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We consider configuration mixing for the nonstrange positive parity excited baryons in the [56',0%],
[56,27],[70,07], and [70, 2" ] quark model SU(6) x O(3) multiplets contained in the N = 2 band. Starting
from the effective mass operator for these states, we show by an explicit calculation that in the large N,
limit they fall into six towers of degenerate states labeled by K = 0, 1, 1, 2,2, 3. We find that the mixing of
the spin-flavor states is much simpler than what is naively expected in the quark model. To leading order in
N, only states carrying the same K label can mix, which implies that, for the spin-flavor states we started
with, configuration mixing can be parameterized by just two constants: yx_; and px_,. The obtained mass
degeneracies and mixing pattern constitute a signature of the contracted spin-flavor symmetry for baryons

in the large N, limit.
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I. INTRODUCTION

The quark model in its different versions has been a
useful tool in exploring the spectrum and properties of
excited baryons, as well as for testing different model
assumptions on the effective interactions between quarks
[1-3]. Although the model interactions between constituent
quarks are QCD inspired, a clear connection to the
fundamental theory of the strong interactions remains
elusive to this date. Recent successes of lattice QCD
calculations [4,5] seem to validate the classification scheme
of baryon states in SU(6) x O(3) multiplets, as put forward
by early quark model studies. These numerical lattice
calculations have the advantage of being based on the
fundamental theory of the strong interactions but lack the
simplicity of an analytic approach that provides a physical
picture in terms of effective degrees of freedom, effective
interactions, and symmetries. Such an analytic scheme to
study the phenomenology of baryons and their excited
states, that also makes contact with QCD, can be obtained
starting from the large number of colors (V) limit of QCD
[6,7]. For a review on the relevance of the large N . limit for
SU(N,.) gauge theories, see also Ref. [8].

In the large N. limit, it has been shown that the
spin-flavor symmetry for ground state baryons can be
justified from the contracted symmetry SU(4), derived
from consistency relations for pion-nucleon scattering
[9-13]. The predictions of this symmetry for the masses
and the couplings explain some of the successes of the
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nonrelativistic quark model [14—17]. Even more important
than that, the breaking of the spin-flavor symmetry can be
studied systematically in a 1/N,. expansion using quark
operators, establishing a close connection between QCD
and the quark model [15-17]; see Refs. [18-20] for a
pedagogical introduction.

The operator construction of the 1/N, expansion was
later extended to study the masses of the negative parity
L =1 excited baryons [21-26] with great success. The
strong and electromagnetic decays of these states belonging
to the [70, 1] multiplet, as well as the masses and decays of
baryon resonances in other spin-flavor multiplets, were also
studied in the 1/N, expansion (see [27], and references
therein, for a recent review), establishing a comprehensive
framework to study the phenomenology of excited baryons
at the physical value N, = 3. Lattice studies of excited
baryons offer further tests of the 1/N, expansion by
providing predictions for all states in a spin-flavor multiplet
and probing the dependence of observables on the quark
masses [28,29]. They are even starting to explore the mass
spectrum for N, values larger than three [30,31].

It is important to note that the classification scheme for
baryon resonances based on irreducible representations
(irreps) of SU(6) x O(3), grouped into excitation bands
N =0,1,2,3, ..., is based on the quark model and cannot
be justified from QCD. Physical states appear as admix-
tures of different SU(6) x O(3) irreps, something known
as configuration mixing, which so far has been neglected in
phenomenological studies that use the 1/N_. expansion.

In the large N, limit, a different symmetry structure is
present at leading order, and states are classified according
to irreducible representations of the contracted symmetry
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SU(2F),, dubbed as rowers and labeled by K, leading to
degeneracies in the mass spectrum of excited baryons
[22,23]. These predicted degeneracies in the large N, limit
have been verified by explicit calculations, first in [32-34]
for the nonstrange [70, 17] states that constitute the N = 1
band and later also for the nonstrange [70, 37] states of the
N = 3 band [35], but up to now the effect of configuration
mixing, which is not N_. suppressed [36,37], has been
neglected in an explicit calculation of the spectrum using
the effective quark operators.

Here we consider the entire space of states spanned by
the N = 2 states [70,L"] and [56,L"], with L =0, 2. We
restrict ourselves to the nonstrange states and show by an
explicit calculation that configuration mixing preserves the
tower structure in the large N, limit. In particular, we study
the mixing pattern, which in the basis of K states turns out
to be much simpler than what would have been expected
starting from the spin-flavor basis of the quark model.
In the large N, limit, states with different K labels do not
mix as a consequence of the contracted symmetry for
baryons (for a discussion on this, comparing the meson-
baryon scattering picture with the quark-shell model picture
used here, see [34]), and the pattern of mass degeneracies in
the spectrum is protected by this symmetry.

In order to perform the calculation including the leading
order effects of configuration mixing, we need to extend the
construction of the leading order mass operator. To allow
for L — L’ transitions, we will introduce a generic spatial
operator ¢ in place of the angular momentum operator ¢
used in previous studies [24]. This is similar to the
construction of the transition operators for the decay
processes [38], as we need the most general operators that
mix the SU(6) x O(3) multiplets to leading order.

In this work, we present the most general form of the
leading order mass operator that incorporates configuration
mixing and the explicit expressions obtained for its matrix
elements between states of the N =2 band. Our results
provide important consistency checks on the contracted
symmetry predictions for the masses and mixings in the
large N, limit and the correctness of the usual construction
of the effective mass operators in terms of core and excited
quark operators [24].

The paper is organized as follows: In Sec. II, we present
the states; in Sec. III, we present the effective mass
operator; in Sec. IV, we give the explicit form of the mass
matrices for / = 1/2 and I = 3/2 states. In Sec. V, we
discuss the spectrum and the mixing pattern we obtain. We
finally conclude in Sec. VI. In Appendix A, we give the
general expressions for calculating the matrix elements of
the leading mass operators, and in Appendix B, we give the
explicit expressions of the matrix elements for arbitrary ..

II. THE STATES

The positive parity, orbitally excited modes of an N. = 3
three-quark system differ from each other in their orbital
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angular momentum L and their behavior under permuta-
tions. The spin-flavor symmetry SU(6) is a useful classi-
fication scheme for these states. Each type of permutational
symmetry of three objects, symmetric (), mixed symmet-
ric (MS), and antisymmetric (A), corresponds to an SU(6)
multiplet, 56, 70, and 20, respectively. For the nonstrange
members of these multiplets, the spin-flavor symmetry is
broken only by the spin-dependent interactions. Here and
in what follows, we will concentrate on the nonstrange
members of each SU(6) x O(3) multiplet. In the case of
harmonic forces between quarks, the five SU(6) x O(3)
multiplets 56’ (L = 0, 2),70 (L = 0,2),and 20 (L = 1) are
degenerate and constitute the harmonic oscillator N = 2
band. We do not consider the antisymmetric states in this
work, as their relevance for the observed physical states at
N. = 3 is not clear yet. In the generalization of the lowest-
energy multiplets to arbitrary N, the additional N, —3
quarks are taken in a completely symmetric spin-flavor
combination.

In order to identify the nonstrange / = 1/2 and [ = 3/2
physical states (N and A) with the large N, states, it is
useful to keep in mind the usual SU(6)in—fiavor 2
SU(3) fravor X SU(2) decomposition that labels the

N, = 3 states

spin

SNe=3: 56 =410+ 28 > *A + 2N,
MSV=3: 70 =21+4210 428 + 85 2A + 2N +4N, (1)

where 251N, 25+ A with S the quark spin of the state. It
should always be clear if S stands for the spin, or if it
denotes the symmetric irrep of the permutation group. To
count the nonstrange / = 1/2 and I = 3/2 states contained
in the S, MS irreducible representations of the permutation
group for arbitrary N, it is helpful to recall that for the
symmetric representation the spin and isospin of the states
are related by S = I, while for the mixed symmetric irrep
the spin is obtained from the vector sum S = I + 1, so that

SD*A +2N,
MSD2A+*A+5A +2N +“N. (2)
— —

N.>5

We see that in M S there appear A states with higher spin
that are absent in MSV=3. These are ghost states that
decouple from the physical states in the N, — 3 limit, as
has been noticed in Refs. [32,39] and we will also see
explicitly here when discussing the matrix elements of
Appendix B. After coupling with the orbital angular
momentum L = 0, 2, we obtain the §;, MS; states
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8o D Nija, A .
MSo D Nijp Ny Ay, AY 5, AT,
—_———
N.>5
82D N3ja, Nspa, A 5, Ay A5 5 A s,
MS5 D> N3j2.Nsja. Ny 5o Ny 5o N5 5. N7 50 B3, As o,

Ao 8500 D550 A7 A 5, A%, A5 5, A7 5, Bg s,
N.>5
3)

where we indicate J, the total spin of the nonstrange states
Ny, Ay, as given by the vector sum J = S + L. The primes
indicate the different values of quark spin S, e.g., N;, N/,
correspond to 2S*IN, with § = 1/2,3/2, respectively,
while A, A}, A”] correspond to 25t A; with S = 1/2,3/2,
5/2, respectively.

In Eq. (3), we show all the states that we will consider to
compute the mass spectrum. There are 30 / =1/2,3/2
states distributed as 11 N states and 19 A states, where 11
of the A states are ghost states. That reduces the number of
physical states at N, = 3 to 19 states.

The representations S, S,, MSy, and M S, reduce in the
N, = 3 limit to the [56’,07], [56,27], [70,07], and [70,27]
quark model SU(6) x O(3) multiplets, respectively. We
use the prime on S, to distinguish it from the ground state
baryons Sy, usually labeled as [56,0"] in the N. = 3 limit.

In a quark model calculation, all states with the same 7, J
mix, giving rise to large mixing matrices and a complex
pattern; see, e.g., Ref. [40]. In the large N limit, the mixing
pattern is much simpler, something that becomes clear only
after classifying the states in a different way, according to the
irreps of the contracted spin-flavor symmetry SU(4),. These
irreps are labeled by K, which relates J and / as J = I + K,
so that K = L in the symmetric irreps and K = L + 1 in the
mixed symmetric ones [22,23]. In contrast to the spin-flavor
states for arbitrary N. of Eq. (3), the 30 large N, states carry an
additional label K and can be grouped as “tower states’:

K =0: Nyp,Azp, ...y

K=1: N1/2,N3/2,Al/z,A3/2,A5/2, s

K=1": N1/2,N3/2,A1/2,A3/2,A5/2, s

K =2: N3/5,Ns5/5,A1)2, A3/, Aspr, Ag)a,s .,
K=2": N3/5, N5, A Azpn, Asjn, Mgy, ey

K =31 Ns;5,N7ja, B3yn, Bspp, Agpn, Agja,s s (4)

where each tower state is, in general, in an admixture of the
spin-flavor states shown in Eq. (3). The nonstrange states in S,
belong to a K = 0 tower, the ones in MS, appear in the
decomposition of K = 1 states, the ones in S, contribute to
K =2 states, and finally the MS, states appear in the
decomposition of K = 1, 2, 3 states. As we will show by
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an explicit calculation in Sec. V, in the K basis only states with
the same K label mix. This implies that in the large N, limit
the tower structure that was first found by performing explicit
calculations within a single spin-flavor irrep [32-35] is also
preserved when including the effect of configuration mixing.

In the next section, we will present the simple leading order
in N, mass operator from where this mixing pattern follows.

III. THE MASS OPERATOR

The leading order mass operator needed for our calcu-
lation is obtained by slightly generalizing the construction of
Ref. [24] as follows. As explained in detail in Ref. [24], the
large N, states can be constructed as product states of a
symmetric core of N. — 1 quarks and an N th quark in a
proper linear combination, so that the SV and M SV« irreps
with the desired permutation properties are obtained. The
operators contributing to the mass operator at different orders
in 1/N,. can then be constructed from the SU(6) generators
acting on the symmetric core and on the quark that was
singled out and the orbital angular momentum operator 2.
Here we will replace the orbital angular momentum operator
by a generic spatial operator £ to allow for configuration
mixing of spin-flavor representations with different L. This
is similar to the construction of the effective operators for
decay processes [38,41], where we also needed to describe
transitions between states with different L.

The leading order Hamiltonian including operators up to
order O(N?) that will correctly describe all possible
mixings in our configuration space, spanned by the states
given in Eq. (3), has then the following form:

/ o1
H=cRl 4+ R 54 KR N—é(z) -g-G.+O(1/N,),

(5)
where £ = L{&l £} — %5’7 and R and R’ stand for the
Sy x O(3) irreps Sy and MS; . The coefficients cﬁ% are of
the order of O(N?) and encode the details of the spatial
wave function, as has been shown explicitly within a single
spin-flavor representation by different matching calcula-
tions [42-46]. They take different values on different spin-
flavor irreps R. In our case, we also have off-diagonal
matrix elements, so that the coefficients depend on both the
R and R’ irreps that are mixing. For the diagonal matrix
elements, we have R = R’, and we use the notation
R = clR‘R. The unit operator contributes only to diagonal
matrix elements.

The general expressions for the matrix elements of the
operators in Eq. (5) are given in Appendix A following
closely the notation of Ref. [24].

IV. THE MASS MATRICES

In this section, we present the explicit form of the mass
matrices we obtain by computing the matrix elements of
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Eq. (5), after expanding in 1/N, and taking the large N,
limit. The matrix elements for arbitrary N, are given in
Appendix B. We also give the expressions for the corre-
sponding eigenvalues and eigenstates. The reader can skip
through this section and continue reading Sec. V, where we
work out an explicit example that better illustrates the

relevant points of the discussion.

It should be noted that in the coefficients c?, cg'R/, and

/ . .
c?'R we absorb common group theoretical numerical

factors and the reduced matrix elements of the & operator,
as appearing in Egs. (A1) and (A6) or, more explicitly, as in
Tables -1V of Appendix B. We do not distinguish them
from the original c}‘, cg‘R/, and c?‘R/ appearing in Eq. (5)
to keep the notation simple.

A. The I1=1/2 states

The I = 1/2 states with the same J can mix among each
other. We have three J = 1/2, four J = 3/2, three J = 5/2,
and one J = 7/2 states. Their mass matrices are given
below. The 11 mass eigenvalues for the large N, I = 1/2
states will be labeled as my«, and their degeneracies will be

discussed in the next section. Table I in Appendix B shows
all the matrix elements for the nucleons at finite .
In the large N limit, the mass matrix for the N/, states

) Y .
in the {2N I?Z,ZN%“;”,“N%%} basis is

S/
N, 0 0
_ MsS, MSyMS
My,, = ¢ °N, \/zc3 02
MS, 3 MS,  MS,
¢p Ne—367" —¢

(6)
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The My, ,, Mass matrix and all mass matrices that follow are

symmetric. We show only the upper right half of the matrix
to keep the expressions more readable. The eigenvalues are

m NES My, and m NES Their explicit dependence on the
1/2 1/2 1/2
! . . . . . .
c®® coefficients is given in the next section. The corre-

sponding eigenstates are

NER 10 0
NG =10 1 —nws, | (7)
N {(/:21 0 nuys, 1

where each row vector on the right-hand side indicates the
composition of the eigenstate; e.g., for the second eigen-
state, we have

=1’ MS, MS
‘N{</21 > = |2N1/20> _”MSO|4N1/22>’ (8)

. !
where 77,5, can be expressed in terms of the CIR’R

coefficients. We will use this matrix notation to show
the composition of the eigenstates throughout the rest of the
paper. This is very convenient to make the mixing pattern
manifest. In the limit of no mixing (yg = 0), the eigenstates
are normalized. In the general case, there is still a

normalization factor of N = 1]+ — that has to be taken
R

into account.
The mass matrix for N3/, states in the large N, limit is

given in the {4N§/§§°,2N§j2,2N§/§§2,4N[3V§§2} basis by

MS, MS)MS, MS)MS,
c; °N, 0 —C5 —C5
SN S5MS, _SMS
1 Ve 2 2
M Nap — MS, MS, 1 MS, Ms, |- ©)
¢, *N.— ¢, —3C P —c3

MS, MS,
¢ *N.— ¢,

We denote the eigenvalues as m NE=1 s My s NESEs and mNK/:Z. The eigenstates of this matrix are
3/2 3/2 3/2

3/2

NKZY 1
N3 0
N §</:21 —Mms,
N3P 0

0 ? Mms, \/75 Nms,
1 - % s, \/75 ns, ( 10)
0
2 2
V2 V2
s, T 2

For the N5, states in the {>N3},,2N¥5 *NY51 basis, we obtain

5/20 V52 Vs
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S>
¢i°N.

MNs/z =

with eigenvalues m =y NEs and m NES and eigenstates
5/2 5/2

MS, 2 MS,
Cq NC+§C2
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2 SHMS,

V14 SHMS,
36 -3 O

, (11)

Via MS, | /14 MS,
% 0 TG G

1

6

MS, MS, | 5 MS,
€] PNe—gey P +3¢3

B. The I=3/2 states

NE=2 | ﬁ’? ﬁ’? The I = 3/2 states with the same J can mix. among each
5/2 3705 38 other. We have four J = 1/2, six J = 3/2, five J =5/2,
NEZ | = | =5 \/Ti 4 (12)  three J =7/2,and one J = 9/2 states. Their mass matrices
NE=3 ’ - - are given below. The 19 mass eigenvalues for the large N,
5/2 0 -3 3 I = 3/2 states will be labeled as m AK and their degener-
Finally, the matrix element for the N, , large N, state in acies will be discussed in the next section.
MS, is Table II in Appendix B shows the matrix elements for
2 A/, at finite N.. In the large N limit, the mass matrix for
2 : 2AMSy 4082 4AMS, 6 AMS I

s = CzlwszNC n Clzwsz _ _C{%\/ISz‘ (13) the A, , states in the { A AT AT Al/zz} basis is

M MS,MS MS,MS

¢ ONL' 0 \/LE o oMo2 % o 0M52

s S,MS $,MS,
M . ¢’N, %022 : _%sz ) (14)

Ayp — ,
A R I ot
CZIWSZN c—1 63452 - %cg/lsz

with eigenvalues m, v, m

o, M k=1, and m k-2
1/2 A{{/22 ’ Al/2 ’ Al/2

The corresponding eigenstates are

12
AK=1 1 0 =2y/5ms,  —3/5ms,
1/2
=2 _3 /2 1 /2
Af/zz 0 1 2\/5s, 2/ s,
NS 2 3 2 (15)
1/2 ~fus, 0 —21/5 —31/5
AK:2
172 0o _3. /2 12
s, 2\5 2\s
. . . . S MS, S MS MS
Table IIT shows the matrix elements for A, at finite N... For the A, states in the {*A3),, *A70 YA 2AT 2 4AT 2,
6 AMS, . .
A 1 } basis, we obtain
S/
c¢,"N 0 0 0 0 0
1 c
MS, 1 MSyMS, 4 MSoMS, 3 [1,MSoMS,
cp Ne 0 TR 563 51/2¢3
S, 1 SMS, 2 S,MS, /7 8,Ms,
M cI'Ne 262 /562 \/Bcz (16)
Ay MSy 1 MS s MS, 1 MS, 3 M8 ’
1 NeT326 210 €2 710 €3 V35 €3
MS, 2 MS, 3 J1,.MS, 3 |71 .MS,
¢ "Ne=56 _E\écz ~7\24
MS, 11 MS, 2 MS,
¢ Ne—60 " =76
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with eigenvalues maK0, mAK/ o Mot MK, TAK=2, and Mk and eigenstates

3/2

AFY
Afﬁll
AF?
A3/2
AYS’

A3/2

0
0
0 0
0 —Nwms,
0 0
0 0

0 0
#g nms,
1 3,
0 3
s, %
0o -5

0

_2/2

=5 NMwms,

1
5V2

(17)

Table IV in Appendix B shows the matrix elements for As/,, A7/, and Ag), at finite N,.. For the As/, states in the

MS,
{6A5/20’4A5/2’ A

MS,
5/2

4AM52 6 MS,
5/2 5/2

} basis, we have

MS, N, 0 \/g 1;/1501\452 _ % \/2—162143011/132 _ % \/ﬁcé”S“Msz
sz N, _ % ﬁcgzMs2 . \1/_ ngMSZ \ﬁ S,MS,
Mass N ET el g el 2 /el 19
MS 1 MS 4 MS 3 MS 3 MS
ZN I Cz 2 3 2 \/’ 2 \/’ 2
N _ S _|_ 2 MSz
C
with eigenvalues m ARy m N=2 AR, MK, and m AR and eigenstates
1 /6 1 /21 7
Kl 1 0 = \/;WMSO 5 \/;WMSO % Nus,
As)
1 /7 3
K=2' 0 1 3 \/:ﬂs - \/ s Ss
AS/Z 37\ 2152 2 5152
- 1 /6 1 V7
A5/2 = | —Nwms, 0 ) \A 35 \/; 5 (19)
K=2
AS/2 0 - L /7 1 /2 3
s, 32 65 5
AK*B
3/2 1 /14 8v2 V3
0 0 3\Vs s 5
The matrix for the Ay, states in the large N, limit in the {4A7 720 Aly/iz, 5A /7\4/;2} basis is
AN G - e
MS, MS, MS MS
My,, SN+ 2 B —g\ﬁ D18 3] (20)

S> MS, 17 MSz
N +10 2 +35 3

with eigenvalues m ,x_y, mpx—, and mx— and with eigenstates
a7 A A3/2
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P 1 \/277 \ﬁﬂ The “tower masses” my correspond to the tower states
A7/72 52 52 listed in Eq. (4), and the degeneracy in the spectrum reflects
A7/2 = | = \/2 \ﬁ .2 the SU(4), symmetry present in the large N, limit. Notice
. 3 > that there are two towers with labels K =1 and K = 2;
A7/2 0 _ \ﬁ \ﬂ their masses are unrelated by the SU(4),. symmetry. The
3 3 explicit expressions we obtain for the tower masses my in
. R RR'
Finally, the matrix element for the large N, state Ag), in te.rms of .the .coefﬁments Cl 62 ,and 3 _result from the
MS, is diagonalization of the mass matrices given in Sec. IV and
: can be written in a compact form as
2
mpgs =€) MEN 4+ ¢ MSZ _7613\/15‘2. (22)
my = N L.cfé’,
V. THE LARGE N, SPECTRUM my = iy + 8,y

The diagonalization of the / = 1/2 and I = 3/2 mass
matrices presented in the previous section leads to 30 mass
eigenvalues. In the large N limit, we find as a result of our my = myy — Oy,
explicit calculation the remarkable result that the masses
assume only six different values, leading to a highly
degenerate spectrum. The 11 /=1/2 and 19 [ =3/2 msy = N, M5 4 (M52 _gcéusz’ (24)
masses are grouped in six energy levels my as follows: 7

my = Myy + 6y,

my = My — 6y,

mp=m =m
0 NiR° ARZ0s where
miy=m r=m r=m ;= r=m ’
S S I = g = T = A
1, us M 3 1
_ S, MS, MS,
My =My = N (N =Mk mypy ==(c] "+c; )N, ——c;, 7> —=c 25
2 N3 Ng(/zz Al A% A.{'f/z2 ATR 1 2(] TN 42 273 7 (25)
mi=m =m =m =m =m
1= N{</2‘ Nf/zl Af/zl Ag(/zl A§/2‘
m—sz—szfmx =M AK=2 = M AKk=2 = M \K=2,
2 Ny NS/Z A1/2 A3/2 AS/Z A7/2 _ 1 S, MS, N 1 1 MSz 26
mzz/—i(ﬁ +c77?) ”_Z +2 3 (26)
M3 = MpKk=3 = M pK=3 = M A\Kk=3 = M AK=3 = NI AKk=3 — M AK=3.
3 N/ N7/2 A3/2 Ai/2 A7/2 A9/2
(23)
|
1 MS, MS 3 MS. 1 MS. MSoMS.
2
Siv =4/ 50" = PINe+ 7+ 505 +2( B (27)
2 4 2
1 S 1 MS 1 MS. S,MS
2
_ 2 S5 2 2 2M5y
522’ = \/|:§(Cl )N +4C —§C3 +2( ) (28)

Given the complexity of the mass matrices from where we started, these expressions are surprisingly simple. It is possible to
understand this by looking at the general structure of the corresponding eigenstates shown in the previous section: Only
some subset of spin-flavor states are mixed among each other in the large N. limit, namely, those with the same K
assignment. As we will show next by working out an explicit example, all our results can be understood as a two-level K, K’
mixing. To make this manifest, it is useful to write the tower masses mg we obtained in terms of the mass eigenvalues m K
that we would have in the absence of configuration mixing:

° s, MS, ° s
mg_og = N.c,’, mK =Ny, mg_y = N.cp?,

Ms, 3 us MS ms, 1 MS MS Ms, 2 wms
mKl—Nc 2 2czz—c3 2 mKZ—Nc ”—2 2+c 2, mK3—Nclz+c 2—7c32 (29)

We see that my = 1;11( for K =0, 3, and for the K = 1, 2 states we have
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o o o o 2
myg + mg mygr —m
mgr g = %i \/(%) + (ug)?. (30)
where
pror = —V2e5 MR, (31)
Hg=2 = —\/_CSZMSZ (32)
are the matrix elements that mix the two K states. For
(m mg 5[() ~O(NY), ie., cfl”So — M2~ O(1/N,) and
M —¢}> ~O(1/N,), the mixing is strong and the energy

levels get O(N?) corrections due to configuration mixing.

This mixing pattern, which is not obvious at all when
starting from the mass matrices written in the spin-flavor
basis, can be made manifest by a change of basis. The
I =3/2,J =3/2 states constitute a good example to see
this, as they have the largest mass matrix, of dimension six
and given by Eq. (16), where all K states appear as
eigenstates. To find the change of basis we need, we first
compute the eigenstates in the absence of mixing by setting

PHYSICAL REVIEW D 95, 094007 (2017)

This provides us the change of basis matrix S. We obtain

the large N, mass matrix ]lN/[Ag/2 in the K basis {K =0,

K=1,K=2,K=1,K=2,K =3} as follows:
my
’;11' Hi
- p o ! my H2
MA3/2 :SMAB/ZS == ° )
Hi ny
Ha ’;12
ms
(34)

where we show only matrix elements that are nonzero.
The eigenstates in this K basis are given now by the rows
of the T matrix below and take the simple form

cggR = 01in Eq. (16). In our matrix notation, they are given
by the row vectors of the following expression: 1
1 Nums,
1 00 0 0 0 | 0
s
01 0 0 0 0 T = : (35)
—Nms, 1
0 0 1 0 0 0 - |
o 2\/5 3\/7 S5
s=[0 00 s -22 371 (33 |
000 ! —\/2 %\@
00 0 — \/Z V11 Finally, from § =TS we recover as the rows of S the
10 3 5V2 eigenstates in the spin-flavor basis as given by Eq. (17):
SI
|A3/2 ) = |4A3(/)2>’ (36)
2V2 3[
- AMS MS AMS
|A§/21 )= |4A3/2 ) + s, (2\/—|2 3/22> ——|4 3/22> |6 3/22>>’ (37)
—o Ms2 Ms2 MS,
|A§/22> = |4A3/2> + 7752< 3/2 \/7|4 3/2 \/7|6A3/2 > (38)
2V2 f
— MS, MS, MS, MS,
|A§/21> = _77MSU|4A3/20> +—=I 3/2 ) ——* 3/2 )= |6A3/2 ), (39)
2V5
1 7
Ss MS, MS, MS,
|A%/2 )= —77S2|4A3/2> +3 |2A3/2 ) - \/7|4A3/2 )+ \/;|6A3/2 ) (40)
AK 3 2 MSZ M52 6AMS2 ) 41
3/2 V70 | 3/2 Az )+ 5\/-| 3/2 ) (41)
The explicit expressions for 75, , 775, that relate them to the mixing matrix elements y;, p, are
2u
NMms, = ] ; (42)

o o o o 2
my —my + \/(ml’ —m)” +4(u)?
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2uy
o o o o 2
ny = Ny + \/(mz’ —my)” + 4(u)?

As itis clear from Eqgs. (34) and (35), only the two K = 1
and K = 2 towers mix through the mixing matrix elements
Ug—1 and pg_,, respectively. This explains why in the large
N limit all the mixing that can occur among the spin-flavor
states of Eq. (3) can be expressed in terms of only two
parameters, and it confirms that the effective mass operator
given by Eq. (5) correctly accounts for the symmetry
structure expected in large N, QCD.

s, = (43)

VI. CONCLUSIONS

We have extended the large N analysis of excited baryons
to include configuration mixing. In particular, in this paper,
we studied the configuration mixing of the symmetric and
mixed symmetric spin-flavor irreps that belong to the N = 2
band. Rather than the SU(2F) spin-flavor symmetry of the
quark model, in the large N, limit we have a contracted
symmetry SU(2F),, which gives rise to numerous mass
degeneracies and also fixes the mixing pattern among the
states. Degenerate states fill SU(2F), irreps (towers), which
are labeled by K. They contain an infinite number of states
with increasing spin and isospin. Here we restricted ourselves
to two flavors and to the low spin and isospin states that are
identified with the physical states at N, = 3.

We found by an explicit calculation that, in contrast to
the complex mixing pattern of spin-flavor irreps in the
quark model due to hyperfine interactions (see, e.g.,
Ref. [40]), in the large N, limit the mixing pattern is
governed by the symmetry: only states carrying the same K
label mix. For the states considered, this mixing can be
described by just two parameters related to the mixing of
the mixed symmetric states with L =0 and L =2
(MS, and MS,) and the mixing of the symmetric and
mixed symmetric states with L =2 (S, and MS,).

We performed the calculation of the mass spectrum by
slightly extending the construction of Ref. [24] and using a
common mass operator for all states [Eq. (5)] expressed in
the quark operator basis. We verified explicitly that this
simple leading order effective mass operator correctly
describes the configuration mixing pattern expected from
the symmetry present in the large N, limit. We also checked
explicitly that the inclusion of configuration mixing pre-
serves the large N, tower structure in the spectrum of
positive parity excited baryons: The 11 N states and 19 A
states are the lowest isospin members of six degenerate
towers of large N, states labeled by K =0,1,1',2,2/,3.
The matrix elements presented in Appendix B show that
ghost states that exist only for N, > 3 decouple from the
physical states. This decoupling is a general feature of large
N, calculations [32] that was also pointed out in the meson-
baryon scattering picture [39]. Another important point to
note is that only the presence of core operators makes the
mixing of symmetric and mixed-symmetric states possible.

PHYSICAL REVIEW D 95, 094007 (2017)

A mass operator constructed solely in terms of symmetric
SU(4) generators S',T% G would not mix spin-flavor
states in different irreps of the permutation group.

All these are nontrivial checks of the correctness of the core-
excited quark picture and the operator construction in terms of
SU(2F) generators that started the program of applying the
large N, expansion to the study of excited baryons [21,24].
Most importantly, the leading order calculation presented here
provides the first step towards a systematic inclusion of
configuration mixing effects at subleading order in the large
N, analysis of the phenomenology of excited baryons. The
predicted large N, spectrum and the configuration mixing
pattern could also be checked in the future by lattice
calculations, providing a useful guide for the ongoing explo-
rations of the baryon spectrum at arbitrary N, values [31].
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APPENDIX A: CALCULATION OF
MATRIX ELEMENTS

After replacing the orbital angular momentum operator £
by a generic spatial operator £, we obtain the generalization
of Eq. (A7) of Ref. [24]:

<§ : S> = 51/15M’M51/151/313 (_I)L/+1/2+S,_S

SN e ey IETS

Ly
x Y (—l)L»v(2Ls+1){
L,=L+1/2 1
LsYy(r1. 1 s
Eeall ) D)
nzil Pl J LJ\lL 7 L
(A1)

where R, R’ denote a symmetric (SYM) or mixed sym-

metric (MS) irrep and the coefficients c with S=1+p
and S, =1, =1+ n/2 are given by

M =1, (A2)

M = o3 = S =0, (83

f“i;;;ﬁg“% &
ar=me = LR

In all other sections, we use S to label the symmetric irrep
SYM. Here, for the sake of clarity, we use the SYM label to
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distinguish it from the S we also use to denote the total spin of the quarks. The rank-two tensor operator in the effective mass
operator accounts for the mixing of L = 0 and L = 2 states. It generalizes Eq. (A9) in Ref. [24] to

3
(€3 g+ Go) = 8psByrmbriBiyy, (=1)/ 212 V/5/ (28 + 128 + (L6 IL)

2 L LU ,
x{ } > R e (DRI + 1)(21, + 1)

7S et
I
x /(N +1)2—<’7/_”>2(21+1)2{% ! %} s
‘ 2 ro1 I\,
2

I 1
s 2% (A6)
11

The reduced matrix elements (L'||&||L) and (L'||£?)||L) are unknown and can be absorbed in the operator coefficients of

the 1/N_ expansion.

APPENDIX B: EXPLICIT MATRIX ELEMENTS FOR ARBITRARY N,

We list in Tables [-IV all the explicit matrix elements for the operators O; = N 1, 0,=¢£-5,and O3 = §< ).g-G,, for

finite N.. We defined &5, = (2||§||2) by = 1 = (2||.§ )]12), and &, = <0||.§ )]|2), which contam the reduced
TABLE I. Matrix elements for / = 1/2 states at finite N..

0, O, %
N 1S(//)2 N, 0 0
2NYY N, 0 0
4N11V§§2 N, -3&m 16N (N +1)é0
2N % 0, = 2Ny 0 0
2N, — NS 0 0 — /e
NS AN 0 0 v, -1,
AN N, 0 0
N §/2 N, &z 0
2N13w/§2 N, — o (2N =3)é1 0
‘N 24/5 N, =i 0
NV 2N, 0 0 RV
N3 = N3y 0 0 ~ 7, (2Ne = Dy o
4N§’;§o _ 4N24/§2 0 0 \/—N (N + )&z
2N§;2 2N§4/§2 0 - V3N +3)(Ne = 1)é1n
2N, = N3y 0 -3 3%;1)5 122 o \/ ey
2N13u/§ 4Ng/§;z 0 S RVAr AP — 5w, (2N = ) . +%§222
N g;z N, N% i 0
N5y Ne T (2N =3 0
4N15V7§2 N, —1&y 16N (Ne + 1)énm
2N§;2 2N15u/§2 0 _;TCV(N(:+3)(NL-_1)§122 0
2N§;2 - 4N§§§2 0 - \/z N"—_lflzz - #Nc 4 N"—_lfzzz
NS S, 0 ~15 /e V3 e,
4N]7Vg° N, & ﬁ(Nc +1)ém
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TABLE II. Matrix elements for the I = 3/2, J = 1/2 states at finite N,.

O O, 05
287 N, 0 0
4Af§2 N, — o € b
4A[1\4/22 N, tow (15 = 2N )1 #Nf (2NZ +2N. = 15)ém,
GA%LZZ N, —1& - #N(_ (Ne + )&
2AY — AT, 0 0 S AV
2A}1\4/;0 - 4A11w/§2 0 0 \/%Nc (2N, +5) N]‘\'/—j}fzoz
2A}1\4/30 - GA%? 0 0 Nl \/%\/ (Ne +5)(Ne = 3)é2
4Af?2 —‘Wﬁ? 0 ﬁ 3 _ﬁg\/g\/ (Ne +5)(Ne = 3)6om
4Af§2 - 6A[1V§§2 0 % \/%\/?5222
Ay - oAy 0 — i (N, = 3) /N,
TABLE III. Matrix elements for the I = 3/2, J = 3/2 states at finite N..

0, 0, 05
A%, N, 0 0
N N, 0 0
4A§§2 N SR 0
ZAZ;Z N, 5ém 0
4Aéw/§2 N, —sv (2N = 15)812 0
f)Agw/gz N, —%5122 - szlv (Ne+1)éx
AT, — Al 0 0 0
4Agé/)z - 4A§;2 0 0 4,\\,/; &
4A§i}2 - 2AZ§2 0 0 \/5# N}\'/tsfzoz
4A,fé/)z - 4A}3l§§2 0 0 - \/55,\,3 \/szoz
4Aié/)z - 6A13l§§2 0 0 - Ni \/%\/N_&éfzoz
4A[3\4/;0 - 4A§;2 0 0 - \/541\,5 szoz
4Ag§§0 - ZAQW/? 0 0 - V%N: (2N, + 5)\/?5202
YA — ALY 0 0 s QN2+ 2N, = 15)60,
4A}3\4/50 - 6Ag§§2 0 0 # \/i;(ch - 3) Eom
4A§§2 - ZA;%Z 0 -1 \/% N,"vjsflzz ﬁ 3./ —Eom
4A§§2 - 4A13l§§2 0 NL \/%\/ (Ne +5)(Ne = 3)é122 0
A3, = Ay 0 VATV w2 N;,:szzz
2Ag§§2 - 4A§4/§2 0 - m (2N, + 5)\/?5222
Wl _oats o 0 o TS e
4A}3\/;§2 - 6AZ§2 0 ~1 \@ N;‘Vjsﬁlzz ~ By \@(ZNC -3) N"Tffzzz
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TABLE IV. Matrix elements for the I =3/2, J =5/2,7/2,9/2 states at finite N,.

0, 0, 0,
N N. 0 0
4A§;2 N, oSz — g ém
ZAISV% N, —1&m 0
‘A5 N. — s (N, = 15)é1y — 2 QN2 4+ 2N, = 15)éx,
6A}5\/;§2 N. —25122 ﬁ (Ne +1)é2
6A5}>\4/§0 - 4A§;2 0 0 NL \/251\/17&:-35202
s o 0 VS e
NSy — Ay 0 0 — 3L N, - 3)/% 0
6A24/§” - 6A§4/§2 0 0 —ﬁ BN+ D&y
4A§;2 - ZAISVgZ 0 _% % . 12 - % N}'VJ:szzz
G, —fAgY 0 iz VN 5 (N =3)én LV IN )N =3
4A§?2 - 6AZ§2 0 -7 N;’v—fflzz o \/%\/IN—?ézzz
ZA?/? - 4A15w/§2 0 @ N;‘v'—?flzz ﬁ \@(2% +5) \/?5222
PAg = 0As)y 0 0 IV NS (N =3
4Agw/§2 - 6A15V§;2 0 -3 \/% N&Tsﬁflzz —ﬁ \/%(ZNL- -3) vaf S
‘A% N, ém b
gy N, ar (2N, = 15)61 sz (N2 + 2N, — 15)é:
6A%§2 N, 68122 sow- (Ve + Déam
4A§;2 _4A%§2 0 —N%_\/év (Ne +35)(Ne =3)é1m —4117;\/%\/ (Ne +5)(Ne = 3)éam
4A§;2 - 6A§4/§2 0 v N;;—fflzz - 16\/217—0]\,[ N;}—fézzz
4A§4/§2 - GA%;Z 0 -3 \/% Nfgsﬁflzz SN \/%(ZNC -3) vat $om
6A34/§2 N, S —ﬁc(Nc + 1)ém

matrix elements of the generic & operator. Note that the ghost A states decouple from the physical states through N, — 3
factors; see also [39] for a related discussion.
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