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We provide a mapping between past null and future null infinity in three-dimensional flat space, using
symmetry considerations. From this we derive a mapping between the corresponding asymptotic symmetry
groups. By studying the metric at asymptotic regions, we find that the mapping is energy preserving and
yields an infinite number of conservation laws.
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I. INTRODUCTION

Three-dimensional theories have a long history as toy
models in quantum gravity. Often they allow for calcu-
lations currently out of reach in higher dimensions, and
provide insights into deep conceptual problems. Recently,
the rich infrared structure of perturbative quantum gravity
in four-dimensional asymptotically flat spacetimes has
attracted increased attention. The asymptotic boundary
of these spacetimes contains past and future null infinity
denoted by I− and Iþ, respectively. Both are separately
invariant under an infinite-dimensional symmetry group,
the Bondi-Metzner-Sachs (BMS) group [1,2]. Surprisingly,
this symmetry group is intimately related to both the
gravitational memory effect and Weinberg’s soft graviton
theorem [3–5]. In particular, the latter arises as a Ward
identity for BMS invariance of the S-matrix. To consider
the BMS group as a symmetry of the S-matrix one must
relate the two—a priori independent—symmetry groups at
each boundary.
In this work we propose a linking between the two

asymptotic regions and their symmetries in three-dimensional
Einstein gravity.
In four and higher, even dimensions, this was

accomplished previously [3,6] (although for the higher-
dimensional case see the objections [7]). In the present
work we cover what seems to be the only remaining case of
physical interest. The framework of conformal null infinity
does not appear to be useful in odd spacetime dimensions
higher than three [8].
Three-dimensional pure Einstein gravity does not exhibit

local degrees of freedom, i.e., gravitational waves, but the
theory possesses degrees of freedom on the boundary.
Nontrivial scattering in the interior is obtained by coupling
the theory to propagating matter. Due to its technical
simplicity, e.g., detailed knowledge of the phase space,
the theory then provides a unique testing lab for further

studies of the infrared sector of quantum gravity, building
upon [3,5]. We provide a first step toward studying such a
setup and its relation to BMS symmetry by breaking the
two separate BMS symmetries, ending up with a single
global one.
Attempts at a holographic framework of asymptotically

flat spacetimes yield another motivation for our work.
Compared to anti-de Sitter (AdS) space, where holography
is realized in form of the anti-de Sitter/conformal field
theory (AdS=CFT) correspondence, flat space holography
is still poorly understood. AdS3=CFT2 is one of the prime
examples of holography, due to the high level of control
over both sides of the correspondence. Given the con-
ceptual clarity of AdS holography in three dimensions,
three-dimensional space suggests itself as a natural testing
ground for ideas of flat space holography.
Most of the recent evidence [9–31] for a field theory

dual to Einstein gravity on three-dimensional flat space
was focused on one connected component of I only.
A holographic framework for flat spacetimes should
benefit from considerations involving both null boundary
components.
In Sec. II we start by providing boundary conditions,

asymptotic symmetries and charges for our spacetimes.
Following a discussion of the phase space of vacuum
solutions in Sec. III we provide a linking of their asymp-
totic regions in Sec. IV using symmetry arguments. In
Sec. V we argue that the linking can be generalized to hold
when matter is present.

II. ASYMPTOTICALLY FLAT SPACETIMES

Asymptotically flat spacetimes at future (past) null
infinity are spacetimes that admit a conformal null-
boundary Iþ (I−) in the future (past) [32]. Equivalently,
they are spacetimes such that the metric, by a suitable
choice of coordinates, can be brought into the form (cf. [33]
in four dimensions)

ds2 ¼ r−1Vþe2βþdu2 − 2e2β
þ
dudrþ r2ðdϕ − UþduÞ2

ð1Þ
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around Iþ and similarly around I−,

ds2 ¼ r−1V−e2β
−
dv2 þ 2e2β

−
dvdrþ r2ðdϕ −U−dvÞ2;

ð2Þ

where ϕ ∼ ϕþ 2π. The functions U�, V� and β� depend
on u, r and ϕ, and satisfy

lim
r→∞

U� ¼ lim
r→∞

β� ¼ lim
r→∞

r−3V� ¼ 0: ð3Þ

Here u and v are retarded and advanced time coordinates.
Diffeomorphisms preserving the form of the metric act as

u → uf0ðϕÞ þ αðfðϕÞÞ þOðr−1Þ
r → r=f0ðϕÞ þOð1Þ
ϕ → fðϕÞ þOðr−1Þ; ð4Þ

around Iþ and similarly around I−. The function f is
required to be a diffeomorphism on the circle and
parametrizes so called superrotations, which generalize
Lorentz transformations. Translations are generalized to
the so-called supertranslations α. Together they form the
asymptotic symmetry group, the three-dimensional BMS
group [1,2,34].
In four dimensions the BMS group, originally presented

in [1,2], is the semidirect product of globally well-defined
conformal transformations of the sphere, i.e., the Lorentz
group, and the infinite-dimensional Abelian group of
supertranslations. Recently, it was proposed to allow for
conformal transformation of the sphere that are well
defined only locally, called superrotations [35,36] or to
allow for arbitrary diffeomorphisms of the sphere [37]. In
three dimensions, two of the three options coincide, since
all diffeomorphisms of the circle are also conformal
transformations. Here, the superrotations have the group
structure of DiffðS1Þ and are, in contrast to the higher
dimensional case, globally well defined.
Diffeomorphisms that are restricted to the bulk of

spacetime are proper gauge transformations, so the diffeo-
morphisms (4) can be continued arbitrarily into the bulk.
Moreover, their form around Iþ is a priori not related to
their form around I−. It follows that there is the freedom of
choosing the coordinate systems (1) and (2) independently.
This freedom is precisely expressed by the BMS group
acting on Iþ, which we refer to as BMSþ and the one
acting on I−, BMS−.
Metrics of the form (1) and (2), solving the vacuum

Einstein equations, have the remarkably simple form
[38,39]

ds2 ¼ Θþdu2 − 2dudrþ ð2Ξþ þ u∂ϕΘþÞdudϕ
þ r2dϕ2; ð5Þ

and

ds2 ¼ Θ−dv2 þ 2dvdrþ ð2Ξ− þ v∂ϕΘ−Þdvdϕ
þ r2dϕ2; ð6Þ

with arbitrary functions Θ�ðϕÞ and Ξ�ðϕÞ. They are called
mass aspect and angular momentum aspect, respectively.
The charges associated to the symmetries (4) were

calculated [40] using covariant phase space methods
[41]. They are given by

QT;Y ¼ 1

16πG

Z
2π

0

ðΘT þ 2ΞYÞdϕ; ð7Þ

where TðϕÞ and YðϕÞ parametrize infinitesimal super-
translations and superrotations, respectively. This shows
that spacetimes with different values of Θ and Ξ can be
distinguished by their charges. The energy of a spacetime is
given by the charge Q1;0, its angular momentum by Q0;1.
Under a finite BMS transformation (4), the functions Θ

and Ξ transform as [12]

Θ → ðf0Þ2Θ∘f − 2S½f�

Ξ → ðf0Þ2
�
Ξþ 1

2
Θ0αþ α0Θ − α000

�
∘f; ð8Þ

where S½f� denotes the Schwarzian derivative. Trans-
formations not changing Θ, and thus preserving the energy,
create soft gravitational modes.
In the following sections we derive a mapping between

the two asymptotic regions, which then leads to the linking
of the symmetry groups BMSþ and BMS−.

III. PHASE SPACE AND VALIDITY
OF THE MAPPING

In this section we collect results on the phase space
of three-dimensional, asymptotically flat gravity without
matter and clarify under which condition the linking of
future and past null infinity presented in the next section is
sensible and feasible.
The functions Θ and Ξ transform, as can be seen from

(8), in the coadjoint representation of the centrally extended
BMS group. The phase space splits into disjoint orbits of
the BMS group. These orbits were classified in [42]; for a
thorough introduction to the topic, consult [43]. All
solutions with different constant Θ or Ξ belong to separate
orbits, which means that these orbits can be uniquely
labeled by their constant representative. Relevant to the
discussion are two additional families of orbits that do not
admit constant representatives: First, there is a two-param-
eter family of orbits with Θ ¼ −1, but nonconstant Ξ.
Second, there are particular orbits without constant Θ
representative, so called “massless deformation” orbits
[44]. All other orbits do not have an energy bounded from
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below [44]. Positivity of the energy is a physically
reasonable requirement, so these orbits are not considered
in the following.
We take a closer look at orbits with constant represent-

atives ΘþðϕÞ ¼ M and ΞþðϕÞ ¼ J=2, summarized in
Fig. 1. Here, M and J are, up to a factor [45], mass and
angular momentum given by the charges (7). Then, at Iþ
the metric is

ds2 ¼ Mdu2 − 2dudrþ Jdudϕþ r2dϕ2 ð9Þ

and similarly at I−. For strictly positive M and non-
vanishing J the metric describes shifted boost orbifolds
[46,47] which are quotients of Minkowski space. They are
also called flat space cosmologies and describe contracting
and expanding phases separated by a region behind a
cosmological horizon, see Fig. 2. They furthermore arise as
a limit [46] of Bañados-Teitelboim-Zanelli (BTZ) black
holes [48,49]. For vanishing J, we arrive at the boost
orbifold [50,51] with drastic changes in the geometric

structure. The spacetime where both M and J vanish is
called the null-boost orbifold [52,53]. In the last two cases
there is a singularity between future and past infinity [54],
so a mapping for M ≥ 0, J ¼ 0 seems unreasonable. The
“O-plane” [47] consists of orbits with M ¼ 0, J ≠ 0.
For strictly negative mass (left Penrose diagram in Fig. 2)

we distinguish between angular deficit (−1 < M < 0) and
angular excess (M < −1) solutions. Minkowski space is at
M ¼ −1, J ¼ 0. While there are no black holes in three-
dimensional flat space [55], angular deficit solutions
describe point particles (rotating for nonvanishing J) and
can be seen as the three-dimensional analog to Kerr metrics
[56,57] (being axially symmetric vacuum solutions) or
cosmic strings [58] (see also [59,60]).
The linking of past and future null infinity presented in

this paper is valid for all spacetimes that admit a constant
representative, excluding M ≥ 0, J ¼ 0 (the snake line in
Fig. 1). From the discussion above, we see that this includes
nearly all physically relevant spacetimes, with the excep-
tion of the two-parameter family of orbits admitting
Θ ¼ −1 as well as orbits where Θ belongs to the massless
deformation.

IV. LINKING PAST AND FUTURE
NULL INFINITY

We now construct the map between Iþ and I− for
spacetimes discussed in the previous section. For this
purpose we first introduce explicit coordinate systems.
One coordinate system will cover a neighborhood around
Iþ, the other one a neighborhood around I−. The map we
then construct sends points at Iþ to points at I−. Since one
coordinate system does not cover both of these regions, we
describe the position of the point at Iþ in one coordinate
system, and the position of the corresponding point at I− in
the other coordinate system.
We consider spacetimes that admit a constant represen-

tative at Iþ. The first coordinate system (u, r, ϕ), that is
introduced around Iþ, is required to be such that the metric
has the simple form (9). Notice that this coordinate system
is defined only up to isometries of the spacetime. Given this
coordinate system we define the second coordinate system
(v, r, ϕ0) around I− by the following transformations.
M > 0, J ≠ 0:

u ¼ 2r
M

þ v −
J

2M3=2 ln

�
1þ 4r

ffiffiffiffiffi
M

p

J − 2r
ffiffiffiffiffi
M

p
�

ϕ ¼ ϕ0 þ 1ffiffiffiffiffi
M

p ln

�
1þ 4r

ffiffiffiffiffi
M

p

J − 2r
ffiffiffiffiffi
M

p
�

ð10Þ

M ¼ 0, J ≠ 0:

u ¼ −
8r3

3J2
þ v ϕ ¼ ϕ0 þ 4r

J
ð11Þ

FIG. 1. The phase space of the spacetimes given in Eq. (9). The
cross at M ¼ −1, J ¼ 0 is Minkowski space. The snake line
indicates that the linking between past and future null infinity
appears nonsensical at M ≥ 0, J ¼ 0. The energy of a spacetime
with angular excess is not bounded from below when acted upon
by BMS transformations.

FIG. 2. Penrose diagrams for spacetimes with M < 0 (except
M ¼ −1, J ¼ 0 where there is no singularity) as well as space-
times withM ¼ 0, J ≠ 0 (left) and flat space cosmologies (right).
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M < 0:

u ¼ 2r
M

þ v −
J

ð−MÞ3=2 arctan
�

J

2r
ffiffiffiffiffiffiffiffi
−M

p
�

ϕ ¼ ϕ0 −
2ffiffiffiffiffiffiffiffi
−M

p arctan

�
J

2r
ffiffiffiffiffiffiffiffi
−M

p
�

ð12Þ

These coordinate transformations fulfill the requirement
that the second coordinate system does indeed cover
I− (see Sec. A). Apart from that, the form of the coordinate
transformations is of no fundamental importance for the
argument and they are chosen such that following equations
are particularly simple.
We have now constructed and related our two coordinate

systems. The first one is defined up to isometries. The
second one is uniquely fixed by (10) to (11) once the first
one is fixed. We now define how points at Iþ are sent to
points at I−.
We send a point A using coordinates (u, r, ϕ) at Iþ to a

point B at I− using coordinates (v, r, ϕ0). Any such map
can be written as [61]

vB ¼ f1ðuA;ϕAÞ
ϕ0
B ¼ f2ðuA;ϕAÞ
rB ¼ rA ¼ ∞; ð13Þ

with some functions f1 and f2. Since the coordinate
system (u, r, ϕ) is defined only up to isometries, one
has to demand that the outcome of the mapping is
independent of any such choice. All spacetimes under
consideration admit at least two isometries: Time trans-
lations, and rotations. Time translations act as u → uþ a,
and by (10) to (11), also as v → vþ a. Similarly, rotations
act as ϕ → ϕþ b and ϕ0 → ϕ0 þ b. Invariance under these
isometries leads to the requirements that

f1ðu;ϕÞ þ a ¼ f1ðuþ a;ϕþ bÞ
f2ðu;ϕÞ þ b ¼ f2ðuþ a;ϕþ bÞ; ð14Þ

for all real numbers a and b. This almost fixes f1 and f2
and we find the invertible map

vB ¼ uA þ c1

ϕ0
B ¼ ϕA þ c2; ð15Þ

with some constants c1 and c2. The only invariant maps
between Iþ and I− are of this form.
Now we fix the solely remaining freedom in our map, the

constants c1 and c2. To do this we consider Lorentz boosts
on Minkowski space. A Lorentz boost that is generated by a
vector field [62] −u cosϕ∂u − sinϕ∂ϕ at Iþ is generated
by v cosϕ0∂v þ sinϕ0∂ϕ0 at I−. The map (15) is invariant
under this boost if and only if c1 ¼ 0 and c2 ¼ π.

Considering any other boost leads to the same conclusion.
We find that Minkowski space admits a unique invariant
map. We take c1 and c2 to be independent [63] ofM and J,
and arrive at the mapping prescription for spacetimes
admitting constant representatives:

vB ¼ uA

ϕ0
B ¼ ϕA þ π: ð16Þ

Using symmetry arguments we found an antipodal relation
in the angular coordinate as in the four-dimensional case
[3]. Everything else falls into place. A finite BMS trans-
formation, parametrized by α and f, that acts on Iþ as

u → uf0ðϕÞ þ αðfðϕÞÞ
ϕ → fðϕÞ; ð17Þ

has to act with the same functions α and f on I− as

v → vf0ðϕ0 − πÞ þ αðfðϕ0 − πÞÞ
ϕ0 → fðϕ0 − πÞ þ π: ð18Þ

This is the unique map between BMSþ and BMS− that
preserves the mapping (16).
Now we go back to the original goal of mapping

asymptotic regions of spacetimes with any metric admitting
a constant representative. We take a metric that is given
around Iþ as (5). By assumption we can apply a BMS
transformation (8) to bring the metric into constant form
(9). Then we use the coordinate transformations (10) to (11)
to find the metric around I−

ds2 ¼ Mdv2 þ 2dvdrþ Jdvdϕ0 þ r2dϕ02: ð19Þ

Undoing the BMS transformation using the above relation
between (17) and (18), we finally get a metric of the form
(6) with

ΘþðϕÞ ¼ Θ−ðϕþ πÞ
ΞþðϕÞ ¼ Ξ−ðϕþ πÞ: ð20Þ

From the definition of the charges (7) we immediately
obtain infinitely many conservation laws,

Qþ
T;Y ¼ Q−

~T; ~Y
; ð21Þ

one for every function TðϕÞ ¼ ~Tðϕþ πÞ and YðϕÞ ¼
~Yðϕþ πÞ. The mapping is energy preserving: Qþ

1;0 ¼ Q−
1;0.

V. ADDING MATTER

Up until now we have restricted ourselves to the
vacuum solutions (5) and (6). Here we turn to the
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classical scattering problem of a massless field coupled to
gravity, where initial and final data are prescribed on
I− and Iþ. Both sets of data transform under each BMS
group separately. When considering BMS as a symmetry
of the scattering problem, the separate symmetries of Iþ
and I− must be broken to a single one. Using the results
of the vacuum case presented above, a similar mapping
of symmetries can be achieved in the presence of matter,
as follows.
We require that the solution to the Einstein equations

admits some well-defined spacelike infinity i0 and that
there is vacuum in a neighborhood of i0. Thus in this
neighborhood around i0, the metric will have the form (5)
and (6). Using the algorithm established above we can find
a mapping between Iþ and I−, and consequently a relation
between the two respective symmetry groups BMSþ and
BMS− according to (17) and (18). This mapping is a priori
valid only in the neighborhood of i0, in which the
coordinate system (9) is well defined. However, a BMS-
transformation is determined on the entirety of I� by
prescribing it on one cross section [64]. The linking of
BMSþ and BMS− near i0 is therefore enough to establish a
linking on the whole of I , thus breaking the symmetry
BMSþ ⊗ BMS− to a single BMS acting on both Iþ and
I−. In particular, the mapping (20) of the gravitational
degrees of freedom near i0 is still valid. Given the flux of
matter through I�, these relations can be used as initial
conditions for integrating the constraint equations along
I�, thus providing initial or final data for the scattering
problem.

VI. DISCUSSION

For three-dimensional spacetimes that admit a constant
representative (see Fig. 1) the map given by (16) together
with (10) to (11) provides a linking between future and past
null infinity and their respective symmetry groups. An
immediate consequence of this linking is the existence of
an infinite number of conservation laws, expressed in (20).
This is just conservation of energy and angular momentum
at every angle.
In the context of flat space holography, the two functions

Θ and Ξ can be seen as components of the stress-tensor of
the dual boundary theory [13,28,39]. Due to the matching
presented in this paper the two boundary theories defined
on Iþ and I− are connected. It would be interesting to
employ these relations by calculating boundary observables
such as entanglement entropy.
The single BMS group, that was obtained from the

linking, should be regarded as a symmetry for the S-matrix
of three-dimensional Einstein gravity coupled to matter.
Further study is required to determine to what extent the
relations between BMS symmetry, memory effect and soft
theorems present in four dimensions [3–5] are realized in
three dimensions.
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APPENDIX: COORDINATE TRANSFORMATIONS

The coordinate transformations (10) to (12) are con-
structed such that the coordinates (u, r, ϕ) cover Iþ, while
(v, r, ϕ0) cover I−. That this is true can most easily be seen
for Minkowski space (M ¼ −1, J ¼ 0). Here, u ¼ t − r
and v ¼ tþ r are usual retarded and advanced times.
Depending on which one is held fixed, one ends up at
either Iþ or I− as r goes to infinity. On other spacetimes
with M ≠ 0 this works analogously. We now discuss
the more complicated case of flat space cosmologies
(M > 0, J ≠ 0).
Flat space cosmologies can be constructed as

quotients of Minkowski space. We use Cartesian coordi-
nates (T, X, Y) and define the coordinates (u, r, ϕ) with
r > 0 by

T ¼ rffiffiffiffiffi
M

p cosh ð
ffiffiffiffiffi
M

p
ϕÞ − J

2M
sinh ð

ffiffiffiffiffi
M

p
ϕÞ

X ¼ rffiffiffiffiffi
M

p sinh ð
ffiffiffiffiffi
M

p
ϕÞ − J

2M
cosh ð

ffiffiffiffiffi
M

p
ϕÞ

Y ¼ 1ffiffiffiffiffi
M

p
�
−rþMuþ Jϕ

2

�
: ðA1Þ

The coordinates (u, r, ϕ) cover the region

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ J2

4M2

r
< X < T if J > 0

− T < X <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ J2

4M2

r
if J < 0; ðA2Þ

which, for J > 0, corresponds to the gray region in Fig. 3.
The metric in these coordinates is

ds2 ¼ Mdu2 − 2dudrþ Jdudϕþ r2dϕ2: ðA3Þ

Upon identifying

ϕ ∼ ϕþ 2π ðA4Þ

we end up with flat space cosmologies parametrized
by M and J. The identifications are given in Cartesian
coordinates as
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0
B@

T

X

Y

1
CA ∼

0
B@

T coshð2π ffiffiffiffiffi
M

p Þ þ X sinhð2π ffiffiffiffiffi
M

p Þ
X coshð2π ffiffiffiffiffi

M
p Þ þ T sinhð2π ffiffiffiffiffi

M
p Þ

Y þ πJffiffiffiffi
M

p

1
CA; ðA5Þ

corresponding to a boost in X direction plus a translation in
Y direction. This is why flat space cosmologies are also
referred to as shifted boost orbifolds [46,47]. At r ¼ 0,
where X2 − T2 ¼ ð J

2MÞ2, null-like separated points become
identified, leading to a causal singularity there.
A similar coordinate system (v, r, ϕ0) can be defined as

T ¼ −
rffiffiffiffiffi
M

p cosh ð
ffiffiffiffiffi
M

p
ϕ0Þ − J

2M
sinh ð

ffiffiffiffiffi
M

p
ϕ0Þ

X ¼ −
rffiffiffiffiffi
M

p sinh ð
ffiffiffiffiffi
M

p
ϕ0Þ − J

2M
cosh ð

ffiffiffiffiffi
M

p
ϕ0Þ

Y ¼ 1ffiffiffiffiffi
M

p
�
−r −Mv −

Jϕ0

2

�
; ðA6Þ

carefully chosen such that the identifications ϕ0 ∼ ϕ0 þ 2π
correspond to the ones before. This coordinate system
covers the dotted region in Fig. 3. The metric becomes

ds2 ¼ Mdv2 þ 2dvdrþ Jdvdϕ0 þ r2dϕ02: ðA7Þ

In the region where the two coordinate systems overlap, we
find the coordinate transformation given by (10).
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