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We present an updated study of transverse single-spin asymmetries for the inclusive large-PT processes
lp↑ → hX and lp↑ → jetX, within a transverse momentum-dependent approach, including the contribution
of quasireal (Weizsäcker-Williams) photons. In the spirit of a unified transversemomentum-dependent scheme,
predictions are obtained adopting the Sivers and transversity distributions and the Collins fragmentation
functions as extracted from fits to the azimuthal asymmetries measured in semi-inclusive deep inelastic
scattering and eþe− annihilation processes. The description of the available data is extremely good, showing a
clear general improvementwith respect to the previous leading-order analysis. Predictions for unpolarized cross
sections and single-spin asymmetries for ongoing and future experiments are also given.
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I. INTRODUCTION

The role played by transverse single-spin asymmetries
(SSAs) in our understanding of the nucleon structure is
nowadays well consolidated and, at the same time, still the
source of challenging issues. Indeed, SSAs observed in
processes where two energy scales (a large and a small one)
are detected are unambiguously studied within an approach
based on factorization theorems in terms of transverse
momentum-dependent distributions (TMDs). On the other
hand, the description of the large data sets for the SSA AN

measured in inclusive pion production in p↑p collisions,
where only one energy scale is present, is still under debate
(see for instance Refs. [1,2] for general overviews and
Refs. [3–13] for the experimental results).
In Refs. [14,15], this issue was investigated in a somehow

theoretically more simple single-inclusive process, lp↑ →
hX, still characterized by a single large energy scale but very
close to the semi-inclusive deep inelastic scattering (SIDIS)
process, for which TMD factorization has been proven
[16–23].
This process indeed can be considered a sort of bridge

between the p↑p → hX and lp↑ → l0hX processes: it is
single inclusive with a single large energy scale (as the
pp → hX process) and at the same time, at leading order, is
controlled by the color-blind electromagnetic interaction
(as the SIDIS process). This should reduce the role played
by initial/final state interactions leading to potential fac-
torization breaking effects. On the other hand, adopting the
relevant TMDs (Sivers and Collins functions), as extracted
from SIDIS data, in the inclusive hadron production in

lepton-proton collisions represents an attempt toward (and
a test for) a unified TMD scheme. It is worth mentioning
that the same process was also considered in Refs. [24,25]
in the framework of collinear factorization with twist-3
correlation functions, while inclusive jet production was
studied in Ref. [26].
InRefs. [14,15], towhichwe refer the reader for all details

of the approach, SSAs were computed assuming a TMD
factorization scheme at leading order (LO), that is consid-
ering only the elementary partonic channel lq → lq. In
particular, in Ref. [15], the theoretical estimates were
compared with a selection1 of the experimental results by
the HERMES Collaboration [27], showing good agreement
in sign and size. In spite of this, it was also pointed out that
some of the discrepancies still present between theory and
experiment could be ascribed to effects neglected in a LO
treatment.
Here, we want to extend this LO study including the

contribution from quasireal photon exchange, in the
Weizsäcker-Williams approximation, potentially relevant in
the kinematical configuration dominated by small Q2. This
will allow us, still within a TMD scheme, to improve the
descriptionof the fully inclusive data andconsider, for the first
time, the HERMES antitagged data set, dominated by events
in which the final lepton (not observed) has a very small
scattering angle. Notice that this data category was not
included in the previous analysis because a simple LO
approach (namely vialq → lq) is expected to be inadequate.
In this respect, wewill benefit from the study performed in

Ref. [28], even if with a different perspective and approach.
In this work, the authors, within a collinear-factorization
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1Only data for inclusive events in the backward target hemi-
sphere at large PT and tagged events (deep inelastic scattering
category) were considered.
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scheme, computed the next-to-leading-order (NLO) correc-
tions to the unpolarized cross sections for the same process
and discussed the role of quasireal photon exchange. Inmost
kinematical configurations, they found that this contribution
represents only a small part of the NLO corrections. They
then concluded that only a full NLO treatment could be
considered complete.
On the other hand, within a TMD scheme, as well as in

the twist-3 approach, NLO corrections are still not available
for such a process, and it is then worth seeing to what extent
the quasireal photon exchange could play a role in the
computation of spin asymmetries. On top of that, and
relevant from our point of view, by including transverse
momentum effects, the estimates of unpolarized cross
sections are enhanced with respect to those computed in
a collinear framework. Experimental data, still not avail-
able, would definitely help in this respect. Notice that for
the process pp → πX the estimates of unpolarized cross
sections in a TMD approach at leading order show a
reasonable agreement with available data from the
Relativistic Heavy Ion Collider (RHIC); see Ref. [29].
The main aim of this study will be then to provide the

complete calculation within a TMD formalism of the
quasireal photon exchange in lp → hX and lp → jetX
processes and to compute the unpolarized cross sections
and the SSAs for various experimental setups.
The paper is organized as follows. In Sec. II, we recall

the general formalism, deriving and discussing all new
theoretical results. In particular, in Sec. II B, we present, for
the first time, the full TMD expressions for the quasireal
photon contribution to unpolarized and transversely polar-
ized cross sections for inclusive hadron and inclusive jet
production. In Sec. III, we show our phenomenological
results, starting with the unpolarized cross sections for
HERMES, Jefferson Lab (JLab), COMPASS, and Electron-
Ion Collider (EIC) experiments, and then focus on trans-
verse SSAs, with special emphasis on the comparison with
HERMES data. Predictions for other experimental setups
are also given and discussed. Conclusions and final com-
ments are gathered in Sec. IV.

II. FORMALISM

We consider the transverse single-spin asymmetry, AN ,
for the process p↑l → hX in the proton-lepton center-of-
mass frame,

AN ¼ dσ↑ðPTÞ − dσ↓ðPTÞ
dσ↑ðPTÞ þ dσ↓ðPTÞ

¼ dσ↑ðPTÞ − dσ↑ð−PTÞ
2dσunpðPTÞ

¼ dΔσðPTÞ
2dσunpðPTÞ

; ð1Þ

where

dσ↑;↓ ≡ Ehdσp
↑;↓l→hX

d3Ph
ð2Þ

and Ph and PT are respectively the 3-momentum of the final
hadron and its vector transverse component. The polarized
proton (or nucleon) is in a pure transverse spin state S and is
assumed to move along the positive Zcm axis, while the
lepton is taken unpolarized. We define as transverse
polarization for the proton the Ycm direction, with ↑ and
↓ respectively for protons polarized along or opposite to
Ycm. The Xcm axis is defined in such a way that a hadron h
with ðPhÞXcm

> 0 is produced to the left of the incoming
proton (see also Fig. 1 of Ref. [14]).
Notice that for a generic transverse polarization, ST ,

along an azimuthal direction ϕS in the chosen reference
frame, in which the ↑ direction is given by ϕS ¼ π=2,
one has

AðϕS; STÞ ¼ ST · ðp̂ × P̂TÞAN ¼ ST sinϕSAN; ð3Þ

where p is the proton momentum. Following the usual
definition adopted in SIDIS experiments, one simply
obtains

AsinϕS
TU ≡ 2

ST

R
dϕS½dσðϕSÞ−dσðϕSþπÞ�sinϕSR

dϕS½dσðϕSÞþdσðϕSþπÞ� ¼AN: ð4Þ

In order to include effects from quasireal photon
exchange, adopting the Weizsäcker-Williams (WW)
approximation, within a TMD approach, we write the
SSA under consideration as follows,

AN ¼ dΔσLO þ dΔσWW

2½dσLO þ dσWW� ; ð5Þ

where the leading-order contributions are given by [14,15],

dΔσLO ¼
X
q

Z
dxdz

16π2xz2s
d2k⊥d3p⊥δðp⊥ · p̂0qÞJðp⊥Þδðŝþ t̂þ ûÞ½Σð↑Þ − Σð↓Þ�ql→ql ð6Þ

2dσLO ¼
X
q

Z
dxdz

16π2xz2s
d2k⊥d3p⊥δðp⊥ · p̂0qÞJðp⊥Þδðŝþ t̂þ ûÞ½Σð↑Þ þ Σð↓Þ�ql→ql; ð7Þ

with q ¼ u; ū; d; d̄; s; s̄ and
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½Σð↑Þ − Σð↓Þ�ql→ql ¼ 1

2
ΔNfq=p↑ðx; k⊥Þ cosϕ½jM̂0

1j2 þ jM̂0
2j2�Dh=qðz; p⊥Þ

þ h1qðx; k⊥ÞM̂0
1M̂

0
2ΔNDh=q↑ðz; p⊥Þ cosðϕ0 þ ϕh

qÞ

−
k2⊥
2M2

h⊥q
1T ðx; k⊥ÞM̂0

1M̂
0
2ΔNDh=q↑ðz; p⊥Þ cosð2ϕ − ϕ0 − ϕh

qÞ ð8Þ

½Σð↑Þ þ Σð↓Þ�ql→ql ¼ fq=pðx; k⊥Þ½jM̂0
1j2 þ jM̂0

2j2�Dh=qðz; p⊥Þ

−
k⊥
M

h⊥q
1 ðx; k⊥ÞM̂0

1M̂
0
2ΔNDh=q↑ðz; p⊥Þ cosðϕ − ϕ0 − ϕh

qÞ: ð9Þ

A proper definition of all functions and variables appearing
in the above equations can be found in Ref. [14] and its
Appendixes and in Ref. [30]. For a better understanding,
we recall here their physical meaning:

(i) k⊥ ¼ k⊥ðcosϕ; sinϕ; 0Þ and p⊥ are respectively the
transverse momentum of the parton in the proton and
of the final hadron with respect to the direction of the
fragmenting parent parton, with momentum p0q.
Notice that p and p⊥ are different vectors.

(ii) The first term on the rhs of Eq. (8) represents the
Sivers effect [31–33], with

Δf̂q=p;Sðx; k⊥Þ ¼ f̂q=p;Sðx; k⊥Þ − f̂q=p;−Sðx; k⊥Þ
≡ ΔNfq=p↑ðx; k⊥Þ ŜT · ðp̂ × k̂⊥Þ

¼ −2
k⊥
M

f⊥q
1T ðx; k⊥Þ ŜT · ðp̂ × k̂⊥Þ:

ð10Þ

The extra factors are the unpolarized elementary
interaction [∝ ðjM0

1j2 þ jM0
2j2Þ] and the unpolarized

fragmentation function Dh=qðz; p⊥Þ; in the chosen
reference frame, where ϕS ¼ π=2, the correlation
factor ŜT ·ðp̂×k̂⊥Þ gives the modulation sinðϕS−ϕÞ¼
cosϕ.

(iii) The second and third terms (this last one numerically
negligible) on the rhs of Eq. (8) represent the
contribution to AN of the Collins effect, given
respectively as a convolution of the unintegrated
transversity distribution, h1qðx; k⊥Þ, and the pretze-

losity distribution, h⊥q
1T ðx; k⊥Þ, with the Collins

function ΔNDh=q↑ðz; p⊥Þ [33,34],

ΔD̂h=q↑ðz; p⊥Þ ¼ D̂h=q↑ðz; p⊥Þ − D̂h=q↓ðz; p⊥Þ
≡ ΔNDh=q↑ðz; p⊥Þ ŝq · ðp̂0q × p̂⊥Þ

¼ 2p⊥
zmh

H⊥q
1 ðz; p⊥Þ ŝq · ðp̂0q × p̂⊥Þ:

ð11Þ

The product M̂0
1M̂

0
2 is related to the spin transfer

elementary interaction (∝ dσ̂q
↑l→q↑l − dσ̂q

↑l→q↓lÞ,
while the factors cosðϕ0 þ ϕh

qÞ and cosð2ϕ − ϕ0 −
ϕh
qÞ arise from phases in the k⊥-dependent trans-

versity and pretzelosity distributions, the Collins
function, and the elementary polarized interaction.

(iv) The first (and dominant) term on the rhs of Eq. (9) is
the convolution of the unpolarized TMD parton
distribution and fragmentation functions with the
unpolarized partonic interactions, while the second
one, numerically negligible, represents the Boer-
Mulders mechanism [35,36], with the corresponding
function defined as

Δf̂q;s=pðx; k⊥Þ ¼ f̂q;s=pðx; k⊥Þ − f̂q;−s=pðx; k⊥Þ
≡ ΔNfq↑=pðx; k⊥Þ ŝT · ðp̂ × k̂⊥Þ

¼ −
k⊥
M

h⊥q
1 ðx; k⊥Þ ŝT · ðp̂ × k̂⊥Þ:

ð12Þ

In the following sections, we discuss in detail the
Weizsäcker-Williams approximation and its role in the
(un)polarized process under consideration.

A. Weizsäcker-Williams approximation

As shown in Ref. [28], in a NLO treatment of the
inclusive process lp → hX, the collinear lepton singular-
ities could be regularized, and opportunely redefined, by
introducing a QED parton distribution for the lepton, in
strong analogy with the ordinary nucleon’s parton distri-
butions. The only difference is that in such a case the
partons are the lepton itself and the photon. Without
entering into many details, we can say that at order α2αs
there will be a contribution from the photon acting as a
parton of the lepton and entering the hard scattering
process. This can be represented as a Weizsäcker-
Williams contribution [37,38], where the lepton acts as a
source of real photons (see also Refs. [39–41]). We then
assume the following factorization formula for the WW
contribution to the process lp → hX,
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σWWðlp → hXÞ ¼
Z

dyfγ=lðyÞσðγp → hXÞ; ð13Þ

where fγ=lðyÞ is the number density of photons inside the
lepton, carrying a lepton-momentum fraction y (pγ ¼ ypl),
and σðγp → hXÞ is the cross section for the process γp →
hX initiated by a real photon.
For the WW distribution, we follow Ref. [28], adopting

fγ=lðyÞ ¼
α

2π

1þ ð1 − yÞ2
y

�
ln

�
μ2

y2m2
l

�
− 1

�
þOðα2Þ;

ð14Þ

where α is the electromagnetic coupling constant, μ is the
factorization scale, andml is the lepton mass. We have also

tried an alternative form for the WW distribution, like the
one proposed in Refs. [39–41] and adopted, in the context
of SSA studies, in Refs. [42,43]. In both cases, we have
considered two choices of the factorization scale, namely
μ ¼ PT or μ ¼ ffiffiffi

s
p

=2. Since these choices do not lead to
any significant differences, we will present our estimates
only for the form in Eq. (14) with μ ¼ PT .

B. Quasireal photon contribution to SSAs
for inclusive particle production

In order to compute the WW contribution to AN , based
on the factorized expression (13), we start with the general
treatment for the cross section, in a TMD scheme, of the
large-PT inclusive polarized process AðSAÞBðSBÞ → CX
[30], adapted here to the process pðSÞl → hX,

Ehdσ
pðSÞl→hX
WW

d3Ph
¼

X
a;c;d;fλg

Z
dxdydz

16π2xyz2s
d2k⊥d3p⊥δðp⊥ · p̂cÞJðp⊥Þδðŝþ t̂þ ûÞ

× ρa=p;Sλaλ
0
a
f̂a=p;Sðx; k⊥Þργ=lλγλ

0
γ
fγ=lðyÞM̂λc;λd;λaλγM̂

�
λ0c;λd;λ0aλ0γD

λh;λh
λc;λ0c

ðz; p⊥Þ; ð15Þ

which can be written schematically as

dσWWðSÞ ¼
X
a;c;d

Z
dxdydz

16π2xyz2s
d2k⊥d3p⊥δðp⊥ · p̂cÞJðp⊥Þδðŝþ t̂þ ûÞΣðSÞaγ→cd: ð16Þ

Notice that in Eq. (15) we have consistently adopted a
collinear WW distribution, as properly defined for the case
of a scattered lepton, and a photon, almost collinear with
the initial lepton and that now a, c can be a quark
(antiquark) or a gluon (this is at variance with respect to
the LO calculation where only quark TMDs are involved).
For the notation and themeaning of the quantities entering

Eq. (15), we refer the reader to Refs. [14,30]. Here, we only
note that the Mandelstam variables for the process aγ → cd
are defined using pγ ¼ ypl and that the ρ’s and the M̂’s
are respectively the helicity density matrices of partons
(photons) inside a polarized hadron (an unpolarized lepton)
and the helicity amplitudes for the elementary processes

qγ → qg and gγ → qq̄. We further recall that the M̂’s are
defined in the proton-lepton c.m. frame, where the aγ → cd
processes are not planar. They can be expressed in terms of
the corresponding canonical helicity amplitudes M̂0 in the
a–γ c.m. frame by performing proper boost and rotations as
described in Refs. [30,44] (see also Appendix A).
By summing over the helicities, using the proper

definition of the helicity density matrices for spin-1=2
and spin-1 partons and exploiting the parity properties of
the helicity amplitudes, we obtain the following expres-
sions for the kernels ΣðSÞaγ→cd:
(1) qγ → qg processes:

ΣðSÞ ¼ 1

2
f̂q=p;Sðx; k⊥Þfγ=lðyÞfDh=qðz; p⊥Þ½ðjM̂0

1j2 þ jM̂0
2j2Þ þ Pq

zP
γ
zðjM̂0

1j2 − jM̂0
2j2Þ�

− ΔNDh=q↑ðz; p⊥ÞM̂0
1M̂

0
2½Pq

x sinðφ1 − φ2 þ ϕh
qÞ − Pq

y cosðφ1 − φ2 þ ϕh
qÞ�g; ð17Þ

where q can be either a quark or an antiquark and

jM̂0
1j2 ¼ −

16

3
g2se2e2q

ŝ
û

jM̂0
2j2 ¼ −

16

3
g2se2e2q

û
ŝ

M̂0
1M̂

0
2 ¼

16

3
g2se2e2q: ð18Þ
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(2) qγ → gq processes:

ΣðSÞ ¼ 1

2
f̂q=p;Sðx; k⊥Þfγ=lðyÞfDh=gðz; p⊥Þ½ðjM̂0

1j2 þ jM̂0
3j2Þ þ Pq

zP
γ
zðjM̂0

1j2 − jM̂0
3j2Þ�

þ ΔNDh=T g
1
ðz; p⊥ÞM̂0

1M̂
0
3½T γ

1 cosðφ1 − φ3 þ 2ϕh
gÞ þ T γ

2 sinðφ1 − φ3 þ 2ϕh
gÞ�g; ð19Þ

where again q can be either a quark or an antiquark and

jM̂0
1j2 ¼ −

16

3
g2se2e2q

ŝ
t̂

jM̂0
3j2 ¼ −

16

3
g2se2e2q

t̂
ŝ

M̂0
1M̂

0
3 ¼

16

3
g2se2e2q: ð20Þ

(3) gγ → qq̄ processes:

ΣðSÞ ¼ 1

2
f̂g=p;Sðx; k⊥Þfγ=lðyÞDh=qðz; p⊥Þf½ð1 − Pg

zP
γ
zÞðjM̂0

2j2 þ jM̂0
3j2Þ�

þ 2M̂0
2M̂

0
3½ðT g

1T
γ
1 þ T g

2T
γ
2Þ cosðφ2 − φ3Þ þ ðT g

1T
γ
2 − T g

2T
γ
1Þ sinðφ2 − φ3Þ�g; ð21Þ

where

jM̂0
2j2 ¼ 2g2se2e2q

û
t̂

jM̂0
3j2 ¼ 2g2se2e2q

t̂
û

M̂0
2M̂

0
3 ¼ 2g2se2e2q: ð22Þ

(4) gγ → q̄q processes:
These can be obtained from the gγ → qq̄ processes by interchanging in the above two equations t̂ with û (that is

M̂0
2 ↔ M̂0

3 and φ2 ↔ φ3) and Dh=q with Dh=q̄.
In the above equations, Pq;g;γ

i stand for the quark, gluon, and photon polarization vector components, and T g;γ
i stand for

the gluon and photon linear polarization ones, while φi are the azimuthal phases of the helicity amplitudes (see Appendix A
for details).
We are now ready to compute the WW contributions to AN . By choosing ϕS ¼ π=2 in the adopted reference frame, we

have

dΔσWW ¼
X
a;c;d

Z
dxdydz

16π2xyz2s
d2k⊥d3p⊥δðp⊥ · p̂0qÞJðp⊥Þδðŝþ t̂þ ûÞ½Σð↑Þ − Σð↓Þ�aγ→cd ð23Þ

2dσWW ¼
X
a;c;d

Z
dxdydz

16π2xyz2s
d2k⊥d3p⊥δðp⊥ · p̂0qÞJðp⊥Þδðŝþ t̂þ ûÞ½Σð↑Þ þ Σð↓Þ�aγ→cd; ð24Þ

where

X
a;c;d

½Σð↑Þ � Σð↓Þ�aγ→cd ¼ ½Σð↑Þ � Σð↓Þ�qγ→qg þ ½Σð↑Þ � Σð↓Þ�qγ→gq þ ½Σð↑Þ � Σð↓Þ�q̄γ→q̄g þ ½Σð↑Þ � Σð↓Þ�q̄γ→gq̄

þ ½Σð↑Þ � Σð↓Þ�gγ→qq̄ þ ½Σð↑Þ � Σð↓Þ�gγ→q̄q; ð25Þ

with

½Σð↑Þ − Σð↓Þ�qγ→qg ¼ fγ=lðyÞ
�
1

2
ΔNfq=p↑ðx; k⊥Þ cosϕ½jM̂0

1j2 þ jM̂0
2j2�qγ→qgDh=qðz; p⊥Þ

þ h1qðx; k⊥Þ½M̂0
1M̂

0
2�qγ→qgΔNDh=q↑ðz; p⊥Þ cosðϕ0 þ ϕh

qÞ

−
k2⊥
2M2

h⊥q
1T ðx; k⊥Þ½M̂0

1M̂
0
2�qγ→qgΔNDh=q↑ðz; p⊥Þ cosð2ϕ − ϕ0 − ϕh

qÞ
�

ð26Þ
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½Σð↑Þ þ Σð↓Þ�qγ→qg ¼ fγ=lðyÞfq=pðx; k⊥Þ½jM̂0
1j2 þ jM̂0

2j2�qγ→qgDh=qðz; p⊥Þ

−
k⊥
M

h⊥q
1 ðx; k⊥Þ½M̂0

1M̂
0
2�qγ→qgΔNDh=q↑ðz; p⊥Þ cosðϕ − ϕ0 − ϕh

qÞ ð27Þ

½Σð↑Þ − Σð↓Þ�qγ→gq ¼ 1

2
fγ=lðyÞΔNfq=p↑ðx; k⊥Þ cosϕ½jM̂0

1j2 þ jM̂0
3j2�qγ→gqDh=gðz; p⊥Þ ð28Þ

½Σð↑Þ þ Σð↓Þ�qγ→gq ¼ fγ=lðyÞfq=pðx; k⊥Þ½jM̂0
1j2 þ jM̂0

3j2�qγ→gqDh=gðz; p⊥Þ ð29Þ

½Σð↑Þ − Σð↓Þ�gγ→qq̄ ¼ 1

2
fγ=lðyÞΔNfg=p↑ðx; k⊥Þ cosϕ½jM̂0

2j2 þ jM̂0
3j2�gγ→qq̄Dh=qðz; p⊥Þ ð30Þ

½Σð↑Þ þ Σð↓Þ�gγ→qq̄ ¼ fγ=lðyÞfg=pðx; k⊥Þ½jM̂0
2j2 þ jM̂0

3j2�gγ→qq̄Dh=qðz; p⊥Þ; ð31Þ

and once again in Eqs. (26)–(29), q can be either a quark or
an antiquark, while for the gγ → q̄q channel, one can use
the last two relations replacingDh=q withDh=q̄. In Eqs. (26)
and (27), we have redefined φ1 − φ2 ¼ ϕ0 − ϕ, consis-
tently, and in agreement, with the notation adopted in the
LO expressions.2

In Eqs. (26) and (28), we recognize the Sivers and
Collins effects. Once again, as for the LO piece, the terms
involving the pretzelosity in Eq. (26) and the Boer-Mulders
function in Eq. (27) are numerically negligible (even
saturating their positivity bounds). On the other hand, at
variance with the leading-order analysis, we have also a
potential contribution from the gluon Sivers function [see
Eq. (30)]. Notice that all contributions from linearly
polarized gluons (T g) appearing in Eq. (21) disappear
since they are coupled to linearly polarized photon (T γ)
distributions that are identically zero for an unpolarized
initial lepton.

1. SSAs in single-inclusive jet production at large
transverse momentum

Inclusive jet production in lepton-proton collisions,
although more difficult to measure, could be an invaluable
tool to access the Sivers effect, as the lack of any
fragmentation process forbids other contributions. In
Ref. [14], this case was discussed, and some results for
a high-energy electron-nucleon collider were presented.
In the same spirit, here, we extend this analysis including
the quasireal photon contribution. The expressions can be
directly obtained from the case of inclusive hadron pro-
duction by replacing the fragmentation functions with
proper Dirac delta functions. We report here the main
results for the WW contribution, referring to Ref. [14] for
the LO piece. For the master formula, we have

Ejdσ
ðp;SÞl→jetX
WW

d3Pj
¼

X
a;c;d;fλg

Z
dxdy

16π2xys
d2k⊥δðŝþ t̂þ ûÞ

× ρa=p;Sλaλ
0
a
f̂a=p;Sðx; k⊥Þργ=lλγλ

0
γ
fγ=lðyÞ

× M̂λc;λd;λaλγM̂
�
λc;λd;λ0aλ0γ ; ð32Þ

while for the contributions to ANðjetÞ,

dΔσWW
jet ¼

X
a;c;d

Z
dxdy

16π2xys
d2k⊥δðŝþ t̂þ ûÞ

× ½Σð↑Þ − Σð↓Þ�aγ→cd
jet ð33Þ

2dσWW
jet ¼

X
a;c;d

Z
dxdy

16π2xys
d2k⊥δðŝþ t̂þ ûÞ

× ½Σð↑Þ þ Σð↓Þ�aγ→cd
jet ; ð34Þ

with Eq. (25) still valid also for jet production. For the sums
and differences of the kernels, we can use the same
expressions as given in Eqs. (26)–(31) replacing
Dh=q;gðz; p⊥Þ with 1 and ΔNDh=q↑ðz; p⊥Þ with 0. In this
case, obviously, there is no fragmentation process, and only
the Sivers effect contributes to AN . Notice that in the
present treatment the jet coincides with a single final
parton.

III. PHENOMENOLOGICAL RESULTS,
COMPARISON WITH DATA,

AND PREDICTIONS

In this section, we present our theoretical estimates of the
unpolarized cross sections and the SSAs for inclusive pion
production in lepton-proton collisions, focusing on the role
of theWW contribution and its relevance with respect to the
LO approximation. In particular, we will discuss in some
detail HERMES kinematics, for which transverse SSA data
are available. We will then give predictions for experiments

2Notice that the explicit calculation of the azimuthal phases
given in Ref. [14] leads to the same results obtained following the
boost-rotation procedure described in Refs. [30,44].
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at JLab with the upgrade at 12 GeV, for COMPASS at
CERN, and for a future electron-ion collider. In this last
case, we will also show some estimates for inclusive jet
production.
Before presenting our results, it is worth giving some

comments on the adopted kinematical configuration with
respect to usual experimental setups.
According to the HERMES analysis [27], for instance,

the lepton is assumed to move along the positive Zcm axis,
so we should consider the processes lp↑ → hX, rather than
p↑l → hX. In this reference frame, the ↑ (↓) direction is
still along the þYcm (−Ycm) axis and, keeping the usual
definition of xF ¼ 2PL=

ffiffiffi
s

p
, where PL is the longitudinal

momentum of the final hadron, only the sign of xF is
reversed.
The azimuthal-dependent cross section measured by

HERMES is defined as [27]

dσ ¼ dσUU½1þ STA
sinψ
UT sinψ �; ð35Þ

where

sinψ ¼ ŜT · ðP̂T × k̂Þ ð36Þ

coincides with our sinϕS of Eq. (3), as p and k (respectively
the proton and the lepton 3-momenta) are opposite vectors
in the lepton-proton c.m. frame and one has

Asinψ
UT ðxF; PTÞ ¼ Ap↑l→hX

N ð−xF; PTÞ; ð37Þ

where Ap↑l→hX
N is the SSA that we compute here and Asinψ

UT
is the quantity measured by HERMES [27].
In the following, to keep uniform the presentation of

our results, we will show our predictions adopting the
HERMES setup also for JLab and COMPASS experiments.
For the EIC, we prefer to keep the other configuration, with
the proton moving along the positive Zcm axis, since it
allows us to emphasize the strong analogies with the SSAs
observed in p↑p → hX processes.
Finally, we notice that at relatively low PT, around

1–2 GeV, due to the inclusion of transverse momentum
effects, one or more of the partonic Mandelstam variables
might become smaller than a typical hadronic scale. This
configuration would correspond to a situation where the
propagator of the exchanged particle in the partonic
scattering becomes soft. In order to avoid such a potential
problem, following Ref. [45], we have introduced an
infrared regulator mass (μ0 ¼ 0.8 GeV). We have checked
that shifting the partonic Mandelstam invariants by this
quantity squared or cutting them out below it gives similar
results. Estimates will be shown adopting the shifting
procedure.

A. Unpolarized cross sections

For the computation of the unpolarized cross sections
within the adoptedTMDapproach,wewill use the following
factorized expressions for the unpolarized TMDs,

fa=pðx; k⊥Þ ¼ fa=pðxÞ
1

πhk2⊥i
e−k

2⊥=hk2⊥i

Dh=cðz; p⊥Þ ¼ Dh=cðzÞ
1

πhp2⊥i
e−p

2⊥=hp2⊥i; ð38Þ

with hk2⊥i ¼ 0.25 GeV2 and hp2⊥i ¼ 0.2 GeV2 as extracted
in Ref. [46]. For the collinear parton distributions, fa=pðxÞ,
we adopt the GRV98 set [47], while for the collinear
fragmentation functions (FFs), Dh=cðzÞ, we use the
Kretzer set [48] and the one by de Florian, Sassot and
Stratmann (DSS) [49]. The reasons for this choice are the
following: these sets were adopted in the extraction of the
Sivers and Collins functions we use here for the calculation
of the SSAs (next section); they are characterized by a
different role of the gluon fragmentation function, that could
play a role in the WW contribution.

1. HERMES

In Figs. 1 and 2, we present our estimates for the
unpolarized cross sections for πþ (left panels) and π−

(right panels) production at
ffiffiffi
s

p ≃ 7.25 GeV respectively
at fixed xF ¼ 0.2 as a function of PT and at fixed PT ¼
1.4 GeV as a function of xF. The thin curves refer to the LO
calculation, while the thick ones refer to the total
(LOþWW) contribution. In particular, the blue dashed
lines are obtained by adopting the Kretzer set for the
fragmentation functions, while the red solid lines are
obtained with the DSS set.
We start noticing that at LO there are almost no differences

between the estimates based on the two FF sets, while these
becomemore significantwhen also theWWpiece is included.
The reason is due to the much larger gluon fragmentation
function in the DSS set with respect to the Kretzer one, that
enters through the γq → gq process. More interesting from
our point of view are the following features: from Fig. 1, we
see that theWWpieceplays amore relevant role at smallerPT,
being almost three times bigger than the LO term around
PT ¼ 1 GeV. This can be ascribed to the smaller values of y
reached at low PT and the corresponding enhancing factor
coming from theWWdistribution [seeEq. (14)].Moreover, as
one can see in Fig. 2, its contribution is strongly asymmetric in
xF (more than the LO term), being more important for (large)
positive xF values of the final hadron. This could appear
surprising, since in such a configuration the lepton undergoes,
on average, a backward scattering, and one would expect a
lesser role from quasireal photon exchange. On the other
hand, for largepositivexF,when the final hadron (aswell as its
parent parton c) is produced in the backward proton hemi-
sphere, jûj ≪ jt̂j, where t̂ ¼ ðpa − pcÞ2 and û ¼ ðpγ − pcÞ2
for the aγ → cd process. This is the region favored by the
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WW contribution with respect to the LO piece since this one
goes like 1=Q2 ≡ 1=t̂2, while the partonic cross section for
the dominant subprocess qγ → qg [see Eqs. (27) and (18)]
goes like 1=ŝ û.

2. Jefferson Lab at 12 GeV

We consider the process l3He → πX and, adopting
SUð2Þ symmetry, give estimates at

ffiffiffi
s

p ¼ 4.84 GeV for
the cross section per nucleon. In particular, we plot

d2σ
dxFdPT

¼ 2πPTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ x2T

p Eπ
d3σ
d3Pπ

; ð39Þ

where xT ¼ 2PT=
ffiffiffi
s

p
.

In Figs. 3 and 4, we present the unpolarized cross sections
for πþ (left panels) and π− (right panels) production at

ffiffiffi
s

p ≃ 4.84 GeV respectively at fixed xF ¼ 0.2 as a function
of PT and at fixed PT ¼ 1.5 GeV as a function of xF. The
curves have the same meaning as for the HERMES
kinematics. Same considerations are also valid, with the
only extra remark, see Fig. 4, that even the LO calculation
gives sizeably different results adopting the twoFF sets. This
is due to the more important role of the DSS FFs in the very
large-z region, as explored at this energy.

3. COMPASS

For the COMPASS experiment, the incoming lepton is a
muon with a lab energy of 160 GeV, resulting in

ffiffiffi
s

p ¼
17.4 GeV. Following their setup, we use the c.m. pseudor-
apidity η of the produced hadron in the range −0.1 < η < 2
(as covered by the COMPASS spectrometer). Similarly to
the HERMES configuration, pseudorapidity is counted as

HERMES, ⎯√s = 7.25 GeV
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E
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3 σ/
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2 ]
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l p -> π+ X
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xF = 0.2

l p -> π− X

Kretzer
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FIG. 1. Estimates of the unpolarized cross sections at xF ¼ 0.2 as a function of PT for πþ (left panel) and π− (right panel) production in
lp → πX, at HERMES,

ffiffiffi
s

p ¼ 7.25 GeV, adopting two sets for the fragmentation functions: Kretzer set (blue dashed lines) and DSS set
(red solid lines). The thin curves represent the LO calculation, while the thick curves represent the total (LOþWW) result.
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FIG. 2. Estimates of the unpolarized cross sections at PT ¼ 1.4 GeV as a function of xF for πþ (left panel) and π− (right panel)
production in lp → πX, at HERMES,

ffiffiffi
s

p ¼ 7.25 GeV. Curves have the same meaning as in Fig. 1.

D’ALESIO, FLORE, and MURGIA PHYSICAL REVIEW D 95, 094002 (2017)

094002-8



positive in the forward direction of the incident muon. We
have

d2σ
dηdPT

¼ 2πPTEπ
d3σ
d3Pπ

: ð40Þ

In Fig. 5, we show the unpolarized cross sections for πþ (left
panel) and π− (right panel) production at

ffiffiffi
s

p ¼ 17.4 GeV
and fixed PT ¼ 2 GeV as a function of η. The curves have
the same meaning as in the previous figures. In this case, the
two FF sets give almost the same LO results. At variance
with what happens for the HERMES configuration, here the
WWcontribution, although still relevant, plays a lesser role:
adopting the DSS set, for instance, it is at most 65% of the
LO term for π− and only 30% for πþ production. Indeed, the
muon mass is almost 200 times bigger than the electron
mass, thus reducing the size of the logarithmic piece entering
Eq. (14), partially cancelled by the finite term.

4. Electron-ion collider

The proposed future EIC with
ffiffiffi
s

p ¼ 100 GeV [50] will
allow us to study the cross section for single-inclusive pion
production in electron-proton collisions at very high ener-
gies, comparable to those reached in proton-proton reac-
tions. In such a case, we prefer to adopt the configuration in
which the protonmoves along the positiveZcm axis, defining
xF accordingly (more precisely, xF > 0 herewill refer to the
forward proton hemisphere). This choice will appear more
natural and helpful in the context of the analysis of trans-
verse single-spin asymmetries (next section), allowing an
easier comparison with AN measured in pp collisions. For
the same reason, we will consider neutral pion production.
In Fig. 6, we show the unpolarized cross sections for π0

production at
ffiffiffi
s

p ¼ 100 GeV respectively at fixed PT ¼
2 GeV as a function of xF (left panel) and at fixed xF ¼ 0.2
as a function of PT (right panel). The curves have the same
meaning as in the previous figures. Once again, the two FF

JLab-12, ⎯√s = 4.84 GeV
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FIG. 3. Estimates of the unpolarized cross sections per nucleon at xF ¼ 0.2 as a function of PT for πþ (left panel) and π− (right panel)
production in l3He → πX, at JLab-12,

ffiffiffi
s

p ¼ 4.84 GeV. Curves have the same meaning as in the previous figures.

JLab-12, s = 4.84 GeV
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FIG. 4. Estimates of the unpolarized cross sections per nucleon at PT ¼ 1.5 GeV as a function of xF for πþ (left panel) and π− (right
panel) production in l3He → πX, at JLab-12,

ffiffiffi
s

p ¼ 4.84 GeV. Curves have the same meaning as in the previous figures.
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sets give almost the same LO results. At variance with what
happens at lower energies, here the WW contribution turns
out to be much more relevant, being up to four times larger
than the LO term at PT ¼ 2 GeV. The reason is that at such
large energies and not so large PT , for xF ≥ 0, we probe the
small-y region of the photon spectrum in the WW dis-
tribution, that behaves like 1=y, while for xF < 0 (the
backward region here), the WW partonic cross sections
dominate the LO one, since jûj ≪ jt̂j.
At the EIC, given the large energy available, the

interesting study of inclusive jet production could be
feasible. In Fig. 7, we give some estimates of the cross
sections for jet production at fixed PjT ¼ 2.5 GeV as a
function of xF ¼ 2PjL=

ffiffiffi
s

p
(left panel) and at fixed xF ¼

0.2 as a function of PjT (right panel). The slightly larger PjT

value considered helps keep potential infrared divergences
in the hard elementary scattering under better control. Even
here, the WW contribution heavily dominates the LO term

over almost the full xF range (with its characteristic
asymmetric behavior). Notice that in this case both at
large positive and large negative xF there is no dilution
from the large-z behavior of fragmentation functions as
happens in inclusive pion production.

B. Transverse single-spin asymmetries

We now focus on the main issue of this paper, the study
of the role of quasireal photon exchange in SSAs for single-
inclusive particle production in lepton-proton collisions,
starting with a comparison with the available data from the
HERMES Collaboration [27]. In our computations, based
on a TMD factorization scheme, we consider two different
sets of the quark Sivers and Collins functions (the latter
coupled to the transversity distribution), as previously
obtained in a series of papers from fits of SIDIS and
eþe− data [51–54].

COMPASS, ⎯√s = 17.4 GeV

 0

 200

 400

 600

 800

 1000

 0  0.5  1  1.5

d2 σ  
/ d

η 
dP

T   
[p

b/
G

eV
2 ]

η

μ p -> π+ X

 0  0.5  1  1.5

η

PT = 2 GeV

μ p -> π− X

Kretzer
DSS

FIG. 5. Estimates of the unpolarized cross sections at PT ¼ 2 GeV as a function of η for πþ (left panel) and π− (right panel) production
in μp → πX, at COMPASS,

ffiffiffi
s

p ¼ 17.4 GeV. Curves have the same meaning as in the previous figures.
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FIG. 6. Estimates of the unpolarized cross sections in pl → π0X, at the EIC,
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p ¼ 100 GeV, at PT ¼ 2 GeV as a function of xF (left
panel) and at fixed xF ¼ 0.2 as a function of PT (right panel). Notice that xF > 0 here corresponds to the forward proton hemisphere.
Curves have the same meaning as in the previous figures.
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These sets, besides some differences in the initial
assumptions and in the data used for their extraction, differ
in the choice of the collinear fragmentation functions. More
precisely, for the fits [51,52] (SIDIS 1), the Kretzer FF set
was adopted, while for the fits [53,54] (SIDIS 2), the DSS
FF set was employed. The SIDIS 1 and SIDIS 2 sets are
well representative of the extractions of these TMDs and
their uncertainties. Concerning the gluon Sivers function,
still poorly determined, we adopt the recent extractions of
Ref. [55]. Notice that these are obtained assuming a specific
set for the quark Sivers functions, and therefore we will
have a gluon Sivers function associated to each SIDIS set. It
is worth recalling that the extractions of the quark and
gluon Sivers functions (as well of the transversity distri-
bution) are constrained only up to x≃ 0.3.
In the following, we will consider both the fully inclusive

HERMES data, already discussed in Ref. [15], as well as
the subsample of antitagged data (with no detection of the
final lepton), for lp↑ → πX processes at large PT . In both
cases, there is only one large scale (needed for a perturba-
tive calculation), the PT of the final pion. For this reason,
we only look at those data at PT ≥ 1 GeV.
At variance with SIDIS azimuthal asymmetries, where

the single contributions to AN coming from the Sivers and
Collins effects can be accessed separately by looking at
their proper azimuthal modulations, here the two effects
could contribute together and mix up. For this reason, we
will present for each SIDIS set the overall contribution,
adding together the quark Sivers (dominant) and Collins
(almost negligible) effects. This will be done for the LO and
the complete (LOþWW) calculation. For this last one, we
will also show the overall statistical uncertainty bands
given as the envelope of the uncertainties on the quark
Sivers and Collins functions, obtained following the
procedure described in Appendix A of Ref. [53]. For
completeness, but with a word of caution, we have also

computed the results obtained adding the contribution from
the gluon Sivers function. In the following, we will show
them explicitly only for HERMES kinematics.

1. HERMES: SSAs and comparison with data

Our predictions for Asinψ
UT , for inclusive πþ (upper panels)

and π− (lower panels) production, as a function of xF at
PT ¼ 1.1 GeV, compared with the fully inclusive
HERMES data [27], are presented in Fig. 8 (this is the
only bin at relatively large PT). More precisely, we show
the LO calculation, blue dashed lines, and the complete
result adding the WW piece, red solid lines, adopting
the quark Sivers and Collins functions from the SIDIS 1
(left panels) and SIDIS 2 (right panels) sets. The overall
statistical uncertainty band is also shown. The green dot-
dashed lines represent the total contribution including also
the gluon Sivers effect.
We can then make the following remarks: the inclusion

of the WW contribution (that in this kinematical region
dominates the unpolarized cross sections) improves sig-
nificantly the agreement with the data; the Collins effect is
always tiny or completely negligible (both in the LO and
WW contributions); the differences between the predictions
adopting the SIDIS 1 and SIDIS 2 sets are due to the
different behavior of the corresponding Sivers functions;
the contribution coming from the gluon Sivers function is
almost negligible for the SIDIS 2 set, while that for the
SIDIS 1 set is relatively more important, reducing the
agreement with the data. We have nevertheless to point out
that there is still a large uncertainty in the gluon Sivers
function extraction in the large-x region, as covered in such
a kinematical configuration.
In Fig. 9, we present, for the first time, our results for the

antitagged category for Asinψ
UT , compared with HERMES

data [27], at fixed xF ¼ 0.2 (average value of the data set)
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as a function of PT . Once again, we consider the inclusive
πþ (upper panels) and π− (lower panels) production,
adopting two sets for the quark Sivers and Collins func-
tions: SIDIS 1 (left panels) and SIDIS 2 (right panels). The
curves have the same meaning as for the fully inclusive
case. From these results, we can observe that once again the
WW contribution leads to a much better description of the
data (even if some sizeable discrepancy for the πþ data
remains). The gluon Sivers effect is negligible, except for
the SIDIS 1 set in π− production. However, this kinematical
region probes the still poorly constrained large-x behavior
of the Sivers functions (the dominant contribution), which
reflects into wider statistical error bands.

2. SSAs at JLab

Forthcoming measurements at the energy of 12 GeV are
going to be performed at JLab (the 6 GeV energy setup is

not able to provide sufficiently large-PT values),
on transversely polarized proton, neutron, and deuteron
targets. We focus here, for its complementarity with
HERMES data, on the neutron target. Indeed, the combined
analysis of proton and neutron target events will help in our
understanding of the flavor decomposition and on the role
of the up and down quark contributions.
Our estimates for the JLab SSAs, AsinϕS

UT , for inclusive
pion production off the polarized 3He (neutron) target are
shown in Fig. 10 at fixed PT ¼ 1.5 GeV as a function of
xF. Notice that this somehow large-PT value has been
chosen for uniformity with what was discussed for the
unpolarized cross section and because it allows us to span a
larger region in xF (in particular its positive values). We
recall that we keep adopting the HERMES configuration,
with the incoming lepton moving along the positive Zcm

axis, and plot AsinϕS
UT ≡ Asinψ

UT . In particular, we show for the
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FIG. 8. Theoretical estimates for Asinψ
UT vs xF at

ffiffiffi
s

p ≃ 7.25 GeV and PT ¼ 1.1 GeV for inclusive πþ (upper panels) and π− (lower
panels) production in lp↑ → πX processes, compared with the fully inclusive HERMES data [27]. Two sets for the Sivers and Collins
functions have been considered: the SIDIS 1 set (left panels) and the SIDIS 2 set (right panels). More precisely, we show both the LO
(blue dashed lines) and LOþWW (red solid lines) quark contributions, as well as the total result including the gluon Sivers effect (green
dot-dashed lines). The overall statistical uncertainty band, obtained following the procedure described in Appendix A of Ref. [53] is
also shown.
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FIG. 9. Theoretical estimates for Asinψ
UT vs PT at

ffiffiffi
s

p ≃ 7.25 GeV and xF ¼ 0.2 for inclusive πþ (upper panels) and π− (lower panels)
production in lp↑ → πX processes, compared with the antitagged HERMES data [27]. Curves have the same meaning as in the previous
figure.
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FIG. 10. Theoretical estimates for AsinϕS
UT vs xF at
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s

p ≃ 4.84 GeV and PT ¼ 1.5 GeV for inclusive πþ (red solid lines) and π− (blue
dashed lines) production, which will be measured at JLab operating on a polarized 3He (neutron) target, with a beam energy of 12 GeV.
The thin curves refer to the LO calculation, while the thick ones refer to the full, LOþWW, estimates for the two sets for the quark
Sivers and Collins functions: SIDIS 1 (left panel) and SIDIS 2 (right panel). The overall statistical uncertainty band, obtained following
the procedure described in Appendix A of Ref. [53], is also shown.
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SIDIS 1 (left panel) and the SIDIS 2 (right panel) the LO
(thin lines) and the LOþWW (thick lines) calculation,
displaying also the uncertainty bands for the total contri-
bution. The gluon Sivers effect, not included, plays some
role only in π− production when adopting the SIDIS 1 set,
as in the HERMES case, being otherwise negligible. In
most cases, the full, LOþWW, estimates present the same
behavior, in size and sign, as the LO ones. Nevertheless,
one has to keep in mind that, with the DSS FF set for
instance, the WW piece alone is about 50% (90%) of the
LO contribution for πþ (π−) production in this kinematical
region. The wider uncertainty bands are due to the large-x
region probed at such moderate energies, where the current
extractions of the Sivers functions are still unconstrained.
It is worth noticing that the differences with respect to

the corresponding HERMES results are due to the
exchanged role of the up and down quark Sivers distribu-
tions when adopting SU(2) symmetry for a neutron target
(JLab). This reflects also in the relative weight of the WW
piece when going from positively to negatively charged
pions. Moreover, the very large size of AN for πþ
production at large positive xF (backward neutron hemi-
sphere), both adopting the SIDIS 1 and the SIDIS 2 sets, is
due to the probed values of the quark light-cone momentum
fraction in the polarized neutron (down to 0.1 at xF > 0).
For such x values, the negative up quark neutron Sivers
function (down quark for a proton) is quite large for these
two sets and, coupling to the favored fragmentation
function, largely dominates over the other contributions.

3. SSAs at COMPASS

Another place where these SSAs could be measured is
certainly the COMPASS experiment. Here, we present
some estimates for this experimental setup. In Fig. 11, we
show AsinϕS

UT vs xF at
ffiffiffi
s

p ≃ 17.4 GeV and PT ¼ 2 GeV for

inclusive πþ (red solid lines) and π− (blue dashed lines)
production in μp↑ → πX. Curves have the same meaning
as in the previous figures. One can see that the SSAs for πþ
production are expected to be sizeable, with quite narrow
error bands; a clear test of this approach could be then
carried out. Again, the inclusion of the WW contribution
changes only slightly the LO estimates.

4. SSAs at EIC

In Refs. [14,15], some estimates for inclusive jet and
inclusive neutral pion production for an electron-nucleon
collider at 50 GeV were given with the aim of checking
whether some features of the SSAs observed in p↑p → πX,
and reproduced in a TMD scheme, could be also encoun-
tered in the process under consideration. In such a case, it is
more convenient to adopt the configuration where the
polarized proton is moving along the positive Zcm axis
and positive xF values correspond to the forward proton
hemisphere.
It is then interesting to see what happens when one

includes also the contribution from quasireal photon
exchange at the future EIC.
In Fig. 12, we show our estimates at

ffiffiffi
s

p ¼ 100 GeV for
AsinϕS
TU ≡ AN [as defined in Eq. (4)] for inclusive π0

production in p↑l → πX vs xF at PT ¼ 2 GeV (left panel)
and for inclusive jet production vs PjT at xF ¼ 0.2 (right
panel), adopting the SIDIS 1 set. This set indeed is the one
that better reproduces the behavior of AN in p↑p → πX
processes (see for instance Ref. [29]) and that is consistent
with the findings of a dedicated study performed in
Ref. [56]. Again, thick (thin) curves represent LOþ
WW (LO) contributions. Some comments are in order:

(i) The gluon Sivers effect (not shown) is completely
negligible.

COMPASS, ⎯√s = 17.4 GeV
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FIG. 11. Theoretical estimates for AsinϕS
UT vs xF at

ffiffiffi
s

p ≃ 17.4 GeV and PT ¼ 2 GeV for inclusive πþ (red solid lines) and π− (blue
dashed lines) production in μp↑ → πX at COMPASS. Two sets for the quark Sivers and Collins functions have been adopted: SIDIS 1
(left panel) and SIDIS 2 (right panel). The overall statistical uncertainty bands are also shown. Curves have the same meaning as in the
previous figure.

D’ALESIO, FLORE, and MURGIA PHYSICAL REVIEW D 95, 094002 (2017)

094002-14



(ii) The corresponding results for π0 as a function of PT ,
not shown, are almost identical to those for inclusive
jet production. The same is true for AN for inclusive
jet production as a function of xF, not shown, almost
identical to that for π0 production.

(iii) As one can see, the WW contribution does not
change the LO behavior. This could be expected
since both contributions enter with the same struc-
ture in the SSA. We then confirm all findings of
Ref. [15] concerning the xF behavior, with the extra
important information that at such energies and PT
values the WW piece is the dominant one in the
unpolarized cross sections.

(iv) Quite interestingly, the PT behavior, shown here for
the first time, is almost flat and measurable, up to
very large-PT values. This is strongly analogous to
what happens in p↑p → π0X as measured by the
STAR Collaboration [12], and it would be another
very important test of the full approach.

(v) The large error bands at large xF are due to the still
poor knowledge of the Sivers function in the large-x
region. Future measurements at JLab could defi-
nitely help in this respect.

5. Results from new extractions of the Sivers
and Collins functions

At the very last stage of this work, a new extraction of the
Sivers functions from the latest SIDIS data has been released
[57]. Together with the fit of the Collins and the transversity
functions of Ref. [58], they represent the most updated
information on the relevant TMDs entering the present
analysis. Among the main features of these extractions,
we mention the use of the DSS FF set with different
Gaussian widths for the unpolarized TMDs, as extracted

from SIDIS multiplicities [59], hk2⊥i ¼ 0.57 GeV2 and
hp2⊥i ¼ 0.12 GeV2 [to be compared with those used in
SIDIS 1 and SIDIS 2 fits; see Eq. (38)]; the resulting reduced
size of the x-dependent part of the valence up and down
Sivers distributions; and a more flexible parametrization of
the Collins functions, with a more accurate extraction of their
transverse momentum dependence. We also notice that for
the new fit of the Sivers functions the CTEQ6L parton
distribution functions [60] were used.
We then checked the impact of these new parametriza-

tions on the description of HERMES data. The main results
are the following: the Collins contribution is practically
negligible for the fully inclusive data set and tiny, but
slightly improving the description, for the antitagged data
category; while still confirming the good agreement with
the fully inclusive data, the use of the new Sivers para-
metrization reduces significantly the discrepancies between
the theoretical predictions and the antitagged data for πþ
production (slightly overestimated adopting the SIDIS 1
and SIDIS 2 sets; see Fig. 9, upper panels). In Fig. 13, we
present the comparison of these new estimates with the
antitagged data, noticing that, even at LO, one gets a clear
improvement in the description of πþ data. No significant
differences appear in the unpolarized cross sections, where
once again the WW piece is comparable with, or even
dominates, the LO contribution.
Analogous features show up also in the predictions for

JLab and COMPASS kinematics: almost no differences
appear in the unpolarized cross sections, while a reduction
in size of the SSAs for πþ production (roughly a factor of 2
for COMPASS and 3 for JLab with respect to SIDIS 2
estimates) comes out, leading to values for JLab at large xF
of around -10%. For AN in jet and π0 production at the EIC,
we find similar behaviors as those obtained adopting the
SIDIS 1 set (see Fig. 12), with a reduction of our estimates

EIC, ⎯√s = 100 GeV

-0.05

 0

 0.05

 0.1

 0.15

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

A
T

U
si

nφ
S

xF

SIDIS1

 p l -> π0 X PT=2 GeV

 2  3  4  5  6  7  8  9  10  11
PjT [GeV]

SIDIS1

 p l -> jet X xF=0.2

FIG. 12. Theoretical estimates for AsinϕS
TU at
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p ¼ 100 GeV as a function of xF at PT ¼ 2 GeV for inclusive π0 production (left panel)
and as a function of PjT at xF ¼ 0.2 for inclusive jet production (right panel), adopting the SIDIS 1 set for the quark Sivers and Collins
functions. The overall statistical uncertainty bands are also shown. Thick (thin) lines refer to the LOþWW (LO) calculation.
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by a factor of 1.5 at fixed xF vs PT [that is, ANðjetÞ is
around 2% at small PT and 1% at the largest PT values] and
by a factor of about 3 at fixed PT vs xF. We have to notice
that even if for the PT dependence this reduction could
make the measurement of this asymmetry less feasible, the
corresponding uncertainty band still presents a flat behav-
ior, implying a nonvanishing and persisting SSA at large
PT . Concerning the xF dependence at large-xF values, one
has to take into account the poor knowledge on the Sivers
function in the large-x region, heavily affecting also the
new extraction.
Some general comments on these results are mandatory:
(i) The new extraction of the Sivers function (the

dominant piece) is reasonably under control for
HERMES kinematics. On the other hand, some of
the assumptions behind it (like the very different
Gaussian widths in the unpolarized TMDs), still
under current investigation, could have a non-
negligible impact on the predictions at JLab and the
EIC (see the above comments on the reduction
factors).

(ii) At the present stage, it is then worth keeping and
checking also the results obtained adopting the
former fits, SIDIS 1 and SIDIS 2, because they
are representative of different behaviors in the large-
x region, still undetermined, and of different as-
sumptions in their extractions.

(iii) Even if these new extractions seem able to describe
HERMES data quite well in a LO approximation, one
has to keep in mind that in such a kinematical region
the events are strongly dominated by the quasireal
photon exchange contribution (see Sec. III A 1).

The fact that the WW piece together with these new
extractions gives a very good description of all HERMES
data is the most interesting aspect of these results.

IV. CONCLUSIONS

SSAs observed in single-inclusive processes, like those
measured in p↑p → hX, where only one large energy scale
is detected, represent a challenging issue in perturbative
QCD. Indeed, despite the rich amount of experimental data
and their peculiar features, persisting up to the highest
available energies, a thorough phenomenological descrip-
tion is so far missing, and many theoretical aspects are still
controversial and under debate.
Two approaches are nowadays adopted to describe these

SSAs: one based on higher-twist parton correlation func-
tions within a proven collinear factorization framework and
one based on transverse momentum-dependent distribu-
tions within a phenomenological TMD scheme. Even if not
formally proven, this last one enjoys quite considerable
phenomenological successes, and it is then worth exploit-
ing it further.
Because of the more complicated nature of SSAs in pp

collisions, and the difficulty in understanding their source,
a study of SSAs in the theoretical more simple inclusive
lepton-nucleon scattering processes, within a TMD
scheme, was proposed in Ref. [14] and then analyzed
against the available data in Ref. [15]. These processes,
moreover, share strong analogies with the SIDIS process
for which TMD factorization has been proven. For these
reasons, they represent an important testing ground for the
understanding of the origin of SSAs.
To assess the validity of the TMD scheme, the single-

spin asymmetry AN, for the lp↑ → hX process, was
calculated in a leading-order approximation, adopting the
Sivers and the Collins functions as extracted from SIDIS
and eþe− data. Doing so, a unified TMD factorized
approach is adopted, valid for lp → l0hX and lp → hX
processes, in which, consistently, we obtain information on
the TMDs and make predictions for AN.

anti-tagged [backward target hemisph.]

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 1  1.4  1.8  2.2

A
U

T
si

nψ

PT   [GeV]

fit016

l p -> π+ X

xF = 0.2

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 1  1.4  1.8  2.2
PT   [GeV]

fit016

xF = 0.2

l p -> π− X
LO

LO+WW (q)

FIG. 13. Theoretical estimates of the Sivers contribution to Asinψ
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p ≃ 7.25 GeV and xF ¼ 0.2 for inclusive πþ (left panel)
and π− (right panel) production in lp↑ → πX processes, compared with the antitagged HERMES data [27] and adopting the quark
Sivers functions of Ref. [57]. Curves have the following meaning: blue dashed lines for the LO and red solid lines for the LOþWW
contributions.
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In the present analysis, we have extended this strategy,
including the contribution of quasireal photon exchange, in
the Weizsäcker-Williams approximation, expected to be
important when the final lepton is scattered at small angles.
To this aim, we have calculated, for the first time, all
involved TMD contributions both to the unpolarized and
transversely polarized cross sections. We also discussed the
role of the WW term in the estimates of the unpolarized
cross sections in various experimental setups, showing that
it can be extremely important. In particular, at not so large-
PT values (like those explored at HERMES) and at large
energies (as those reachable at an EIC), it could be
comparable or even dominant with respect to the LO
contribution.
More importantly, we have shown how the description of

the available SSA data from the HERMES Collaboration is
significantly improved when the WW piece is included.
Within the present approach, we have also analyzed the
antitagged data events, not considered in the previous LO
study. Even in this case, our theoretical estimates show a
good agreement with the data. It is also worth mentioning
that the very few discrepancies in the description of some
data sets (namely πþ antitagged data) seem to disappear
when adopting a very recent extraction of the Sivers
distributions. This is another successful aspect of the
phenomenological consistency of the entire approach.
These are, in fact, the main findings of this study.
The role of the gluon Sivers function, which enters

through the WW contribution, has been also investigated.
Adopting the present knowledge on this TMD, even if with
some caution, we have checked that its effect is negligible
in most kinematical regions (at least where its extraction is
constrained) and does not spoil the agreement with data.
Further study would nevertheless be helpful.
Some predictions for ongoing or future experiments have

been presented, pointing out the importance of new
measurements in testing the overall picture. Notice that
in many kinematical configurations the complete (LOþ
WW) calculation of the SSAs shows a very similar
behavior, in size and shape, as for the LO contribution.
On the other hand, as extensively discussed, the WW piece
changes significantly the expected yields of inclusive
particle production.
Among the interesting perspectives of this study, we

emphasize that at the EIC, within a TMD scheme, one
would expect similar features as those observed in the
SSAs for p↑p → πX processes: the rising of AN with xF at
fixed PT , its almost vanishing at negative xF values, and,
somehow surprisingly, a flat behavior of AN as a function of
PT . The very interesting case of SSAs in inclusive jet
production, for which the Collins effect plays no role, has
also been discussed, showing features similar to those for
the inclusive neutral pion production.
This analysis could definitely be considered a further

step toward a deeper understanding of the origin of SSAs in

inclusive processes and, more generally, toward a unified
TMD picture of these observables. All these findings,
although quite encouraging, require further dedicated
studies, both on the experimental and the theoretical sides.
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APPENDIX: HELICITY FORMALISM

We collect here some details useful for the computation
and the understanding of the expressions given in Sec. II B
(see Refs. [30,44] for a complete treatment).
We start by recalling the helicity density matrix of a

quark q, which can be written in terms of the quark
polarization vector components, Pq ¼ ðPq

x; P
q
y; P

q
z Þ,

defined in the quark helicity frame, as

ρq=p;Sλq;λ0q
¼

�
ρqþþ ρqþ−

ρq−þ ρq−−

�
p;S

¼ 1

2

�
1þ Pq

z Pq
x − iPq

y

Pq
x þ iPq

y 1 − Pq
z

�
p;S

: ðA1Þ

For a gluon (or any spin-1 massless particle), one can define
the helicity density matrix as

ρg=p;Sλg;λ0g
¼ 1

2

�
1þ Pg

z T g
1 − iT g

2

T g
1 þ iT g

2 1 − Pg
z

�
p;S

¼ 1

2

�
1þ Pg

circ −Pg
line

−2iϕ

−Pg
line

2iϕ 1 − Pg
circ

�
p;S

: ðA2Þ

Equation (A2) refers, in general, to a mixture of circularly
and linearly polarized states. Pg

circ corresponds to Pg
z, the

gluon longitudinal polarization. The off-diagonal elements
of Eq. (A2) are related to the linear polarization of the
gluons in the ðxyÞ plane at an angle ϕ to the x axis.
Concerning the fragmentation sector, we have for a

spinless (or unpolarized) hadronX
λh

Dλh;λh
λc;λ0c

ðz; p⊥Þ ¼ Dh=c
λc;λ0c

ðz; p⊥Þ ¼ Dh=c
λc;λ0c

ðz; p⊥Þeiðλc−λ0cÞϕh
c :

ðA3Þ
In particular, for the quark fragmentation, we have

D̂þþðz; p⊥Þ ¼ D̂−−ðz; p⊥Þ ¼ Dh=qðz; p⊥Þ ðA4Þ

D̂þ−ðz; p⊥Þ ¼ Dþ−ðz; p⊥Þeiϕh
q ¼ i

2
ΔNDh=q↑ðz; p⊥Þeiϕh

q ;

ðA5Þ
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and for the gluon case,

D̂þþðz; p⊥Þ ¼ D̂−−ðz; p⊥Þ ¼ Dh=gðz; p⊥Þ ðA6Þ

D̂þ−ðz; p⊥Þ ¼ Dþ−ðz; p⊥Þe2iϕh
g ¼ 1

2
ΔNDh=T g

1
ðz; p⊥Þe2iϕh

g :

ðA7Þ

The remaining pieces to be considered are the helicity
scattering amplitudes. The transformations (a boost and
two rotations) connecting the p–l c.m.frame to the
canonical a–γ c.m. frame introduce some nontrivial phases
in the helicity amplitudes M̂λc;λd;λa;λγ , which are a direct
consequence of the nonplanar kinematics.
For massless partons, there are only three independent

elementary canonical amplitudes M̂0, corresponding to the
aγ → cd processes we are interested in. This allows us to
adopt the following notation,

M̂þþ;þþ ≡ M̂0
1e

iφ1

M̂−þ;−þ ≡ M̂0
2e

iφ2

M̂−þ;þ− ≡ M̂0
3e

iφ3 ; ðA8Þ

where M̂0
1, M̂

0
2, and M̂0

3 are defined as

M̂0þ;þ;þ;þ ¼ M̂0
−;−;−;− ≡ M̂0

1

M̂0
−;þ;−;þ ¼ M̂0þ;−;þ;− ≡ M̂0

2

M̂0
−;þ;þ;− ¼ M̂0þ;−;−;þ ≡ M̂0

3; ðA9Þ

and the phases φ1, φ2, and φ3 can be found in Refs. [30,44].
Notice that the þ and − subscripts refer to ðþ1=2Þ and
ð−1=2Þ helicities for quarks and to ðþ1Þ and ð−1Þ helicities
for gluons/photons.
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