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The ultraviolet completion of a large N QCD model requires introducing new degrees of freedom at
certain scale so that the UV behavior may become asymptotically conformal with no Landau poles and no
UV divergences of Wilson loops. These UV degrees of freedom are represented by certain antibranes
arranged on the blown-up sphere of a warped resolved conifold in a way that they are separated from the
other set of branes that control the IR behavior of the theory. This separation of the branes and the
antibranes creates instability in the theory. Further complications arise from the curvature of the ambient
space. We show that, despite these analytical hurdles, stability may still be achieved by switching on
appropriate world-volume fluxes on the branes. The UV degrees of freedom, on the other hand, modify the
RG flow in the model. We discuss this in details by evaluating the flow from IR confining to UV conformal.
Finally we lay down a calculational scheme to study bulk viscosity which, in turn, would signal the inherent
nonconformality in this model.
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I. INTRODUCTION AND A BRIEF REVIEW
OF THE MODEL

The theory of the nuclear strong interaction, quantum
chromodynamics (QCD), becomes strongly coupled as
the energy scale is lowered. This fact renders practical
calculations especially challenging, as the convergence
of a perturbative expansion is no longer guaranteed.
Traditionally, nonperturbative phenomena involving
QCD could only be addressed through a small set of
strategies. Some of these are: numerical techniques ger-
mane to a discretized version of the theory on a space-time
lattice: lattice QCD [1], and using the operator product
expansion to derive sum rules that circumvent some of the
limitations of perturbation approaches [2]. In addition,
several generations of experimental measurements have
fuelled decades of phenomenological model-building.
On the more formal side, two of the elements that have

contributed to what has become a revolution in the theory
of the nuclear strong interaction, is the observation that a
non-Abelian gauge theory in the large number of colors
limit has a perturbative expansion that matches that of a
closed string theory [3], and the celebrated AdS=CFT
correspondence [4]. Even though an exact gravity dual
to QCD—with a finite number of colors—is not at hand,
theoretical constructions do exist that share some of its
features, such as the appearance of a renormalization scale.
Those approaches offer the tantalizing prospect of being
able to performed calculations in strongly coupled QCD

analytically. Many applications were concerned up to now
with the many-body physics of the strongly-coupled quark-
gluon plasma (QGP) [5] Indeed, experimental measurements
performed at the Relativistic Heavy-Ion Collider (RHIC) at
Brookhaven National Laboratory, and at the Large Hadron
Collider (LHC) at CERN, have confirmed that the QGP is
strongly coupled, in that it could very successfully be
modelled using relativistic fluid mechanics [6]. Much of
the original excitement in the community owed to the fact
that the value of the effective shear viscosity over entropy
density consistent with heavy ion data seemed to be
approximately that inherent to a class of conformal field
theories with η=s ¼ 1=4π [7]. It is also know that QCD is
only approximately conformal, and hence has a nonvanish-
ing coefficient of bulk viscosity [8]. It has recently also
become evident that a finite bulk viscosity is also demanded
by heavy-ion data [9]. The estimates for the precise value of
the QCD transport coefficients are constantly being refined
[6], but the hope of using string-based models in the study of
hot and dense QCD remains.
Having specified a context, detailed applications are not

covered by this work but a model which can be used for
such investigations is presented. Thus, from hereon we
concentrate on one class of top-down supergravity models
(for bottom-up approaches see for eg. [10]). To study the
supergravity dual of a model with renormalization group
flow, one of the key question is how we can maintain
strong’t Hooft coupling from UV to IR. This forms the
basis of the construction of the Klebanov-Strassler model
[11] where, at any given energy scale, there are an infinite
number of gauge theory descriptions available out of which
one (or a small set) is infinitely strongly coupled. The
gravity dual from small r to large r corresponds to the set of
these infinitely strongly coupled gauge theories from UV to
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IR, so that at far IR it is the confining gauge theory whose
dynamics is captured by the gravity dual.
The Klebanov-Strassler model [11] provides a good

description for the IR of the gauge theory. However there
are UV issues related to Landau poles and divergences of the
Wilson loops [12] that require us to seek a UV completion of
theKlebanov-Strasslermodel. TheUVcompletion should be
asymptotically conformal in terms of the ’t Hooft coupling λ,
so that it is asymptotically free in terms of the YM coupling
g2YM. This way one of the requirements for a large N QCD
model may be easily taken care of.
In [13] we managed to construct the gravity dual for a

UV complete model of a large N QCD. In fact we showed
how thermal behavior could also be studied in this setup.
The detailed supergravity analysis may be succinctly
presented in terms of three regions [14]. Region 1 corre-
sponds to the gravity dual of the IR regime of thermal QCD
where confinement and deconfinement dynamics may be
studied, whereas region 3 corresponds to the asymptotically
AdS region that captures the UV behavior of the theory.
The intermediate region, region 2, captures the dynamics of
the theory when it is transforming from its deconfined stage
to asymptotically conformal. In the gauge theory side the
full UV completion requires us to insert M anti-D5 branes
in a setup with N D3 andM D5 branes located at the south
pole of a resolved sphere [13–15]. The anti-D5 branes are
separated from the D3/D5 branes and distributed on the
upper half of the resolved sphere (see figure 1 in [16]). A
natural question is then of the stability of the system against
annihilation. The focus of Sec. II is to show how we can
stabilize the system using world-volume fluxes (see also
[17] for a discussion on thermodynamic stablity of system,
among other things).
Once the system is stabilized, the gravity dual will have

anti-D5 branes in region 2 (the D3 and the D5 branes have
transformed into metric and fluxes) along with a black
hole.1 This is the setup where many of the thermal QCD
calculations may now be performed. For example melting
of the quarkonium states [20,21], QGP dynamics [17],
effect of a chemical potential [19], energy loss of a moving
quark [13], transport coefficients including viscosity and
entropy of the system [13,17,22], vector and scalar mesonic
states [16] and renormalization group flow, among other
things.2 The latter is discussed briefly in [15,19] and, in
Sec. III, we present a more detailed study. However, one
issue that has not been studied in the UV complete
framework is the bulk viscosity ζ. In Sec. IV, we lay out
our computational scheme to study bulk viscosity in a UV
complete model. We show that our model reproduces an
umambiguous value of bulk viscosity, including the ratio of

the bulk viscosity to the entropy density i.e. ζ=s. Our result
is expressed in terms of a function that depends on the
details of the UV completion of the model. In fact this
function also governs the behavior of the bulk viscosity
(and equivalently the ratio ζ=s) for a different choice of the
Schwinger-Keldysh quadrant used for the computation.
Further details on the computation will be presented in [23].
We end with some discussions on the future prospects.

II. STABILITY, κ-SYMMETRY
AND SUPERSYMMETRY

As discussed in Sec. I above, the UV completeness
feature of the model requires anti-D5-branes, which may
lead to instabilities due to D5-anti-D5 interactions and their
eventual annihilation. The question of stabilizing brane-
antibrane configurations has been well explored on a flat
background, but direct generalization to arbitrary curved
spacetime is difficult. Still, the present setup is sufficiently
simple that useful statements can be made regarding the
stability of the model.

A. First look with Abelian sources

Wewill use the approach of [24], applied to the model in
question. The goal is to check that a configuration of D5
and anti-D5 branes wrapped on a 2-sphere can be made
stable by studying the κ-symmetry conditions of the branes.
A crucial fact for this purpose is that world-volume κ-
symmetry on a supersymmetric background implies world-
volume supersymmetry. Our goal is to find fluxes on the
brane and the antibrane such that they preserve a common
set of world-volume supersymmetries, rendering the entire
configuration BPS and therefore stable. This approach
works for probe branes, for which we ignore the back-
reaction on the geometry.
The condition for a Dp-brane or anti-Dp-brane to be

κ-symmetric is that there is a spinor satisfying

Γϵ ¼ �ϵ; ð2:1Þ
with the� used for the brane or antibrane, respectively, and
Γmade up of contractions of the Levi-Civita tensor with all
possible combinations of world-volume gamma matrices
and flux components. In type IIB it is given by

Γ ¼
ffiffiffiffiffijgjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþ F jp X∞
n¼0

1

2nn!
γj1k1…jnknF j1k1…F jnknJ

ðnÞ
ðpÞ

JðnÞðpÞ ¼ ð−1Þnðσ3Þnþ
p−3
2 iσ2

⊗
1

ðpþ 1Þ! ffiffiffiffiffijgjp ϵi1…iðpþ1Þγi1…iðpþ1Þ : ð2:2Þ

All indices are world-volume indices and the Pauli matrices
in the second expression rotate the two same-chirality
type IIB spinors into each other. F is the sum of the
world-volume gauge flux and the pullback of the back-
ground NS-NS B-field.

1The complete backreacted geometry is, to our knowledge,
first analysed in [18]. Later details appear in [19].

2Most of the coputations are performed in type IIB setup.
However one may also go to the mirror type IIA side to analyze
the dynamics. See [17] for details on this.
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We now consider a D5 or anti-D5 brane on a
R3;1 × S2

1 ×M, extended in the Minkowski directions
and wrapping the S2

1, parametrized by ðθ1;ϕ1Þ. The internal
four-dimensional base M is locally of the form T2

2 × S1 ×
Rþ to preserve Gauss’s law. The global topology of M
should be of the form S3 ×Rþ, but then we should worry
about the curvature in the orthogonal directions to the five-
branes. However we expect the result to be insensitive to
the orthogonal metric, much like the supertubes construc-
tion which is stable regardless of the transverse metric [25].
The local picture simplifies matter in the same way as in
[26], and the global extension doesn’t change the story too
much [27]. For the present case, globally the two-torus T2

2

will become a sphere S2
2 and can be parametrized by

coordinates ðθ2;ϕ2Þ such that the D5 brane and the anti-D5
brane are located at some fixed positions on the sphere. The
metric on M can then be defined accordingly. On the other
hand, we will assume the metric on the sphere S2

1 is
diagonal but otherwise unspecified, with the full back-
ground metric taking the following form,

ds2 ¼ 1ffiffiffiffiffiffiffiffiffi
hðrÞp ds20123 þ

ffiffiffiffiffiffiffiffiffi
hðrÞ

p
½dr2 þ fðrÞ2dθ21

þ fðrÞ2sin2θ1dϕ2
1 þ ds2M�; ð2:3Þ

which is basically a simplified version of Eq. (2.11) in [14]
with hðrÞ and fðrÞ being two warp factors whose precise
functional forms will not be relevant for us. Note that (2.3)
shouldnot be confusedwith the gravity dual, as it is thegauge
theory side of the story.3 The sphere parametrized by (θ1,ϕ1)
on which we have the wrapped five-branes should shrink to
zero size at r ¼ 0, but we will consider an fðrÞ that gives a
finite size of the wrapped sphere. This is useful because, in
the limit of vanishing size of the wrapped sphere, the fluxes
on the sphere should become infinite to respect quantization
rules [28]. We want to introduce finite world-volume fluxes
F and F̄ , satisfying the quantization conditions, on the brane
such that their κ-symmetry equations are solved by the same
spinor. As wewill see, the dependence on fðrÞwill drop out
and the zero size limit can then be taken.
Following a similar procedure to [24] we turn on the

F 0ϕ1
and F θ1ϕ1

flux components, which we will call E and
B, respectively. In this case, the κ-symmetry condition
becomes

�
γ012345 ⊗ σ3iσ2 − Eγ1234 ⊗ iσ2 − Bγ0123 ⊗ iσ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���gþ 1

h2 B
2 þ f2

h E
2
���r �

ϵ ¼ �ϵ:

ð2:4Þ

One simple way to solve this is to cancel the first two terms
in the numerator against each other. This requires:

γ05 ⊗ iσ3σ2ϵ ¼ iEσ2ϵ: ð2:5Þ

We need to choose the electric field E such that this
expression has solutions. Note that γi are world-volume
gamma matrices, related to usual flat space gamma
matrices Γi by the world-volume vielbeins. Choosing
E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−g00gϕ1ϕ1

p , this becomes:

Γ05 ⊗ σ3ϵ ¼ −ϵ: ð2:6Þ

Once this condition is satisfied, the original expression
(2.4) for the 5-brane becomes:

hγ0123 ⊗ iσ2ϵ ¼ Γ0123 ⊗ iσ2ϵ ¼∓ jBj
B

ϵ: ð2:7Þ

Since gθ1ϕ1
¼ 0 from (2.3), and choosing opposite values of

B for the brane and the antibrane, this becomes exactly the
expression for a D3 brane stretched along the Minkowski
directions and positioned at any point on the two-sphere S2

2.
It’s not difficult to see, using properties of gamma matrices,
that (2.5) and (2.7) can be solved simultaneously.
Unfortunately, it is easier said than done, as there is a

glaring problem with this result. The required total flux:

F ¼ e0 ∧ eϕ1
þ Bffiffiffi

h
p

f2 sin θ1
eθ1 ∧ eϕ1

; ð2:8Þ

is not closed, so it can’t be the field strength of the world-
volume gauge potential, nor can it come from a background
NS-NS B-field, since the resulting 3-form flux doesn’t
satisfy d⋆H3 ¼ 0, and would require spacelike sources.
This means the configuration of a D5-brane and an anti-D5
brane on the two-sphere S2

2 cannot be stabilized in the usual
way by Abelian fluxes.4 However once we replace S2

1 by a
torus T2

1, as in [29], Abelian fluxes do stabilize a brane-
antibrane system.

3Topologically it is a resolved cone with the branes distributed
on the resolved sphere in a way described above. The gravity dual
will be a resolved warped-deformed conifold with no branes
other than the anti-D5 branes.

4The total flux equation (2.8) implies that dF ≠ 0, so another
way to interpret this would be to take magnetic sources into
account. These magnetic sources cannot be point-like, compared
to what we have in four spacetime dimensions. Assuming
�F ¼ dC3 þ…:, we can modify the world-volume action by
including sources as

S ¼ 1

g2YM

Z
Σ6

F ∧ �F þ
Z
Σ6

C3 ∧ δ3ðx⃗Þ:

Thus, in the presence of these sources, one might make sense of
(2.8) albeit in a bit contrived way. Simpler analysis exists, as we
elucidate in the following section.
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B. Non-Abelian sources and κ-symmetry

The solution to this conundrum can come from the fact
that our setup contains multiple branes and the correspond-
ing world-volume action is non-Abelian. Indeed, in a non-
Abelian gauge theory the field strength is given by:

F ¼ dAþ A ∧ A; ð2:9Þ

and the second term is not closed. However, in moving to
the non-Abelian case we have to deal with additional
complications. All the quantities in the expressions we
derived so far now carry adjoint SUðMÞ gauge indices and
the form of the κ-symmetry matrix will also change.
Therefore even though we can construct a world-volume
flux of the form (2.8), it’s no longer obvious that this flux
is the one required to restore supersymmetry to the system
or what its gauge components should be. The situation is
complicated by the fact that the full non-Abelian
κ-symmetry transformation, like the non-Abelian DBI
action, is not known. We will, however present some hints
that a non-Abelian gauge flux may be capable of restoring
supersymmetry to the system. While the full Γmatrix in the
κ-symmetry transformation is not known, one can compute
it order by order in the world-volume flux following [30].
The result to second order is

ΓAB¼Γð0Þ
�
σ1δ

ABþ iσ2dABC
1

2
γklFC

kl

−σ1AABCD1

2
γijFikCFjD

k

−σ1SABCD

�
1

8
γijklFijCFklD−

1

4
FC
klF

klD

��
; ð2:10Þ

where SABCD and AABCD are defined using the SUðMÞ Lie
algebra structure constants dABC etc, in the following way:

SABCD ¼ dAEðCdDÞEB; AABCD ¼ dAE½CdD�EB: ð2:11Þ

A few things need to be pointed out. First, since our field
strengths are of order one, simply achieving κ-symmetry at
any finite order is not at all sufficient to conclusively
declare the system to be stable. The purpose of this
calculation is to look for hints that it is possible, but a
full proof would require the full non-Abelian action.
Second, we will no longer have the automatic normali-

zation of the B-field. This is due to the lack of the
determinant factor in front of our κ-symmetry matrix.
We can either set TrB2 ¼ �1, further invalidating the
order-by-order approach, or hope that the full non-
Abelian κ-symmetry transformation has this normalization,
but it gets hidden in the order-by-order expansion. We will
see hints that this may be the case from the term at second
order in (2.10), namely:

1

4
σ1SABCDFC

klF
klD; ð2:12Þ

but as pointed out in [30], there’s no obvious factorization
that takes place. Indeed, if we knew the exact factorization
of the Γ matrix, it would amount to knowing the non-
Abelian DBI action.
Before proceeding, it is worth taking the time to set up

some notation. The generators tA, with 1 ≤ A ≤ M2 − 1, of
SUðMÞ expressed in the fundamental representation can be
split into diagonal, off-diagonal symmetric and antisymmet-
ric matrices. We can label these subsets of generators by tðdÞ,
tðsÞ, tðaÞ, respectively, and will order our basis accordingly,
so that t1;…; tM−1 are diagonal, tM;…; tðM2þM−2Þ=2 are
symmetric and the rest are antisymmetric.
We will also pick a particular (quite standard) basis for

the nondiagonal generators, such that each basis element
has only one nonzero entry in the upper triangle (and the
corresponding entry in the lower triangle). We then label
the symmetric generator with the nonzero entry in the ith

row, jth column as tðsÞij and similarly for the antisymmetric
generators. The order for this basis will be given by

ftM; tMþ1;…; t2M−1; t2M;…g ¼ ftðsÞ12 ; t
ðsÞ
13 ;…; tðsÞ23 ; t

ðsÞ
24 ;…g;
ð2:13Þ

and similarly for the tðaÞ’s. Additionally, the nonvanishing
symmetric and antisymmetric structure constants, defined
by:

tAtB ¼ ðdABC þ ifABCÞtC; ð2:14Þ

can be deduced from the symmetry properties of (anti)
commutators. They are of one of the following forms:

fðdsaÞ; fðssaÞ; fðaaaÞdðdddÞ; dðsssÞ; dðdssÞ; dðsaaÞ; dðdaaÞ;

ð2:15Þ

and all others related by permutation.
It will be convenient to think of these structure constants

as a collection of matrices labeled by their last index and
acting on the adjoint representation. We will define FðCÞ

and DðCÞ such that

½FðCÞ�AB ¼ fABC; ½DðCÞ�AB ¼ dABC; ð2:16Þ

the S and A tensors can be expressed as commutators and
anticommutators of these matrices.
We now return to our problem. For simplicity we switch

on gauge field components A0 and Aϕ1
such that they are

functions of θ1 coordinate only. With adjoint indices
written explicitly, our Ansatz for the flux becomes
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FA ¼ BAeθ ∧ eϕ þ EAe0 ∧ eϕ

¼ ∂θAA
ϕe

θ ∧ eϕ þ fABCAB
0A

C
ϕe

0 ∧ eϕ; ð2:17Þ

from which it is obvious that the two spacetime compo-
nents of the flux must also be different generators of
SUðMÞ. Defining:

E ¼
X
A

EADðAÞ; B ¼
X
A

BADðAÞ; ð2:18Þ

which are now matrices with two adjoint indices, the κ-
symmetry condition in this notation and using our Ansatz
(2.17) becomes�
σ1 ⊗ γ012345 ⊗ 1þ iσ2 ⊗ γ1234 ⊗ E þ iσ2 ⊗ γ0123 ⊗ B

−
1

2
σ1 ⊗ γ012345 ⊗ ðE2 þ B2Þ þ σ1 ⊗ γ1235 ⊗ ½E;B�

�
ϵ

¼ �ϵ; ð2:19Þ

where the spinor now carries an adjoint index, acted on by
the last factor in the tensor products, as well as the usual
SUð2Þmultiplet and spinor indices. The other second-order
term involving S vanishes for our Ansatz by antisymmetry
in the lorentz indices. We can also force the A term to
vanish by choosing EA and BA such that E and B commute,
at least on a subspace of the adjoint representation. The
spinors satisfying this condition will have to then lie in that
subspace.
This can be achieved, for example, by choosing E ¼

tM ¼ tðsÞ12 and B ¼ BtðM2þMÞ=2 ¼ BtðaÞ12 , i.e., two of the
generators of an SUð2Þ subgroup acting on the first two
components of the fundamental representation. The non-
vanishing anticommutators involving these generators are

ftðsÞ12 ; t
ðsÞ
12 g ∈ tðdÞ

ftðaÞ12 ; t
ðaÞ
12 g ∈ tðdÞ

ftðsÞ12 ; t
ðsÞ
1j g ∝ tðsÞ2j

ftðsÞ12 ; t
ðsÞ
2j g ∝ tðsÞ1j

ftðsÞ12 ; t
ðaÞ
1j g ∝ tðaÞ2j

ftðsÞ12 ; t
ðaÞ
2j g ∝ tðaÞ1j

ftðaÞ12 ; t
ðaÞ
1j g ∝ tðsÞ2j

ftðaÞ12 ; t
ðaÞ
2j g ∝ tðsÞ1j ; ð2:20Þ

where the actual numerical coefficients are the same

between the expressions involving tðsÞ12 and the analogous

tðaÞ12 expressions, meaning that E and B have the following
schematic form:

E ∝

2
6666664

0 D 0 0 0

D⊺ 0 0 0 0

0 0 C 0 0

0 0 0 0 0

0 0 0 0 C

3
7777775
;

B ∝

2
6666664

0 0 0 D 0

0 0 0 0 0

0 0 0 0 C

D⊺ 0 0 0 0

0 0 C 0 0

3
7777775

ð2:21Þ

where D is a 1 × ðn − 1Þ block containing the constants
coming from the first two equations in (2.20) and C is a
symmetric square block of size ðM2 þM − 2Þ=2 contain-
ing the constants coming from the remaining equations in
(2.20). It’s not too difficult to see that these matrices
commute when acting on almost the whole adjoint repre-

sentation except the subspace spanned by tðsÞ12 , t
ðaÞ
12 , so the

antisymmetric term in the Γmatrix drops out if we restrict ϵ
to be orthogonal to that subspace. Furthermore, since all the
SUð2Þ subgroups of SUðMÞ are related by a change of
basis, we can pick two generators of any SUð2Þ subgroup
to be our field strengths. This leaves us with

�
σ1 ⊗ γ012345 ⊗

�
1 −

E2 þ B2

2

�
þ iσ2 ⊗ γ1234

⊗ E þ iσ2 ⊗ γ0123 ⊗ B
	
ϵ ¼ �ϵ: ð2:22Þ

Interestingly, this looks exactly like the expansion of (2.4)
to second order with E, B becoming the matrices E and B.
If we assume that the quadratic terms in the field strengths
come from a similar expansion, we only need to satisfy
the condition to linear order in the field strengths. The
procedure is then analogous to the Abelian case, resulting
in the following two conditions,

σ3 ⊗ Γ05 ⊗ Eϵ ¼ ϵ; iσ2 ⊗ Γ0123 ⊗ Bϵ ¼∓ ϵ; ð2:23Þ

which are now satisfiable for field strengths of the form
(2.17). The spinor ϵ that will satisfy these conditions has to
be an eigenvector of E and B, i.e., be made up of
appropriately placed blocks that are eigenvectors of the
C blocks in (2.21). Note that this spinor will indeed be
orthogonal to the subspace on whichA doesn’t vanish. This
way the stability that we seek in this configuration may be
achieved.5

5It may be interesting to note that the antibrane issues pointed
out in [31], in the gravity dual of our framework, are expected to
be absent because our system is supersymmetric and therefore
stable.
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III. RENORMALIZATION GROUP FLOW

In the previous section, we discussed how a stable
configuration of D5 and anti-D5 branes may be constructed
using world-volume fluxes. As emphasized above, such a
configuration is at least necessary to have a UV completion
of the Klebanov-Strassler model. The UV complete model
also has fundamental matter (for example “quarks”), which
are generated by inserting Nf D7-branes to the gravity dual
of system i.e., in region 3. However, to avoid the resulting
Landau poles, the full UV completion requires us to add
anti-D7 branes to the system [14]. This can again be
stabilized by world-volume fluxes, although their effects
are gsNf suppressed. The anti-D7 branes remove all the log
r pieces that lead to landau poles and keep only the r−n

terms so that there are no UV issues in the field theory side.
Therefore to summarize, the model presented in above is

a modification of the Klebanov-Strassler (KS) geometry
with the addition of seven-branes to include fundamental
flavors and an asymptotically AdS cap, which brings the
corresponding field theory to a UV fixed point. The far UV
is then governed by a SUðN þMÞ × SUðN þMÞ gauge
theory, with a walking RG flow governed mainly by the
distribution of the flavors (i.e., the seven-branes in the dual
side). At certain scale, the gauge group gets Higgsed to
SUðN þMÞ × SUðNÞ whence the field theory undergoes a
cascade of Seiberg dualities decreasing the number of
colors as we flow to the IR until there is only a confining
SUðMÞ theory remaining.6

In the following, Sec. IIIA, we review some features of
the cascade and clarify which features of the renormaliza-
tion group flow we can expect to see from the gravity side.
For a more detailed review see [32]. We then add the
fundamental flavors in Sec. IIIB, analyze the B-fields and
dilaton in Sec. IIIC, followed by the study of the full RG
flow from UV to IR in Sec. IIID.

A. Review of Seiberg duality in KS model

The Klebanov-Strassler field theory is an N ¼ 1 gauge
theory with gauge group SUðN þMÞ × SUðNÞ. There are
two bifundamental chiral multiplets, A1, A2 and two
antibifundametal chiral multiplets B1, B2. They are coupled
through a classical superpotential:

W ¼ htrdeti;jðAiBjÞ; i; j ∈ 1; 2 ð3:1Þ

For M ¼ 0 this is the Klebanov-Witten model [33], which
has a two-dimensional surface of fixed points. For M ≠ 0
the beta functions for the couplings are

βη ¼ ηð1þ 2γ0Þ

βg1 ¼ −
g31

16π2

�
3ðN þMÞ − 2Nð1 − γ0Þ

1 − g21N=8π2

	
;

βg2 ¼ −
g31

16π2

�
3N − 2ðN þMÞð1 − γ0Þ

1 − g22N=8π2

	
; ð3:2Þ

where η is the dimensionless version of the quartic coupling
h and γ0 is the anomalous dimension of the chiral
multiplets, which is a generally an unknown function of
all the couplings.
The gauge couplings flow is given by the NSVZ beta

function, with indices in each factor of the gauge group
acting as flavor indices for the other factor, so g1 sees 2N
flavors, while g2 sees 2ðN þMÞ flavors. There are no fixed
points for which all three couplings are nonzero. For
g1 ¼ 0, η ¼ 0 there is assumed to be a Seiberg fixed point
at nonzero g2 if 2M < N. Likewise, there’s a Seiberg fixed
point at nonzero g1 for g2 ¼ 0, η ¼ 0. The former is stable
in the η direction, but unstable in the g1 direction, while the
latter is stable in the g2 direction but unstable in the η
direction since γ0 < − 1

2
. In the g2 ¼ 0 plane the theory

essentially becomes an SUðN þMÞ gauge theory with 2N
flavors of (anti)fundamental chiral multiplets, AiðBiÞ trans-
forming in the (anti)fundamental representation of the
flavor group and a quartic coupling between them with a
coupling constant η.
At the Seiberg fixed point, this theory has a dual

description via Seiberg duality [32,34]. The dual theory
is an SUð2N − ðN þMÞÞ ¼ SUðN −MÞ theory with 2N
flavors, with its own “dual” chiral multiplets (call them ~Ai,
~Bi) transforming in the opposite representation of the flavor
symmetry group compared to the original theory. This
theory also contains gauge-neutral “meson” fields M
transforming in a bifundamental representation of the
flavor group, which couple to the chiral multiplets via a
yM ~A ~B superpotential. TheseM fields are dual to bilinear
combinations AB of the chiral multiplets of the original
theory. At the Seiberg fixed point of the original theory,
these fields are massless, but the quartic coupling in the
original theory is dual to a relevant mass term for the M
fields. As we flow to the IR, η grows, the now massive M
fields get integrated out and the dual theory reduces to an
SUðN −MÞ theory with chiral multiplets ~Ai, ~Bi at its own
Seiberg fixed point.
The original theory, on the other hand, gains, a set of

gauge-neutral bifundamental fields, which get “integrated
in.” Indeed, we can rewrite the quartic coupling of our
theory as

ytrðA1B1
~M22 þ A2B2

~M11 − A1B2
~M21 − A2B1

~M12Þ

þ 2yffiffiffi
h

p ð ~M ~MÞ; ð3:3Þ

6With N and M appropriately chosen. For example one choice
is N ¼ ðk − 1ÞM such that the UV gauge group is SUðkMÞ ×
SUðkMÞ which gets Higgsed to SUðkMÞ × SUððk − 1ÞMÞ at
some intermediate scale giving us the minimally supersymmetric
SUðMÞ gauge theory at far IR.
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for some auxiliary field ~M, where we suppressed both the
“color” SUðN þMÞ indices, under which the ~M are neutral
and the “flavor” SUðNÞ indices under which ~M transform
in the bi-fundamental representation. The last term has
index contractions analogous to the first term.
The mass term for this new field is actually irrelevant

(since h is relevant), so treating the ~M’s as very heavy
dynamical fields, they will become massless in the IR. This
is to be expected. Seiberg duality is exact at the Seiberg
fixed point of the original theory. As we then flow further to
the IR toward the Seiberg fixed point of the dual theory
with M integrated out, Seiberg duality continues to hold
exactly along that line. Since Seiberg duality is a duality
between a theory without “meson” fields and a theory with
“meson” fields, if one description loses them, the other
must gain them.
Finally, we note that from a field theory perspective, the

behavior of the gauge coupling in either description is
generally unknown for nonzero quartic coupling outside
the neighborhood of their respective Seiberg fixed point as
shown in Fig. 1. Similarly, there is no simple relationship
between the gauge coupling and its dual. In particular, the
dual gauge coupling isn’t even guaranteed to be finite at
the original fixed point. It’s possible that somewhere along
the flow between the two fixed points, one description’s
gauge coupling diverges and is in a confined phase by the
time we reach the fixed point of its dual. We will indeed see
such divergences in our gravity analysis.
Once the dual description reaches its Seiberg fixed point,

the full theory is SUðN −MÞ × SUðNÞ. With gauge
couplings ~g1, g2 (the second coupling constant remained
unchanged). This Seiberg fixed point is unstable in the g2
direction and the flow takes us to the SUðNÞ Seiberg fixed
point at ~g1 ¼ 0, g2 ≠ 0, which is again unstable towards
developing a quartic coupling, growing a set of massless
“meson” fields and forcing us to Seiberg dualize to an

SUðN −MÞ × SUðN − 2MÞ theory etc. This process
repeats until we wind up, through a judicious choice of
the number of colors in the UV, with an SUðMÞ × SUð0Þ ¼
SUðMÞ theory which ultimately confines without offering
us a Seiberg dual theory to transform to.
Obviously, to go down the entire cascade we should

avoid hitting the Seiberg fixed points exactly, which is not
that difficult, due to their instability. One can talk about
“weakly coupled” RG flows, which pass very close to the
fixed points, so the gauge couplings become small at least
occasionally. In this regime the flow lingers near the fixed
points over large energy ranges and then quickly flows
toward the next fixed point forcing a change of variables via
Seiberg duality. There are however also “strongly coupled”
flows, which miss the fixed points by a large margin,
constantly have large coupling constants and therefore
don’t really have a useful description in terms of any of
the SUðN þMÞ × SUðNÞ theories. It is in this regime that
the gravity description of the theory becomes good.

B. Effects of fundamental flavors
and UV completion

The twomajor differences between themodel described in
Sec. II and the KS model are the presence of fundamental
flavors from the seven-branes and a UV completion to the
theory. As we discussed earlier, where rather than staying on
the duality cascade at all energy scales we start instead with
an SUðN þMÞ × SUðN þMÞ theory and Higgs one of the
SUðN þMÞ’s at a suitable energy scale so as to land on a
duality cascade that ends as a confining SUðMÞ theory in the
far IR. The addition of Nf fundamental matter fields to the
theory simply changes how many flavors in total each factor
of the gauge group sees. This influences our choice of initial
gauge group rank, since we still want to end up with a
confining theory in the IR. Also, a sufficiently large Nf can
influence the last few steps of the cascade by forcing the
gauge theory outside of its conformal window thus removing
the Seiberg fixed points. The latter effect already happens
even without the addition of extra flavors. For example by
the time the flow reaches an SUð3MÞ × SUð2MÞ theory the
SUð3MÞ sees 4M flavors, soN > 2

3
Nf, which is outside the

conformal window. For more details regarding these subtle-
ties, see [32]. Regardless, at strong coupling we are con-
stantly far from the Seiberg fixed points, so these details will
not be captured by the analysis of the gravity dual.
A more careful analysis however reveals additional

subtleties. On one hand, from the gravity dual perspective,
the flavor seven-branes are arranged in region 3 in a way as
to avoid creating Landau poles in the UV. As we discussed
briefly earlier, this amounts to putting D7 and anti-D7
branes7 so that the background fields do not have any log rFIG. 1. Qualitative features of the RG flow of the SUðN þMÞ

theory and the Seiberg dual SUðN −MÞ theory. The “???”
represent our ignorance of the behavior outside a neighborhood
of the Seiberg fixed points.

7The correct picture is to include both local and nonlocal seven
branes [14].
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behaviors. This means the seven-branes are arranged via
Ouyang embedding [35] with, as discussed in Sec. 2.3 of
[14], bound states of D7 and anti-D7 branes in region 3
and D7 branes in regions 1 and 2. The backreactions of
the D7-branes in regions 1 and 2 now restrict the number of
D7-branes to be less than 24 [36]. Thus Nf cannot be too
large for our case, and since gs ≪ 1, the effects of the
seven-branes are gsNf suppressed.
On the other hand, the IR physics do change a bit from

what we studied above. This is most succinctly presented
in the T-dual type IIA language8 as shown in Fig. 2. For
simplicity, we will only discuss the physics in region 1 i.e.,
the cascade part of the story so as to avoid the complica-
tions that may arise from the anti-D5 branes.
In the T-dual type IIA side, the flavor D7-branes become

D6-branes in a configuration of intersecting NS5-branes
oriented as in [28,37] with M D4-branes in between.
The D6-branes are divided into two halves by one of
the NS5-brane, as shown in Fig. 2. Once we cross the
NS5-branes, the M D4-branes turn into M anti-D4 branes,
but we also get additional Nf D4-branes from the Hanany-
Witten [38] brane creation process from the Nf D6-branes
(see also [35]). This way after one Seiberg duality the gauge
group changes to SUðNÞ × SUðN −M þ NfÞ. At the end
of the cascade, the far IR picture remains similar to what we
expect from the brane construction: a N ¼ 1 supersym-
metic Yang-Mills SUðMÞ theory with Nf fundamental
flavors. This is exactly the story that also emerges from the
gravity dual, which we elaborate next.

C. Behavior of the NS B-field and the Dilaton

In the gravity dual, the relevant quantities to analyze are
the NS B-field and the dilaton. This is because the gauge
coupling constants are related to the dilaton and the B-field
of the dual gravity description, both of which have been
computed in [13,33,37], by

4π2

g21
þ 4π2

g21
¼ e−Φ

4π2

g21
−
4π2

g21

¼ e−Φ

2π

��Z
S2

~B2 mod 2π

�
− π

	
; ð3:4Þ

where Φ is the dilaton and ~B2 is the NS B-field threading
regions 1, 2 and 3. As discussed in Eq. (2.75) of [19], the
total field strength of the NS B-field, H3, is a complicated
three-form that can be expressed as

H3 ¼ F1ðsin θ1dθ1 ∧ dϕ1 þA2 sin θ2dθ2 ∧ dϕ2Þ ∧ dr

þ ðF2dr ∧ eψ þ F3deψÞ
∧ ðcot θ1dθ1 þA2 cot θ2dθ2Þ; ð3:5Þ

where (θi, ϕi, r, ψ) are the coordinates of the resolved
warped-deformed conifold, with Fi and Ai are functions of
all the six coordinates as well as the resolution parameter a2

(which is also defined in [19]). Their precise functional
forms may be read up easily from Eq. (2.75) in [19]. Note
that H3 ¼ d ~B2, and so it is a closed three-form. This
closure implies certain conditions on all the parameters
involved in (3.5), as may be inferred from Eqs. (2.78) and
(2.79) of [19].
What we now need are the precise forms of the NS

B-field, ~B2, the dilaton Φ and the resolution parameter a2.
Wewill start with the NS B-field. It is given by Eq. (2.91) of
[19] that we reproduce here for convenience:

~B2 ¼ B2ðr; θiÞ þ ðgsMÞðgsNfÞ
�
gsM2

N

�
× ½B2ðrÞ þ gsNfC2ðr; θ1Þ�: ð3:6Þ

However in the limit given by Eq. (2.38) of [19], the second
and the third terms of (3.6) are suppressed by powers of ϵ
(the small parameter which controls the relative scaling of
gsM, gsM2=N and other small quantites in our limit) as in
Eq. (2.92) of [19]. Similarly, one may show that the
resolution parameter a2 is given by the constant piece a20
with the other parts suppressed as in Eq. (2.92) of [19]. This
means the NS-NS B-field takes the following form (see also
Eq. (2.88) of [19]):

FIG. 2. The IR gauge group after a Seiberg duality in the
presence ofNf flavors in the type IIA dual picture. The flavors are
D6-branes, divided into two halves by one of the NS5-brane. The
other NS5’ brane crossing the D6-branes create 2NþNf extra
D4-branes. Together with the N þM anti-D4 branes, the gauge
group after Seiberg duality becomes SUðNÞ×SUðN−MþNfÞ
consistent with an actual gauge theory computation.

8This is the T-dual of the brane construction leading to the
confining gauge theory i.e., the T-dual of the wrapped
D5-branes on the vanishing two-cycle of a conifold in the
presence of the D7-branes. The T-dual of region 1 in the gravity
dual will lead to a somewhat different story that we will not
elaborate here.

DASGUPTA, EMELIN, GALE, and RICHARD PHYSICAL REVIEW D 95, 086018 (2017)

086018-8



B2 ¼
�
b1ðrÞ cot

θ1
2
dθ1 þ b2ðrÞ cot

θ2
2
dθ2

�
∧ eψ

þ
�
3g2sMNf

4π
ð1þ logðr2 þ 9a20ÞÞ log

�
sin

θ1
2
sin

θ2
2

�
þ b3ðrÞ

	
sin θ1dθ1 ∧ dϕ1

−
�
g2sMNf

12πr2
ð−36a20 þ 9r2 þ 16r2 log rþ r2 logðr2 þ 9a20ÞÞ log

�
sin

θ1
2
sin

θ2
2

�
þ b4ðrÞ

	
× sin θ2dθ2 ∧ dϕ2; ð3:7Þ

where we take the resolution parameter a2 ≈ a20 to be approximately a constant, and express the coefficients bi as:

b1ðrÞ ¼
g2SMNf

24πðr2 þ 6a20Þ
ð18a20 þ ð16r2 − 72a20Þ log rþ ðr2 þ 9a20Þ logðr2 þ 9a20ÞÞ

b2ðrÞ ¼ −
3g2sMNf

8πr2
ðr2 þ 9a20Þ logðr2 þ 9a20Þ

b3ðrÞ ¼
Z

r

a0

dy

�
3gsMy
y2 þ 9a20

þ g2sMNf

8πyðy2 þ 9a20Þ
½−36a20 − 18a20 loga

2
0 þ 34y2 log yþ ð10y2 þ 81a20Þ logðy2 þ 9a20Þ�

�

b4ðrÞ ¼ −
Z

r

a0

dy

�
3gsMðy2 þ 6a20Þ

κy3
þ g2sMNf

8πκy3
½18a20 − 18ðy2 þ 6a20Þ loga20 þ ð34y2 þ 36a20Þ log y

þ ð10y2 þ 63a20Þ logðy2 þ 9a20Þ�
�
; ð3:8Þ

where M is not a constant and is a function of the radial
coordinate r given via fðrÞ defined in Eq. (2.17) of [14].
Using fðrÞ, one may show thatMðrÞ asymptotes to zero in
region 3. The integration is performed from r ¼ a0 instead

of r ¼ 0 to avoid singularities.9 We have also defined κ ¼
r2þ9a2

0

r2þ6a2
0

such that κ ¼ 1þ 3a2
0

r2 for r > a0; and κ ¼ 3
2
− r2

12a2
0

for

r < a0. When r ¼ a0, κ ¼ 10
7
, a constant factor. In effect κ

ranges from 1.5 to 1 for r ranging from r ¼ 0 to r ¼ ∞,
although the decrease is not monotonous.
The integration of the NS B-field over the two-cycle S2

in (3.4) is now important. What two-cycle should we
choose? One choice would be the resolution two-cycle
ðθ2;ϕ2Þ. However we could equally choose (θ1, ϕ1),
because for r ≥ a0, there is not much difference between
the two two-cycles. We are therefore interested in the
integral along ðθ1;ϕ1Þ. This is straightforward, with only a
small subtlety arising with the first term in (3.7) resulting in
an improper θ1 integral which must be regulated by taking a
cutoff near the poles of the 2-sphere and sending it to zero
after integrating. The final result is:

Z
S2
B2 ¼ −4πb1 þ 4πb3

þ 3g2sMNf

4π

�
1þ logðr2 þ 9a2Þ

×

�
−1þ log

�
sin

θ2
2

�	�
: ð3:9Þ

The first and last term will vanish in region 3, due to the
effective number of 5-branes,MðrÞ, being gradually turned
off in region 2. The middle term only hasMðrÞ dependence
in its derivative and will therefore plateau in region 3 as
depicted in Fig. 3. This asymptotic value determines the
location of our theory along the Klebanov-Witten fixed
surface in the UV. We also want our gravity description to
be dual to a confining theory in the IR, which determines
the value of

R
B2 at minimal radius. Choosing a different

initial value corresponds to choosing the number of colours
in the UV to not be a integer multiple of M. This results in
the IR theory to be different from the confining SUðMÞ that
we are interested in.
Let us now discuss the behavior of the dilaton Φ in our

model. In the absence of the seven-branes the dilaton would
be a constant dictated by our choice of string coupling, but
the presence of D7-branes introduces a logarithmic cor-
rection which can be computed from the monodromy
around the D7-branes. As discussed earlier, this is the
expected behavior in regions 1. The result is

9In fact in the presence of a black hole, the r ¼ 0 region will be
covered by the horizon rh so this will not be the issue when
thermal limit is considered as we will see later. In the absence of a
black hole, but in the presence of the deformation parameter, this
will again not be an issue.
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e−Φ ¼ 1

gs
−
Nf

8π
log ðr6 þ 9a20r

4Þ − Nf

2π
log

�
sin

θ1
2
sin

θ2
2

�
:

ð3:10Þ

We can fix the last term to be a constant by either choosing
a particular slice with fixed values of θ1, θ2 away from the
location of the D7-branes or by taking an average over the
base of the conifold. In either case, since we are ultimately
interested in the radial dependence of the dilaton, we will
simply absorb this constant shift of the dilaton into our
choice of gs. Note that, since we are using Ouyang
embedding in region 1 [14,35], the D7-branes do not go
all the way down to r ¼ 0. However notice that generically
the radial logarithmic correction ensures that e−Φ reaches
zero at finite radius, leading to a Landau pole for both
couplings. This behavior makes region 3 a necessary
component of the model.
In region 3, the behavior of the dilaton changes from

increasing logarithmically to a decay asymptoting to a
finite value in the UV. The functional form of the beta
function can be determined from F-theory [14]:

βe−Φ ¼ C0

r2ðr3=2 − 1Þ ; ð3:11Þ

with the constantC0 depending on the details of the UV cap
that is attached. Integrating the beta function gives the
behavior shown in Fig. 4. We see that the dilaton asymp-
totes to a constant value in the UV. Combined with the
constant

R
B2 in region 3, this stops the RG flow at a UV

fixed point located somewhere on the Klebanov-Witten
fixed surface for the corresponding SUðN þMÞ ×
SUðN þMÞ theory.

D. The RG flow at strong coupling

We are now in a position to describe the entire RG flow
of the theory from UV to IR at strong coupling. Using (3.4),
the two couplings may be represented in terms of super-
gravity variables as:

8π2

g21
¼ e−Φ

2

�
1

2
þ 1

2π

�Z
S2
B2 mod 2π

�	
8π2

g22
¼ e−Φ

2

�
3

2
−

1

2π

�Z
S2
B2 mod 2π

�	
: ð3:12Þ

Aside from the logarithmic correction from introducing
fundamental flavors, the flow in region 1 is essentially the
same as the KS scenario. We always interpret g1 as the
coupling of the lower rank gauge group. Since Seiberg
duality changes which of the gauge groups has higher rank,
the interpretation of which gi belongs to which group keeps
changing every time

R
B2 changes by 4π2. Each cycle ofR

B2 starts with a divergent g1 and finite g2. As
R
B2 grows

g2 increases, while g1 decreases. Eventually g2 diverges,
indicating the need to Seiberg dualize that part of the gauge
group. Upon doing this the higher-rank gauge group
becomes the lower-rank one so its gauge coupling is
now represented by g1 instead, which is again divergent,
while g2 has the same value that g1 had at the end of the
previous cycle. We can thus connect two consecutive 4π2

cycles of
R
B2 smoothly as shown in Fig. 5. Continuing this

process we recover a smooth looking flow.
Note that the divergence of the gauge couplings does not

indicate any special features in the geometry, since the
quantities g1 and g2 do not have a clear physical inter-
pretation in the gravity description. Indeed as emphasized
in [32], the gravity description is oblivious to the duality
cascade. Any measure of the number of degrees of freedom
on the gravity side will indicate a smooth decrease rather
than a sequence of sudden jumps from Seiberg duality, as is
the case in the field theory at low coupling.

11 12 13 14 15
r

0.05

0.10

0.15

0.20

0.25

g

FIG. 4. Behavior of the coupling in region 3 for different
choices of asymptotic UV value with the cutoff radius rc ¼ 10.FIG. 3.

R
B2 as a function of r. It grows steadily in region 1,

then grows faster in region 2 before reaching a constant value in
region 3, where all fluxes get shut off. The dashed lines indicate
region 2, centered around the cutoff radius rc. The size of region 2
is controlled by the rate at which the effective MðrÞ is switched
off and depends on the exact distribution of the anti-D5 charges.
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Region 2 is similar qualitatively to region 1, except for
the behavior of the B-field due to the change in the
effective number of five-branes MðrÞ. This increases the
rate at which we need to perform Seiberg dualities as
shown in Fig. 6, while also decreasing the changes in
the gauge group rank upon each duality. Eventually the
B-field asymptotes to a fixed value, the gauge group
ranks become equal and the two gauge couplings stop
flowing relative to each other.10 Thus, region 2 serves as a
smooth interpolation between the cascading behavior of
the KS model and the asymptotically conformal behavior
of region 3.
In region 3, the only flow is due to the behavior of the

dilaton. As the dilaton asymptotes to a fixed but finite
value, so do the gauge couplings and the theory becomes
conformal, although not asymptotically free. However we
can also choose a functional form for the dilaton such that
the gauge couplings asymptotes to zero. This way, in the
language of ’t Hooft coupling, the theory becomes con-
formal, but in the language of gauge coupling, the theory
becomes asymptotically free.
Note that for each choice of gauge couplings keeping the

number of colors in the UV we have a different dual

FIG. 5. The RG flow through a single Seiberg duality. When g2
diverges, we switch to the Seiberg dual description where g2 now
represents the dual coupling. This new coupling decreases, while
g1 diverges instead, so we dualize it instead. This process
continues till we hit the end of the cascade.

FIG. 6. RG flow near the cutoff radius rc. The last few Seiberg
dualities happen at closer energies, due to the rapid change of
MðrÞ in region 2 and therefore R B2. At higher energies, in region
3, the couplings asymptote to their UV values.

FIG. 7. Complete RG flow from UV to IR for three different
asymptotical UV values and the sameMðrÞ. The weaker coupled
flow (blue) flow slower than the stronger coupled flows (red). All
three flows end in confinement as g1 diverges for the last time.

10There is still a walking RG flow due to the fundamental
flavors. For details see [19].
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geometry, with a different choice of asymptotic value of
the dilaton and cutoff radius at which we attach region 3.
To compare flows for several initial choices of coupling we
need to either have a different cutoff radius, or rescaleMðrÞ
so that each theory undergoes the same number of Seiberg
dualities between the Higgsing energy scale and the IR. In
the former case, as shown in Fig. 7, we see that weaker
coupling results in slower RG flow.
This is expected, since we know from the gauge theory

description that at weak coupling, the flow will slow down
near the Seiberg fixed points. The gravity analysis does not
extend to that regime, where Oð 1

gsM
; 1
gsN

Þ corrections are
expected to alter the shape of the flow, but the overall
slowing of the flow is evident. If we instead rescale MðrÞ
the flows for different choices of UV couplings look more
similar, but each flow corresponds to a different numbers of
colors in the dual gauge theory as shown in Fig. 8.

IV. TOWARDS BULK VISCOSITY FROM
THE GRAVITY DUAL

In the previous two sections, we studied the stability and
the RG flows in our model. Our discussion was mostly
in the zero temperature limit, as no black hole was inserted
in the gravity dual. In the presence of a black hole, thermal
effects in gauge theory do not change any of the earlier
conclusions. For example thermal stability can be inferred

from an analysis similar to what was done in Sec. II (see
also [17]). Similarly, thermal beta functions resemble the
ones discussed in Sec. III. The latter aspect has also been
studied in Sec. 2.3 of [19].
Of course new phenomena do arise from thermal effects.

Many of them have been studied earlier in [13,14,16,
17,19–22]. In the following section, we will study another
interesting thermal effect, the bulk viscosity. One distin-
guishing feature of bulk viscosity, compared to say the
shear viscosity, is the necessity of nonconformality since in
the conformal limit the bulk viscosity vanishes. Our study
will involve both conformal and nonconformal regimes,
and we will be able to confirm the vanishing of bulk
viscosity in the conformal case. For the nonconformal case
we will be able to lay out the calculational scheme using the
UV complete model and determine the precise form of the
bulk viscosity, including the ratio of the bulk viscosity to
entropy density in terms of a function that depends on the
details of the UV completion of the model. We relegate a
more detailed study for [23].

A. Setup of system and metric

We begin a complete top-down analysis of bulk viscosity
of type IIB supergravity with a black hole. We begin with
veilbeins:

e6 ¼
re−A

3
ðdψ þ cos θ1dϕ1 þ cos θ2dϕ2Þ

e7 ¼
re−Affiffiffi

6
p

�
cos

�
ψ

2

�
dθ1 þ sin

�
ψ

2

�
sin θ1dϕ1

	

e8 ¼
re−Affiffiffi

6
p

�
sin

�
ψ

2

�
dθ1 − cos

�
ψ

2

�
sin θ1dϕ1

	

e9 ¼
re−Affiffiffi

6
p

�
cos

�
ψ

2

�
dθ2 þ sin

�
ψ

2

�
sin θ2dϕ2

	

e10 ¼
re−Affiffiffi

6
p

�
sin

�
ψ

2

�
dθ2 − cos

�
ψ

2

�
sin θ2dϕ2

	
e1 ¼ eAþBdt; e2 ¼ eAdx; e3 ¼ eAdy;

e4 ¼ eAdz; e5 ¼ e−A−Bdr: ð4:1Þ

From these veilbeins, we can build all the elements of our
type IIB supergravity. Let’s analyze the components of the
veilbeins. The first four coordinates, e1 to e4, describe
Minkowski space, albeit with a warp factor eA. Also, a
feature of this model is the presence of a black hole which
manifests itself as a factor of eB on the dt veilbein. The
other six coordinates, e5 to e10, depict a conifold, warped as
well by the warp factor e−A. Another component of the
black hole is attached to the veilbein for the radial
coordinate. Using the vielbeins (4.1) we begin to build
the type IIB background that we need, beginning with the
metric:

FIG. 8. Complete RG flow from UV to IR for four different
asymptotical UV values with appropriately scaled MðrÞ for each
flow.
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ds210 ¼ ηabeaeb ¼ −e2Aþ2Bdt2 þ e2Adx2 þ e2Ady2

þ e2Adz2 þ e−2A−2Bdr2

þ r2e−2A

6

�X2
i¼1

ðdθ2i þ sin2θidϕ2
i Þ
	

þ r2e−2A

9
ðdψ þ cos θ1dϕ1 þ cos θ2dϕ2Þ2: ð4:2Þ

Note that the internal space in (4.2) is not a warped
deformed cone as one might have expected. This choice
is not just for analytical simplicity, but is governed by two
underlying facts. One, the deformation parameter that
would capture the far IR regimes of the dual gauge theory
is now covered by the horizon and therefore for r > rh, we
basically see a conifold geometry. Two, the analysis
presented in this and the next two subsections will con-
centrate mostly on the conformal regimes of our geometry
and therefore a conifold rather than a deformed conifold
will be more relevant. Thus, for r > rh, all the three
regions, namely regions 1, 2 and 3, with internal conifold
metric would be a sufficiently good approximation.
From the metric (4.2) we can build the various gravi-

tational components such as the Ricci scalar R and the
Ricci tensor Rμν. Next, we build the five-form flux due to
the D3-branes. We equate the 4-potential to the volume of
the Minkowski coordinates as:

C4 ¼ e−Bvol4 ≡ e−B∧4
n¼1

en ¼ e4Adt ∧ dx ∧ dy ∧ dz:

ð4:3Þ

Note that we have inserted a corrective factor of e−B.
We will be assuming that only the metric becomes non-
extremal due to the black hole, and we will investigate the
effects this has on the various type IIB flux components.
From our definition of C4, we can simply build the five-
form flux, making it self dual, which is a consequence of
type IIB supergravity,

F5 ¼ ð1þ �10ÞdC4; ð4:4Þ

where, ⋆10 is the Hodge Dual with respect to the ten-
dimensional metric. Next, we discuss the complex three-
form flux G3 on the conifold. For this, first we combine the
six veilbeins (4.1) into three complex one-forms in the
following way:

E1 ¼ eBe5 þ ie6; E2 ¼ e7 þ ie8; E3 ¼ e9 þ ie10;

ð4:5Þ

where we have again inserted a corrective factor of eB in E1

to remove the nonextremal effect of the black hole. Using
these one-forms, we can construct our three-form flux as

G3 ¼
9M
4r3

E1 ∧ ðE2 ∧ Ē2 − E3 ∧ Ē3Þ; ð4:6Þ

which by construction is a non-ISD three-form, and
becomes ISD once the black-hole is removed. The param-
eterM here is the number ofD5-branes, that is, the number
of bifundamental flavors that we encountered earlier.
We are in region 1, so MðrÞ ≈M, and we won’t worry
about the anti-D5 branes right now (they will appear soon).
The factor of 9

4
is determined by insisting that the extremal

correction to the warp factor (found in Sec. IVB) matches
that found by Klebanov and Strassler in [11]. These
D5-branes wrap around one of the two-cycles ðθ1;ϕ1Þ
and fill the four Minkowski coordinates. Because the
two-cycles are compact, these D5-branes act as fractional
D3-branes. For now, our axio-dilaton will be constant:

τ ¼ i=gs: ð4:7Þ

This can be changed later by turning on Nf D7-branes as
one may infer from (3.10) (see also [13,14,35]).

B. Action and equations of motion in
the conformal limit

Our aim in this section is to determine the precise
functional forms for eA and eB using the background
Ansätze for the metric (4.2), G3 flux (4.6) and the axio-
dilaton (4.7). To proceed, we start with the type IIB
supergravity action as given in [39]:

SIIB ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffi
−g

p �
R −

∂τ · ∂ τ̄
2ðImτÞ2 −

G3 · Ḡ3

12Imτ
−

F2
5

4 · 5!

	

þ 1

8iκ210

Z
C4 ∧ G3 ∧ Ḡ3

Imτ
: ð4:8Þ

As discussed above, we are in region 1 and therefore mostly
analyzing the IR regime of our theory. The Ansätze for G3

flux is (4.6), and in the limit when M ¼ 0, we have
switched off nonconformality altogether. This is then
equivalent to region 3 instead where the G3 flux vanishes,
along with vanishing Nf, the seven-brane degrees of
freedom. This means the conformal theory is in the regime
where the sizes of regions 1 and 2 are vanishing, and the
physics is captured completely by region 3 only.11 For this
case, we expect

dF5 ¼
G3 ∧ Ḡ3

τ̄ − τ
¼ 0: ð4:9Þ

11Where the gauge group is SUðNÞ × SUðNÞ. We could also
take SUðN þMÞ × SUðN þMÞ, as one would expect from
region 3, but this is just a redefinition of the number of colors.
As such, in the following sections, we would like to keep M
solely as a signal of broken conformal invariance.
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In order for the left-hand side of (4.9) to be nonzero, we
must impose by hand the self duality of the five-form flux:

F5 ¼ ð1þ �10ÞdC4: ð4:10Þ

The remaining set of equations are the Einstein equations
which in general may be expressed with source terms
coming from G3 and F5 fluxes in the following way:

Rμν ¼ −gμν
�
G3 · Ḡ3

48Imτ
þ F2

5

8 · 5!

	
þ FμabcdFabcd

ν

4 · 4!
ð4:11Þ

Rmn ¼ −gmn

�
G3 · Ḡ3

48Imτ
þ F2

5

8 · 5!

	
þ FmabcdFabcd

n

4 · 4!
þ Gbc

m Ḡnbc

4Imτ

þ ∂mτ∂nτ̄

2jImτj2 : ð4:12Þ

In our system, we have two undetermined scalar functions,
AðrÞ and BðrÞ appearing in the metric Ansätze (4.2). Using
(4.11), we can solve for BðrÞ. First notice that

Rt
t − Rx

x ¼ 0; ð4:13Þ

and therefore inserting our metric Ansätze (4.2) in (4.13),
we get a simple differential equation for BðrÞ,

d2B
dr2

þ dB
dr

�
5

r
þ 2

dB
dr

�
¼ 0; ð4:14Þ

the solution to which is

BðrÞ ¼ 1

2
log

�
c2 þ

c1
r4

�
: ð4:15Þ

To solve for the constants c1 and c2, we use the two boundary
conditions, one, that g≡ e2B vanishes at the black hole
horizon rh and two, that e2B → 1 at the conformal boundary
r → ∞. These conditions are satisfied by:

BðrÞ ¼ 1

2
log

�
1 −

r4h
r4

�
≡ 1

2
log ½gðrÞ�; ð4:16Þ

Where we refer to the function gðrÞ as the black hole factor.
With this definition in hand, we canmove on to the five-form
equation of motion (4.9) which allows us to find AðrÞ. The
explicit equation when M ¼ Nf ¼ 0 is

d2A
dr2

þ dA
dr

�
5

r
− 4

dA
dr

�
¼ 0; ð4:17Þ

whose solution may be written as

AðrÞ ¼ −
1

4
log

�
L4

r4

�
≡ −

1

4
log ½hðrÞ�: ð4:18Þ

Here, L4 ¼ 2πgsN
4

, where N is the number ofD3-branes. The
function hðrÞ is what we referred to as the warp factor of the
system, as it controls, among other things, the factor by
which the first four coordinates are warped fromMinkowski
space at a given value of the AdS radius r. With this, our
system is completely defined.Wemaynowgoon to using the
system and the AdS=CFT duality to calculate interesting and
relevant quantities on the field theory side. The inclusion of
the black hole in the system, as expected, gives the field
theory a temperature depending on the black hole radius rh.

C. Diagonal perturbations and bulk viscosity
in the conformal limit

We wish to calculate the bulk viscosity using the Kubo
formula:

ζ ¼ 1

18
lim
ω→0

lim
k⃗→0

1

ω

Z
d4xeiωt−ik⃗·x⃗h½Tiiðt; x⃗Þ; Tjjð0; 0⃗Þ�i

ð4:19Þ

Here, the sum over i; j ∈ fx; y; zg is implied. Because
nothing in the system depends upon any one given spatial
direction, we have that the only k⃗ dependence if the above
expression is in the complex exponential. The independ-
ence of the system on Minkowski spatial directions means
the system has an SOð3Þ symmetry, implying Txx ¼
Tyy ¼ Tzz. So our simplified Kubo formula is

ζ ¼ lim
ω→0

1

2ω

Z
d4xeiωth½Txxðt; x⃗Þ; Txxð0; 0⃗Þ�i: ð4:20Þ

We see then that the bulk viscosity is related to the retarded
propagator:

ζ ¼ −lim
ω→0

ImðGRðω; 0Þ
ω

GRðω; k⃗Þ ¼ −i
Z

d4xeiωt−ik⃗·x⃗θðtÞh½Txxðt; x⃗Þ; Txxð0; 0⃗Þ�i:

ð4:21Þ

One immediate advantage of expressing the bulk viscosity
in terms of the retarded propagator is its connection to the
Schwinger-Keldysh propagator. Following [40], we can
relate the retarded propagator to the Schwinger-Keldysh
propagator as:

GSK
11 ðω; k⃗Þ ¼ Re½GRðω; k⃗Þ� þ i coth

�
ω

2T

�
Im½GRðω; k⃗Þ�:

ð4:22Þ

This will then allow us to express the bulk viscosity as

ζ ¼ −
1

2T
lim
ω→0

Im½GSK
11 ðω; 0Þ�: ð4:23Þ

DASGUPTA, EMELIN, GALE, and RICHARD PHYSICAL REVIEW D 95, 086018 (2017)

086018-14



Here we have used the fact that cothð ω
2TÞ → ω

2T for small ω.
The Schwinger-Keldysh (SK) propagator can be derived by
considering the field theory action on a Schwinger-Keldysh
contour. From this analysis, we obtain the following
definitions:

iGSK
11 ðt; x⃗Þ ¼ −

δ2 ln½ZCFTðϕ1;ϕ2Þ�
δϕ1ðt; x⃗Þδϕ1ð0; 0Þ

¼ hT O1ðt; x⃗ÞO1ð0; 0Þi;

ð4:24Þ

where T is the time-ordering symbol. The operator product
in (4.24) may now be given the following meaning. If we
choose ϕ1ðt; x⃗Þ to be the boundary value of Xðt; rÞ, i.e., the
graviton perturbation along the x direction, then this will
mean that O1ðt; x⃗Þ ¼ Txxðt; x⃗Þ. The AdS-CFT conjecture
states that we can replace ZCFT with Zsugra defined using the
type IIB action as eiSIIB . Therefore, we need only expand
the type IIB supergravity action to second order in the
graviton perturbation, Fourier transform the action, and
then apply the above functional derivative to obtain an
expression for GSK

11 ðω; 0Þ, which we can then plug into the
definition for the bulk viscosity. Similar procedure is
discussed for the shear viscosity in [13]. Following [40],
when we eventually find our perturbations, they will take
the following form:

ϕ�ðr;ωÞ ¼ ϕ

�
r;� ijωj

4πT

�
; ð4:25Þ

where ω is as defined earlier. Using ϕ�, we can now define
ϕ1 more accurately as

ϕ1ðr;ωÞ ¼ a0½ϕþðr;ωÞ − e
ω
Tϕ−ðr;ωÞ�; ð4:26Þ

where a0 is a constant (and not to be confused with the bare
resolution parameter defined earlier). With these tools in
hand, we need only find the functional form of the relevant
perturbation. We perturb the veilbeins (e1;…; e5) in (4.1) in
the following way,

ek ¼ eA½1þ Xðr; tÞ�dxk
e1 ¼ eAþB½1þ Tðr; tÞ�dt
e5 ¼ e−A−B½1þ Rðr; tÞ�dr; ð4:27Þ

with (e6;…; e10) remaining unchanged as (4.1). We have
also taken k ¼ 2, 3, 4 and defined (dx2, dx3, dx4) as (dx,
dy, dz), respectively in (4.27). The above deformation
captures the essence of bulk viscosity: if we change the
overall size of the system, any resistancewe encounter will
signal the presence of a bulk viscosity.
We need all three of the perturbations Tðr; tÞ, Xðr; tÞ and

Rðr; tÞ in (4.27) because the equations of motion we will
derive are heavily coupled with respect to these perturba-
tions. We plug these veilbeins into our system components
and then into our equations of motion and expand these

equations to the first order in the perturbations. For
example, the vielbeins (4.27) induce a metric fluctuation
δgαβ, such that the EOM for the fluctuation to first order
becomes

∂Rμν

∂gαβ −
1

2

�
gμν

∂R
∂gαβ þ gαμg

β
νR

�
¼ ∂Tμν

∂gαβ ; ð4:28Þ

where Tμν is the energy momentum tensor that come from
the background fluxes, and (Rμν, R) are the usual Ricci
tensor and Ricci scalar. The higher-order contributions
from vielbein fluctuations can be easily computed, but we
will not do so here. However, before we lay out the
equations to solve them, we Fourier transform our metric
perturbations in the following way:

Tðt; rÞ ¼
Z þ∞

−∞
eitω ~Tðr;ωÞdω

Xðt; rÞ ¼
Z þ∞

−∞
eitω ~Xðr;ωÞdω

Rðt; rÞ ¼
Z þ∞

−∞
eitω ~Rðr;ωÞdω; ð4:29Þ

where note that although Γi ≡ ðT; X; RÞ are real perturba-
tions, the Fourier components ~Γi ≡ ð ~T; ~X; ~RÞ can have
complex pieces. Thus generically we can express the
Fourier coefficients as:

~Γi ¼ Re ~Γi þ iIm ~Γi; ð4:30Þ

and the existence of the nonzero imaginary piece, at least
for the ~X Fourier component, will signal the presence of a
bulk viscosity. On the other hand, the reality of Γi will at
least imply:

~Γiðr;ωÞ ¼ ~Γ�
i ðr;−ωÞ; ð4:31Þ

where � is the complex conjugation. One may also impose
a more global integral condition, but if (4.31) is satisfied
then it is more apparent. Note that (4.31) also implies that
we will need odd powers of ω to counteract the � action.
We now analyze all the supergravity equations of motion

using the Fourier decomposition given in (4.29). Since we
don’t have three-form fluxes (as in region 3), the super-
gravity EOMs consist of the Einstein and the five-form flux
equations. The Einstein equation (4.28) for the tt compo-
nent can be written as

~T 00 þ ~T 0
�
5

r
þ 2B0

�
− ð ~T 0 þ 3 ~X0ÞA0 − ~R0ðA0 þ B0Þ

þ ω2e−4A−4Bð3 ~X þ ~RÞ ¼ 0; ð4:32Þ

where the derivative is with respect to the radial direction r.
Using (4.30), the above equation can be split into two
equations for the real and the imaginary parts of ~Γi.
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The second is the graviton fluctuation along ðx; y; zÞ
directions. However since we expect the energy momentum
tensors along the three spatial directions to be identical, we
can study only the xx Einstein equation. In terms of Fourier
components, this is given by

~X00 þ ~X0
�
5

r
þ 2B0

�
− ð ~T 0 þ 3 ~X0ÞðA0 þ B0Þ

− ~R0A0 þ ω2e−4A−4B ~X ¼ 0; ð4:33Þ

where as before we can decompose this in terms of real and
complex pieces. The other components, namely yy and zz
graviton fluctuations, will take exactly the same form as
(4.33). On the other hand, the rr graviton fluctuation will
be different and is given by:

ð ~T þ 3 ~XÞ00 − ~R0
�
5

r
þ 2B0

�
þ ~T 0ðA0 þ 2B0Þ þ 3 ~X0A0

þ ~R0ðA0 þ B0Þ þ ω2e−4A−4B ~R ¼ 0. ð4:34Þ

Again the above equation is linear in the Fourier compo-
nents, and therefore the complex components of the
equation will take similar form. This looks like generic,
and so the complex parts would solve identical equations.
Can this be different? A hint may come from the rt
fluctuation of the graviton which exists because of the
time dependence of the perturbations. The equation takes
the following form:

d
dt

�
3X0 − 3XB0 − R

�
5

r
− 2A0

�	
¼ 0; ð4:35Þ

where note that we wrote this in terms of (X, R) and not in
terms of the Fourier components ( ~X, ~R). One implication
of this is that we can rewrite (4.35) without the time
derivative as:

3X0 − 3XB0 − R

�
5

r
− 2A0

�
¼ c0; ð4:36Þ

c0 is a time-independent function (here it could simply be a
function of r). However in terms of the Fourier compo-
nents, the only solution for c0 is that it vanishes identically.
This means that the real and the complex parts of (4.36)
would again be identical. Finally, the Bianchi identity for
F5 leads to the following equation:

ð ~T þ 3 ~XÞ00 þ ð ~T þ 3 ~XÞ0
�
5

r
− 4A0

�
− 4A0 ~R0 ¼ 0: ð4:37Þ

This array of equations seems daunting, given that there are
an excess of equations with respect to variables (5 to 3), but
there is a consistent solution. With careful combinations of
(4.32) þ 3(4.33), (4.34) and (4.37) and taking inspiration

from the shear viscosity calculation in [13], we postulate
that

~Xðr;ωÞ ¼ e2aBðrÞ; ð4:38Þ

where a is now a function of ω (which could be complex)
and BðrÞ is given in (4.16). Plugging (4.38) in the set of
equations (4.32), (4.33), (4.34) and (4.37), we arrive at the
following consistent solution for the other two Fourier
components:

~Tðr;ωÞ ¼
�
1 −

2

a

�
e2aBðrÞ;

~Rðr;ωÞ ¼ 2ð2a − 1Þðe−2BðrÞ − 1Þe2aBðrÞ: ð4:39Þ

The quantity a appearing above, as mentioned earlier, is a
function of ω and can be expressed in terms of L and the
horizon radius rh as:

aðωÞ ¼ 1þ L4ω2

8r2h
¼ 1þ ω2

8π2T2
¼ 1 − 2

�
� ijωj
4πT

�
2

:

ð4:40Þ

Note that these are solutions that require that we solve the
equations in the limit in which r ¼ rh, exactly as in the
calculation for shear viscosity. The last expression for a is

in terms of γ ≡ ijωj
4πT, which will allow us to express future

solutions in terms of the same power of the black hole that
comprises the solution for the shear diagonal perturbation
(see Eq. (3.175) in [13]):

ϕðr;ωÞ ¼ eγBðrÞ: ð4:41Þ

However, for our case note that although the solution for
~Xðr;ωÞ depends explicitly on γ, the solution is also real,
meaning that it will eventually lead to a bulk viscosity
solution of ζ ¼ 0. Generically however, in the set of
equations (4.32), (4.33), (4.34) and (4.37), the real and
the imaginary parts of the fluctuations (X, T, R) satisfy
identical equations. For such a case we can either have Im
~Γi ¼ 0 in (4.30) for a satisfying (4.40), or:

~Γiðr;ωÞ ¼
�
1� i

X∞
n¼0

binω2nþ1

�
Re ~Γiðr; jωjÞ; ð4:42Þ

to ensure the reality of the fluctuations (4.29) using (4.31),
as Re ~Γi is expressed in even powers of ω. However the
evaluation of bulk viscosity requires us to go to the limit
ω → 0 according to (4.23). In this limit the imaginary part
of (4.42) vanishes. This is as it should be: in the conformal
limit, we expect the bulk viscosity to vanish. The purpose
of finding the exact form of this solution is twofold: one,
the conformal solution confirms a bulk viscosity of zero
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and two, the form of the conformal solution will act as a
base upon which we build any nonconformal corrections.
Any nonconformal corrections that lead to a nonzero bulk
viscosity must lead to a perturbation ~Xðr;ωÞ that has a
nonzero imaginary part (the choice of the imaginary piece
is subtle, as we will clarify later).

D. Towards bulk viscosity in the nonconformal limit

We now add the effects of the D5-branes to the system
by settingM ≠ 0. This will lead to corrections to the metric,
the warp factor and the black hole factor which are all
controlled by the small parameter:

ϵ ¼ 81gsM2

8L4
¼ 3gsM2

2πN
: ð4:43Þ

We begin with the corrections to the metric, as it will affect
all the other components of the system. Besides the
corrections to the warp factor, the metric picks up explicit
corrections of order ϵ via a resolution parameter12 a2ðrÞ:

e5¼ e−A−B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ6aðrÞ2
r2þ9aðrÞ2

s
dr

e6¼
re−A

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ9aðrÞ2
r2þ6aðrÞ2

s
ðdψþ cosθ1dϕ1þ cosθ2dϕ2Þ

e7¼
re−Affiffiffi

6
p

�
cos

�
ψ

2

�
dθ1þ sin

�
ψ

2

�
sinθ1dϕ1

	

e8¼
re−Affiffiffi

6
p

�
sin

�
ψ

2

�
dθ1− cos

�
ψ

2

�
sinθ1dϕ1

	

e9¼ e−A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ6aðrÞ2

6

r �
cos

�
ψ

2

�
dθ2þ sin

�
ψ

2

�
sinθ2dϕ2

	

e10¼ e−A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ6aðrÞ2

6

r �
sin

�
ψ

2

�
dθ2− cos

�
ψ

2

�
sinθ2dϕ2

	
:

ð4:44Þ

We see that putting the M D5-branes on one of the two
2-spheres has caused an asymmetry quantified by the
resolution parameter. Our assumption is that aðrÞ2 ¼
OðϵÞ and has no terms that are zeroth order in ϵ.
This can be confirmed by plugging the metric into the
equations of motion. Furthermore, we note that we must

have aðrÞ ¼ 0 in the limit that rh ¼ 0, in order to recover
the IR conifold solution (with MðrÞ ≈M). We can assume
that inserting D5-branes into a nonextremal system will
affect the warp factor in some way. We quantify this effect
using the function GðrÞ:

hðrÞ ¼ h0ðrÞ þ ϵGðrÞ; ð4:45Þ

so that the corrections are of order ϵ and higher. We will
also use the shorthand to express the resolution parameter
in the following way:

aðrÞ2 ¼ ϵFðrÞ ð4:46Þ

in order to put all nonextremal effects on the same footing.
Additionally, we can also create the combination of the
contracted Einstein equations to allow us to find an exact
solution for the black hole factor:

gðrÞ ¼ 1þ 4r4h

Z
r dy
y3½y2 þ 9ϵFðyÞ2� : ð4:47Þ

We turn now to Einstein’s equations. The tt and xx
equations are structurally the same, with an extra factor

of g0 ¼ 1 − r4h
r4 in front of the tt equation. So, the only real

different equations are the xx equation:

�
d2G
dr2

−
3

r
dG
dr

−
36

r3
dF
dr

þ 4

r2

��
1 −

r4h
r4

�
þ 72F

r4

�
1þ r4h

r4

�

þ 2r4h
r4

�
dG
dr

þ 1

r2
þ 288r2

Z
r FðyÞdy

y7

�
¼ 0; ð4:48Þ

with GðrÞ and FðrÞ are as given above in (4.45) and (4.46),
respectively, and the rr equation:

�
d2G
dr2

−
3

r
dG
dr

þ 30

r2
d2F
dr2

−
66

r3
dF
dr

þ 4

r2

��
1 −

r4h
r4

�

þ 72F
r4

�
1þ r4h

r4

�

−
2r4h
r4

�
2
dG
dr

þ 1

r2
þ 288r2

Z
r FðyÞdy

y7
þ 144

r4
F

�
¼ 0:

ð4:49Þ

The above set of equations seem formidable, but we can
form the much simpler combinations rrþ xx, i.e., (4.48)þ
(4.49) to get the following equation:

d2G
dr2

−
3

r
dG
dr

þ 15

r2
d2F
dr2

−
51

r3
dF
dr

þ 72

r4
F þ 4

r2
¼ 0 ð4:50Þ

and the opposite combination, rr − xx i.e., (4.49) − (4.48)
to get the following equation:

12This is not quite the resolution parameter that we encoun-
tered earlier in Sec. IIIC. In Sec. IIIC, we took a warped resolved
conifold so as to study the UV behavior. This is the brane side,
i.e., the gauge theory side of the problem. Here, as we concentrate
only on the IR behavior (i.e., integrate out the anti-D5 brane
DOFs) and as we are in the gravity dual, we take a conifold so that
the bare resolution parameter vanishes. As such we can write
a2ðrÞ ¼ OðϵÞ. In the following we will be able to determine the
OðϵÞ corrections.
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− 15

�
1 −

r4h
r4

��
d2F
dr2

−
1

r
dF
dr

�
þ 144r4hF

r6

þ 576r4h

Z
r FðyÞdy

y7
þ 2r4h

r4
− 4r

dG
dr

¼ 0: ð4:51Þ

From each of these, we can solve for GðrÞ. Solving (4.50),
we can express GðrÞ using FðrÞ in the following way:

GðrÞ ¼
Z

r
y3dy

�
C1 −

Z
y
dx

�
15

x5
d2F
dx2

−
51

x6
dF
dx

þ 72FðxÞ
x7

þ 4

x5

�	
þ C2; ð4:52Þ

where C1 and C2 are constants. On the other hand, solving
(4.51) yields another functional form for GðrÞ in terms of
FðrÞ in the following way:

GðrÞ ¼ 1

4

Z
r
dy

�
−
15y3

r4h

�
1 −

r4h
y4

��
d2F
dy2

−
dF
dy

�

þ 144FðyÞ
y3

þ 2

y

	
dyþ ~C1; ð4:53Þ

where ~C1 is another constant. We proceed to find FðrÞ by
equating the right-hand sides of (4.52) and (4.53), sim-
plifying and taking two derivatives, we get a second-order
differential equation for fðrÞ ¼ dF

dr :

d2f
dr2

−
1

r
df
dr

þ f
r2

¼ 2

15g0

dg0
dr

; ð4:54Þ

where note that the constants C1, C2 and ~C1 get automati-
cally removed so that we have a second-order differential

equation without any extra constants; and g0 ¼ 1 − r4h
r4 is the

conformal black hole factor. This can be solved to find:

fðrÞ ¼ K1r ln rþ K2rþ
2r
15

dilogðg0Þ; ð4:55Þ

were K1 and K2 are constants. We integrate once more, to
get:

FðrÞ ¼ r2
�
~K1 þ ~K2 ln rþ

1

30

�
1

2
dilogðg0Þ − lnðg0Þ

þ r2h
r2

ln

�
r2 − r2h
r2 þ r2h

�	�
; ð4:56Þ

where we have repackaged the Ki constants into two other
constants ~K1 and ~K2. We require that FðrÞ obey certain
limits. We need FðrÞ to disappear in the limit rh → 0, and
we need FðrÞ to be finite in the limit r → rh. The first limit
is so that our result matches the extremal result; i.e., there is
no OðϵÞ correction to the resolution parameter. The second

limit ensures that calculations we do later to find the bulk
viscosity do not diverge. The first limit then results in the
conditions:

lim
rh→0

~K1 ¼ 0; lim
rh→0

~K2 ¼ 0: ð4:57Þ

Since ~K1 and ~K2 are dimensionless, we must have that
~Ki ¼ aiðrhLÞbi , where the bi > 0. The simplest case is ai ¼ 0

for i ¼ 1, 2. Taking this into account, we can now plug the
full result for FðrÞ back into (4.52), and perform the
integrals to get a final solution for GðrÞ:

GðrÞ ¼ ln rþ 1

5

�
lnðg0Þ −

r2h
r2

ln

�
r2 − r2h
r2 þ r2h

�
−
1

8
dilogðg0Þ

	
;

ð4:58Þ

which behaves well in the limit r → rh as one would
expect. With these, our unperturbed nonconformal system
is fully defined to OðϵÞ that we seek here. We have:

aðrÞ2 ¼ ϵr2

30

�
− lnðg0Þ þ

r2h
r2

ln

�
r2 − r2h
r2 þ r2h

�
þ 1

2
dilogðg0Þ

	

hðrÞ ¼ L4

r4

�
1þ ϵ

�
ln rþ 1

5

�
lnðg0Þ −

r2h
r2

ln

�
r2 − r2h
r2 þ r2h

�

−
1

8
dilogðg0Þ

�	�
: ð4:59Þ

We move now to setting up the system of equations that will
allow us to solve for the OðϵÞ corrections to the metric
perturbations. This will come from both the Einstein’s
EOMs as well as the flux equations. In the language of
the Fourier modes, we expect a set of equations that would
take the following order-by-order expansion in the small
parameter ϵ:

F0ðr;ωÞ þ ϵF1ðr;ωÞ þ ϵ2F2ðr;ωÞ þOðϵ3Þ ¼ 0; ð4:60Þ

whereω is the Fourier frequencies, and F0ðr;ωÞ for example
will denote the ϵ independent i.e., the conformal results
(4.32), (4.33), (4.34), (4.35), and (4.37). We also expect all
the parameters involved here are now expressed as expan-
sions in ϵ, i.e.,

h ¼ h0 þ ϵh1 þ ϵ2h2 þOðϵ3Þ
g ¼ g0 þ ϵg1 þ ϵ2g2 þOðϵ3Þ
A ¼ A0 þ ϵA1 þ ϵ2A2 þOðϵ3Þ
B ¼ B0 þ ϵB1 þ ϵ2B2 þOðϵ3Þ; ð4:61Þ

with the subscript 0 denoting the conformal results, h≡
e−4A is the warp-factor involved in describing the back-
ground and g≡ e2B is the black-hole factor. Similarly the
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resolution factor, as we studied above, has the expansion
a2 ¼ f0 þ ϵf1ðrÞ þOðϵ2Þ, with f0 ¼ 0 for the conifold
case that we consider here and f1ðrÞ may be derived from
(4.59). For the Fourier components of the metric fluctuations
(4.29), we simply make the substitutions:

~Tðr;ωÞ ¼ T0ðr;ωÞ þ ϵ½T11ðr;ωÞ þ iT12ðr;ωÞ� þOðϵ2Þ
~Rðr;ωÞ ¼ R0ðr;ωÞ þ ϵ½R11ðr;ωÞ þ iR12ðr;ωÞ� þOðϵ2Þ
~Xðr;ωÞ ¼ X0ðr;ωÞ þ ϵ½X11ðr;ωÞ þ iX12ðr;ωÞ� þOðϵ2Þ;

ð4:62Þ

where T0, X0 and R0 are the Fourier modes satisfying the set
of equations (4.32), (4.34), (4.33), (4.36) and (4.37) whose
solutions are (4.38) and (4.39). As mentioned earlier, they
are all real. The goal now is to find the real and the imaginary
components (T11,X11, R11) and (T12,X12,R12), respectively.
We will exploit the fact that, to any order in ϵ, the set of
equations (4.61) should yield

F0ðr;ωÞ≡ 0; F1ðr;ωÞ≡ 0; F2ðr;ωÞ≡ 0;

ð4:63Þ

so that the number of variables in the expansion (4.62)
should at least match up with the number of equations.
Needless to say, the set of equations F0ðr;ωÞ≡ 0 are the
conformal equations (4.32), (4.34), (4.33), (4.36) and (4.37).
Again, our equations are the tt, xx, rr and rt components

of Einstein’s equations as well as the Bianchi identities for
the F5 and now the G3 flux and we will concentrate only to
first order in ϵ here. For the real components, the left-hand
side of the new equations F1 ≡ 0, will be identical to the
left-hand side of the set of the equations (4.32), (4.34),
(4.33), (4.36) and (4.37). The right-hand side of these
equations will no longer be zero, but will be source terms
that depend on T0ðrÞ, X0ðrÞ, R0ðrÞ and now FðrÞ andGðrÞ.
The source terms will be the terms from the left-hand side
of the set of equations (4.32), (4.34), (4.33), (4.36) and
(4.37), where the factor of ϵ comes from something other
than the perturbations, namely the warp factor hðrÞ ¼
e−4AðrÞ and the black hole factor gðrÞ ¼ e2BðrÞ, as well as
from naturally occuring OðϵÞ terms from the G3 contri-
butions to the Einstein equations and Bianchi identity.
There could also be contributions from the smeared anti-
five-brane of regions 2 and 3 that we have ignored so far
(see Eq. (2.27) of [14] for complete details13). We can
quantify this by adding additional sources as:

ΔðαÞðr;ωÞ≡ 0þ ϵ½ΔðαÞ
11 ðr;ωÞ þ iΔðαÞ

12 ðr;ωÞ� þOðϵ2Þ;
ð4:64Þ

where to zeroth order in ϵ all sources have already been
taken into account earlier, and α ¼ 1, 2, 3 correspond to T,
R and X fluctuations, respectively.
To the first order in ϵ, the tt Einstein equation then gives

us the following equation connecting the real parts (T11,
X11, R11) to the sources and the real components (T0, X0,
R0) of the set of equations (4.32), (4.34), (4.33), (4.36)
and (4.37),

T 00
11 þ T 0

11

�
5

r
þ 2B0

0

�
− ðT 0

11 þ 3X0
11ÞA0

0 − R0
11ðA0

0 þ B0
0Þ

þ ω2h0
g20

ð3X11 þ R11Þ

¼ −2B0
1T

0
0 þ ðT 0

0 þ 3X0
0ÞA0

1

−
ω2ðg0h1 − 2g1h0Þ

g30
ð3X0 þ R0Þ

þ R0
0ðA0

1 þ B0
1Þ þ

�
1þ g0
g0r2

�
T0 þ Δð1Þ

11 ; ð4:65Þ

where (X0, R0, T0) are given by (4.38) and (4.39). Note

that, in the absence of the source term Δð1Þ
11 , Eq. (4.65) is

linear in terms of the fluctuations, and the inhomogeneity in
the equation should only appear from the additional source

Δð1Þ
11 . Unless mentioned otherwise, this will be the case for

all the equations below. The other terms appearing in (4.65)
can be derived from the supergravity background and are
given by

g0 ¼ 1 −
r4h
r4

; B1 ¼ −
18r4h
g20

Z
r dxFðxÞ

x7

A0 ¼ −
1

4
ln

�
L4

r4

�
; B0 ¼

1

2
ln

�
1 −

r4h
r4

�
;

g1 ¼ −36r4h

Z
r dxFðxÞ

x7
h1 ¼ −4A1h0;

h0 ¼
L4

r4
; A1 ¼ −

1

4

�
GðrÞ
h0

	
: ð4:66Þ

On the other hand, the imaginary part of the tt Einstein
equation for the Fourier components may now be expressed
in the following way:

T 00
12 þ T 0

12

�
5

r
þ 2B0

0

�
− ðT 0

12 þ 3X0
12ÞA0

0 − R0
12ðA0

0 þ B0
0Þ

þ ω2h0
g20

ð3X12 þ R12Þ ¼ Δð1Þ
12 ; ð4:67Þ

where the coefficients are defined above. Note that the
terms the lhs of (4.67) is similar to Eq. (4.32) for the real or
the imaginary pieces of the Fourier components for the
conformal case.

13There is a small typo in Eq. (2.27) of [14]: The numerator in
the first term should be ∂ðmτ̄∂nÞτ instead of ∂ðm∂nÞτ.
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Let us now go to the real part of the xx Einstein equation.
The form is somewhat similar to the tt Einstein equa-
tion (4.65), but certain details differ. The equation is

X00
11þX0

11

�
5

r
þ 2B0

0

�
− ðT 0

11þ 3X0
11ÞðA0

0þB0
0Þ

−R0
11A

0
0þ

ω2h0
g20

X11

¼−2B0
1X

0
0þðT 0

0þ 3X0
0ÞðA0

1þB0
1Þ−

ω2ðg0h1 − 2g1h0Þ
g30

X0

þR0
0A

0
1þ

�
1þ g0
g0r2

�
X0þΔð2Þ

11 ; ð4:68Þ

where all the coefficients are defined earlier in (4.66).
As before, this is only to the first order in ϵ, and thus mixes
with (X0, T0, R0). The imaginary part of the equation to this
order takes the following form:

X00
12 þ X0

12

�
5

r
þ 2B0

0

�
− ðT 0

12 þ 3X0
12ÞðA0

0 þ B0
0Þ

− R0
12A

0
0 þ

ω2h0
g20

X12 ¼ Δð2Þ
12 ; ð4:69Þ

which as before is similar to (4.33) for the real or the
imaginary pieces of the Fourier components.
The other spatial components of Einstein equations,

namely yy and zz components, are identical to (4.65)
because of isometry so we will concentrate on the rr
equation. The real part of the equation takes the following
form:

ðT11 þ 3X11Þ00 − R0
11

�
5

r
þ 2B0

0

�
þ T 0

11ðA0
0 þ 2B0

0Þ

þ 3X0
11A

0
0 þ R0

11ðA0
0 þ B0

0Þ þ
ω2h0
g20

R11

¼ 2B0
1R

0
0 − T 0

0ðA0
1 þ 2B0

1Þ − 3X0
0A

0
1 − R0

0ðA0
1 þ B0

1Þ

−
ω2ðg0h1 − 2g1h0Þ

g30
R0 þ

�
3g0 − 1

g0r2

�
R0 þ Δð3Þ

11 ;

ð4:70Þ

and as expectedly, the imaginary part takes similar form as
the real or the imaginary parts of (4.34), namely,

ðT12 þ 3X12Þ00 − R0
12

�
5

r
þ 2B0

0

�
þ T 0

12ðA0
0 þ 2B0

0Þ

þ 3X0
12A

0
0 þ R0

12ðA0
0 þ B0

0Þ þ
ω2h0
g20

R12 ¼ Δð3Þ
12 : ð4:71Þ

The next set of equations appear from the rt components of
the Einstein equation. Again this equation would exist

because of the time dependence of the fluctuations. The real
part now takes the following form,

3X0
11 − 3X11B0

0 − R11

�
5

r
− 2A0

0

�
− 3X0B0

1 − 2A0
1R0

¼ ReC; ð4:72Þ

where C is in general a function of ΔðαÞ
ab . Such a term would

be absent for the conformal case (4.35) as one would expect.
In fact, the existence of this influences the imaginary part of
the rt fluctuation equation in the following way:

3X0
12 − 3X12B0

0 − R12

�
5

r
− 2A0

0

�
¼ ImC: ð4:73Þ

Looking at (4.73) we are tempted again to compare with
(4.35). There are however two possibilities now:

(i) One, when ImC¼ ΔðαÞ
12 ¼ 0, then the imaginary parts

of the fluctuation equations, (4.67), (4.69), (4.71) and
(4.73) match with the imaginary parts of the fluc-
tuation equations (4.32), (4.33), (4.34) and (4.35).

(ii) Two, when ImC and ΔðαÞ
12 are nonvanishing, then the

imaginary parts of fluctuation equations (4.67),
(4.69), (4.71) and (4.73) in general do not match
with either the real or the imaginary parts of the
fluctuation equations (4.32), (4.33), (4.34) and (4.35).

Note that the behavior of ReC and ΔðαÞ
11 do not effect our

discussion because the real parts of the equations (4.65),
(4.68), (4.70) and (4.72) are very different from the real
parts of (4.32), (4.34), (4.33) and (4.35). We will discuss
more on this later.
Finally, let us go to the flux equations. First, is the EOM

coming from the three-form flux G3. However, we do not
need to concern ourselves with theG3 equation at this point
because OðϵÞ corrections to the metric perturbations result
inOðϵ2Þ corrections to the equation. Thus theG3 EOMwill
start changing the results only toOðϵ2Þ. Similarly, the axion
EOM will not contribute anything because we are not
taking the gsNf backreactions into account. We expect the
sources (4.64) to only affect the Einstein equations.14

The second is then the five-form EOM. This will
contribute as before, with the real part of the equation
taking the following form:

ðT11 þ 3X11Þ00 þ ðT11 þ 3X11Þ0
�
5

r
− 4A0

0

�
− 4A0

0R
0
11

¼ 4A0
1ðT0 þ 3X0Þ0 þ 4A0

1R
0
0 −

4R0

r2
þ ReD; ð4:74Þ

14Note that, as long as there are no induced fluxes on the
anti-five-brane sources in regions 2 and 3—quantified here by
(4.64)—we expect the G3 and axion EOMs to have no con-
tributions to this order.
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whereD is another function of the sourcesΔðαÞ
ab similar toC

above. This implies, as before, the lhs of the imaginary part
of the equation takes the form similar to the real or the
imaginary parts of Eq. (4.37) encountered earlier:

ðT12 þ 3X12Þ00 þ ðT12 þ 3X12Þ0
�
5

r
− 4A0

0

�
− 4A0

0R
0
12 ¼ ImD: ð4:75Þ

We now have all the equations we need to solve to first
order in ϵ for the fluctuations given in (4.62). For bulk
viscosity, it is important that the imaginary parts of the
fluctuations in (4.62) are nonzero. To analyze this let us
consider the sources (4.64) to be nonzero. The precise

functional form for ΔðαÞ
ab is now necessary to relate the set of

equations (4.67), (4.69), (4.71), (4.73) and (4.75) to the
imaginary parts of the set of equations (4.32), (4.33),
(4.34), (4.35) and (4.37), respectively. In the absence of

the precise knowledge ofΔðαÞ
ab , and the fact that the lhs of all

the imaginary parts of the fluctuations match with the ones
for the conformal case, lead us to propose the following
possible solutions to the fluctuations (4.62):

~T�ðr;ωÞ ¼
�
1� iϵ

X∞
n¼0

pnω
2n−1

�
T0ðr; jωjÞ

þ ϵT11ðr; jωjÞ þOðϵ2Þ

~R�ðr;ωÞ ¼
�
1� iϵ

X∞
n¼0

qnω2n−1
�
R0ðr; jωjÞ

þ ϵR11ðr; jωjÞ þOðϵ2Þ

~X�ðr;ωÞ ¼
�
1� iϵ

X∞
n¼0

fnω2n−1
�
X0ðr; jωjÞ

þ ϵX11ðr; jωjÞ þOðϵ2Þ; ð4:76Þ

where (X0, R0, T0) are the values (4.38) and (4.39) for the
conformal case studied earlier, (pn, qn, fn) are real
functions of r, and (T11, R11, X11) are the solutions to
the real parts of the fluctuation equations, i.e., the set of
equations (4.65), (4.68), (4.70), (4.72), and (4.74). Clearly
this is an over-determined system, but as for the conformal
case, we expect solutions to exist.15

The way we have constructed the solutions in (4.76),
they satisfy the reality condition (4.31) and are functions of
r and ω. We will eventually have to consider the limit when
ω approaches zero. In this limit, the imaginary parts of
(4.76) take the following form,

Im ~T�ðr;ωÞ ¼ �
�
p0ϵ

ω
þ p1ϵωþOðω2Þ

	
T0ðr; jωjÞ →

� p0ϵ

ω
T0ðr; jωjÞ

Im ~R�ðr;ωÞ ¼ �
�
q0ϵ
ω

þ q1ϵωþOðω2Þ
	
R0ðr; jωjÞ →

� q0ϵ
ω

R0ðr; jωjÞ

Im ~X�ðr;ωÞ ¼ �
�
f0ϵ
ω

þ f1ϵωþOðω2Þ
	
X0ðr; jωjÞ →

� f0ϵ
ω

X0ðr; jωjÞ; ð4:77Þ

where we see that there is an interesting simplification: the
result only depend on the functional forms of p0ðrÞ, q0ðrÞ
and f0ðrÞ. All other functions piðrÞ, qiðrÞ and fiðrÞ for
i ≠ 0 are irrelevant for the specific computation that we aim
for here! Additionally, as we shall soon see, it is in fact only
the functional form for f0ðrÞ that will eventually be required
in the bulk viscosity computation.16 This amazing simpli-
fication is of course only for our specific computation, and
for all other transport coefficients, we will require the full
knowledge of the functions pnðrÞ, qnðrÞ and fnðrÞ unless of
course we go to the ω → 0 limit. Note however that,
although all the values in (4.77) seem to blow-up in this
limit, the bulk viscosity will be finite in this limit. Needless to
say, such a solution can only exist in the nonconformal limit
where we have a way to introduce a tunable parameter ϵ.
In the conformal limit, and as we saw from (4.42), a nonzero
imaginary piece to the fluctuation cannot exist.
Before moving forward, let us clarify one issue related to

γ defined earlier. For the conformal case we used a
parameter γ ≡ ijωj

2πT in (4.38) and (4.39) to determine the
fluctuations. The same γ appears in Eq. (3.174) of [13] for
the determination of shear viscosity. For terms with even
powers of jωj, the reality condition (4.42) is naturally
satisfied. However for the bulk viscosity computation, if we
express our result using the parameter γ, how is the reality
condition (4.42) satisfied now?
The answer turns out to be the way we have expressed

(4.76) and (4.77): we are in principle not required to use
parameter γ. However if we instead use the technique of
[13] − discussed for shear viscosity − then the reality issue
will come back. Note that in [13], the fluctuation ϕðr; tÞ
was defined as

ϕðr; tÞ ¼
Z

∞

0

dωgγFðr; γÞφðωÞ; ð4:78Þ

15The appearance of jωj on the rhs of (4.76) implies that they
are even powers of ω, as should be clear from the EOMs
governing the fluctuations.

16There is a subtlety here. When f0 is a constant, the bulk
viscosity vanishes despite the existence of an imaginary piece to
the ~X� fluctuation. Thus having an imaginary piece to the ~X�
fluctuation is a necessary but not a sufficient condition for the
existence of a nonzero bulk viscosity.
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where gðrÞ is the black-hole factor. This makes sense as
positive energy i.e., the ω > 0 case was studied in [13].
If we want to consider all energies, we have to just add
a complex conjugate piece to (4.78). This way ϕðr; tÞ will
be real.17

Coming back, the way one would now go about
computing the bulk viscosity from the complex fluctuations
(4.76) and (4.77) is to express the total type IIB action
completely in the language of ~T�ðr;ωÞ, ~R�ðr;ωÞ and
~X�ðr;ωÞ, much like Eq. (3.170) of [13],18 but now
expressed in terms of all the three Fourier components
( ~T�, ~R�, ~X�). Note that the action remains real but the
imaginary pieces, essential for the bulk viscosity compu-
tation, appear solely from the Fourier components (as was
also the case for the shear viscosity computation in [13]).
For the specific case here, we start by defining ~X1ðr;−ωÞ as
certain combination of modes ~Xþðr;−ωÞ and ~X−ðr;−ωÞ
from (4.76), much like (4.26) before, in the following way:

~X1ðr;−ωÞ ¼ α1 ~Xþðr;−ωÞ þ α2 ~X−ðr;−ωÞ; ð4:79Þ

as in Eq. (3.191) of [13] and αi are, for the time being
considered to be some functions of r and ω. The r
dependence of αi would imply, holographically, the scale
dependence of certain Schwinger-Keldysh parameters. The
bulk viscosity may then be expressed in terms of the ratio
between the individual Fourier components, as in
Eq. (3.195) of [13] which, for our case, becomes the ratio

between
~X1

0ðr;−ωÞ
~X1ðr;−ωÞ . Therefore, using (4.79), the bulk viscosity

ζ may be expressed as:

ζ¼ lim
ω→0

GðrÞ
2

�
~X1

0ðr;−ωÞ ~X�
1ðr;−ωÞ− ~X�0

1 ðr;−ωÞ ~X1ðr;−ωÞ
j ~X1ðr;−ωÞj2

	����rc
rh

¼ lim
ω→0

ϵGðrÞ
2ω

�
2ðα02α2−α01α2Þf0þðα22−α21Þf00

ðα1þα2Þ2
þOðω2Þ

	����rc
rh

;

ð4:80Þ

where GðrÞ is derived from the background data and may be
extracted from the type IIB action. For our case, using the
coordinate system (4.44) and the technique elucidated in
[13], GðrÞ can be expressed as

GðrÞ ¼ r5 sin θ1 sin θ2

�
r2 þ 9a2

r2 þ 6a2

��
1

48
−
gðrÞ
9

	
; ð4:81Þ

where a2 is as given in (4.59), and gðrÞ is the full black-hole
factor including ϵ corrections. We can also compute the
entropy density s in terms of the parameters of our
background. The result can be written as

s ¼ r5 sin θ1 sin θ2
108Tc

�
r2 þ 9a2

r2 þ 6a2

�
g0ðrÞ; ð4:82Þ

where we have used the cutoff temperature Tc as in [13];
and note the appearance of angular coordinates θ1 and θ2 as
well as the resolution parameter a2ðrÞ in a similar fashion
as in GðrÞ above. This implies that a more useful thing
would be to compute the ratio of the bulk viscosity (4.80)
with the entropy density s (4.82). To proceed, we will then
need the precise forms for α1 and α2 in (4.79). Ignoring the
scale dependence of αi, and choosing an appropriate
quadrant (see [40]) we define:

α1ðωÞ ¼ α0; α2ðωÞ ¼ α0eω=Tc ; ð4:83Þ

with a constant α0 and using the same cutoff temperature
Tc. Combining (4.80), (4.81), (4.82) and (4.83), the bulk
viscosity to the entropy ratio can be written as

ζ

s
¼ 27f00ðrÞϵ

g0ðrÞ
�
gðrÞ
9

−
1

48

	����rc
rh

; ð4:84Þ

in terms of gðrÞ, whose exact value was given earlier in
(4.47), and the functional form for f0ðrÞ. Despite appear-
ance, the ratio (4.84) is not independent of Tc, as Tc would
re-emerge from the black hole factor,19 but the ω depend-
ence does cancel out in the final expression so that ω → 0
limit is finite. The ratio (4.84) is proportional to ϵ, as it
should be. Furthermore, to this order, we can replace gðrÞ
by g0ðrÞ, and ignore any corrections to f0ðrÞ beyond zeroth
order in ϵ. This implies that (4.84) is exact to OðϵÞ.
An interesting puzzle appears at this point. Imagine we

had chosen a different quadrant with opposite sign for α2.
It would naively seem that (4.84) cannot be finite in the
ω → 0 limit as the bulk viscosity depends crucially on the
ratio:

α1 − α2
α1 þ α2

: ð4:85Þ

How can we reconcile this apparent paradox? The answer
lies in the mode expansion (4.76): the finiteness condition
allowed us to express the Fourier modes in terms of ω2n−1.
In the ω → 0 limit the 1

ω factor in (4.76) is precisely
cancelled by the ratio (4.85), as (4.85) is proportional to ω

Tc

17Adding the complex conjugate implies jωj → ω in all the
expressions in the shear viscosity computation of [13]. Thus all
analysis, using only positive energy fluctuation, remain un-
changed, as expected. This can also be seen from Eq. (3.2) in
[41] where the physical fluctuation was taken to be complex,
which could be made real by adding a complex conjugate.
This implies no change in the analysis as emphasized above.

18This further implies that the r integral would run from rh to
rc, the cutoff radius. This cutoff radius rc is similar to the cutoff
radius rc that we encountered in Sec. III. 19Recall our definition of Tc in [13]: Tc ¼ g0ðrhÞ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrhÞgðrcÞ

p .
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for the choice (4.83). However, (4.76) is not the only choice
available here. There does exist another choice of the mode
expansion that equally respects the reality condition (4.31),
and can expressed as:

~Γið�Þ ¼
�
1� iϵ

X∞
n¼0

~bðiÞnω2nþ1

�
X0ðr; jωjÞ

þ ϵX11ðr; jωjÞ þOðϵ2Þ; ð4:86Þ

where i ¼ 1, 2, 3 in ~Γi correspond to ~T�, ~R� and ~X�,
respectively; and i ¼ 1, 2, 3 in ~bi correspond to the three
functions ~pnðrÞ, ~qnðrÞ and ~fnðrÞ, respectively. As before,
we will only need ~X� and, defining ~X1 as in (4.79) but now
with α2 ¼ −α0eω=Tc , the ratio of the bulk viscosity to the
entropy density becomes

ζ

s
¼ 108T2

c
~f0

0ðrÞϵ
g0ðrÞ

�
gðrÞ
9

−
1

48

	����rc
rh

; ð4:87Þ

which is finite in the ω → 0 limit as expected, and depends
only on ~f0 in the series (4.86). These two ratios, (4.84)
and (4.87), are expected to be identical because physical
quantities cannot depend on our choice of quadrants. This
turns out to be possible if we express Tc as

Tc ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f00ðrcÞ
~f0

0ðrcÞ

s
; ð4:88Þ

where without loss of generality we have fixed the values of
f0 and ~f0 at the horizon radius rh. Note that (4.88) should
be compared to the value of Tc quoted earlier in footnote 19,
and therefore may be used to fix the ratio f00ðrÞ= ~f00ðrÞ at rc,
the cutoff radius. Therefore with the definition of Tc, (4.84)
or (4.87) both lead to the same unabiguous value for the
bulk viscosity to the entropy density ratio.

V. DISCUSSIONS AND CONCLUSIONS

In this paper we performed two consistency checks and
one computation that test the nonconformality of the model
proposed in [13]. Our first consistency check is to verify the
stability of the model proposed in [13], elaborated later on
in [14] and [15]. The issue of stability arises because the
UV completion in [13] requires the introduction of new
degrees of freedom at a certain scale. These new degrees
of freedom appear from wrapped anti-D5 branes on two-
cycle of a certain warped resolved conifold. However the
presence of anti-D5 branes with wrapped D5 and D3-
branes create tachyonic instabilities in the theory. A naive
analysis demanding kappa-symmetry along the lines of
[24,25] fails because of the curvature of the cycles wrapped
by the branes. Thus to restore stability we have to invoke
non-Abelian kappa-symmetry—a subject that has not been

developed much in the literature.20 However, despite
this, we have been able to justify the stability of the system
using certain approximate form of the non-Abelian kappa-
symmetry. Clearly this subject is in its infancy now, and a
more detailed study is called for, but our preliminary
analysis does shed some light on the inherent stability of
the model.
Further progress on this issue could be made by

computing the higher-order terms of the kappa symmetry
matrix expansion in the field strength using the iterative
procedure given in [30]. An important part in our analysis
was the fact that the terms at first and second order in
the fields are either part of an expansion of a DBI-like
expression or could be made to vanish on at least some
subspace of the adjoint representation of the gauge group.
For the analysis to be conclusive, a similar statement would
need to be true at all orders. By investigating the higher-
order terms, or perhaps by directly analyzing the procedure
that computes them, one would hope to establish which
combinations of the non-Abelian fields can appear at any
given order in the expansion and check whether this is the
case. This is an interesting problem that we relegate to
future work.
Once stability is achieved, the next consistency check is

the renormalization group flow from UV to IR. From the
gauge theory side, this is a difficult problem as it requires
the knowledge of the detailed behavior of the gauge theory
from UV to IR. The physics is further complicated by the
fact that at certain scale the theory undergoes Higgsing
that converts a walking RG flow to a running flow that
eventually leads to IR confinement, all the while remaining
strongly coupled. The last requirement is an essential
feature of all gauge theories that have gravity duals.
Thus the RG flow may also be studied from the gravity
dual. This is in principle straightforward, but in practice
requires the knowledge of the background geometry and
fluxes precisely. Fortunately the technical challenges are
not insurmountable, and with some effort the background
data may be elaborated enough leading to a complete
determination of the RG flow from the gravity side. What
we achieved here from the gravity dual, reproduces the
gauge theory picture from UV to IR succinctly. Subtleties
regarding strong coupling behavior, Higgsing and the
smoothness of the RG flow tell us that the oft advertised
IR Seiberg dualities etc may not be visible from the RG
flow. This is of course expected, and our analysis confirms
this and many other subtleties.
Finally, we perform one computation that in some

sense confirms the nonconformality in the model, namely
the existence of bulk viscosity. We have managed to
demonstrate the presence of a nonzero bulk viscosity from
the gravity dual, by showing the existence of a certain

20We thank Eric Bergshoeff and Renata Kallosh for emphasiz-
ing this.
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imaginary piece to the Fourier components of the bulk
fluctuations. This imaginary piece vanishes for the con-
formal case, and therefore existence of this is a sure sign of
nonconformality in the model modulo certain subtleties
that we pointed out earlier.
Interestingly, the above form (4.80) for the bulk viscosity

is similar to bulk viscosity result derived from Eq. (18) of
[42]. Going to the ω → 0 limit, (4.80) does lead to an
unambiguous value for the bulk viscosity as we show in
(4.84) and (4.87) by taking the ratio of the bulk viscosity
with the entropy density. Our result is expressed in terms of
certain functions f0ðrÞ or ~f0ðrÞ which are related by (19).
These functions entail the details of the UV completion of
the model and are therefore technically challenging to
derive. At this point, we may therefore proceed in the
following way. Using the shear viscosity value η presented
in Eq. (3.202) of [13], the bulk to shear viscosity bound,

ζ

η
≥ 2

�
1

3
− c2s

�
; ð5:1Þ

with cs being the speed of sound derived from the type IIB
action, may be used to find the constraint on the functional
form for f0ðrÞ or ~f0ðrÞ. Note that the shear viscosity value
in [13] uses the full UV completion, and therefore it makes
sense to use (4.80) with contributions from the UV cap. As
discussed in Sec. IVC, we expect the contributions from

region 3 to be negligible, and the functions f0ðrÞ and ~f0ðrÞ
capture the contributions from region 2 in (4.80). Any
additional correction that may appear from the UV cap to
GðrÞ given in (4.81) will only modify ζ in (4.84) [or (4.87)]
to Oðϵ2Þ, since (4.80) is already at OðϵÞ. Thus it will make
sense to determine the constraint on f0ðrÞ or ~f0ðrÞ using
(5.1). These and other details will be presented in [23].

ACKNOWLEDGMENTS

Wewould like to thank Eric Bergshoeff, Renata Kallosh,
and Mohammed Mia for helpful discussions. The work
of K. D. and C. G. is supported in part by the Natural
Sciences and Engineering Research Council of Canada
(NSERC) grant. K. D. would also like to thank the Simons
Foundation Grant for research support and Stanford
University, where a substantial part of the work was done,
for providing a stimulating research atmosphere during his
sabbatical visit. C. G. also gratefully acknowledges support
by the Canada Council for the Arts through its Killam
Research Fellowship program.

Note added.—While this paper was under preparation, two
papers, [43,44], appeared in the archive that have some
overlap with the contents of Sec. III. It would be interesting
to compare the results of [43,44] with ours.
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