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We start from a static, spherically symmetric space-time in the presence of an electrostatic field and
construct the mini-superspace Lagrangian that reproduces the well known Reissner-Nordström solution.
We identify the classical integrals of motion that are to be mapped to quantum observables and which are
associated with the mass and charge. Their eigenvalue equations are used as supplementary conditions to
the Wheeler-DeWitt equation and a link is provided between the existence of an horizon and to whether the
spectrum of the observables is fully discrete or not. For each case we provide an orthonormal basis of states
as emerges through the process of canonical quantization.
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I. INTRODUCTION

After the Hamiltonian formulation of general relativity
presented by Dirac [1], the canonical formalism introduced
by Arnowitt, Deser and Misner [2] and the seminal work of
DeWitt [3], the quantization of gravity has become the holy
grail of theoretical physics. In order to surpass several
problems that are encountered in the quantization process,
other gravitational theories (e.g. Horava-Lifshitz theory [4])
or even different approaches like loop quantum gravity (for
a general introduction see [5,6] and references therein) have
been proposed. However, regardless of the progress in each
theoretical framework, there are still open issues to be
addressed [7]. Hence, one may look for certain simplifi-
cation schemes that allow the several different paths to be
tested on a theoretical level or even to be compared with
each other.
In that respect, the minisuperspace approach has been

put in use in various cases, so as to simulate in a simple way
the quantum behavior of certain gravitational systems
possessing a high degree of symmetry [8–17]. When this
reduction takes place, the ensuing configuration is
described by a finite number of degrees of freedom and
many fundamental difficulties encountered in the quanti-
zation of full gravity are, to a large extent, circumvented; at
the same time some key distinguishing properties, such as
time reparametrization invariance, particular space coor-
dinate covariance [18], existence of constraints, are main-
tained giving rise to the hope that some properties of the
full quantum gravity can be seen by quantizing these
reduced systems. At this level, two main procedures can
be followed: the standard canonical quantum mechanics or

the polymer quantization [19], which has been put in use in
the framework of loop quantum cosmology.
In the context of the standard canonical quantization, a

process involving the classical symmetries of constrained
systems [20] that are being promoted to operators and used
as supplementary conditions to the Wheeler-DeWitt equa-
tion has been proposed [21]. In that way, quantum
observables and their eigenvalues can be related to classical
constants of integration appearing in the metric. The
method has been implemented in various cosmological
configurations [22] as well as black holes [21,23,24], where
it can be seen that the implementation of certain allowable
subalgebras in the quantization can even lead to a semi-
classical avoidance of curvature singularities.
In this work, we revisit the quantization procedure

initially presented in [23]. We focus our analysis on the
quantization with respect to Abelian subalgebras of the
symmetries that were not considered there. The procedure
followed here leads to an association of the quantum
configuration, stemming from the minisuperspace analysis,
to the well known Pöschl—Teller problem of quantum
mechanics. Under certain conditions, there exist bound
states that lead to a discrete spectrum for the two essential
constants appearing in the Reissner-Nordström metric, the
charge Q and the massM. What is more, the appearance of
a discrete or a continuous spectrum is seen to be linked with
the existence of the horizons, thus in a way seems to be
related to the cosmic censorship conjecture [25] (for
possible gravitational lensing tests on the cosmic censor-
ship hypothesis see [26]).
The fact that a discrete spectrum appears is highly

nontrivial, since canonical quantization of minisuperspace
gravitational systems usually results in continuous spectra
for the observables. Apart from the discrete case—where a
Hilbert space can be formally constructed—we also study
the continuous spectrum and provide an orthonormal
relation for the corresponding states in terms of the
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Dirac delta function. Hence, even in that case the quan-
tization can be performed formally in terms of a rigged
Hilbert space.
The structure of the paper is the following: in Sec. II we

present the minisuperspace description of spatially homo-
geneous and static–spherically symmetric geometries along
with the proposed canonical quantization procedure, i.e. the
use of the constant potential formulation in the Lagrangian
and the promotion of the classical integrals of motion into
Hermitian operators. In Sec. III, the general procedure is
applied to a static spherical symmetric spacetime which is
controlled by the presence of an electric field: firstly the
classical system is analysed in the framework of
Lagrangian dynamics and the Reissner–Nordoström space-
time is easily reproduced using the integrals of motion
derived through the Killing vector fields of the flat super-
metric. Then the quantization of the minisuperspace is
carried out in two separate cases; using either a regular or a
hyperbolic rotation. Finally a discussion of the results in
presented in Sec. IV.

II. MINISUPERSPACE DESCRIPTION
AND A PROPOSED CANONICAL
QUANTIZATION PROCEDURE

Let us consider the case of Einstein’s gravity

S ¼ c3

16πG

Z ffiffiffiffiffiffi
−g

p
Rd4xþ Sm; ð2:1Þ

where g is the determinant of the space-time metric gμν, R
the Ricci scalar and Sm the action of the matter content. For
specific types of manifolds possessing a certain group
of isometries (e. g. spatially homogeneous or static-
spherically symmetric geometries) the variables in the line
element can be decoupled in the following manner

ds2 ¼ ϵNðxÞ2dx2 þ γκλðxÞσκi ðyÞσλjðyÞdyidyj; ð2:2Þ

whereN is the lapse function and σκi ðyÞ’s the invariant basis
one-forms associated to the assumed symmetry group of
motions; when ϵ ¼ −1, x is the time variable and γκλðxÞ the
components of the (positive definite) scale factor matrix,
while for ϵ ¼ 1, x stands for the radial coordinate of some
spherically symmetric line element. In these cases,
Einstein’s equations

Rμν −
1

2
gμνR ¼ 8πG

c4
Tμν ð2:3Þ

with Tμν ¼ 2ffiffiffiffi−gp δSm
δgμν, are reduced to a set of ordinary

differential equations with x as the independent dynamical
variable. Additionally, if ansatz (2.2) is inserted into action
(2.1)—and the nondynamical degrees of freedom are
integrated out—there remains a reduced action for a
mechanical system consisting out of the finite number of

degrees of freedom left over. The corresponding Euler-
Lagrange equations may (e.g. Bianchi Class A cosmologi-
cal models), or may not (e.g. Bianchi Class B cosmological
models) be equivalent to the reduced equations of motion
i.e. equations (2.3) restricted by hypothesis (2.2).
Whenever these two sets are indeed equivalent, we obtain
what is called a valid minisuperspace description, and the
evolution of the full gravitational system is successfully
described by that of the reduced; this property is a
prerequisite for any subsequent quantum treatment of the
reduced action, for in the opposite case we would be
quantizing degrees of freedom whose classical dynamics is
not the correct one dictated by (2.3) and (2.2). Of course,
the crucial question concerning the relation between any
quantum results from this truncated system and the reduc-
tion of the full quantum gravity, can not be answered until
this full theory is constructed. Nevertheless, the fact that
properties like time reparametrization, existence of con-
straints, etc. are present in the reduced system, justifies the
hope that its quantization may bare similarities to the results
obtained from a reduction of a full quantum gravity theory.
The Lagrangians of minisuperspace systems emanating

from this procedure assume the general form

L ¼ 1

2NðxÞ ḠαβðqÞ _qαðxÞ _qβðxÞ − NðxÞVðqÞ ð2:4Þ

where · ¼ d
dx. The qαðxÞ’s is a set of variables that

incorporates the γκλ’s plus any matter degree of freedom
we consider in Sm (as long as its contribution is quadratic in
velocities). The function VðqÞ and the matrix ḠαβðqÞ are
the minisuperspace potential and metric respectively. What
is more, Lagrangian (2.4) is constrained with the conse-
quence that not all equations of motion are independent
from one other. With the help of the Dirac-Bergmann
algorithm for singular systems ([27,28]) the corresponding
Hamiltonian is written as

HT ¼ NHþ uNpN

where

pN ≈ 0 ð2:5aÞ

H ¼ 1

2
Ḡαβpαpβ þ VðqÞ ≈ 0 ð2:5bÞ

are the primary and secondary constraints respectively. The
≈ symbol is used to denote a weak equality: A relation
which holds on the constraint surface and thus can be used
only after all Poisson brackets have been calculated.
For the particular situation at hand, it can be shown that

conditional symmetries [29], i.e. conserved modulo the
constraint (2.5) quantities which are at most linear in the
momenta, assume the general form [20,30]
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Q ¼ ξαðqÞpα þ
Z

NðxÞ½ωðqðxÞÞ þ FðqðxÞÞ�VðqðxÞÞdx

ð2:6Þ

with

LξḠαβ ¼ ωðqÞḠαβ; and FðqÞ ¼ 1

VðqÞLξVðqÞ;

Lξ denoting the Lie derivative with respect to the configu-
ration space vector ξ. It is easy to check that

dQ
dx

¼ ∂Q
∂x þ fQ;HTg ¼ NωH ≈ 0 ð2:7Þ

holds. Thus, any conformal Killing vector of the minis-
upermetric generates a conserved quantity on the con-
strained surface: When it happens that the conformal factor
of ξ over the potential is opposite to the one attained over
the metric, i.e. F ¼ −ω we get

Q ¼ ξαpα; ð2:8Þ

otherwise Q assumes a nonlocal expression as given
in (2.6).
It is of particular use, especially in quantization [21], to

adopt a parametrization that incorporates all the informa-
tion about the system inside the minisuperspace metric.
This can be done by adopting a scaling transformation of
the form N ↦ n ¼ NV, which allows us to write the
equivalent Lagrangian

L ¼ 1

2nðxÞGαβðqÞ _qαðxÞ _qβðxÞ − nðxÞ; ð2:9Þ

with Gαβ ¼ VḠαβ being the new, scaled by the potential,
minisuperspace metric. The corresponding Hamiltonian
constraint becomes

H ¼ 1

2
Gαβpαpβ þ 1 ≈ 0

and relation (2.6) is still valid for all conformal Killing
vectors of this new, scaled by the potential, minisuperspace
metric Gαβ by just setting F ¼ 0 and N ¼ n=V. Conserved
charges of the form (2.8) correspond now to Killing vector
fields of Gαβ and have the property of strongly commuting
with the Hamiltonian, not just weakly. The latter is evident
by (2.7), since for the Killing vectors ω ¼ 0. This property
is extremely useful in the process of quantization, as we
shall observe in the following analysis.
Let us proceed by constructing a canonical quantization

scheme for system (2.9). We assume that the minisuper-
space Gαβ possesses some Killing vector fields ξI , where I
is an index used to label each one of them. As we discussed,

and since we are in the constant potential parametrization,
there exist classical integrals of motion of the form (2.8)
corresponding to each Killing vector ξI. We follow the
usual prescription of assigning differential operators to
momenta,

pn ↦ p̂n ¼ −iℏ
∂
∂n ; pα ↦ p̂α ¼ −iℏ

∂
∂qα ;

while the positions are considered to act multiplicatively. In
order to address the factor ordering problem of the Kinetic
term ofH, we choose the conformal Laplacian (or Yamabe
operator),

Ĥ ¼ −
ℏ2

2μ
∂αðμGαβ∂βÞ þ

d − 2

8ðd − 1ÞRþ 1; ð2:10Þ

where μðqÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detGαβj
p

, ∂α ¼ ∂
∂qα, R the Ricci scalar of

the minisuperspace and d its dimension. This choice is
uniquely determined by requiring the sought operator to be
scalar and covariant under rescalings of the minisuperspace
metric; both of these properties hold for the classical
system. A very important, as well as interesting, conse-
quence of this choice is the fact that, classical symmetries
(2.8) are naturally carried over to the quantum description
by just assigning to Q the general expression for linear first
order, Hermitian operators

Q̂I ¼ −
iℏ
2μ

ðμξαI ∂α þ ∂αðμξαI ÞÞ ¼ −iℏξαI ∂α ð2:11Þ

with the last equality holding due to the ξI’s being Killing
vector fields and μðqÞ the physical measure. Note that only
in the constant potential parametrization these symmetries
exactly commute with the Hamiltonian (in other para-
metrizations where the effective potential is not constant
they give rise to a multiple of the constraint). Now this
property is carried over at the quantum level and

½Q̂I; Ĥ� ¼ 0 ð2:12Þ

holds. What is more, the classical Poisson algebra of the
QI’s is isomorphic to the quantum algebra of the operators

fQI;QJg ¼ CK
IJQK ↦ ½Q̂I; Q̂J� ¼ −iℏCK

IJQ̂K;

a fact that is also true for the most general expression
in (2.11).
By having constructed a quantization procedure

where (2.12) holds we are able to use the Q̂I’s as
quantum observables together with Ĥ. The number of
eigenequations

Q̂IΨ ¼ κIΨ ð2:13Þ
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that can be consistently imposed on the wave function is
dictated by the integrability condition [31]

CM
IJκM ¼ 0

where κM are the eigenvalues and CM
IJ the structure

constants of the subalgebra under consideration. The
eigen-equations (2.13) are of course used as supplementary
conditions together with the primary constraint and the
Wheeler-DeWitt equation

p̂nΨ ¼ 0 ð2:14aÞ

ĤΨ ¼ 0: ð2:14bÞ

The latter being imposed according to Dirac’s prescription
for the quantization of constrained systems, that requires
the constraints to annihilate the wave function.

III. THE STATIC, SPHERICALLY
SYMMETRIC REDUCED SYSTEM

In this section we study the canonical quantization of the
three dimensional flat minisuperspace that arises for the
static, spherically symmetric space-times in the presence of
an electric field. We start by giving a brief description of the
classical system and its conserved quantities before we
proceed and use them as quantum observables in the
subsequent quantization.

A. Classical description

Let us take as our starting point the action (2.1) where the
matter content is

Sm ¼ −
1

4μ0

Z ffiffiffiffiffiffi
−g

p
FμνFμνd4x

with Fμν ¼ ∂μAν − ∂νAμ. Of course, variation with respect
to the metric yields the Einstein-Maxwell set of equa-
tions (2.3) where the energy-momentum tensor reads

Tμν ¼
1

μ0

�
FμλFλ

ν −
1

4
FκλFκλgμν

�
:

On the other hand, variation with respect to the vector
potential Aμ leads to the vacuum Maxwell equations in the
absence of sources

Fμν
;ν ¼ 0: ð3:1Þ

From this point on, and for the sake of simplicity, we
choose to work in units where c ¼ 4πG ¼ μ0 ¼ ℏ ¼ 1.
We consider the generic line element

ds2 ¼ −bðrÞ2dt2 þ NðrÞ2dr2 þ aðrÞ2ðdθ2 þ sin2θdϕ2Þ
ð3:2Þ

corresponding to a static, spherically symmetric spacetime
in standard coordinates. The accompanying form for the
electromagnetic potential is

A ¼ fðrÞdt: ð3:3Þ

Substitution of (3.2) and (3.3) into (2.1) leads to the
following minisuperspace Lagrangian for the configuration
at hand

L ¼ 2

NðrÞ
�
2aðrÞ _aðrÞ _bðrÞ þ bðrÞ _aðrÞ2 þ aðrÞ2 _fðrÞ2

bðrÞ
�

þ 2bðrÞNðrÞ: ð3:4Þ

It can be easily verified that the Euler-Lagrange equations
of (3.4) are equivalent to the set of Einstein (2.3) plus
Maxwell (3.1) when reduced by using (3.2) and (3.3).
As we discussed in the previous section, we shall work in

the constant potential parametrization, by setting

NðrÞ ¼ nðrÞ
2bðrÞ :

Thus, (3.4) is transformed into

L ¼ 4

nðrÞ ð2aðrÞbðrÞ _aðrÞ
_bðrÞ þ bðrÞ2 _aðrÞ2

þ aðrÞ2 _fðrÞ2Þ þ nðrÞ ð3:5Þ

from which we deduce the minisuperspace metric

Gαβ ¼

0
B@

8b2 8ab 0

8ab 0 0

0 0 8a2

1
CA; ð3:6Þ

which is just a representation of the three dimensional
flat space with Lorentzian signature. Thus, we know that
the isometry group is six dimensional and it consists
of the three translations and the elements of the
SOð2; 1Þ group, i.e. two pseudo-rotations and an actual
rotation. In these coordinates we choose to write the six
Killing vectors producing autonomous integrals of motion
of the form (2.8) as

ξ1 ¼ ∂f; ξ2 ¼
1

ab
∂b;

ξ3 ¼
f
ab

∂b þ
1

a
∂f; ξ4 ¼ −a∂a þ b∂b þ f∂f

ξ5 ¼ ∂a −
b2 þ f2

2ab
∂b −

f
a
∂f;

ξ6 ¼ af∂a − bf∂b −
b2 þ f2

2
∂f: ð3:7Þ
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Additionally, there exists a homothecy ξh¼1
4
ða∂aþb∂bþ

f∂fÞ giving rise to a nonlocal conserved quantity of the
type (2.6)

Qh ¼ ξαhpα −
Z

nðrÞdr: ð3:8Þ

In [23] it was shown how the space-time solution can be
derived algebraically from the set of equations that the
integrals of motion provide: First you solve the system
QI ¼ cI, I ¼ 1;…; 5 andQh ¼ ch (cI , ch being constants),
with respect to a, b,

R
ndr and their derivatives. Substitution

of this solution in the 6th equation Q6 ¼ c6 just defines the
value of the constant c6 in terms of the others, in particular
c6 ¼ −ðc1c5 þ c3c4Þ=c2. Subsequently, the consistency
conditions a0 ¼ da

dr and b0 ¼ db
dr are identically satisfied,

while n ¼ d
dr

R
ndr yields the constraint equation that now

has reduced to a relation among constants, c5 ¼ 16−c2
3

2c2
.

After a few reparametrizations: c1 ¼ 4Q, c2 ¼ 4=~c,
c4 ¼ ~cðc3Q − 4MÞ and a constant scaling of the t variable
with �~c, we arrive at

ds2 ¼ −
�
1 −

2M
a

þQ2

a2

�
dt2 þ

�
1 −

2M
a

þQ2

a2

�−1
da2

þ a2ðdθ2 þ sin2θdϕ2Þ: ð3:9Þ

Of course this is the Reissner-Nordström metric ([32,33]),
with the corresponding electromagnetic potential being

A ¼ �
�
c3
4
−

Q
aðrÞ

�
dt ð3:10Þ

with the sign depending on how we scaled time to absorb ~c.
The constant c3 does not appear in line element (3.9), while
in (3.10) it just defines the value of Aμ as a → ∞, hence
without loss of generality we can set it equal to zero.
Henceforth, we are finally led to

A ¼ � Q
aðrÞ dt ð3:11Þ

where the remaining constant Q appearing here assumes a
physical meaning and is to be understood as the absolute
value of the charge.

B. Quantization on the flat mini-superspace

Since (3.6) describes the flat space, we can make the
coordinate transformation ða; b; fÞ ↦ ðχ;ψ ; ζÞ with

a¼ 1

8
ðχ−ζÞ; b¼ 2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2þψ2−χ2

p
χ−ζ

; f¼ 2
ffiffiffi
2

p
ψ

χ−ζ

ð3:12Þ

to bring the minisuperspace metric into the form
Gμν ¼ diagð−1; 1; 1Þ. At this point we can identify the
linear combinations of ξ’s that give the isometries of Gμν as
the base elements of the generators of the translations and
the SOð2; 1Þ group. Thus, by choosing

X1¼
1

8
ξ5−

1

2
ξ2; X2 ¼

1

2
ffiffiffi
2

p ξ3; X3 ¼−
1

8
ξ5−

1

2
ξ2

X4¼ ξ4; X5¼
ffiffiffi
2

p
ξ1þ

1

2
ffiffiffi
2

p ξ6; X6 ¼
ffiffiffi
2

p
ξ1−

1

2
ffiffiffi
2

p ξ6

ð3:13Þ

we can see that in these coordinates, X4, X5 correspond to
hyperbolic rotations (i.e. Lorentz boosts in the χ − ζ and
χ − ψ axes) while X6 is the regular rotation in the ψ − ζ
plane; The rest of the Xi’s being the translations with
respect to each axis

X1¼ ∂χ ; X2¼ ∂ψ ; X3 ¼ ∂ζ

X4¼ ζ∂χ þχ∂ζ; X5¼ψ∂χ þχ∂ψ ; X6¼ψ∂ζ −ζ∂ψ :

ð3:14Þ

The constant values that the conserved quantities ~QI ¼
Xα
I pα acquire on mass shell are

~Q1 ¼
~cð16 − c23Þ

64
−
2

~c
; ~Q2 ¼

c3
2

ffiffiffi
2

p ;

~Q3 ¼
~cðc23 − 16Þ

64
−
2

~c
; ~Q4 ¼ ~cðc3Q − 4MÞ

~Q5 ¼
Qð128 − ~c2ð16þ c23ÞÞ þ 8~c2c3M

16
ffiffiffi
2

p ;

~Q6 ¼
Qð128þ ~c2ð16þ c23ÞÞ − 8~c2c3M

16
ffiffiffi
2

p ð3:15Þ

in which, if we consider the previously discussed freedom,
we can set c3 ¼ 0 that indicates a vanishing potential at
infinity, while ~c is a constant which is absorbed by a scaling
in the base manifold metric and hence it can be assigned to
any other value but zero. We shall discuss more of this
constant and its value later on in the analysis. At this point
let us just observe that the last three vectors of (3.14) are
related to conserved charges that are associated with
essential constants of line element (3.9); namely the mass
M and the absolute value of the charge Q.
In [23] we considered the quantization with respect to

several Abelian subalgebras based on the classical sym-
metries ξ for the Reissner-Nordström case. In this paper we
study the quantization with respect to different algebras
involving the quadratic Casimir invariant of the semisimple
subalgebra spanned by X4, X5 and X6
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QCas ¼ X6 ⊗ X6 − X4 ⊗ X4 − X5 ⊗ X5 ð3:16Þ

which were not examined in [23]. The integral of motion, to
which this invariant corresponds, assumes (under use of
(3.15) the value

~QCas ¼ ~Q2
6 − ~Q2

4 − ~Q2
5 ¼ 16~c2ðQ2 −m2Þ: ð3:17Þ

The idea is to quantize the system with respect to either the
regular or one of the hyperbolic rotations and use this
invariant as a supplementary condition together with the
Wheeler-DeWitt equation.

1. The regular rotation X6

It is convenient for our purposes to bring X6 into normal
form. This is achieved by the pseudospherical transforma-
tion ðχ;ψ ; ζÞ ↦ ðu; v; wÞ

χ¼ usinhv; ψ ¼ ucoshvcosw; ζ¼ ucoshvsinw;

ð3:18Þ

which makes the minisuperspace metric read Gαβ ¼
diagð1;−u2; u2 cosh2 vÞ, while X6 becomes just ∂w. At
this point, we use (2.11) to write down the linear, first order,
Hermitian operators, where the X’s are used instead of the
ξ’s, the measure being in these coordinates μ ¼ ffiffiffiffiffiffiffi

−G
p ¼

u2 cosh v. As a result, we get

Q̂6 ¼ −i
∂
∂w ð3:19Þ

Q̂Cas ¼ Q̂2
6 − Q̂2

4 − Q̂2
5

¼ 1

cosh v
∂
∂v

�
cosh v

∂
∂v

�
−

1

cosh2v
∂2

∂w2
; ð3:20Þ

while the quadratic constraint operator, being derived from
(2.10), reads

Ĥ ¼ −
1

2u2

� ∂
∂u

�
u2

∂
∂u

�
−

1

cosh v
∂
∂v

�
cosh v

∂
∂v

�

þ 1

cosh2v
∂2

∂w
�
− 1: ð3:21Þ

As expected, Q̂6, Q̂Cas and Ĥ form an Abelian algebra of
quantum operators and hence we can proceed by finding
the common solution of the eigenvalue equations

Q̂6Ψklðu; v; wÞ ¼ kΨklðu; v; wÞ ð3:22aÞ

Q̂CasΨklðu; v; wÞ ¼ lðlþ 1ÞΨklðu; v; wÞ; ð3:22bÞ

together with the Wheeler-DeWitt constraint (2.14b).

In quantum cosmology the spectrum of the operators
under consideration is usually continuous, thus it is rather
uncommon to be able to distinguish a discrete set of
eigenvalues. However, for this algebra this is not the case
and a Hilbert space can be formally constructed. The wave
function that satisfies (3.22) and (2.14) can be split into

parts Ψkl ¼ ψ ð1Þ
l ðuÞψ ð2Þ

kl ðvÞψ ð3Þ
k ðwÞ.

Of course, (3.22a) being fixing ψ ð3Þ
k ðwÞ to

ψ ð3Þ
k ðwÞ ¼ C1eikw ð3:23Þ

with C1 the normalization constant.
The operator Q̂6 corresponds to the classical symmetry

X6, which as we mentioned is a true rotation in the ψ − ζ
plane of the flat configuration space as expressed in the
ðχ;ψ ; ζÞ variables. Additionally, we see that w appears as
the argument of exclusively trigonometric functions [see
transformation (3.18)]; thus, in order to cover the hole
space exactly once, it can be assumed to attain values in the
region ½0; 2π�. It is therefore reasonable to assume the

boundary condition ψ ð3Þ
k ð0Þ ¼ ψ ð3Þ

k ð2πÞ, which as, it is well
known, results to k ∈ Z and C1 ¼ ð2πÞ−1=2 so that ψ ð3Þ

k ðwÞ
satisfies the normalization conditionZ

2π

0

ψ ð3Þ
k0 ðwÞ�ψ ð3Þ

k ðwÞdw ¼ C�
1C1

Z
2π

0

eiðk−k0Þdw ¼ δkk0 ;

k; k0 ∈ Z

where δkk0 is the Kronecker delta. We proceed to (3.22b),
which can be easily seen that it reduces to

1

cosh v
d
dv

�
cosh v

dψ ð2Þ
kl ðvÞ
dv

�

−
�
lðlþ 1Þ − k2

cosh2v

�
ψ ð2Þ
kl ðvÞ ¼ 0: ð3:24Þ

At this point, we have to distinguish two cases with respect
to the sign of the eigenvalues of the Casimir invariant
operator Q̂Cas.

(i) Let us first consider lðlþ 1Þ ≥ 0, a condition
that holds for l ∈ R − ð−1; 0Þ. By performing the

transformation ψ ð2Þ
kl ðvÞ ¼ ΦklðvÞ

cosh1=2 v
, Eq. (3.24) simply

becomes

d2ΦklðvÞ
dv2

þ
�
k2 − 1

4

cosh2v
−
1

4
ð2lþ 1Þ2

�
ΦklðvÞ ¼ 0:

ð3:25Þ

In (3.25) we recognize the one dimensional, time
independent Schrödinger equation for the famous
Pöschl-Teller potential [34], where we can identify
1
4
− k2 ¼ −V0 < 0 as the depth of the potential well
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and E ¼ − 1
4
ð2lþ 1Þ2 the negative energy that leads

to a finite number of bound states. A similar treat-
ment which connects the algebra of operators under
consideration with the Pöschl-Teller system can also
be found in [35]. In accordance with [34] we can
introduce new parameters κ and λ as

κðκ þ 1Þ ¼ V0 ⇒ κ ¼ jkj − 1

2
;

λ ¼
ffiffiffiffiffiffiffi
−E

p
¼
����lþ 1

2

���� ð3:26Þ

and make the change of variable v ↦ σ ¼ tanhðvÞ
which results in (3.25) becoming

d
dσ

�
ð1−σ2ÞdΦκλðσÞ

dσ

�
þ
�
κðκþ1Þþ λ2

1−σ2

�
ΦκλðσÞ

¼ 0; ð3:27Þ

where the original domain v ∈ ð−∞;þ∞Þ is now
compactified in σ ∈ ð−1; 1Þ. The solutions that are
finite for σ → 1 are given by

ΦκλðσÞ ¼ C2ð1 − σ2Þλ=22F1

×

�
λ − κ; λþ κ þ 1; λþ 1;

1

2
ð1 − σÞ

�
;

ð3:28Þ

with 2F1ða; b; c; zÞ being the Gauss hypergeometric
function andC2 a normalization constant. Regularity
of the solution at the border σ → −1 leads to the
restriction κ − λ ¼ n ∈ N, which for k and l reads

jkj−
����lþ 1

2

���� − 1

2

¼ n ∈ N ⇒

� jkj > l; k ∈ Z; l ∈ N

jkj ≤ l; k ∈ Z; l ∈ Z−
:

ð3:29Þ

Since l ¼ ν ∈ N and l ¼ −ν − 1 produce the same
set of eigenvalues lðlþ 1Þ, we can see by the form
of the eigenfunction (3.28) that, without loss of
generality, we need only consider k ∈ Zþ and l ∈ N
with k > l, all other possibilities reproducing the
same results. The normalization factor C2 is ob-
tained by expressing the hypergeometric function in
terms of either the associate Legendre or the
Gegenbauer polynomials and it is calculated to be
(for details see [36])

C2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðκ þ λþ 1ÞΓðλþ 1
2
Þ

π1=2ðκ − λÞ!Γð2λþ 1ÞΓðλÞ

s
: ð3:30Þ

We observe that the quantum conditions for l truly
satisfy lðlþ 1Þ ≥ 0, which is the reason why we
distinguished this case. If we wish to uncover the
classical origin of this inequality we need to calcu-
late the constant value of the integral of motion,
given in (3.16), corresponding to the operator Q̂Cas.
As we observe from (3.17), a positive or equal to
zero eigenvalue lðlþ 1Þ for Q̂Cas, classically cor-
responds to a situation where Q ≥ M, which, apart
for the extremal case Q ¼ M, corresponds to a
space-time with a naked singularity.
If we want to associate the classical constants M,

Q to the quantum numbers k and l, we have to invert
relations k ¼ ~Q6 and lðlþ 1Þ ¼ QCas leading to

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32~c2k2 − ð~c2 þ 8Þ2lðlþ 1Þ

p
4j~cjð~c2 þ 8Þ ð3:31aÞ

Q ¼
ffiffiffi
2

p
k

ð~c2 þ 8Þ : ð3:31bÞ

where we have already considered c3 ¼ 0, that is the
physical condition for the potential to vanish at
infinity. In general, the values of the conserved
quantities ~QI depend from the integration constants
~c, c3. This situation reflects the fact that the different
choices of these constants merely correspond to
alternative representatives of the underlying geom-
etry of the space time; changing the values of the
constants we just change the numerical form of the
line element but the geometry remains the same.
Thus, there values are at our disposal provided that
they are chosen in such a way that respect the
physical content of the theory.
The physical parameters of the problem, are the

mass M and the absolute value of the charge Q; we
thus need two operators to correspond to these
essential constants. From the form of ~QI in
(3.15), we observe that the last three are associated
with these values and they are formed from the two
hyperbolic rotations ~X4, ~X5 along with the regular
rotation ~X6. In order to end up with two operators,
that each one distinctively contains the information
of M and Q, we may eliminate the conserved
quantity of one of the hyperbolic rotations, since
there are essentially the same. Thus, in addition to
the previously discussed freedom of setting c3 ¼ 0,
we must take ~c ¼ 2

ffiffiffi
2

p
, resulting to

~Q1¼0; ~Q2¼0; ~Q3¼−
ffiffiffi
2

p

~Q4¼−8
ffiffiffi
2

p
M; ~Q5¼0; ~Q6¼8

ffiffiffi
2

p
Q: ð3:32Þ

while at the same time (3.31) become
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M ¼ 1

8
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − lðlþ 1Þ

q
ð3:33aÞ

Q ¼ k

8
ffiffiffi
2

p : ð3:33bÞ

As we can see, under this choice, (3.33a) implies that
the demand for the reality of the classical mass M
results, through the above association, in the quan-
tum condition k > l [when lðlþ 1Þ is positive]
with k an integer and l a natural number.
Finally, we close the study of this case by giving

the solution that satisfies the constraint equa-
tion (2.14b)

ψ ð1Þ
l ðuÞ ¼ C4jlð

ffiffiffi
2

p
uÞ þ C5ylð

ffiffiffi
2

p
uÞ; ð3:34Þ

where the jl, yl are the spherical Bessel functions of
the first and second kind respectively and the C4, C5

complex constants of integration. Due to the fact that
the spherical Bessel jlðxÞ is well behaved at zero
and infinity, while at the same time the following
orthonormality condition holdsZ þ∞

0

u2jlðα1uÞjlðα2uÞdu ¼ π

2α21
δðα1 − α2Þ;

we need only considerC4 ¼ 2ffiffi
π

p andC5 ¼ 0 in (3.34)

to be able to writeZ þ∞

0

u2ψ ð1Þ
l ðuÞ�ψ ð1Þ

l ðuÞdu

¼ C�
4C4

Z þ∞

0

jlð
ffiffiffi
2

p
uÞjlð

ffiffiffi
2

p
uÞdu ¼ δð0Þ;

ð3:35Þ
where we symbolically choose to express the right-
hand side of the above equation as δð0Þ with respect
to which we are able to normalize the probability
density

ρðu; v; wÞ ¼ μΨ�
klΨkl

δð0Þ ; ð3:36Þ

with the values of the latter for u ∈ ð0;þ∞Þ, v ∈ R
and w ∈ ½0; 2π� lying between zero and one.

(ii) As we already saw, the previous case corresponding
to the classical restriction Q ≥ M leads to bound
states in a Pöschl-Teller system. In order to study

what happens when classically Q < M, we need to
consider lðlþ 1Þ < 0. This leads us to assume a
complex quantum number l ¼ −1=2þ is, s ∈ R.
This is not a contradiction with the fact that the
operator Q̂Cas is constructed as a Hermitian operator,
because the eigenvalue is not l but the combination
lðlþ 1Þ which is still real but negative. This time a
discrete set of eigenvalues for l cannot be derived,
since the “energy” E ¼ − 1

4
ð2lþ 1Þ2 of the

corresponding system we studied earlier is positive
and above the potential well. However, if we convert
the solution back to the variables where we have
obtained equation (3.24) it is written as

ψ ð2Þ
kl ði sinh vÞ ¼ C2Pk

lði sinh vÞ þ C3Qk
lði sinh vÞ;

ð3:37Þ

where Pk
lðzÞ and Qk

lðzÞ are the associated Legendre
functions of the first and second kind respectively.
We already know from the Pöschl-Teller system

that the spectrum is now continuous. However, an
orthogonality relation can still be deduced for both
of the functions (for details see Appendix A) and it is
of the form

Z þ∞

−∞
ðψ ð2Þ

k;is0−1=2ðvÞÞ�ψ ð2Þ
k;is−1=2ðvÞd sinh v

∝ δðs0 − sÞ þ δðs0 þ sÞ; s ∈ R: ð3:38Þ

We have to note that s and −s both correspond to the
same eigenvalue lðlþ 1Þ, thus explaining the
double delta’s appearing on the right-hand side of
(3.38). Furthermore, as can also be seen in Appen-
dix A, for function Pk

lði sinh vÞ the probability
amplitude is the same for both of these values, since
the multiplying factor is symmetric to the change
s ↦ −s. On the contrary, this is not the case if we
consider Qk

lði sinh vÞ whose relevant expression
does not possess this symmetry.
Finally, the constraint equation ĤΨkl ¼ 0 is still

satisfied by (3.34). Additionally, relations (3.33a)
still hold with lðlþ 1Þ being now always negative
and thus M assumes once more only real values.

Let us sum the results we obtained: For l discrete and
lðlþ 1Þ ≥ 0, the states jk;li are normalized to the infinity
of the δð0Þ appearing in (3.35) and the wave function reads

Ψkl ¼
ffiffiffi
2

p

π
C2ðk;lÞjlð

ffiffiffi
2

p
uÞ 2F1ðl − kþ 1;lþ kþ 1;lþ 3

2
; 1
2
ð1 − tanh vÞÞ

coshl−1=2v
eikw; ð3:39Þ
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with the constraints k ∈ Zþ, l ∈ N and k > l. The
constant C2ðk;lÞ is given by (3.30) under the substitution
of κ ¼ k − 1=2, λ ¼ lþ 1=2. On the other hand, for the
continuum case lðlþ 1Þ < 0, that classically corresponds
to M > Q, we get: for l ¼ −1=2þ is and by considering
(A13) and (A14) a wave function of the form

Ψks ¼
1

π

�
Γð1

2
− k − isÞΓð1

2
− kþ isÞ

coshðsπÞΓð−isÞΓðisÞ
�

1=2

× jis−1
2
ð

ffiffiffi
2

p
uÞPk

is−1
2

ði sinh vÞeikw ð3:40Þ

with k ∈ Z and s ∈ R, normalized to the product of δð0Þ
with the deltas of (3.38). We remind that in any case the
measure function is μ ¼ u2 cosh v, while the domain of the
variables is u ∈ ð0;þ∞Þ, v ∈ R and w ∈ ½0; 2π�.
Additionally, for the discrete case, one can define ladder

operators as

Âþ ¼ Q̂4 − iQ̂5 ð3:41aÞ

Â− ¼ Q̂4 þ iQ̂5 ð3:41bÞ

that raise or lower the state with respect to the eigenvalue k.
The usual algebra between these operators and Q̂6 is
satisfied

½Âþ; Â−� ¼−2Q̂6; ½Q̂6; Âþ�¼ Âþ; ½Q̂6; Â−� ¼−Â−

ð3:42Þ

and of course the Casimir invariant can be rewritten in
terms of Â� and Q̂6 as

Q̂Cas ¼ Q̂6ðQ̂6 þ 1Þ − Â−Âþ: ð3:43Þ

It is straightforward to check that, by using (3.39) and
recurrence relations that connect hypergeometric functions
of successive indexes, the following relations are satisfied

Âþjk;li ¼ ½kðkþ 1Þ − lðlþ 1Þ�1=2jkþ 1;li ð3:44aÞ

Â−jk;li ¼ ½kðk − 1Þ − lðlþ 1Þ�1=2jk − 1;li; ð3:44bÞ

with the action of the annihilation operator on the lowest
state for k being of course zero, Â−jlþ 1;li ¼ 0.

2. The hyperbolic rotation X4

There is no difference in treating the two cases where the
basic eigenoperator is one of the two hyperbolic rotations.
Thus, without loss of generality we solely consider quan-
tization with respect to X4. As we previously did for the
regular rotation, we choose to bring the generator into
normal form by performing the transformation

χ ¼ u sinh v coshw; ψ ¼ u cosh v;

ζ ¼ u sinh v sinhw: ð3:45Þ

Note that the coordinates ðu; v; wÞ are not the same used in
Sec. III B 1. Under (3.45), the minisuperspace metric of the
flat space becomes Gαβ ¼ diagð1;−u2; u2 sinh2 vÞ, leading
to a measure function μ ¼ ffiffiffiffiffiffiffi

−G
p ¼ u2j sinh vj. In

these coordinates, the operators that form an Abelian
subalgebra are

Q̂4 ¼ −i
∂
∂w ð3:46Þ

Q̂cas ¼ Q̂2
6 − Q̂2

4 − Q̂2
5

¼ 1

sinh v
∂
∂v

�
sinh v

∂
∂v

�
−

1

sinh2v
∂2

∂w2
ð3:47Þ

Ĥ ¼ −
1

2u2

� ∂
∂u

�
u2

∂
∂u

�
−

1

sinh v
∂
∂v

�
sinh v

∂
∂v

�

þ 1

sinh2v
∂2

∂w
�
− 1: ð3:48Þ

Once more, a function of the form Ψkl ¼
ψ ð1Þ
l ðuÞψ ð2Þ

kl ðvÞψ ð3Þ
k ðwÞ satisfies the set of equations

Q̂4Ψkl ¼ kΨkl; Q̂casΨkl ¼ lðlþ 1ÞΨkl; ĤΨkl ¼ 0

with

ψ ð3Þ
k ðwÞ ¼ C1eikw ð3:49aÞ

ψ ð2Þ
kl ðvÞ ¼ C2Pik

l ðcosh vÞ þ C3Qik
l ðcosh vÞ ð3:49bÞ

ψ ð1Þ
l ðuÞ ¼ C4jlð

ffiffiffi
2

p
uÞ þ C5ylð

ffiffiffi
2

p
uÞ: ð3:49cÞ

As we observe, the difference with respect to the previous
case examined in Sec. III B 1—apart from the fact that
ðu; v; wÞ are connected differently to the original variables
ða; b; fÞ—lies in the form of (3.49b). What is more, due to
the fact that w is not a periodic variable it does not lead to a
discrete spectrum for k, on the contrary the orthogonality
condition for (3.49a) is nowZ þ∞

−∞
ψ ð3Þ
k0 ðwÞ�ψ ð3Þ

k ðwÞdw ¼ C�
1C1

Z þ∞

−∞
e−iðk0−kÞwdw

¼ 2πC�
1C1δðk0 − kÞ;

from which we deduce again that C1 ¼ ð2πÞ−1=2.
The situation regarding ψ ð2Þ

kl ðvÞ expressed by solution
(3.49b) is not as clear as for the previous algebra and an
orthonormality relation with respect to l cannot be pro-
duced in a similar manner. However, for both Pik

l ðxÞ and
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Qik
l ðxÞ, as can be seen by the expansions (A1) and (A15),

there are values of l for which they satisfy the boundary
conditions set in Appendix A, whereΨ is required to vanish
at the boundary. As v → �∞, x ¼ cosh v → þ∞ the
functions Pik

l ðxÞ, Qik
l ðxÞ both tend to zero if l ∈ ð−1; 0Þ

and for any value of s ∈ R if l ¼ −1=2þ is. Both of these
cases however, solely correspond to lðlþ 1Þ < 0, which
in its turn implies the classical relation Q < M.

IV. DISCUSSION

In the present paper we have derived the minisuperspace
Lagrangian of a static, spherically symmetric space-time in
the presence of an electrostatic field. The solution of this
model is the well known Reissner-Nordström solution. The
classical integrals of motion, were then mapped to quantum
observables and their eigenvalue equations were used as
supplementary conditions along with the Wheeler-DeWitt
equation, so that the wave function is determined up to
normalization constants. Through a careful examination of
the geometrical and physical properties of the system we
have singled out the operators corresponding to mass and
charge Q̂6 and Q̂Cas. The application of reasonable boun-
dary conditions leads: (a) to a purely discrete spectrum for
the two operators, with an orthonormal basis of state
vectors, through the known properties of the Pöschl-
Teller system, when for the classical system Q ≥ M holds
and (b) to discrete for Q̂6 but continuous for Q̂Cas in the
case when Q < M. The discrete spectrum of the naked

singularity case could naively be used to model particles,
however only if we could consider them as static, spheri-
cally symmetric configurations.
As far as the classical singularity is concerned, it is known

that there is no general agreement on what could signify its
possible avoidance. Several proposals have been made, like
the vanishing of thewave function on the singular point (as a
boundary condition) or that the probability density or even
the probability itself to be zero near that region. The latter
route is the one that we choose to follow in this work. In our
parametrization, as we can see from the line element (3.9),
the spacetime scalar curvatures are S¼RμνRμν¼4Q4

a8 and

K¼RμνκλRμνκλ ¼ 8ð6m2a2−12mQ2aþ7Q4Þ
a8 , indicating that the

singularity lies at the plane a ¼ 0 of the configuration space.
By taking in account transformations (3.12) and (3.18)

we can see that a appears only in the u variable as u ∝ ab.
Hence, in order to demonstrate what happens when a → 0
we need only check the behavior of the u dependent part of
the probability

Pε ¼ Ivw

Z
ε

0

u2jlð
ffiffiffi
2

p
uÞjlð

ffiffiffi
2

p
uÞ�du ð4:1Þ

at the limit ε → 0. With Ivw we denote the rest of the
integrals involving the v and w variables, which are either
finite (discrete case) or normalized in terms of delta
functions (continuum case).
For the discrete case where jlðuÞ is real we get

Pε ¼ Ivw

�
u2
�

π

4
ffiffiffi
2

p Jlþ1=2ð
ffiffiffi
2

p
uÞ2 − Jl−1=2ð

ffiffiffi
2

p
uÞJlþ3=2ð

ffiffiffi
2

p
uÞ
��

ε

0

; ð4:2Þ

where with the help of the properties of the Bessel function
JμðxÞ it easily derived that limε→0Pε ¼ 0. On the other
hand, for the continuous case, where l ¼ −1=2þ is,
integral (4.1) leads to

Pε ¼ Ivw

�
s sinhðπsÞ

4
ffiffiffi
2

p
�

1F2

�
−
1

2
;−is; is;−2u2

�
− 1

��
ε

0

;

ð4:3Þ

which again becomes zero as ε → 0, because

1F2ð− 1
2
;−is; is; 0Þ ¼ 1. So, in both cases we have vanish-

ing of the probability at the singularity, which implies that
there is zero transition probability from a nonsingular
configuration (u ≠ 0) to the singular one (u ¼ 0).
Finally, we can close our discussion with a comment on

relations (3.33). If we want to reinstate ℏ in them, the latter
should appear normally in their right-hand side. However,
due to the fact that the quantization is not being performed
with t as the dynamical parameter but with the radial
distance r instead, it is not that straightforward to consider

the usual ℏ≃ 1.054 × 10−34 J sec as the correct constant to
utilize here. If we use d instead of ℏ for the symbol of this
constant (so as to avoid confusion with the real ℏ), we
must write

M ¼ 1

8
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − lðlþ 1Þ

q
d ð4:4aÞ

Q ¼ 1

8
ffiffiffi
2

p kd: ð4:4bÞ

As it happens, both M and Q appearing in the metric have
units of distance. The real physical mass m0 and charge q
are related to them through the well-known relations

M ¼ Gm0

c2
; Q ¼ q

c2

ffiffiffiffiffiffiffiffiffiffi
G

4πε0

s
: ð4:5Þ

Due to (4.4) we expect that the constant d should assume
the notion of some fundamental distance, in contrast to ℏ
whose units are those of angular momentum. Let us take
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(4.4b) and substitute the value that relates it to the real
physical charge q. Then, for the basic state of the discrete
spectrum, k ¼ 1, we derive

d ¼ 4
ffiffiffi
2

p q
c2

ffiffiffiffiffiffiffi
G
πε0

s
: ð4:6Þ

By assuming for the charge the lowest possible value in
nature, that is q ¼ jej≃ 1.602 × 10−19 C, while the speed
of light, the vacuum permittivity and Newton’s gravitational
constant are respectively: c≃ 2.998 × 108 m= sec, ε0≃
8.854×10−12 C2=Nm2 and G≃6.674×10−11m3=kgrsec2;
we get d≃ 1.562 × 10−35m which is very close and of the
same magnitude as the Planck length lP ≃ 1.616×
10−35 m. As we see, M and Q are quantized this way in
terms of a distance which is similar to that of the Planck
length.
From Dirac’s quantization condition

qqm
2πε0ℏc2

¼ n ∈ Z; ð4:7Þ

where qm is the charge of a hypothetic magnetic monopole,
it is easy to derive that the combination e2=ε0c has units of
ℏ and is proportional to it. This can be seen by substitution
of q ¼ jej and qm ¼ jejc in (4.7). Thus, it is not surprising
that the combination of fundamental constants appearing in
(4.6) leads to something that is of the same order as the
Planck length. Relations (4.4b) and (4.7) can also be
combined to derive an expression linking k and n. For

example if we consider d ∼ lp ¼
ffiffiffiffiffi
ℏG
c3

q
and useQ from (4.5)

we can deduce that k2 ¼ 64n. However, such a correspon-
dence may be precarious, mostly due to the fact that the
consideration of a monopole charge qm in our case would
totally alter the quantization procedure: Even though that
classically a possible inclusion of a monopole charge in Fμν

does not alter the Reissner-Nordström geometry [in place of
Q2 in the metric (3.9) there would appear the sum of the
squares of the two charges], it can be seen that the reduced
Lagrangian is different and the corresponding minisuper-
space metric is no longer flat. Thus, the previous results
regarding the quantum analogues ofM andQ cannot remain
the same. Unlike the classical solution, the quantization
procedure is sensitive to the source of the field.
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APPENDIX: ORTHOGONALITY RELATIONS
FOR THE lðl + 1Þ < 0 CASE

As we discussed in Sec. III B 1, the lðlþ 1Þ > 0 case
leads to a pure discrete spectrum for k and l, when k ∈ Zþ

and l ∈ N with k > l. By going back to the classical level,
so as to see what constraint the inequality k > l imposes on
the classical constants, we observe that it corresponds to a
situation where Q ≥ M. Thus, it describes a black hole (for
the static, spherically symmetric case) only in the extremal
case Q ¼ M and a space-time with a classical naked
singularity when Q > M. In order to go over to the region
Q < M we need to consider the eigenvalue lðlþ 1Þ of the
Casimir invariant to be negative. This can happen by
allowing for complex quantum numbers of the form
is − 1=2. Hence, we need to study the behavior of
Pk
is−1=2ðixÞ and Qk

is−1=2ðixÞ.

1. Orthogonality condition for Pk
is − 1=2ðixÞ

First of all we need to check if the solution satisfies the
boundary conditions that are to be imposed so that
the operators are Hermitian. In our case this translates to
the wave function vanishing at the boundary of the real
line ð−∞;þ∞Þ which is the domain of the variable
x ¼ sinh v. By using the series representation for Pk

lðzÞ,
that is valid when j1 − zj=2 > 1 and 2l∉Z ([37–39]), we
are led to

Pk
lðzÞ ¼

1ffiffiffi
π

p ð1þ zÞk=2
ð1 − zÞk=2

�
2lΓðlþ 1

2
Þ

Γðl − kþ 1Þ ðz − 1Þl

þ 2−l−1Γð−l − 1
2
Þ

Γð−k − lÞ ðz − 1Þ−l−1 þO

�
1

1 − z

��
:

ðA1Þ

We set into the above relation l ¼ is − 1=2, z ¼ ix and
consider two possibilities regarding the sign of x:

(i) Case x ≫ 1: The approximation ix − 1≃ ix, to-

gether with the fact that ð1þixÞk=2
ð1−ixÞk=2 → eikπ=2 as x tends

to plus infinity leads to

Pk
is−1=2ðixÞ≃ 1ffiffiffi

x
p ðαk;sxis þ βk;sx−isÞ ðA2Þ

with

αk;s ¼
2isffiffiffiffiffiffi
2π

p eiðk−1
2
Þπ
2

ΓðisÞ
Γð1

2
− kþ isÞ e

−sπ
2 ðA3aÞ

βk;s ¼ αk;−s ðA3bÞ

(ii) Case x≪−1: By using the fact that

limx→−∞
ð1þixÞk=2
ð1−ixÞk=2 → e−ikπ=2 and again ix − 1≃ ix we

arrive to the expression
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Pk
is−1=2ðixÞ≃ 1ffiffiffiffiffiffi

−x
p ðζk;sð−xÞis þ ηk;sð−xÞ−isÞ ðA4Þ

where

ζk;s ¼
2isffiffiffiffiffiffi
2π

p e−iðk−1
2
Þπ
2

ΓðisÞ
Γð1

2
− kþ isÞ e

sπ
2 ðA5aÞ

ηk;s ¼ ζk;−s ðA5bÞ

Thus, as we can see from (A2) and (A4), Pk
is−1=2ðixÞ

vanishes at the border of ð−∞;þ∞Þ satisfying the neces-
sary boundary conditions.
By applying the change of variable x ¼ sinh v in (3.24)

the latter becomes the associate Legendre equation with
solutions the corresponding functions with purely imagi-
nary argument. Let Wk

lðixÞ and Wm
n ðixÞ be any of the two

associated Legendre functions, then equations

d
dx

�
ð1þ x2Þ dW

k
l

dx

�
−
�
lðlþ 1Þ − k2

1þ x2

�
Wk

l ¼ 0

ðA6aÞ

d
dx

�
ð1þx2ÞdW

m
n

dx

�
−
�
nðnþ1Þ− m2

1þx2

�
Wm

n ¼ 0 ðA6bÞ

identically hold. If we multiply the first with Wm
n , the

second with Wk
l and subtract we get

�
ðl − nÞðlþ nþ 1Þ − k2 −m2

1þ x2

�
Wk

lW
m
n

¼ d
dx

�
ð1þ x2Þ

�
Wm

n
dWk

l

dx
−Wk

l
dWm

n

dx

��
;

which, for k ¼ m and l ≠ n becomes

ðlþ nþ 1Þ
Z þ∞

−∞
Wk

lðixÞWm
n ðixÞdx

¼
�
1þ x2

l − n

�
Wm

n
dWk

l

dx
−Wk

l
dWm

n

dx

��þ∞

−∞
: ðA7Þ

In place of Wk
l let us consider Pk

l and in Wm
n its complex

conjugate. If we set l ¼ is − 1=2 and n ¼ ip − 1=2 with
s; p ∈ R we can write

Z þ∞

−∞
Pk
is−1=2ðixÞðPk

ip−1=2ðixÞÞ�dx

¼
�
1þx2

p2−s2

�
ðPk

ip−1=2Þ�
dPk

is−1=2

dx
−Pk

is−1=2

dðPk
ip−1=2Þ�
dx

��þ∞

−∞

¼
�

1

p2−s2
AðxÞ

�þ∞

−∞
: ðA8Þ

Since we are interested in the limit of the above expression
in the brackets at �∞ we can use the approximate relations
(A2) and (A4). We follow a similar analysis in the spirit of
[40] and [41]. First, for the case when x > 0—and by the
use of Euler’s formula xis ¼ cosðs ln xÞ þ i sinðs ln xÞ—we
deduce that, for x ≫ 1, AðxÞ becomes

AðxÞjx≫1 ≕ AþðxÞ ¼ iðpþ sÞ cos½ðp − sÞ ln x�ðα�k;pαk;s − β�k;pβk;sÞ þ iðp − sÞ cos½ðpþ sÞ ln x�ðα�k;pβk;s − β�k;pαk;sÞ
þ ðpþ sÞ sin½ðp − sÞ ln x�ðα�k;pαk;s þ β�k;pβk;sÞ þ ðp − sÞ sin½ðpþ sÞ ln x�ðα�k;pβk;s þ β�k;pαk;sÞ:

At this point—and since for the continuous spectrum
calculations involving the wave function require integrals
with respect to the eigenvalues—we choose to interpret the
result of (A8) in a distributional way. It is known by the
Riemann-Lebesgue lemma that

lim
y→þ∞

Z
R
fðsÞ cosðsyÞds ¼ 0 ¼ lim

y→þ∞

Z
R
fðsÞ sinðsyÞds

ðA9Þ
for any L1 integrable function fðsÞ in R. Additionally, as a
corollary of

Z þ∞

−∞
eisydy ¼ 2πδðsÞ

it holds that

lim
y→þ∞

sinðsyÞ
s

¼ πδðsÞ ðA10Þ

where δðsÞ is the Dirac delta function and (A10) is to be
understood as

lim
y→þ∞

Z
R
fðsÞ sinðsyÞ

s
ds ¼ πfð0Þ;

fðsÞ being an appropriate test function for the needs of
standard distribution theory (infinitely differentiable with
compact support). With the help of (A9), (A10) and a
change of variable y ¼ ln x we can thus write (always in a
distributional sense [42])
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lim
y→þ∞

AþðyÞ ¼ π½ðα�k;pαk;s þ β�k;pβk;sÞδðp − sÞ þ ðα�k;pβk;s þ β�k;pαk;sÞδðpþ sÞ�: ðA11Þ

By turning to the case x < 0 the corresponding expression for AðxÞ at the x ≪ −1 limit is written

AðxÞjx≪−1 ≕ A−ðxÞ ¼ iðpþ sÞ cos½ðp − sÞ lnð−xÞ�ðη�k;pηk;s − ζ�k;pζk;sÞ þ iðp − sÞ cos½ðpþ sÞ lnð−xÞ�ðη�k;pζk;s − ζ�k;pηk;sÞ
− ðpþ sÞ sin½ðp − sÞ lnð−xÞ�ðζ�k;pζk;s þ η�k;pηk;sÞ − ðp − sÞ sin½ðpþ sÞ lnð−xÞ�ðζ�k;pηk;s þ η�k;pζk;sÞ:

and with a change of variable y ¼ lnð−xÞ leads to

lim
y→þ∞

A−ðyÞ ¼ −π½ðζ�k;pζk;s þ η�k;pηk;sÞδðp − sÞ

þ ðζ�k;pηk;s þ η�k;pζk;sÞδðpþ sÞ�: ðA12Þ

Finally, by inserting (A11) and (A12) in (A8) we
deduce that

Z þ∞

−∞
Pk
is−1=2ðixÞðPk

ip−1=2ðixÞÞ�dx

¼ π½δðp − sÞðα�k;pαk;s þ β�k;pβk;s þ ζ�k;pζk;s þ η�k;pηk;sÞ
þ δðpþ sÞðα�k;pβk;s þ β�k;pαk;s þ ζ�k;pηk;s þ η�k;pζk;sÞ�

and by substitution of (A3) and (A5) we derive the
following orthogonality relation

Z þ∞

−∞
Pk
is−1=2ðixÞðPk

ip−1=2ðixÞÞ�dx

¼ Aðp; sÞδðp − sÞ þ Aðp;−sÞδðpþ sÞ ðA13Þ

where

Aðp; sÞ ¼ cosh

�
ðpþ sÞ π

2

��
2−iðp−sÞΓð−ipÞΓðisÞ

Γð1
2
− k − ipÞΓð1

2
− kþ isÞ

þ 2iðp−sÞΓðipÞΓð−isÞ
Γð1

2
− kþ ipÞΓð1

2
− k − isÞ

�
: ðA14Þ

Hence, we have a symmetric expression under the
change s → −s (or p → −p). We remind the reader
here that both s and −s correspond to the same eigenvalue
lðlþ 1Þ ¼ − 1

4
− s2.

2. Orthogonality for Qk
is− 1=2ðixÞ

The associate Legendre function of the second kind, for
jzj > 1 can be written as [39]

Qk
lðzÞ ¼

2−ðlþ2Þeikπ
ffiffiffi
π

p ð1 − z2Þk=2
cosðlπÞzkþlþ1

×

�
ðcos½ðk − lÞπ� þ eiðl−kÞπÞΓðkþ lþ 1Þ

Γðlþ 3
2
Þ

þ i22lþ1 sin½ðk − lÞπ�Γðk − lÞ
Γð1

2
− lÞ þO

�
1

z

��
:

ðA15Þ

Again we discriminate two cases after setting z ¼ ix
and l ¼ is − 1=2:

(i) Case x ≫ 1: By the approximation 1þ ix≃ ix and
working in a similar manner to the previous section
it is easy to derive

Qk
is−1=2ðixÞ≃ 1ffiffiffi

x
p ð ~αk;sxis þ ~βk;sx−isÞ ðA16Þ

with

~αk;s ¼
2isffiffiffiffiffiffi
8π

p e−
sπ
2 e−iðkþ1

2
Þπ
2 cothðsπÞΓðkþ

1
2
− isÞ

Γð1 − isÞ
ðA17aÞ

~βk;s ¼
2−isffiffiffiffiffiffi
8π

p e
sπ
2 e−iðkþ1

2
Þπ
2ð2 − cothðsπÞÞΓðkþ

1
2
þ isÞ

Γð1þ isÞ
ðA17bÞ

(ii) Case x ≪ −1: By an analogous process we are led to

Qk
is−1=2ðixÞ≃ 1ffiffiffi

x
p ð~ζk;sð−xÞis þ ~ηk;sð−xÞ−isÞ ðA18Þ

where

~ζk;s ¼
2isffiffiffiffiffiffi
8π

p e
sπ
2 eiðkþ1

2
Þπ
2 cothðsπÞΓðkþ

1
2
− isÞ

Γð1 − isÞ
ðA19aÞ

~ηk;s ¼
2−isffiffiffiffiffiffi
8π

p e−
sπ
2 eiðkþ1

2
Þπ
2ð2 − cothðsπÞÞΓðkþ

1
2
þ isÞ

Γð1þ isÞ :

ðA19bÞ
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Once more, for both cases we see that the solution in the form ofQk
is−1=2ðixÞ, satisfies the relevant boundary conditions as

it decays with x−1=2 when x approaches infinity. Let us work now on the orthogonality relation by using (A7) in the formZ þ∞

−∞
Qk

is−1=2ðixÞðQk
ip−1=2ðixÞÞ�dx

¼
�
1þ x2

p2 − s2

�
ðQk

ip−1=2Þ�
dQk

is−1=2

dx
−Qk

is−1=2

dðQk
ip−1=2Þ�
dx

��þ∞

−∞

¼
�

1

p2 − s2
BðxÞ

�þ∞

−∞
: ðA20Þ

For large positive arguments we can express BðxÞ as

BðxÞjx≫1 ≕ BþðxÞ ¼ iðpþ sÞ cos½ðp − sÞ ln x�ð ~α�k;p ~αk;s − ~β�k;p ~βk;sÞ þ iðp − sÞ cos½ðpþ sÞ ln x�ð ~α�k;p ~βk;s − ~β�k;p ~αk;sÞ
þ ðpþ sÞ sin½ðp − sÞ ln x�ð ~α�k;p ~αk;s þ ~β�k;p ~βk;sÞ þ ðp − sÞ sin½ðpþ sÞ ln x�ð ~α�k;p ~βk;s þ ~β�k;p ~αk;sÞ;

while for large, in absolute value, negative x we have

BðxÞjx≪−1 ≕ B−ðxÞ ¼ iðpþ sÞ cos½ðp − sÞ lnð−xÞ�ð~η�k;p ~ηk;s − ~ζ�k;p ~ζk;sÞ þ iðp − sÞ cos½ðpþ sÞ lnð−xÞ�ð~η�k;p ~ζk;s − ~ζ�k;p ~ηk;sÞ
− ðpþ sÞ sin½ðp − sÞ lnð−xÞ�ð~ζ�k;p ~ζk;s þ ~η�k;p ~ηk;sÞ − ðp − sÞ sin½ðpþ sÞ lnð−xÞ�ð~ζ�k;p ~ηk;s þ ~η�k;p ~ζk;sÞ:

Once more the application of (A9) and (A10) leads to

lim
y→þ∞

BþðyÞ ¼ π½ð ~α�k;p ~αk;s þ ~β�k;p ~βk;sÞδðp − sÞ þ ð ~α�k;p ~βk;s þ ~β�k;p ~αk;sÞδðpþ sÞ� ðA21Þ

lim
y→þ∞

B−ðyÞ ¼ −π½ð~ζ�k;p ~ζk;s þ ~η�k;p ~ηk;sÞδðp − sÞ þ ð~ζ�k;p ~ηk;s þ ~η�k;p ~ζk;sÞδðpþ sÞ� ðA22Þ

where we have considered a new variable y ¼ ln jxj in each case. As a result we have the following orthogonality relationZ þ∞

−∞
Qk

is−1=2ðixÞðQk
ip−1=2ðixÞÞ�dx ¼ B1ðp; sÞδðp − sÞ þ B2ðp;−sÞδðpþ sÞ ðA23Þ

with

B1ðp; sÞ ¼
π

4
cosh

�ðpþ sÞπ
2

��
2−iðp−sÞ cothðpπÞ cothðsπÞΓðkþ

1
2
þ ipÞΓðkþ 1

2
− isÞ

Γð1þ ipÞΓð1 − isÞ

þ 2iðp−sÞð2 − cothðpπÞÞð2 − cothðsπÞÞΓðkþ
1
2
− ipÞΓðkþ 1

2
þ isÞ

Γð1 − ipÞΓð1þ isÞ
�

and

B2ðp; sÞ ¼
π

4
cosh

�ðp − sÞπ
2

��
2−iðpþsÞ cothðpπÞð2 − cothðsπÞÞΓðkþ

1
2
þ ipÞΓðkþ 1

2
þ isÞ

Γð1þ ipÞΓð1þ isÞ

þ 2iðpþsÞ cothðsπÞð2 − cothðpπÞÞΓðkþ
1
2
− ipÞΓðkþ 1

2
− isÞ

Γð1 − ipÞΓð1 − isÞ
�
:

As we can see (A23) possesses no parity symmetry p → −p or s → −s. Henceforth, even though s and −s, for example,
lead to the same eigenvalue lðlþ 1Þ ¼ − 1

4
− s2, they have different probability amplitudes in contrast to what happens if

one admits the Pk
is−1=2ðixÞ solution.
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