a large
role at these early times, a BEC would never form and
would not influence the dynamics of the glasma. Our
results therefore suggest that, at least for the range of weak
couplings studied, inelastic processes may not be suffi-
ciently strong at early times to hinder the formation of a
transient BEC.
We emphasize that our framework does not provide a

first principles solution to some of the puzzling dynamics
of the glasma that we listed. It does not contain either
2 ↔ 3 scattering or the plasma instabilities that should be
there in a purely kinetic picture. Further, it is unclear how
one defines a BEC of gluons in QCD. Our result should
instead be thought of as an effective description of the
classical-statistical numerical simulations for the range of
couplings in those studies. Both inelastic scattering proc-
esses and late time plasma instabilities, whose dynamics is
in principle contained in the classical-statistical simula-
tions, appear to be suppressed in the early time evolution of
the overoccupied glasma. Our results therefore argue for a
deeper understanding and characterization of the IR
dynamics in the glasma. Key features of this dynamics
are captured by the spatial string tension, which has a
characteristic time dependence [24] that is universal [25]. It
has been observed that the spatial string tension sets the
scale for off-equilibrium sphaleron transitions [24]; this
latter quantity is essential for dynamical simulations
[26,27] of the chiral magnetic effect.
The other novel feature of our study is the kinetic

description of quark distributions in the expanding glasma.
The Landau kinetic equations were studied for an isotropic
distribution of overoccupied gluons along with quarks and
antiquarks [28]; our work extends this study to the expand-
ing glasma. We show that quark distributions in the glasma
also obey self-similar scaling distributions with the same
dynamical scaling exponents as those satisfied by the gluons.
In an accompanying paper, we applied the insights from this
study to investigate photon production in the glasma relative
to the quark-gluon plasma [29]. For completeness, we study
chemical equilibration in the glasma—while interesting, the
results here for the relative population of quarks and gluons
are modified by the collinear gluon splitting processes that
also influence kinetic equilibrium. Their additional contri-
bution will be explored in subsequent work.
The paper is organized as follows. In the next section, we

outline the kinetic equations for the coupled system of

gluons, quarks, and antiquarks in the glasma. Our dis-
cussion here is a straightforward extension of that in [28].
Numerical results are discussed in Sec. III for the glasma
with no quarks or antiquarks (Nf ¼ 0). We consider the
time evolution of the longitudinal and transverse hard
scales, the ratio of the longitudinal and transverse pressure,
and the self-similarity of the gluon distribution. For very
weak couplings, qualitative agreement is found with the
classical-statistical simulations, while significant devia-
tions are observed for larger couplings. In Sec. IV, we
extend our study to finite Nf. The time evolution of the
quark distributions is studied for a range of initial occu-
pancies. As noted, the self-similar behavior that character-
izes the gluon distribution holds for quark distributions as
well. The approach to chemical equilibration is studied and
is shown to be sensitive to the initial quark occupancy. The
final section contains a brief summary of our results and a
discussion of future work. The numerical procedure is
outlined in Appendix A and the features of the BEC formed
are discussed in Appendix B.

II. KINETIC EQUATION FOR 2 ↔ 2 ELASTIC
SCATTERINGS IN THE GLASMA

A. Small angle approximation
for the Boltzmann equation

We begin by defining the gluon distribution function as a
number density in phase space averaged over all polariza-
tion and color states,

fðτ; pÞ ¼ ð2πÞ3
2ðN2

c − 1Þ
dNgluon

d3xd3p
: ð1Þ

Similarly, for Nf-flavor massless and unpolarized quarks,
the distribution function is defined as

Fðτ; pÞ ¼ ð2πÞ3
2NcNf

dNquark

d3xd3p
: ð2Þ

We assume that the system is boost invariant in the
longitudinal direction and uniform in the transverse direc-
tion, so that f and F are functions of τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and p

alone. Furthermore, we assume that antiquarks have the
same distribution as quarks. Each of these distributions
satisfies a Boltzmann equation, defined as� ∂

∂τ −
pz

τ

∂
∂pz

�
fðτ; pÞ ¼ Cgluon½f; F�; ð3Þ

� ∂
∂τ −

pz

τ

∂
∂pz

�
Fðτ; pÞ ¼ Cquark½F; f�; ð4Þ

where − pz
τ

∂f
∂pz

is the drift term describing the effect of the

longitudinal expansion. For the collision terms Cgluon½f; F�
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and Cquark½F; f�, we consider only 2 ↔ 2 elastic scatter-
ings. Since gluons, quarks, and antiquarks scatter off each
other, the collision terms of each of the equations depend
on the distributions of the other, which makes Eqs. (3) and
(4) a coupled set of equations. In the small angle approxi-
mation, the collision terms can be expressed as the sum of a
diffusion term and a source term [28],

Cgluon½f; F� ¼ −∇p · Jg þ Sg; ð5Þ

Cquark½F; f� ¼ −∇p · Jq þ Sq: ð6Þ

Here Jg and Jq denote particle currents in momentum space
and are given by

Jg ¼ −
g4

4π
NcL

�
Ia∇pf þ Ib

p
p
fð1þ fÞ

�
; ð7Þ

Jq ¼ −
g4

4π
CFL

�
Ia∇pF þ Ib

p
p
Fð1 − FÞ

�
: ð8Þ

The source terms Sg and Sq are respectively

Sg ¼
g4

4π
CFNfLIc

1

p
½Fð1þ fÞ − fð1 − FÞ�; ð9Þ

Sq ¼ −
g4

4π
C2
FLIc

1

p
½Fð1þ fÞ − fð1 − FÞ�; ð10Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ is the quadratic Casimir in

the fundamental representation of SUðNcÞ. In obtaining
these expressions, it has been assumed that fðτ; pÞ ¼
fðτ;−pÞ and Fðτ; pÞ ¼ Fðτ;−pÞ. We have further defined
the integrals

IaðτÞ ¼
Z

d3p
ð2πÞ3 ½Ncfð1þ fÞ þ NfFð1 − FÞ�; ð11Þ

IbðτÞ ¼ 2

Z
d3p
ð2πÞ3

1

p
½Ncf þ NfF�; ð12Þ

and

IcðτÞ ¼
Z

d3p
ð2πÞ3

1

p
½f þ F�: ð13Þ

The integrand of Ia is proportional to the density of
possible scatterers that are enhanced or suppressed by
the Bose or the Pauli factor, respectively. The integral Ib is
related to the Debye mass scale mD as m2

D ¼ 2g2Ib. The
Coulomb logarithm L is a divergent integral that is
regularized by cutoffs as

L ¼
Z

qmax

qmin

dq
q

¼ log
qmax

qmin
: ð14Þ

This IR divergence originates from the long range nature of
the interaction and is regularized by the medium mass. We
use the Debye mass scale

mD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2IbðτÞ

q
ð15Þ

as the IR cutoff. Since mD is time dependent, so too is the
Coulomb logarithm.
The ultraviolet (UV) divergence, in contrast, is not

physically meaningful since it arises from the small
momentum expansion performed inside the momentum
integrals that give the above form of the kinetic equations.
The original collision integral does not possess this UV
divergence because the distribution functions have finite
support in momentum space. It is therefore natural to use
the typical momentum scale of the distribution functions as
the UV cutoff. Since the typical transverse momentum
scale is larger than the longitudinal one in a longitudinally
expanding glasma, we use the square root of the mean p2⊥,

hp2⊥i ¼
R
d3pp2⊥fðτ; p⊥; pzÞR
d3pfðτ; p⊥; pzÞ

; ð16Þ

as the UV cutoff for the Coulomb logarithm. In the
overoccupied weak coupling regime of interest in this
study, this scale is nearly constant and close to the
saturation scale Qs. We therefore simply choose the UV
cutoff to be Qs, except in Sec. IV B.

B. Rescaling for an overoccupied glasma

In the following, we exploit the fact that the glasma is
highly overoccupied at early times. To simplify further
analysis, we rescale the gluon distribution as

~fðτ; pÞ ¼ fðτ; pÞ
f0

; ð17Þ

with f0 being the maximum value of the initial distribution
fðτ0; pÞ. We further introduce the rescaled time ~τ,

~τ ¼ 1

4π
ðNcg2f0Þ2L0τ; ð18Þ

with L0 denoting the initial value of the Coulomb loga-
rithm, L0 ¼ Lðτ0Þ, determined by the initial distributions.
Since the quark occupancy is always smaller than 1, we do
not rescale it.
In terms of the rescaled quantities, the kinetic equations

can be expressed as
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� ∂
∂ ~τ −

pz

~τ

∂
∂pz

�
~fð~τ; pÞ ¼ ~L∇p ·

�
~Ia∇p

~fð~τ; pÞ þ p
p
~Ib ~fð~τ; pÞðf−10 þ ~fð~τ; pÞÞ

�
þ CFNf

N2
cf0

~S; ð19Þ

for gluons, and

� ∂
∂ ~τ −

pz

~τ

∂
∂pz

�
Fð~τ; pÞ ¼ CF

Nc

~L∇p ·

�
~Ia∇pFð~τ; pÞ þ

p
p
~IbFð~τ; pÞð1 − Fð~τ; pÞÞ

�
−
C2
F

N2
c

~S; ð20Þ

for quarks, with the rescaled source term

~S ¼ ~L~Ic
1

p
½Fðf−10 þ ~fÞ − ~fð1 − FÞ�: ð21Þ

The corresponding rescaled integrals are

~Iað~τÞ ¼
Z

d3p
ð2πÞ3

�
~fðf−10 þ ~fÞ þ Nf

Ncf20
Fð1 − FÞ

�
; ð22Þ

~Ibð~τÞ ¼ 2

Z
d3p
ð2πÞ3

1

p

�
~f þ Nf

Ncf0
F

�
; ð23Þ

~Icð~τÞ ¼
Z

d3p
ð2πÞ3

1

p

�
~f þ 1

f0
F

�
; ð24Þ

and we have introduced a normalized Coulomb logarithm
defined as

~Lð~τÞ ¼ LðτÞ
L0

: ð25Þ

In terms of the rescaled integral ~Ib, the Debye mass is
expressed as

m2
D ¼ 2Ncg2f0~Ibð~τÞ: ð26Þ

Hereafter, we fix Nc ¼ Nf ¼ 3. The relevant physical
parameters for this system are the coupling g, the initial
occupancy f0, and the initial time ~τ0. To ensure that a
kinetic approach based on a perturbative collision kernel is
valid, both g and g2f0 must be sufficiently small.
Comparing, Eqs. (19) and (20), we can make the

following observations.
(i) Since CF=Nc ¼ 4=9 < 1, the effect of diffusion is

weaker for quarks than gluons.
(ii) If the initial state is highly occupied by gluons, i.e.,

f0 ≫ 1, the source term is much smaller than the
diffusion term for gluons, while for quarks the
source term is always as important as the diffusion
term at least parametrically.

C. Conservation laws

One can easily confirm that the collision terms, as
approximated by Eqs. (5) and (6), conserve both the total
particle number density

nðτÞ ¼ ngðτÞ þ nqðτÞ; ð27Þ

and the total energy density

EðτÞ ¼ EgðτÞ þ EqðτÞ; ð28Þ

where the particle number density and the energy density,
respectively, of each species are

ngðτÞ ¼ 2ðN2
c − 1Þ

Z
d3p
ð2πÞ3 fðτ; pÞ; ð29Þ

nqðτÞ ¼ 4NcNf

Z
d3p
ð2πÞ3 Fðτ; pÞ; ð30Þ

EgðτÞ ¼ 2ðN2
c − 1Þ

Z
d3p
ð2πÞ3 pfðτ; pÞ; ð31Þ

and

EqðτÞ ¼ 4NcNf

Z
d3p
ð2πÞ3 pFðτ; pÞ: ð32Þ

In the presence of the expansion term, the conservation
laws are modified to

d
dτ

ðτnÞ ¼ 0; ð33Þ

and

dE
dτ

¼ −
E þ PL

τ
; ð34Þ

where PL is the longitudinal pressure given by the sum of

PL;gðτÞ ¼ 2ðN2
c − 1Þ

Z
d3p
ð2πÞ3

p2
z

p
fðτ; pÞ; ð35Þ

and

PL;qðτÞ ¼ 4NcNf

Z
d3p
ð2πÞ3

p2
z

p
Fðτ; pÞ: ð36Þ

For later convenience, we also introduce the transverse
pressure
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PT;gðτÞ ¼ 2ðN2
c − 1Þ

Z
d3p
ð2πÞ3

p2
x þ p2

y

2p
fðτ; pÞ;

PT;qðτÞ ¼ 4NcNf

Z
d3p
ð2πÞ3

p2
x þ p2

y

2p
Fðτ; pÞ: ð37Þ

D. Initial conditions

For a given initial distribution fðτ0; pÞ, the initial time τ0
that is consistent with that initial distribution can be
specified by the following argument. The number density
of hard gluons produced immediately after a heavy-ion
collision can be expressed as [30]

nhardðτÞ ¼ c
ðN2

c − 1ÞQ3
s

4π2Ncαs

1

Qsτ
; ð38Þ

where c is the gluon liberation coefficient, which can be
estimated by using classical Yang-Mills simulations of the
glasma [4,31,32]. We employ the value c ¼ 1.1 given in
[33]. As long as elastic scattering dominates amongst hard
gluons, the number density decreases in time as 1=τ due to
the longitudinal expansion. Since the gluon number density
is dominated by hard gluons at early times, the expression
(38) should agree with ng given by (29). By this condition,
we can find the initial time τ0 that is consistent with the
initial distribution f0ðpÞ ¼ fðτ0; pÞ as

Qsτ0 ¼
c

2πNcg2
Q3

sR d3p
ð2πÞ3 f0ðpÞ

: ð39Þ

The rescaled time that corresponds to this initial time is

Qs ~τ0 ¼
c
8π2

Ncg2f0L0

Q3
sR d3p

ð2πÞ3
~f0ðpÞ

: ð40Þ

III. NUMERICAL RESULTS I. Nf = 0

In this section, we show numerical results for a pure
gluon system (Nf ¼ 0). We employ a family of initial
gluon distributions,

fðτ0; p⊥; pzÞ ¼
n0
g2

e−½p2⊥þðξ0pzÞ2�=Q2
s ; ð41Þ

where p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
is the transverse momentum, the

parameter ξ0 characterizes the anisotropy of the initial
distribution, and n0 ¼ g2f0 specifies the overoccupancy.
For the kinetic description to be valid, n0 must be
sufficiently small, as it controls the effective interaction
strength.
Substituting this initial distribution into Eq. (40), one

obtains the initial time

Qs ~τ0 ¼
3cffiffiffi
π

p L0n0ξ0; ð42Þ

where the initial value of the Coulomb logarithm is

L0 ¼ −
1

2
log

 
3n0
π2

1ffiffiffiffiffiffiffiffiffiffiffiffi
ξ20 − 1

p arctan
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ20 − 1

q !
: ð43Þ

In the following, we mostly use n0 ¼ 0.1. The correspond-
ing numerical values of the initial time are Qs ~τ0 ≃ 0.33,
0.74, and 1.7 for ξ0 ¼ 1, 2, and 4, respectively. For
simplicity, we typically use the initial time of Qs ~τ0 ¼ 1
except in Sec. IV B.
To solve the kinetic equation in Eq. (19) numerically, we

use p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

z

p
and κ ¼ cos θ ¼ pz=p as the momen-

tum variables. For p, we discretize the range pmin ≤ p ≤
pmax nonuniformly into Np grid points. For the angular
variable κ, it is sufficient to consider the range 0 ≤ κ ≤ 1,
which is divided into Nκ grid points. Unless otherwise
noted, we use pmin=Qs ¼ 10−2, pmax=Qs ¼ 8, Np ¼ 500,
and Nκ ¼ 256. We have confirmed that our results are
insensitive to changes of these parameters. The details of
the numerical method are discussed in Appendix A.

A. Self-similar evolution

We begin with a brief review of the classical regime (of
gluon occupancies greater than unity) in the bottom-up
thermalization scenario (Q−1

s ≪ τ ≪ α−3=2s Q−1
s ) [7]. In this

time range, the number of gluons is dominated by hard
gluons whose transverse momenta are the order of the
saturation scale Qs, and quarks and gluons scatter at small
angles with typical momentum transfers ∼mD. The initial
density of hard gluons is parametrically Q3

s=αs, and it
decreases in time due to the longitudinal expansion as

nhard ∼
Q3

s

αsQsτ
: ð44Þ

The numerical coefficient for this relation is given by
Eq. (38); however, it is not necessary for this qualitative
discussion. The Debye mass can be estimated as

m2
D ∼ αs

Z
d3p

fhardðpÞ
p

∼ αs
nhard
Qs

∼
Q2

s

Qsτ
: ð45Þ

Since the exchanged momentum is much smaller than the
saturation scale, the typical transverse momentum of hard
gluons stays around Qs. The small angle scatterings
primarily modify the typical longitudinal momentum,
which we call pz, by providing random kicks of order
mD. Since these random and incoherent scatterings can be
regarded as a diffusion process, the typical longitudinal
momentum obeys
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p2
z ∼ Ncolm2

D: ð46Þ

Here, Ncol is the number of the collisions. Using
fhard ∼ nhard=ðQ2

spzÞ, one can estimate it as

Ncol

τ
∼
dNcol

dτ
∼ σnhardð1þ fhardÞ ∼ σ

n2hard
Q2

spz
; ð47Þ

where (1þ fhard) is the Bose enhancement factor and σ ∼
α2s=m2

D is the cross section. By combining (44), (46),
and (47), we obtain

pz ∼QsðQsτÞ−1=3; ð48Þ

and

fhard ∼
nhard
Q2

spz
∼ α−1s ðQsτÞ−2=3: ð49Þ

These results can be summarized by the scaling relation

fðτ; p⊥; pzÞ ¼ ðQsτÞ−2=3fSðp⊥; ðQsτÞ1=3pzÞ; ð50Þ

where fS is a scaling function. As noted previously, this
scaling law has been confirmed by large scale classical-
statistical real-time lattice simulations [5,6]. The keys to the
above derivation are the longitudinal expansion, the use the
diffusion relation Eq. (46), and the Bose enhancement
factor in Eq. (47). All of these features are included in the
kinetic equation with the small angle approximation
Eq. (19). Indeed, the diffusion constant Ia can be inter-
preted as dNcol=dτ. Therefore we anticipate that bottom-up
thermalization in the overoccupied glasma is well described
by the kinetic equation (19).
In the above discussion, the soft splitting processes are

not considered. Although those number-changing proc-
esses are naively higher order in the coupling, they give the
leading order contributions because of the collinear
enhancement [16]. However, their main effect is producing
soft gluons that have transverse momentum much smaller
than Qs, and the self-similar scaling behavior shown by the
hard gluons is not affected by them. In the bottom-up
thermalization scenario, the soft splitting processes play a
crucial role in the later stage τ ≫ α−3=2s Q−1

s [7].
In Fig. 1, the Debye mass squared is plotted as a function

of the rescaled time. Results for several values of the
coupling, g ¼ 10−3, 10−2, and 10−1, are compared. Other
parameters are n0 ¼ 0.1, ξ0 ¼ 2, and the initial time3

Qs ~τ0 ¼ 1. Since we fix n0, the Debye mass is independent
of the coupling in the classical scaling regime. The 1=τ
decrease in Eq. (45) can be confirmed clearly in the
simulations.

The time evolution of the rescaled distribution ~f ¼ f=f0
evaluated at pz ¼ 0 is plotted as a function of the transverse
momentum in the left panel of Fig. 2. The parameters used
for this computation are g ¼ 10−3, n0 ¼ 0.1 (f0 ¼ 105),
ξ0 ¼ 2, and Qs ~τ0 ¼ 1. We note that in the infrared, the
distribution shows 1=p⊥ behavior. This result reproduces
qualitatively4 those for p⊥ distributions from the classical-
statistical simulations of the expanding glasma [5,6]. In this
kinetic framework, the emergence of the 1=p⊥ behavior in
the glasma is a consequence of the onset of the transient
Bose-Einstein condensate [22,28]. The onset of the BEC
within our approximation is discussed in Appendix B. For a
proper description of the IR soft region, number-changing
inelastic processes are essential [34]; further, it likely
requires that one goes beyond a conventional kinetic
framework and considers resummations along the lines
discussed in [35]. Our primary interest here lies in the
universal scaling behavior that the hard modes show.
In the right panel of Fig. 2, we plot the transverse

momentum distribution multiplied by the scaling factor
ðQs ~τÞ2=3. For hard momenta p⊥ ≳Qs, the curves at dif-
ferent times nicely overlap confirming the scaling
behavior suggested by Eq. (50). Figure 3 shows similar
plots for the second moment of the transverse distribution,
p2⊥ ~fð~τ; p⊥; 0Þ. From these plots, one can confirm that the
typical transverse momentum scale is of the order of Qs. In
Fig. 4, the time evolution of the longitudinal momentum
distribution evaluated at p⊥ ¼ Qs is plotted. The left panel
shows the original distribution, while the right panel shows
the distribution multiplied by the scaling factor ðQs ~τÞ2=3 as

FIG. 1. The time evolution of the Debye mass squared for
different values of the coupling. The three curves lie on top of
each other. Except at early times, the Debye mass squared
decreases as 1=τ.

3These parameters correspond to the initial time Qsτ0 ≃ 52 in
the original time variable.

4In detail, we note that the shape of the distribution near the
hard scale is very similar to that observed for the scalar theory
discussed at length in [12]. In the classical-statistical simulations
of the glasma, this “bump” was not seen for the times studied. We
thank Juergen Berges for this observation.
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a function of the rescaled momentum ðQs ~τÞ1=3pz. Again,
the rescaled distributions for vastly different times lie on
top of each other. These results confirm that the non-
equilibrium evolution of weakly coupled, overoccupied

gluons in a longitudinally expanding system follows the
bottom-up thermalization scenario.
We also numerically compute the perturbative expres-

sions for the hard scale observables [6],

FIG. 2. The time evolution of the transverse momentum distribution evaluated at pz ¼ 0. Left panel: original distribution. Right panel:
rescaled distribution. For p⊥ ≳Qs, the scaling behavior shown in Eq. (50) is well satisfied.

FIG. 3. The second moment of the transverse distribution, p2⊥ ~fð~τ; p⊥; 0Þ, at different times. Left panel: original distribution. Right
panel: rescaled distribution. The typical transverse momentum scale stays at ∼Qs.

FIG. 4. The time evolution of the longitudinal momentum distribution evaluated at p⊥ ¼ Qs. Left panel: original distribution. Right
panel: rescaled distribution.
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Λ2
TðτÞ ¼

R
d3p2p2⊥jpjfðτ; pÞR
d3pjpjfðτ; pÞ ð51Þ

and

Λ2
LðτÞ ¼

R
d3p4p2

z jpjfðτ; pÞR
d3pjpjfðτ; pÞ : ð52Þ

In the scaling regime, the longitudinal hard scale is
expected to behave as Λ2

LðτÞ ∼ ðQsτÞ−2=3, while the trans-
verse hard scale stays nearly constant. Their respective
behavior is confirmed by the numerical results shown in
Fig. 5, where the hard scales are plotted as a function of
time for different values of the coupling. For the longi-
tudinal hard scale, the free streaming behavior,
Λ2
LðτÞ ∼ ðQsτÞ−2, is seen at early times. At later times,

the system is driven to the classical scaling regime
indicated by the temporal exponent −2=3 for sufficiently
weak coupling, g≲ 10−2. On the other hand, results for the

larger couplings (smaller occupancies) clearly deviate from
the anticipated classical scaling behavior.
The ratio of the longitudinal pressure to the transverse

pressure is a measure of the bulk anisotropy of the system.
As shown in Fig. 6, the ratio decreases in time because of
the longitudinal expansion of the system. For larger
couplings, it turns to increase at later times and approaches
unity. For weak couplings, the system falls into the scaling
regime. If the pressure is dominated by hard modes, this
ratio should show the temporal power law behavior
∼ðQsτÞ−2=3 in the scaling regime. However, as seen in
Fig. 6, the curves clearly deviate from the scaling behavior
ðQsτÞ−2=3, more significantly than that observed for the
longitudinal hard scale. The same tendency was noted in
the classical-statistical simulations; this is because the
longitudinal pressure is not dominated by the hard modes
and soft modes contribute significantly [12].
To check the robustness of the classical scaling

behavior, we compare different initial distributions for

FIG. 5. The time evolution of the transverse hard scale (left panel) and the longitudinal hard scale (right panel). Several values of the
coupling are compared. The occupancy measure is fixed to the value n0 ¼ 0.1. In the right figure, the free streaming behavior
Λ2
LðτÞ ∼ ðQsτÞ−2 and the classical scaling behavior ∼ðQsτÞ−2=3 are indicated by gray and black dashed lines, respectively.

FIG. 6. Time evolution of the bulk anisotropy for several values
of the coupling constant. A significant deviation from the
temporal power law ðQs ~τÞ−2=3 is observed even for weak
couplings.

FIG. 7. Time evolution of the longitudinal hard scale. Several
values of the anisotropy parameter ξ0 are compared for the initial
distribution in Eq. (41). Box IC denotes the initial distribution
given by Eq. (53).
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the longitudinal hard scale in Fig. 7. For the initial
distributions given by Eq. (41), we compute results for
anisotropy parameter values of ξ0 ¼ 1, 2, and 4.
Furthermore, results for a different functional form of
the initial distribution,

fðτ0; p⊥; pzÞ ¼
n0
g2

θ
�
Qs −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

z

q �
; ð53Þ

denoted as box IC, are compared to the results from
distributions with the initial conditions in Eq. (41). The
other parameters in the computation are set to g ¼ 10−2,
n0 ¼ 0.1, and Qs ~τ0 ¼ 1. For all initial distributions, the
longitudinal hard scale shows an identical classical scaling
behavior.

B. Effects of the time dependence
of the Coulomb logarithm

In some of the earlier studies that employ the kinetic
equation in the small angle approximation, the Coulomb
logarithm (14) is taken to be a time independent constant
[22,28]. In the present study, since the Debye mass given by
Eq. (15) is a time dependent IR scale, the Coulomb
logarithm varies in time. We investigate the effect of this
time dependence in this subsection.
This is demonstrated in Fig. 8 for the parameters

g ¼ 10−2, n0 ¼ 0.1, ξ0 ¼ 2, and Qs ~τ0 ¼ 1. As the Debye
mass decreases in time as m2

D ∼ 1=τ, the Coulomb
logarithm increases in time logarithmically. The
increase is slow except for early times. Therefore the
classical scaling behavior is not spoiled by the time
dependence of the IR cutoff. The only effect is the
change of the effective interaction strength. Because L
appears as an overall multiplicative factor in the
collision terms, the increase of L indicates that the
time evolution is faster. This can be confirmed in Fig. 9,
where the longitudinal hard scale is plotted for the case
where the time dependence of L is taken into account
and compared to results where L is fixed to its initial

value.5 The transition from the free streaming regime to
the classical scaling regime happens later in the constant
L computation, indicating that the effective interaction
strength is weaker in this case.

IV. NUMERICAL RESULTS II. Nf = 3

Now that we have confirmed that the kinetic equation
within the small angle approximation can qualitatively
describe the classical scaling behavior of overpopulated
gauge fields, we add Nf ¼ 3 quark degrees of freedom to
the expanding glasma. We assume that the initial distribu-
tion for quarks is given by

Fðτ0; pT; pzÞ ¼ F0e−½p
2⊥þðξ0pzÞ2�=Q2

s : ð54Þ

The shape of this initial distribution is irrelevant for the
following discussion on the classical scaling behavior; for
simplicity, we have therefore chosen the same momentum
dependence as that for the initial gluon distribution. We
note that on account of the Pauli principle, the initial
occupancy F0 cannot exceed unity.

A. Self-similar evolution

Figure 10 displays the time evolution of the quark
number density multiplied by time. Three different values
for the initial quark occupancies F0 are compared. The
parameters used in these computations are g ¼ 10−2,
n0 ¼ 0.1, ξ0 ¼ 2, and Qs ~τ0 ¼ 1. If quark number is
conserved, ~τnq should stay constant. The increase in this
quantity with time, seen in Fig. 10, clearly indicates the
effect due to quark pair production via gluon fusion. The

FIG. 8. Time evolution of the Coulomb logarithm. FIG. 9. The time evolution of the longitudinal hard scale. The
result for the case where the time dependence of the Coulomb
logarithm is taken into account is compared to the result where
logarithm is fixed to its initial value.

5In the computation of the latter case, we have used Nκ ¼ 512
for the number of angular grid points in order to precisely
calculate Λ2

L at later times.
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contribution from this process is however rather mild
because the effective interaction strength with gluons is
governed by the factor g2f0 ¼ n0; as our choice of n0
indicates, this quantity is small in the regime where the
kinetic description is valid. On the other hand, at early
times in heavy-ion collisions, τ ≲Q−1

s , the factor g2f0 is of
order unity and quark pair production can be quite large due
to nonperturbative processes, as hinted at by extant real-
time lattice simulations [36–38].
The second moment of the quark distribution evaluated

at pz ¼ 0 is plotted in the left panel of Fig. 11 for different
times. The initial quark occupancy is chosen to be
F0 ¼ 0.5, and the other parameters are the same as those
for Fig. 10. Here we show only the quark distribution
because the gluon distribution is little affected by the
existence of quarks for glasma initial conditions. We
observe that, just as in the gluon case, the typical transverse
momentum is centered around Qs. In the right panel of
Fig. 11, we plot the quark distribution multiplied by the
factor ðQs ~τÞ2=3. At later times, Qs ~τ ≳ 20, the rescaled

distributions at different times overlap nicely. This indicates
that the quark transverse momentum distribution obeys the
same scaling law as the gluon transverse momentum
distribution.
It is not just the transverse momentum distributions that

satisfy scaling laws. The quark longitudinal momentum
distributions satisfy the same scaling law as that for gluons.
This is displayed in Fig. 12. These observations can be
summarized into the scaling expression,

Fðτ; p⊥; pzÞ ¼ ðQsτÞ−2=3FSðp⊥; ðQsτÞ1=3pzÞ; ð55Þ

which has the identical form as that of Eq. (50) for gluons.
This scaling behavior is further confirmed in Fig. 13, where
the time evolution of the longitudinal hard scale is plotted
for quark distributions with different values of the initial
occupancy F0. We observe that a transition from free
streaming behavior to the scaling form occurs for any
value of F0.
At first sight, the exhibition of scaling behavior by the

quark distribution might appear strange because Bose
enhancement is a prerequisite for the emergence of the
scaling behavior. However this is in fact not at all strange
because what needs to be Bose enhanced is a scattering
amplitude. When quarks elastically scatter with gluons, as
is transparent from the kinetic equations, the presence of
gluons in the final state causes the process to be Bose
enhanced. In both the equation for gluons (19), and that for
quarks (20), the diffusion terms involve the common factor
Ia, which can be interpreted as the density of scatterers. The
integral Ia in the glasma is dominated by the gluon
distribution, and it is therefore enhanced by the Bose
factor. Thus quarks undergo small angle scattering proc-
esses that are Bose enhanced just as for gluons, and
therefore exhibit the same scaling behavior.
To demonstrate the emergence of scaling behavior for

the quark distributions more explicitly, we follow the
argument for gluons presented in Ref. [6]. In the classical

FIG. 10. The time evolution of the quark number density
multiplied by time. Different values of the quark initial occu-
pancy F0 are compared.

FIG. 11. The second moment of the transverse momentum distribution for quarks, p2⊥Fð~τ; p⊥; 0Þ, for different times. Left panel:
original distribution. Right panel: rescaled distribution. The typical transverse momentum scale remains centered at ∼Qs.
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scaling regime of the glasma, the typical longitudinal
momentum is much smaller than the typical transverse
momentum. Therefore, the collision term in the small angle
approximation is dominated by the derivative term in pz.
Furthermore, as observed in Fig. 10, quark pair production
is slow in the kinetic regime, and the source term may be
neglected. The kinetic equation for quarks [Eq. (20)] can
therefore be approximated by

� ∂
∂τ −

pz

τ

∂
∂pz

�
Fðτ; p⊥; pzÞ ¼ q̂

∂2

∂p2
z
Fðτ; p⊥; pzÞ; ð56Þ

where we define q̂ to be

q̂ ¼ g2

4π
NcCFL

Z
d3p
ð2πÞ3 f

2; ð57Þ

a quantity proportional to the integral Ia and dominated by
the gluon distribution. Since the gluon distribution has the

scaling form specified in Eq. (50), the time dependence for
q̂ can be identified as

q̂ ∼ ðQsτÞ−5=3 ð58Þ

up to the logarithmic time dependence contained inL. If we
assume that the following scaling form of the quark
distribution

Fðτ; p⊥; pzÞ ¼ ðQsτÞα0FSððQsτÞβ0p⊥; ðQsτÞγ0pzÞ ð59Þ

is a stationary solution of the simplified kinetic
equation (56), it follows that

γ0 ¼ 1

3
: ð60Þ

Furthermore, from the approximate number conservation
for quarks, nq ∼ 1=τ, one obtains a constraint

α0 − 2β0 − γ0 ¼ −1: ð61Þ

Since the typical longitudinal momentum is much smaller
than the typical transverse momentum, the longitudinal
pressure density PL is negligible compared with the energy
density E. In this case, the energy density approximately
behaves as E ∼ 1=τ, from which it follows that

α0 − 3β0 − γ0 ¼ −1: ð62Þ

By these, the remaining exponents are determined to be

α0 ¼ −
2

3
; β0 ¼ 0: ð63Þ

To summarize, quark distributions show the same scaling
behavior as that exhibited by the gluon distribution when
(i) the diffusion constant Ia is dominated by overoccupied
gluons, (ii) the typical longitudinal momentum is much

FIG. 13. Time evolution of the longitudinal hard scale for
quarks. Three different values of the initial quark occupancy F0

are compared. The results for F0 ¼ 0.5 and F0 ¼ 1 are indis-
tinguishable.

FIG. 12. The time evolution of the longitudinal momentum distribution for quarks evaluated at p⊥ ¼ Qs. Left panel: original
distribution. Right panel: rescaled distribution.
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smaller than the typical transverse momentum, and (iii) the
quark number density τnq does not vary rapidly in time.
Though quark distributions qualitatively obey the same

scaling behavior as those for gluons, there are quantitative
differences in their temporal evolution. In Fig. 14, the
longitudinal hard scale is compared for gluons and quarks
(F0 ¼ 0.5). The transition from the free streaming behavior
to the classical scaling behavior happens later for quarks
than gluons. This can be understood simply as a conse-
quence of the smaller effective coupling of quarks seen in
the comparison between Eqs. (19) and (20). A similar
tendency is observed in the bulk anisotropy (the ratio of the
longitudinal pressure to the transverse pressure) plotted in
Fig. 15. The quark distribution is more anisotropic relative
to the gluon distribution as quarks scatter more weakly than
gluons.

B. Approach to equilibrium

In the bottom-up thermalization scenario, the inelastic
collinear splitting process that produces soft gluons plays a

crucial role in thermalization. As the kinetic equations (19)
and (20) contain only elastic collision terms, they are
applicable only to the classical scaling regime in bottom-up
thermalization.
Nevertheless, albeit not justified on parametric grounds,

it is an amusing exercise to crank up the coupling and see
how both kinetic and chemical equilibration occur via only
elastic collisions. This is for instance the strategy adopted
in a number of phenomenological models of heavy-ion
collisions—and it is useful to understand, from this
perspective at least, how equilibration occurs. With only
elastic collisions included, thermalization takes a para-
metrically long time ∼Q−1

s expðα−1=2s Þ [20,30,39]—much
longer than that in the bottom-up scenario.
In order to observe the approach to equilibrium in a

practical computational time, we take relatively large
values for the coupling g ¼ 0.5 and the gluon occupation
coefficient n0 ¼ 3=4, where admittedly the validity of the
kinetic equations is marginal. Furthermore, we use the
initial anisotropy parameter ξ0 ¼ 1 and a relatively large
initial time Qs ~τ0 ¼ 100.6 For the quark initial occupation
number, we compare different values F0 ¼ 0, 0.5, and 1.
When the system gets close to equilibrium, the assumption
of a constant UV cutoff qmax ¼ Qs in the Coulomb
logarithm is inadequate; we instead use the mean transverse
momentum in Eq. (16) as the cutoff.
The ratio of pressures, PL=PT , is plotted as a function of

time in Fig. 16. The longitudinal pressure PL and the
transverse pressure PT include here the contributions from
both gluons and quarks. The ratio decreases at early times
due to the longitudinal expansion—unlike the result for
weaker couplings, however, already at g ¼ 0.5 one
observes a turnaround in this ratio and the ratio begins

FIG. 14. Time evolution of the longitudinal hard scale. A
comparison of the scales for gluons and that for quarks is shown.

FIG. 15. Time evolution of the pressure ratio for gluons,
PL;g=PT;g, and that for quarks, PL;q=PT;q.

FIG. 16. The ratio of the longitudinal pressure to the transverse
pressure as a function of time for the coupling g ¼ 0.5. Three
different values of the initial quark occupancy are compared.

6These conditions correspond to the initial time Qsτ0 ≃ 100 in
terms of the original time variable.
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to increase. While full isotropization is not achieved7 by
Qsð~τ − ~τ0Þ ¼ 3000, the ratio reaches 0.8.
In Fig. 17, the ratio of the quark number and the gluon

number is plotted as a function of time. In thermal
equilibrium with vanishing chemical potential, the ratio
should be 3NcNf=ð2ðN2

c − 1ÞÞ ¼ 27=16, which is shown
as a gray dashed line. The ratio of quark and gluon densities
approaches its equilibrium value more quickly relative to
the ratio of pressures. The simple message is that while
pressure isotropization requires the system to overcome the
effect of expansion, in contrast, equipartition is unhindered
since both quarks and gluons experience the expansion.

V. SUMMARY AND OUTLOOK

We presented in this paper numerical results from the
solution of kinetic equations for an expanding glasma of
overoccupied gluons and quarks.We considered only elastic
2 ↔ 2 scatterings amongst the quarks and gluons. As may
be anticipated,weobserved that a cascade of particle number
to the infrared develops generating an enhancement in this
region; this phenomenon can be interpreted heuristically as
signaling the formation of a transient Bose-Einstein con-
densate. For Nf ¼ 0, and for small values of the coupling
where classical assumptions are robust, we find that
our simple kinetic equation for the glasma qualitatively
reproduces key features of classical-statistical real-time
lattice simulations of the 3þ 1-dimensional Yang-Mills
equations. These numerical simulations, for sufficiently

small couplings, should completely capture the physics of
the expanding glasma.
The fact that results of our kinetic simulations reproduce

the key features of the classical-statistical simulation results
is truly remarkable. This is because, on the face of it, these
kinetic equations do not include 2 ↔ 3 scatterings that are
also present in the classical stage of bottom-up thermal-
ization. Such inelastic scatterings would, in principle,
prevent a BEC from developing [9,34,40]. Since a first
principles weak coupling kinetic treatment should contain
these contributions, the bottom-up kinetic scenario does not
include the presence of a transient BEC. However the
bottom-up framework is also not fully robust because, as
we noted previously, it does not contain the effects of late
time plasma instabilities that would modify the temporal
evolution of the glasma [9]. As discussed in detail in [12],
the fact that the bottom-up scenario captured some of the
key features of the numerical simulations posed a challenge
for conventional ab initio kinetic treatments of the glasma.
Further, as also noted in [12], the bottom-up framework

was unable to reproduce the temporal behavior of the
anisotropy measure PL=PT seen in the numerical simu-
lations. From the bottom-up based simulations presented in
the literature [15], it is unclear whether the 1=p⊥ depend-
ence of the single particle distributions is reproduced. The
fact that our simplified kinetic treatment with only 2 ↔ 2
scattering captures qualitative features of the overoccupied
glasma therefore confirms the conjecture in [12] that the
infrared dynamics is playing a bigger role than anticipated
not only in suppressing late time plasma instabilities but in
the evolution of the bulk anisotropy as well.
The possibility that a transient BEC might provide an

effective description of infrared dynamics in the glasma
was conjectured in [21] and developed further in [22].
However these estimates were made without the benefit of
detailed kinetic simulations of the expanding glasma and
assumed a constant value of PL=PT even for weak
couplings. This constant value for the anisotropy was
disfavored by classical-statistical simulations. It is therefore
perhaps ironic that an effective BEC description of the
classical stage of the glasma survives in a qualitative
comparison of our effective kinetic description and the
full classical-statistical Yang-Mills simulations. It will be
important in future to quantify this comparison and under-
stand better how BEC formation is influenced by 2 ↔ 3
processes at weak coupling.
We note that for self-interacting scalar theories, the

existence of a BEC is firmly established, for the same
expanding geometry as the glasma [11]. A big puzzle
discussed in [11] was why the simulations of scalar theories
showed identical universal behavior to that of the glasma. A
conventional kinetic description of a scalar theory would
not capture its dynamics. In contrast, an effective kinetic
description with 2 ↔ 2 scattering, albeit with couplings
modified by infrared dynamics, reproduces the infrared

FIG. 17. The ratio of the quark number and the gluon number as
a function of time for the coupling g ¼ 0.5. Three different values
of the quark initial occupancy are compared. The black dashed
line denotes the value expected in the thermal equilibrium.

7It should be noted though that the value of the coupling,
g ¼ 0.5, that we choose,Qs, is enormous and is far above the TeV
scale—hence values of Qsτ ∼ 1000 on plots still correspond to
times far less than a Fermi. The fact that the magnitudeQs should
be commensurate with the value of g chosen is often obscured in a
number of works, where Qs ∼ 1 GeV is assumed even for very
weak couplings.
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behavior in numerical simulations in a controlled fashion
[35]. This is similar to our BECþ 2 ↔ 2 scattering
effective description albeit it should be noted that our
BEC does not capture important features of the IR
dynamics in the scalar case. It is challenging to perform
controlled computations of infrared dynamics in a gauge
theory as have been performed for a scalar theory, or even
interpret this IR dynamics definitively as a BEC. However,
as we noted previously, recent computations of the spatial
string tension in the glasma [24,25] provide an essential
guidepost for future studies.
The other key result of this paper was the first numerical

simulation of the temporal evolution of quark distributions
in the expanding overoccupied glasma. We showed that
light quark flavors obey identical scaling distributions to
those of gluons. Quarks however take longer to achieve the
scaling behavior because their effective interactions are
weaker than those of gluons. The scaling results have
already been employed to estimate the photon yield in the
glasma [29]; our results there showed that photon yields
from the glasma are significant relative to those from the
thermalized QGP. We also studied the rate at which
chemical equilibration is achieved. This result is sensitive
to the initial quark occupancies. For maximal initial quark
occupancies, chemical equilibration is approached rapidly;
it remains to be seen how inelastic collisions which become
influential for times τ ≳Q−1

s α−3=2s modify this result.
As an outlook for future work, it is important to perform

more detailed comparisons of our effective kinetic frame-
work both with classical-statistical Yang-Mills simulations
and kinetic simulations in the bottom-up framework that
include inelastic scattering contributions. These compar-
isons are relevant both for our results for Nf ¼ 0 and at
Nf ¼ 3. Further, a deeper theoretical understanding of our
results, in the context of the puzzles outlined, is desirable.
A useful guide is the body of work employing two-particle
irreducible 1=N techniques that have proved powerful in
the context of scalar theories [41]. These also provide
guidance in the extrapolation of weak coupling techniques
to couplings relevant for heavy-ion collisions [42]. Finally,
we note that in our discussion of photon yields in [29], we
did not consider the contribution to photon production from
the interaction of quarks with the BEC. Such a possibility
was discussed previously in [43]. It is useful to reconsider
the possible effects of a transient BEC in this context, and
in other contexts [44–46], such as for instance the in-
triguing results on Hanbury-Brown–Twiss correlations
from the ALICE experiment at the LHC [47].

ACKNOWLEDGMENTS

We thank Juergen Berges, Kirill Boguslavski, Aleksi
Kurkela, and Alexander Rothkopf for valuable discussions
and comments. R. V. is supported by the U.S. Department
of Energy, Office of Science, under Contract No. DE-
SC0012704. He thanks the Institut für Theoretische Physik,

Universität Heidelberg for kind hospitality and support via
the Excellence Initiative during the early stages of this
work. This work is part of and supported by the Deutsche
Forschungsgemeinschaft (DFG) Collaborative Research
Center “SFB 1225 (ISOQUANT).”

APPENDIX A: NUMERICAL METHOD

In this appendix, we discuss details of the numerical
method employed to solve the kinetic equations. Since the
kinetic equation for gluons Eq. (19), and that for quarks
Eq. (20), has the same structure, it is sufficient to discuss
only Eq. (19). In terms of the variables p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

z

p
and

κ ¼ pz=p, Eq. (19) can be rewritten as� ∂
∂ ~τ −

pκ2

~τ

∂
∂p −

κð1 − κ2Þ
~τ

∂
∂κ
�
~fð~τ; p; κÞ

¼ − ~L
1

p2

∂
∂pRð~τ; p; κÞ

þ ~L~Ia
1

p2

�
ð1 − κ2Þ ∂2

∂κ2 − 2κ
∂
∂κ
�
~fð~τ; p; κÞ þ CFNf

N2
cf0

~S;

ðA1Þ
whereR denotes the (rescaled) flow in the radial direction,

Rð~τ; p; κÞ ¼ −~Iap2
∂
∂p ~fð~τ; p; κÞ

− ~Ibp2 ~fð~τ; p; κÞ½f−10 þ ~fð~τ; p; κÞ�: ðA2Þ
The form of this flow is exactly the same as that in earlier
studies for isotropic systems, except that now R also
depends on the angular variable κ. The second term on
the rhs of Eq. (A1) describes diffusion in κ; this term is of
course absent in the isotropic case.
To solve the kinetic equations numerically, we discretize

the momentum variables p and κ into Np and Nκ grids,
respectively, as

pi ¼ pmineði−1ÞΔu;

Δu ¼ logpmax − logpmin

Np − 1
; i ¼ 1; 2;…; Np; ðA3Þ

and

κj ¼ sin ½ðj − 1ÞΔθ�; Δθ ¼ π=2
Nκ − 1

; j ¼ 1; 2;…; Nκ:

ðA4Þ

Before discretizing Eq. (A1), we rewrite p∂ ~f=∂p that
appears on the lhs as

p
∂ ~f
∂p ¼ 1

p2

∂ðp3 ~fÞ
∂p − 3~f: ðA5Þ
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This “integration by parts” is helpful in preserving number conservation [Eq. (33)] to high numerical accuracy. We
discretize Eq. (A1) as

∂fij
∂ ~τ ¼ −

1

p2
i

Rij −Ri−1;j

Δpi
þ

~Ia
p2
i

�
ð1 − κ2jÞ

�∂2f
∂κ2
�

ij
− 2κj

�∂f
∂κ
�

ij

�

þ κ2j
~τ

1

p2
i

�∂ðp3fÞ
∂p

�
ij
− 3

~κ2j
~τ
fij þ

κj − κ3j
~τ

�∂f
∂κ
�

ij
þ CFNf

N2
cf0

~Sij; ðA6Þ

where

fij ¼ ~fð~τ; pi; κjÞ; ðA7Þ

Fij ¼ Fð~τ; pi; κjÞ; ðA8Þ

Δpi ¼ pi − pi−1 ði ¼ 1;…; NpÞ; ðA9Þ

Δκj ¼ κjþ1 − κj ðj ¼ 1;…; Nκ − 1Þ; ðA10Þ

F ij ¼ −~Iap2
i

fiþ1;j − fij
Δpiþ1

− ~Ibp2
i fijðf−10 þ fijÞ ði ¼ 1;…; Np − 1Þ; FNp;j ¼ 0; ðA11Þ

~Sij ¼ ~L~Ic
1

pi
½Fi;jðf−10 þ fijÞ − fijð1 − FijÞ�; ðA12Þ

8>><
>>:
�∂ðp3fÞ

∂p
�
ij
¼ p3

iþ1
fiþ1;j−p3

i−1fi−1;j
Δpiþ1þΔpi

ði ¼ 1;…; Np − 1Þ;�∂ðp3fÞ
∂p
�
Np;j

¼ p3
Np

fNp;j−p
3
Np−1

fNp−1;j

ΔpNp
;

ðA13Þ

�∂f
∂κ
�

ij
¼ fi;jþ1 − fi;j−1

Δκj þ Δκjþ1

ðj ¼ 2;…; Nκ − 1Þ;
�∂f
∂κ
�

iNκ

¼ fi;Nκ
− fi;Nκ−1

ΔκNκ−1
; ðA14Þ

�∂2f
∂κ2
�

ij
¼

fi;jþ1−fi;j
Δκj

− fi;j−fi;j−1
Δκj−1

1
2
ðΔκj þ Δκjþ1Þ

ðj ¼ 2;…; Nκ − 1Þ;
�∂2f
∂κ2
�

i1
¼ 2

fi;2 − fi;1
Δκ21

; ðA15Þ

and

	
~κ2j ¼ 1

3
ðκ2jþ1 þ κjþ1κj−1 þ κ2j−1Þ ðj ¼ 2;…; Nκ − 1Þ;

~κ21 ¼ 1
3
ðκ22 þ κ2κ1 þ κ21Þ; ~κ2Nκ

¼ 1
3
ðκ2Nκ

þ κNκ
κNκ−1 þ κ2Nκ−1Þ:

ðA16Þ

In Eqs. (A9) and (A13), p0 should be set to 0. For this choice in the discretization for the equation of motion, the integrals ~Ia
and ~Ib can be replaced by

~Ia ¼
1

2π2
XNp−1

i¼1

Δpiþ1p2
i

X
j;trap

Δκj
�
fijðf−10 þ fijÞ þ

Nf

Ncf20
Fijð1 − FijÞ

�
; ðA17Þ

~Ib ¼
1

2π2
XNp−1

i¼1

Δpiðpi þ pi−1Þ
X
j;trap

Δκj
�
fij þ

Nf

Ncf0
Fij

�
; ðA18Þ

where
P

j;trap denotes the trapezoidal sum,
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X
j;trap

ΔκjXj ¼
XNκ−1

j¼1

Δκj
Xj þ Xjþ1

2
: ðA19Þ

Note that the discretization of
R
dp is different for ~Ia and

~Ib. This is done in order to preserve energy conservation
[Eq. (34)] to high accuracy. For the discretization of ~Ic,
there is no guidance from conservation laws. For simplicity,
we employ the same discretization as for ~Ib,

~Ic ¼
1

4π2
XNp−1

i¼1

Δpiðpi þ pi−1Þ
X
j;trap

Δκj
�
fij þ

1

f0
Fij

�
:

ðA20Þ

As noted, the kinetic equation for quarks, Eq. (20), is
discretized exactly in the same way.
To solve Eq. (A6), a boundary condition for the radial

flow Rij at i ¼ 0 is necessary. Since we consider only
number conserving elastic collisions, the onset of the
Bose-Einstein condensate occurs at a finite time for an
overoccupied initial condition [22]. When the condensate
is generated, special care is necessary for the boundary
condition at p ¼ 0. We adopt the method presented in
Ref. [28]. Before the onset of the BEC, the gluon
distribution is less singular than 1=p. Therefore,
limp→0Rðp; κÞ ¼ 0. Once the BEC is formed, the distri-
bution shows a 1=p behavior in the infrared, and the flow
into the deep infrared becomes nonzero,

lim
p→0

Rðp; κÞ ¼ ~Iac − ~Ibc2; ðA21Þ

where c is the coefficient of the 1=p term of the gluon
distribution; ~fðpÞ≃ c=p. In numerical computations, we
employ the following boundary condition,

R0j ¼
	
0 ðτ < τcÞ
~Iacj − ~Ibc2j ðτ > τcÞ;

ðA22Þ

where the coefficient cj is determined by

cj ¼ pminf1j; ðA23Þ

and τc is the time for the onset of condensation, defined as
the instant that ~Ibc2j becomes larger than ~Iacj. In principle,
τc can depend on j. However for sufficiently small pmin, it
does not depend on j. For quarks, the radial flow at the
origin is always vanishing because the distribution for
fermions is bounded to be below unity. Therefore the
boundary condition for the quark kinetic equation
is R0j ¼ 0.

For the time evolution, we employ the alternative
direction implicit method. However, we treat the nonlinear
terms in f and F explicitly.

APPENDIX B: BOSE-EINSTEIN CONDENSATE

The Landau kinetic equation for the 2 ↔ 2 elastic
collisions was employed previously to discuss the onset
of Bose-Einstein condensation [22,28]. However number-
changing inelastic processes play a crucial role in the
infrared region and they may hinder the onset of the
condensate [9,34,40]. While they ensure that any BEC
formed is transient in the “long run,” a BEC or more
generally a large IR occupancy may play a role in the
classical regime that is the focus of this study. For the
expanding glasma, a role of inelastic processes in BEC
formation needs more careful study, for a range of
couplings, but is outside the scope of the investigation here.
Here we focus on the numerical implementation of BEC

formation in 2 ↔ 2 scattering and discuss its properties.
Although an accurate description of condensate formation
and IR dynamics is outside of the range of applicability of
our kinetic equations, BEC formation affects the appli-
cability of our kinetic equations because of the boundary
condition in momentum space, as discussed in the previous
section. For simplicity, we show only results for Nf ¼ 0,
without quarks. As long as gluons are initially overoccu-
pied, the effect of quarks on the gluon condensate is
negligible. The effects of quarks for moderate values of
f0 in a nonexpanding system have been discussed
in Ref. [28].
As discussed in the previous section, the condensate

forms when the flow to the deep infrared (A22) sets in. In
Fig. 18, we plot the flow, averaged over angle in momen-
tum space,

R̄0 ¼
1

Nκ

XNκ

j¼1

ðIacj − Ibc2jÞ; ðB1Þ

FIG. 18. The infrared flow (B1) as a function of time. Several
values of the minimum momentum pmin are compared.
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as a function of time. cj is computed by (A23). Results with
different pmin are compared.8 At early times, we observe a
positive flow corresponding to a UV cascade from infrared
to higher momenta. This is an artificial result that occurs
because we have nonzero pmin. Indeed, for smaller pmin,
positive flow is suppressed. This observation justifies the
prescription (A22).
After a time Qs ~τc ≃ 2, the flow becomes negative,

indicating particle flow into the infrared region
p < pmin. For sufficiently small pmin (pmin=Qs ≲ 10−2),

the time ~τc and the behavior of R̄0 after ~τ ¼ ~τc are
insensitive to the value of pmin.
Figure 19 shows the time evolution of the BEC number

density, defined as

~τ ~ncondð~τÞ ¼ ~τ0 ~nð~τ0Þ − ~τ ~nð~τÞ: ðB2Þ

Curves in the plot are insensitive to the value of pmin for
sufficiently small pmin. Since ~τ ~ncond can be regarded as the
total particle number in the momentum sphere p < pmin,
the insensitively to pmin indicates that these particles
condense to a zero mode.
The time evolution of particle number in the BEC is

plotted in Fig. 20 for different values of the coupling.

FIG. 19. Time evolution of the particle number density in the
BEC. Results for several values of the minimum momentum pmin
are compared. The result is insensitive to the value of pmin as long
as it is sufficiently small.

FIG. 20. The number of particles in the BEC as a function of
time for different values of the coupling.

FIG. 21. The transverse momentum distribution ~fð~τ; p⊥; pz ¼ 0Þ (red lines) and the longitudinal momentum distribution ~fð~τ; p⊥ ¼
0; pzÞ (blue dashed lines) at Qs ~τ ¼ 1.5, 2.0, 2.5, 10. The time at which condensation occurs is Qs ~τc ≃ 2.08.

8For pmin=Qs ¼ 10−2, we have used Np ¼ 500. For other
values of pmin, we adjusted Np so that Δu is the same.
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The initial occupancy coefficient is fixed to be n0 ¼ 0.1. As
we parametrize the initial occupancy to be f0 ¼ n0=g2,
different values of the coupling correspond to different
initial occupation number. Other parameters used in these
calculations are ξ0 ¼ 1 and Qs ~τ0 ¼ 1. In the figure, ~τn
divided by f0 is plotted. For g ¼ 0.5, which corresponds to
f0 ¼ 0.4, τncond stays 0 indicating that the condensation
does not occur. For weaker coupling (larger initial occu-
pancy), condensation occurs around Qsð~τ − ~τ0Þ ¼ 1 and
τncond begins increasing at earlier times. In a nonexpanding
system, the number of condensate particles approaches its
equilibrium value, which can be nonzero for overoccupied
initial conditions.9 In contrast, condensation disappears in
the expanding system, simply by its dilution from the

expansion. Indeed, the increase in the condensate density
stops at some point and a turnover is seen for g ¼ 0.05
and 0.1.
We plot in Fig. 21 the distribution function before and

after the onset of the condensate. The transverse momen-
tum distribution evaluated at pz ¼ 0 and the longitudinal
momentum distribution at p⊥ ¼ 0 are compared. The
initial conditions g ¼ 10−2, n0 ¼ 0.1 (f0 ¼ 103), ξ0 ¼ 1,
and Qs ~τ0 ¼ 1 correspond to an overoccupied and isotropic
distribution. The time for the onset of condensation is
Qs ~τc ≃ 2.08. Although the distribution is initially isotropic,
the hard sector p≳Qs becomes quickly anisotropic due to
the longitudinal expansion of the system. On the other
hand, the soft sector p≲ 0.1Qs stays isotropic once the
condensate is formed and maintains a p−1 shape after
~τ ¼ ~τc. However the region where the p−1 shape is realized
shrinks in the longitudinal direction due to the expansion.
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