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A discrete quantum spin system is presented in which several modern methods of canonical quantum
gravity can be tested with promising results. In particular, features of interacting dynamics are analyzed
with an emphasis on homogeneous configurations and the dynamical building-up and stability of long-
range correlations. Different types of homogeneous minisuperspace models are introduced for the system,
including one based on condensate states, and shown to capture different aspects of the discrete system.
They are evaluated with effective methods and by means of continuum limits, showing good agreement
with operator calculations whenever the latter are available. As a possibly quite general result, it is
concluded that an analysis of the building-up of long-range correlations in discrete systems requires
nonperturbative solutions of the dynamical equations. Some questions related to stability can be analyzed
perturbatively but suggest that matter couplings may be relevant for this question in the context of quantum
cosmology.
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I. INTRODUCTION

Minisuperspace models of quantum-field theories, in
particular quantum gravity, are usually constructed by
quantizing a set of configurations obtained from the full
classical theory by imposing spatial homogeneity. While
homogeneous configurations are exact (though special)
solutions of the classical theory, for various reasons they are
not expected to be exact solutions of the full quantum-field
theory. For instance, uncertainty relations would prevent
both the amplitude and momentum of an inhomogeneous
mode from having zero quantum fluctuations. In an
interacting theory, fluctuations couple to expectation val-
ues, and nonzero fluctuations usually imply that the mode
expectation values cannot remain zero in time. An exactly
homogeneous (nonvacuum) solution, therefore, cannot be
realized in a quantum-field theory. The question of what
kind of an approximation to the full quantum theory a
minisuperspace model may provide has remained open, but
recently canonical effective methods have shed some light
on this question for scalar quantum-field theories on a flat
background spacetime [1].
The main application of minisuperspace models is in the

context of quantum gravity, where spacetime is no longer a
background but quantized as well. Several approaches to
quantum gravity suggest that space or spacetime may no
longer be continuous in this setting. (See, for instance,
[2,3].) Discrete space may present a further obstacle to
finding exact or approximate homogeneous solutions of the
theory: even if we disregard quantum fluctuations or their
backreaction on expectation values, local moves in a

discrete structure do not respect homogeneity. At most, a
coarse-grained model which collects the accumulated
action of many local moves in a single evolution step
could lead to approximate homogeneous solutions.
However, coarse-graining remains incompletely under-
stood in discrete approaches to background-independent
gravity. (See, for instance, [4,5] for recent realizations.)
In order to probe these questions, we introduce here a

discrete quantum system which exhibits several interesting
aspects regarding minisuperspace models. Starting from the
discrete quantum theory rather than a classical continuum
theory allows us to analyze how different features of the
interacting dynamics can be captured in simpler systems.
As is well known, a discrete theory can give rise to different
continuum limits. Each of them would then lead to a
different minisuperspace model. The same result can be
seen directly by minisuperspace constructions performed
for the discrete quantum theory.
We will also analyze the discrete quantum theory in

qualitative terms. In particular, we are interested in the
question of how long-range correlations can build up in a
fundamental theory and under which conditions they are
stable. If such correlations can be achieved, it is at least
possible that nearly homogeneous configurations can be the
result of evolution in the theory, rather than just of specific
initial choices as implicitly made in minisuperspace con-
structions. Of course, homogeneous configurations require
long-range correlations of a very specific kind which is
more difficult to analyze for a generic interacting theory.
But the building-up of some kind of long-range correlations
is a pre-requisite for near homogeneity, and it can be
studied in our model in qualitative terms. The stability
question will lead us back to the ground-state configura-
tions discussed for the various minisuperspace models
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introduced here. An interesting interplay between the full
discrete theory and the models is important for the physical
interpretation of minisuperspace results.

II. THE MODEL

In the absence of a consistent canonical quantum theory
of gravity, it is not clear what Hamiltonian one should use
to model its discrete dynamics. (See, for instance, [6–10]
for some issues involved in such a construction.) In an
attempt to construct tractable models, we focus here on
some of the ingredients that seem to be rather general. We
do not intend to capture the precise dynamics of quantum
gravity but rather plan to explore some properties of
possible candidates for fundamental degrees of freedom.
Several proposals of quantum gravity, going back to

[11], are based on mathematical versions of angular
momentum or spin as a fundamental degrees of freedom.
Not only spin eigenvalues but also their proposed arrange-
ment on a graph in space, or a spin network, are discrete.
Certain invariant combinations of spin quantum numbers
can then be defined as discrete analogs of the common
continuum expressions of geometrical measures. Moreover,
spin-spin interactions can be used to introduce possible
Hamiltonians.
Handling the arrangement of spins on an arbitrary graph

in three spatial dimensions can be a difficult combinatorial
problem. The first simplification we will use is a dimen-
sional reduction: We will consider only one spatial dimen-
sion, which could be thought of as the radial direction
measuring the distance from a nonrotating and spherical
star or black hole, or more generally a so-called midisuper-
space model of general relativity. Aligned in this direction
are then several different types of spins, which roughly
correspond to independent components of the spatial
metric. We arrive at a one-dimensional graph model as
illustrated in Fig. 1. Here, spins on links in the horizontal
direction, called “horizontal spins” in what follows, would
then have a geometrical interpretation distinct from that of
“vertical spins” on upward and open-ended links. However,
such a geometrical interpretation will not be relevant for our
analysis of the interacting dynamics.
Specific versions of such quantum midisuperspace

models with explicit Hamiltonians have been constructed
for spherically symmetric models [12,13] and certain types

of gravitational waves [14,15]. In tractable versions, one
makes use of a further reduction of the group SU(2) to the
Abelian U(1). In order to have interesting spin-spin
interactions, we will not make use of this reduction here.
However, we will simplify the combinatorics by working
with a single spin on each link, instead of distinguishing
between left- and right-invariant vector fields on SU(2) as
would be done in a full spin network.
The dynamics on a spin system, such as the one

illustrated in Fig. 1, is in general spin-changing as well
as graph-changing if it comes from a generic proposal of
canonical quantum gravity. That is, the Hamiltonian can
contain terms that change the irreducible representation of
SU(2) on each link of the graph, as well as terms that can
create new vertices and corresponding links of the graph.
Such a dynamics is hard to control, and, therefore, we
assume a simplified version in which no spin-changing or
graph-changing terms occur. Therefore, for given irreduc-
ible representations and a fixed graph, only spin-spin
interactions are present in the Hamiltonian. We consider
only local (next-neighbor) pairwise interactions and require
a certain reflection symmetry as indicated in Fig. 1 and
spelled out in the explicit construction that follows.
As the discrete theory, we introduce a spin system which

for a given integer N has 2N þ 1 interacting spins Ji,
i ¼ 1;…; 2N þ 1. We define the dynamics in canonical
form, generated by the Hamiltonian

ĤΓ ¼ α
XN
i¼1

ð−Ĵ2i−1 · Ĵ2i þ Ĵ2i−1 · Ĵ2iþ1 þ Ĵ2i · Ĵ2iþ1Þ ð1Þ

with a coupling constant α. This operator is invariant under
global rotations of the spins: the sum of all horizontal spins,

G ≔
XNþ1

i¼1

Ĵ2i−1; ð2Þ

commutes with the Hamiltonian. This conserved
quantity can be used in some cases to simplify equa-
tions of motion, as in Sec. V B. We have chosen the
signs of individual coefficients of the spin products so
as to make the Hamiltonian reflection symmetric under the
operation Ĵ2i−1 ↦ −Ĵ2N−2iþ3 while Ĵ2i ↦ Ĵ2N−2iþ2 (or
i ↦ N − iþ 1). These properties can be illustrated by
the graph model presented in Fig. 1. The arrows indicate
the sign in the reflection symmetry.
In one-dimensional models of gravity, it is often con-

venient to impose polarization conditions which eliminate
one of the metric components as an independent field. In
our discrete model, such a condition would then relate the
different types of spins (horizontal and vertical) to each
other. Our polarization condition used here is a constraint
that corresponds to the classical conditions

FIG. 1. The inhomogeneous one-dimensional graph Γ with N
vertices and 2N þ 1 links. The Hamiltonian (1) is invariant under
a mapping of spins that corresponds to a reflection of the graph in
a horizontal direction. If the orientation of a link, indicated by an
arrow, changes under this reflection, the corresponding mapped
spin has a negative sign.
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Ci ¼ −J2i−1 þ J2i þ J2iþ1 ¼ 0; i ¼ 1;…; N: ð3Þ

They can be used to eliminate the vertical spins. Also this
system of constraints has coefficients chosen so as to make
it reflection symmetric: Ci ↦ CN−iþ1.
We have a system of constraints in a nonsymplectic

Poisson manifold with coordinates given by spin compo-
nents Jai , such that standard classifications of first or second
class constraints are not available [16]. It is, however,
straightforward to see that the constraints do not all
(Poisson) commute with one another, nor with the
Hamiltonian. The nonzero Poisson brackets are fCa

i ;C
b
i g¼

ϵabcðJc2i−1þJc2iþJc2iþ1Þ≈2ϵabcJc2i−1 (the weak equality ≈
indicating that the constraints have been used) and
fCa

i ; C
b
iþ1g ¼ −ϵabcJc2iþ1 for a ≠ b, while all other com-

ponents of the constraints commute. We are only interested
in imposing the constraints as a reduction of vertical
degrees of freedom. The constraint surface remains well-
defined if the reduction constraints are imposed strongly. In
particular, we can solve the constraints so as to eliminate all
vertical spins J2i (or Ĵ2i), and use standard Poisson brackets
(or commutators) for the remaining J2i−1 (or Ĵ2i−1). All our
derivations exclusively use Poisson brackets or commuta-
tors and, therefore, the model is sufficient as a non-
symplectic Poisson system.
We use the system of partially noncommuting con-

straints as an example of reduction, better known from
the context of symmetry reduction. In fact, if we combine
the constraints Ci with additional constraints that set all the
vertical spins equal to zero, the reduction imposes homo-
geneity: it requires that the remaining, horizontal spins are
all equal, J2i−1 ¼ J2iþ1 for all i ¼ 1;…; N. If we impose
only Ci ¼ 0 without restricting vertical spins, we can solve
for the vertical spins and obtain a single one-dimensional
spin chain closely related to the next-neighbor Heisenberg
spin chain. The fact that the quantized constraints do not
commute with Ĥ allows us to probe for potential effects of
local discrete moves not respecting reduction constraints.
An important question in classical symmetry reduction is

whether variation commutes with reduction. It is not always
guaranteed that equations of motion of the reduced system
(extrema of the reduced action) agree with the field
equations of the full theory restricted to fields that obey
the reduction condition. Certain general conditions are
known that guarantee this commutation property (symmet-
ric criticality), formulated mainly as conditions on proper-
ties of the corresponding symmetry group [17,18]. In our
case, we have a reduction constraint which shares with
minisuperspace reductions the feature that it is (partially)
noncommuting, but it does not directly correspond to a
symmetry group. Moreover, we are working exclusively
with Hamiltonians rather than action principles, and we do
not have a symplectic phase space.

However, instead of using general conditions on sym-
metry groups, it is not difficult to test the commutation
property directly. We have the reduced Hamiltonian

Ĥred¼α
XN
i¼1

ð−Ĵ22i−1þ3Ĵ2i−1 · Ĵ2iþ1− Ĵ22iþ1Þ ð4Þ

¼ α

�
−Ĵ21−2

XN
i¼2

Ĵ22i−1− Ĵ22Nþ1þ3
XN
i¼1

Ĵ2i−1 · Ĵ2iþ1

�
;

ð5Þ

which generates Heisenberg equations of motion

dĴa2iþ1

dt
¼ 3αϵabcðĴb2i−1Ĵc2iþ1 þ Ĵc2iþ1Ĵ

b
2iþ3Þ: ð6Þ

The full equations for horizontal spins are

dĴa2iþ1

dt
¼ αϵabcð−Ĵc2iþ1Ĵ

b
2iþ2 þ Ĵb2i−1Ĵ

c
2iþ1

þ Ĵc2iþ1Ĵ
b
2iþ3 þ Ĵb2iĴ

c
2iþ1Þ; ð7Þ

coupled to vertical spins Ĵ2i. If we use the constraint in
order to eliminate the vertical spins in the equation of
motion, we obtain

dĴa2iþ1

dt
¼ 2αϵabcðĴb2i−1Ĵc2iþ1 þ Ĵc2iþ1Ĵ

b
2iþ3Þ ð8Þ

which are not identical with the equations generated by the
reduced Hamiltonian. However, the difference is merely a
constant numerical factor of the time derivatives. We have
interpreted the constraint imposed here as a polarization
condition. The preceding calculations have shown that
there is a small difference between imposing the polariza-
tion condition before or after deriving equations of motion.
The coupling of modes is, therefore, slightly different if it is
described by a reduced Hamiltonian, compared with the
full Hamiltonian on whose equations of motion the same
condition would be imposed. One can account for the
difference by a simple rescaling (or a classical renormal-
ization) of the coupling constant, using 2

3
α instead of α in

the reduced Hamiltonian.
In what follows, we will, for simplicity, work mainly

with reduced Hamiltonians. (The conserved quantity (2)
now commutes strongly with the Hamiltonian.) We will
compare different versions of homogeneous minisuper-
space models and effective continuum theories.

III. MINISUPERSPACE MODELS

All spins in the model are coupled. It might, therefore, be
possible that long-distance correlations build up over time,
which could be of the classical or quantum nature.
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Aminisuperspace configuration would be one example of a
classically correlated system. There is a difference between
such a minisuperspace configuration and a homogeneous
configuration as it might be realized as a ground state of the
unreduced system because all spins would have to be
identical as degrees of freedom, not just equal as values
assigned to different links of the graph. In this subsection,
we explore several questions related to this conceptual
difference. We will also see that there is some freedom in
defining different minisuperspace models, and that select-
ing a model that gives predictions close to the discrete
theory requires knowledge of solutions of the discrete
theory.

A. A minimal minisuperspace model

The smallest number of minisuperspace degrees of
freedom can be realized by identifying all horizontal spins
on the links. Setting Ĵ2i−1 ¼ Ĵ2iþ1 ≕ Ĵ in the reduced
Hamiltonian (4) gives us the minisuperspace Hamiltonian

Ĥð1Þ
mini ¼ αNĴ2: ð9Þ

We obtain the same result if we start with the unreduced
Hamiltonian and set vertical spins equal to zero. Clearly,
this Hamiltonian commutes with all minisuperspace
degrees of freedom, given by the three components of a
single Ĵ. The resulting trivial dynamics is very different
from the coupled equations of the inhomogeneous theory.

B. A condensate model

Alternatively, homogeneity can be imposed at the level
of states by working with condensate states of the full
theory, given by

Ψ ¼ ⊗
Nþ1

i¼1
χ ð10Þ

where χ is a state in the Hilbert space of a single horizontal
spin. The same individual state is, therefore, assumed for all
links, but unlike in the minisuperspace model, the spins
remain as independent degrees of freedom. This procedure
is well known from the description of Bose–Einstein
condensates, where it results in the nonlinear Gross-
Pitaevsky equation for the analog of χ. In quantum gravity,
the procedure has been used in particular in the context of
group-field theory [19–26], and it can also be seen in
certain approximations that go beyond minisuperspace
models by including perturbative inhomogeneity at an
effective quantum level [27].
A nonlinear equation for the single-spin wave function χ

can be derived by first computing an effective Hamiltonian
hΨjĤjΨi for (5) in a state of the form (10):

hΨjĤjΨi ¼ −2αNhχjĴ2jχi þ 3αNhχjĴjχi2 ð11Þ

where we have identified hχjĴijχi ¼ hχjĴjjχi for i ≠ j.
Effective equations of motion or variational ground states
can be related to those of a state-dependent single-spin
Hamiltonian

Ĥcondensate ¼ −2αNĴ2 þ 3αNhĴi · Ĵ: ð12Þ

It generates the nonlinear equation

iℏ
dχ
dt

¼ Ĥχ ¼ −2αNĴ2χ þ 3αNhχjĴjχi · Ĵχ: ð13Þ

Unlike in the minimal minisuperspace model, the con-
densate dynamics is nontrivial.

C. Two interacting minisuperspace models

The inhomogeneous dynamics can be probed more
faithfully by using more than one triple of degrees of
freedom, but still of small number for a minisuperspace
model. Starting with the unreduced Hamiltonian, we split
the spins into different subsets by introducing the following
notation:

Ĵh1;j ≔ Ĵ4j−3 ð14Þ

Ĵv1;j ≔ Ĵ4j−2 ð15Þ

Ĵh2;j ≔ Ĵ4j−1 ð16Þ

Ĵv2;j ≔ Ĵ4j: ð17Þ

No analogous version of such a reduction has been used in
quantum cosmology yet, but we will see that, in the present
model, it can improve the simpler reduction given by Ĥð1Þ

mini.
Assuming even N, we can pair up neighboring vertices

(i ¼ 2j − 1 and i ¼ 2j in (1)), and obtain the Hamiltonian

Ĥ ¼ α
XN=2

j¼1

ð−Ĵ4j−3 · Ĵ4j−2 þ Ĵ4j−3 · Ĵ4j−1 þ Ĵ4j−2 · Ĵ4j−1

ð18Þ

− Ĵ4j−1 · Ĵ4j þ Ĵ4j−1 · Ĵ4jþ1 þ Ĵ4j · Ĵ4jþ1Þ ð19Þ

¼ α
XN=2

j¼1

ð−Ĵh1;j · Ĵv1;j þ Ĵh1;j · Ĵh2;j þ Ĵv1;j · Ĵh2;j ð20Þ

−Ĵh2;j · Ĵv2;j þ Ĵh2;j · Ĵh1;jþ1 þ Ĵv2;j · Ĵh1;jþ1Þ: ð21Þ

(We refer to Ĵ2Nþ1 as a single spin Ĵh1;N=2þ1 without vertical
or a second horizontal spins for j ¼ N=2þ 1.) The new
configurations and their interactions can be illustrated as
in Fig. 2.
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We have two constraints for each value of j:

Ĉ1;j¼−Ĵ4j−3þ Ĵ4j−2þ Ĵ4j−1¼−Ĵh1;jþ Ĵv1;jþ Ĵh2;j ð22Þ

Ĉ2;j¼−Ĵ4j−1þ Ĵ4jþ Ĵ4jþ1¼−Ĵh2;jþ Ĵv2;jþ Ĵh1;jþ1: ð23Þ

The reduced Hamiltonian is

Ĥred ¼ α
XN=2

j¼1

ð−Ĵ2h1;j − 2Ĵ2h2;j − Ĵ2h1;jþ1

þ 3Ĵh1;j · Ĵh2;j þ 3Ĵh2;j · Ĵh1;jþ1Þ: ð24Þ

Setting Ĵh1;j ¼ Ĵh1 and Ĵh2;j ¼ Ĵh2 for all j (but Ĵh1 ≠ Ĵh2),
we obtain a new minisuperspace Hamiltonian

Ĥð2Þ
mini ¼ αNð−Ĵ2h1 − Ĵ2h2 þ 3Ĵh1 · Ĵh2Þ ð25Þ

with nontrivial dynamics. We note that this minisuperspace
model is closely related to the mean-field model introduced
for finite Heisenberg spin chains in [28]. The main differ-
ence is that our minisuperspace treatment identifies spin
degrees of freedom on alternating links, while the mean-
field treatment couples these spins. This relation, which
we do not pursue further in this paper (except for one
conclusion drawn in Sec. VI), could be useful in an
extension of discrete minisuperspace models to controlled
mean-field theories.
Alternatively, we can split up the range of N vertices

into two disjoint averaging regions. Unlike Ĥð2Þ
mini, such

a reduction can be interpreted as an analog of reduc-
tions proposed in quantum cosmology. In an attempt to
include degrees of freedom relevant for the evolution of

inhomogeneous perturbations on an isotropic background
cosmology, [29] proposed that independent spatial regions
can be pasted together to allow for more general degrees of
freedom. (Our model here has only two such regions, but
we will comment on effects of subdivisions in our dis-
cussion of stability in Sections V B and VI.) Such a
quantum cosmology is a version of the classical separate-
universe approximation of [30–32].
In the reduced theory, we now assume N odd, such that

we have an even number N þ 1 of horizontal spins. We can
group them in two sets, one for the spins around vertices
i ¼ 1 to i ¼ ðN − 1Þ=2 and one for vertices from i ¼
ðN þ 3Þ=2 to i ¼ N. (The central vertex ic ¼ ðN þ 1Þ=2 is
not included in this counting. The spin Ĵ2ic−1 ¼ ĴN to its
left is contained in the first set, while Ĵ2icþ1 ¼ ĴNþ2 to its
right is contained in the second set.) Calling the first
ðN þ 1Þ=2 horizontal spins Ĵh1 ≔ Ĵ1 ¼ Ĵ3 � � � ¼ ĴN and
the last ðN þ 1Þ=2 spins Ĵh2≔ ĴNþ2 ¼ ĴNþ4 ¼ ��� ¼ Ĵ2Nþ1,
we obtain, starting from the reduced Hamiltonian, the
minisuperspace Hamiltonian

Ĥð3Þ
mini ¼ α

N − 3

2
ðĴ2h1 þ Ĵ2h2Þ þ 3αĴh1 · Ĵh2: ð26Þ

(There are ðN − 1Þ=2 noninteracting contributions of Ĵ2h1
and Ĵ2h2 from spins in the interior of the two averaging
regions, as well as one contribution of −Ĵ2h1þ3Ĵh1 ·Ĵh2−Ĵ2h2
with interactions at the border between the regions, located
at the central vertex ic ¼ ðN þ 1Þ=2.)
The two Hamiltonians are rather different from each

other. They are both of the form

Ĥβγ ≔ βðĴ2h1 þ Ĵ2h2Þ þ γĴh1 · Ĵh2; ð27Þ

but while sgnγ ¼ sgnα in both cases, we have sgnβ ¼
−sgnα for Ĥð2Þ and sgnβ ¼ sgnα for Ĥð3Þ (withN > 3). We
should, therefore, expect different ground states or effective
potentials in the two cases. In particular, if hĴ2h1=2i is
considered a free variable, we can minimize the energy of
hĤð3Þi by zero spins, while the energy range of hĤð2Þi is
unbounded from below. If hĴ2h1=2i is fixed, however, only
the interaction term matters for ground states or effective
potentials, for which the two models provide the same sign.
The ground-state properties are then similar to those of the
Heisenberg spin chain related to the reduced Hamiltonian
(4): parallel alignment of next-neighbor spins (ferromag-
netic) if γ < 0 and antiparallel alignment (antiferromag-
netic) if γ > 0.
We assume that the individual spin states have the same

eigenvalue of Ĵ2h1 and Ĵ2h2, given by sðsþ 1Þℏ2 with some
half-integer s. We have two cases according to sgnγ: For
γ > 0, the interaction term is minimized by antiparallel
spins Ĵh1=2. The two spins then form a combined spin
eigenstate j0; 0i of the total spin Ĵ ≔ Ĵh1 þ Ĵh2 in which

FIG. 2. A re-arranged representation of the discrete spin model.
As before, lines with a given orientation stand for the spin
operators. There are now five different spins meeting at a given
vertex j, among which only the two triplets ðĴh1;j; Ĵv1;j; Ĵh2;jÞ and
ðĴh2;j; Ĵv2;j; Ĵh1;jþ1Þ are interacting as indicated by wavy lines
with different wave lengths. The spin Ĵh2;j appears in both triplets
and is, therefore, doubled in the diagrammatic visualization. Also
the constraints relate only the spins that occur together in a triplet.
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hĴh1 · Ĵh2i ¼
1

2
hĴ2 − Ĵ2h1 − Ĵ2h2i ¼ −sðsþ 1Þℏ2; ð28Þ

and the energy eigenvalue is given by

Eγ>0 ¼ ð2β − γÞsðsþ 1Þℏ2: ð29Þ
For γ < 0, the parallel configuration minimizes the inter-
action term, for which we have a whole multiplet of
different sates with total spin 2s. In any such state,
hĴh1 · Ĵh2i ¼ s2ℏ2, and the energy eigenvalue is

Eγ<0 ¼ ð2βsðsþ 1Þ þ γs2Þℏ2: ð30Þ
The two different types of ground states, with antiparallel

spins for γ > 0 and parallel spins for γ < 0, have interesting
implications for the reliability of the two different interact-
ing minisuperspace models. If γ < 0, the two models
predict the same ground-state configuration with all fun-
damental spins aligned. There is only a quantitative differ-
ence between the models in the predicted ground-state
energy. For γ > 0, however, the antiparallel alignment of
Ĵh1 and Ĵh2 corresponds to very different fundamental

configurations. With Ĥð2Þ
mini, the two antiparallel spins are

alternating along the full spin chain, which agrees with the

ground state of the discrete theory. With Ĥð3Þ
mini, however, we

have two averaging regions with equal spins in each region,
but antiparallel alignment between the two regions.
Knowing the fundamental configuration, we can tell that
an energy preference of antiparallel alignment at the border
between the two regions means that the configuration
should be unstable under splitting it up further into smaller
and smaller averaging regions with antiparallel alignment at
all borders. With complete splitting, each link being an

averaging region of its own, a configuration as with Ĥð2Þ
mini or

in the fundamental theory is obtained, but one would have
left the minisuperspace stage. The second minisuperspace

model with Hamiltonian Ĥð2Þ
mini, on the other hand, realizes

the correct ground state within a minisuperspace model,
and without the need for further refinement. (There is,

however, a difference between the ground state of Ĥð2Þ
mini and

the corresponding discrete theory. The former has an even

number of spins, but it is derived from a spin chain with an
odd number of spins. These two cases are known to have
different behaviors [33–35].)
We conclude that the way degrees of freedom are

included in a minisuperspace model can have significant
implications for how well fundamental properties are
modelled, which however can be evaluated only if one
knows a great deal about the fundamental theory.
Transferring this lesson to quantum gravity suggests that
caution toward minisuperspace results would be advisable.
However, there is a difference between stability as dis-
cussed so far, where it is implicitly assumed that the spin
chain can exchange energy with an environment and settle
down to its ground state, and quantum-cosmology models,
where there is no environment outside of the system. We
will return to this question in Secs. V and VI.

D. Effective equations and potentials

We continue to analyze the dynamics by means of
effective equations in canonical form. Following
[36–38], we assign infinitely many numbers to a set of
quantum spin degrees of freedom with operator Ĵi. In a
given state, these numbers correspond to the expectation
values hĴai i of spin components and the moments

ΔðJa1i1 � � � J
an
in
Þ ≔ hðĴa1i1 − hĴa1i1 iÞ � � � ðĴ

an
in
− hĴanin iÞisymm

ð31Þ

in totally symmetric ordering. (For uniform notation of all
moments, we write fluctuations asΔðJaJaÞ ¼ ðΔJaÞ2.) In a
semiclassical expansion, which we will perform in most of
our derivations, it is sufficient to include only moments up
to second order, n ¼ 2. We then have a finite-dimensional
system. For a semiclassical state, defined as a state with
moments of the order ΔðJa1i1 � � � J

an
in
Þ ¼ Oðℏða1þ���þanÞ=2Þ,

terms of order ℏ are included in a truncation up to second
order in moments.
The quantum degrees of freedom form a phase space

with Poisson bracket derived from the commutator via

fhÂi; hB̂ig ≔
h½Â; B̂�i

iℏ
: ð32Þ

For instance,

fhĴai i; hĴbj ig ¼ ϵabchĴci iδij
fΔðJai Jbj Þ; hĴckig ¼ δikϵ

acdΔðJdi Jbj Þ þ δjkϵ
bcdΔðJai Jdj Þ

fΔðJai Jbj Þ;ΔðJckJdl Þg ¼ δikϵ
acehĴei iΔðJbj Jdl Þ þ δilϵ

adehĴei iΔðJbj JckÞ þ δjkϵ
bcehĴejiΔðJai Jdl Þ

þ δjlϵ
bdehĴejiΔðJai JckÞ þOðΔ3Þ: ð33Þ

The first two lines are exact, while the third line is valid to second order in moments.
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The Poisson bracket allows us to compute equations of
motion. For instance, in the minimal minisuperspace model
we have the effective Hamiltonian:

Hð1Þ
eff ¼ αNðhĴxi2 þ hĴyi2 þ hĴzi2 þ ΔðJxJxÞ

þ ΔðJyJyÞ þ ΔðJzJzÞÞ: ð34Þ
All expectation values and moments then have zero time
derivatives

dO
dt

¼ fO;Hð1Þ
eff g; ð35Þ

as is to be expected from the noninteracting nature of the
system.

1. Minimal minisuperspace model

The moments in (34) provide a quantum correction to the
classical Hamiltonian. For the ground state, we can derive
their minimal values by saturating uncertainty relations

ΔðJxJxÞΔðJyJyÞ ≥ ℏ2

4
jhĴzij2 ð36Þ

and cyclic permutations. In order to evaluate these equa-
tions, we may assume that the expectation value hĴi points
in the z direction. Therefore, only hĴzi is nonzero among
the spin components. The saturated uncertainty relations
then require that ΔðJzJzÞ ¼ 0 while

ΔðJxJxÞΔðJyJyÞ ¼ 1

4
ℏ2jhĴzij2: ð37Þ

By symmetry, ΔðJxJxÞ ¼ ΔðJyJyÞ. The quantum correc-
tion to the classical Hamiltonian, or the effective potential,
is then

Vð1Þ
eff ¼ αNðΔðJxJxÞ þ ΔðJyJyÞ þ ΔðJzJzÞÞ

¼ αNℏjhĴzij ¼ αNℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δabhĴaihĴbi

q
: ð38Þ

Although the effective potential is nonzero, it does not
imply interactions but rather provides a zero-point energy
because it only depends on a constant of motion. The
effective Hamiltonian is given by

Hð1Þ
eff ¼ αNhĴzi2 þ Vð1Þ

eff ¼ αNðhĴzi2 þ ℏjhĴzijÞ
¼ αNsðsþ 1Þℏ2 ð39Þ

if hĴzi ¼ �sℏ for a spin pointing in the z direction
according to our assumptions. This value of the effective
Hamiltonian is in agreement with the operator result, where
the well-known eigenvalues of Ĵ2 are sðsþ 1Þℏ2.
The same effective potential can be obtained from a

canonical version of the spin system. Again assuming that
the spin vector points in the z direction, we introduce
canonical coordinates

q≔
δhĴxiffiffiffiffiffiffiffiffi
hĴzi

q ¼ δhĴxiffiffiffi
4

p
δabhĴaihĴbi− ðδhĴxiÞ2− ðδhĴyiÞ2

p≔
δhĴyiffiffiffiffiffiffiffiffi
hĴzi

q ¼ δhĴyiffiffiffi
4

p
δabhĴaihĴbi− ðδhĴxiÞ2− ðδhĴyiÞ2 ð40Þ

for small values δhĴxi and δhĴyi much less than hĴzi: We
have

fq; pg ¼ fδhĴxi; δhĴyig
hĴzi þ δhĴxifδhĴyi; hĴzig − δhĴyifδhĴxi; hĴzig

2hĴzi2 ¼ 1þOððδhĴx=yi=hĴziÞ2Þ: ð41Þ

These relations imply the quadratic equation

ððδhĴxiÞ2 þ ðδhĴyiÞ2Þ2 þ ðq2 þ p2Þ2ððδhĴxiÞ2 þ ðδhĴyiÞ2Þ − ðq2 þ p2Þ2δabhĴaihĴbi ¼ 0: ð42Þ

For δabhĴaihĴbi much greater than ðδhĴxiÞ2 þ ðδhĴyiÞ2, we can solve (42) for ðδhĴxiÞ2 þ ðδhĴyiÞ2 by

ðδhĴxiÞ2 þ ðδhĴyiÞ2 ¼ −
1

2
ðq2 þ p2Þ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δabhĴaihĴbi

q
ðq2 þ p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðq2 þ p2Þ2

4δabhĴaihĴbi

s

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δabhĴaihĴbi

q
ðq2 þ p2Þ − 1

2
ðq2 þ p2Þ2 þ � � � : ð43Þ

(Only the plus sign gives a positive solution.) The first term is a harmonic-oscillator Hamiltonian with

m−1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δabhĴaihĴbi

q
¼ ω, which has zero-point energy 1

2
ℏω ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δabhĴaihĴbi

q
in agreement with the effective

potential (38).
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2. Interacting minisuperspace models

For the two interacting models, we need the covariances
ΔðJah1Jah2Þ for a ¼ x, y, z (no sum over a). In addition to the
fluctuations as in the minimal minisuperspace model with a
Hamiltonian of the type (27), we then have the term

ΔV interaction ¼ γðΔðJxh1Jxh2Þ þ ΔðJyh1Jyh2Þ þ ΔðJzh1Jzh2ÞÞ
ð44Þ

in the effective potential.
Covariances can often be ignored in the context of

uncertainty relations, but they do contribute in the complete
form

ΔðA2ÞΔðB2Þ − ΔðABÞ2 ≥ 1

4
jh½Â; B̂�ij2: ð45Þ

Unlike fluctuations, which obtain a lower bound for non-
commuting operators, covariances are subject to an upper
bound depending on the fluctuations. For two commuting
spin components as in (44), the uncertainty relation is

ΔðJxh1Jxh1ÞΔðJxh2Jxh2Þ ≥ ΔðJxh1Jxh2Þ2: ð46Þ

If γ > 0 in (44), we can minimize the effective inter-
action potential by choosing the value

ΔðJxh1Jxh2Þ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðJxh1Jxh1ÞΔðJxh2Jxh2Þ

q
¼−

1

2
ℏjhĴzij: ð47Þ

The last equality holds if we also minimize the uncertainty
relations for the two individual spins and use the antipar-
allel alignment for spin expectation values, without loss of
generality assumed to point in the z direction. The same
value is obtained for ΔðJyh1Jyh2Þ, while ΔðJzh1Jzh2Þ ¼ 0

because the z-components have zero fluctuations with
our choice of directions. Combining all terms in the
effective Hamiltonian (27) then yields

Heff;γ>0 ¼ 2βsðsþ 1Þℏ2 − γðs2ℏ2 þ sℏ2Þ
¼ sðsþ 1Þð2β − γÞℏ2: ð48Þ

The first term is twice the noninteracting contribution from
a single spin with the same form as in (39), the second term,
−γs2ℏ2, is γhĴzh1ihĴzh2i for antiparallel alignment in the z
direction, and the last term,−γsℏ2, adds up the two nonzero
covariances in (44). This result agrees with the ground-state
energy (29). For γ < 0, one can see in the same way that the
operator result (30) is reproduced if the covariances vanish
and parallel alignment is used in γhĴzh1ihĴzh2i ¼ γs2ℏ2.

3. Condensate model

The condensate model has provided nontrivial dynamics
for a single spin. However, some of the equations for

expectation values and moments are trivial. We can derive
effective equations from the state-dependent Hamiltonian
(12) if we assign to it the effective Hamiltonian

Heff;cond ¼−2αNδabðhĴaihĴbiþΔðJaJbÞÞþ3αNδabjahĴbi
ð49Þ

where the vector ja is treated in the following way: It is a
constant for purposes of computing Poisson brackets, for
instance in equations of motion. After the Poisson brackets
have been derived, one sets ja ¼ hĴai. In this way, the
correct equations follow for expectation values taken in a
state that evolves according to the nonlinear equation (13).
Following this procedure, we obtain the equation

dhĴci
dt

¼ 3αNϵabchĴaihĴbi ¼ 0: ð50Þ

For second-order moments, we have the contribution

dhĴcĴdi
dt

¼ 3αNhĴaihϵabcĴbĴd þ ϵabdĴcĴbi: ð51Þ

Since covariances couple to expectation values and fluc-
tuations, nonzero correlations can build up during evolution
even if they vanish in an initial state.

IV. CONTINUUM THEORIES

One question about minisuperspace models derived from
classical continuum theories, addressed in [1], is about the
coordinate volume V0 that characterizes the size of an
averaging region. (See [39] for a review of minisuperspace
models and quantum cosmology.) For the simplest minis-
uperspace models of general relativity, space is flat and
infinite, and the canonical form

R
d3x _ϕpϕ of any local

degree of freedom ϕðxÞ with momentum pϕðxÞ is infinite
for homogeneous configurations. In order to obtain a well-
defined canonical structure, one can choose a finite region
V of coordinate size V0 ¼

R
V d

3x and restrict integrations
of the canonical form and the Lagrangian to this region.
If only homogeneous configurations are considered, the

size and position of this region should not matter. The
restricted canonical form isZ

V
d3x _ϕðxÞpϕðxÞ ¼ V0

_̄ϕp̄ϕ ð52Þ

for homogeneous configurations ϕðxÞ ¼ ϕ̄ and pϕðxÞ¼p̄ϕ.
The momentum of ϕ̄ is, therefore, not equal to p̄ϕ, but to
p̄ ¼ V0p̄ϕ. The standard Hamiltonian of a scalar field, just
like other Hamiltonians, for instance, of gravitational
degrees of freedom, then depends on V0 when it is
restricted to canonically conjugate minisuperspace con-
figurations. For a scalar field, we have
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Z
V
d3x

�
1

2
_̄ϕ
2 þWðϕ̄Þ

�
¼ V0

2
p̄2
ϕ þ V0Wðϕ̄Þ

¼ 1

2

p̄2

V0

þ V0Wðϕ̄Þ; ð53Þ

and the dependence on V0 is not just by a multiplicative
factor. While the classical theory does not depend on the
choice of V0, the quantum theory does, for instance, via
V0-dependent effective potentials.
In [1], it was shown that the V0-dependent semiclassical

corrections in minisuperspace effective potentials of a
scalar-field theory are related to infrared contributions to
field-theory effective potentials. The choice of V0 then has
physical relevance in the number of infrared modes
included in the minisuperspace model, but it is a property
of the minisuperspace truncation rather than of physical
interactions. It is, therefore, difficult to justify interpreta-
tions of minisuperspace effects in quantitative terms.
In order to test this question in our spin system, we now

derive a continuum theory from which our minimal
minisuperspace model can be obtained by using homo-
geneous configurations. Generalizations corresponding to
the interacting minisuperspace models will also be con-
sidered. As we will see, for this kind of spin systems the
nature of averaging regions is less problematic than for
canonical field theories. There may, therefore, be an
advantage in deriving minisuperspace models directly from
discrete quantum theories.

A. Continuum models

Starting with the unreduced theory, we introduce two
continuum fields ĴhðxÞ and ĴvðxÞ where x runs through the
entire length of our graph. In terms of the measure provided
by the choice of x, we introduce the coordinate distance
between two vertices i at x ¼ xi and iþ 1 at x ¼ xiþ1 by
δ ¼ R

xiþ1
xi

dx, assumed to be independent of i. The total
length of the graph is L0 ¼

R
xNþ1
x1

dx ¼ Nδ. For integer

values of x ¼ xi, we identify ĴvðxiÞ ¼ Ĵv;i ¼ Ĵ2i, Ĵh1;i ¼
Ĵ2i−1 and Ĵh2;i ¼ Ĵ2iþ1.

1. Minimal model

For the minimal model, we do not treat Ĵh1;i and Ĵh2;i as
independent fields but rather view them as one horizontal
field evaluated at different positions xi � δ=2: We set
Ĵhðxi − δ=2Þ ¼ Ĵh1;i and Ĵhðxi þ δ=2Þ ¼ Ĵh2;i. The leading
terms in a continuum limit of the Hamiltonian and the
constraint can then be obtained by an expansion in δ up to
second order. Derivatives by x appear in the process, and
will be denoted by a prime.
The constraints are

ĈaðxiÞ ¼ −Ĵahðxi − δ=2Þ þ ĴavðxiÞ þ Ĵahðxi þ δ=2Þ ð54Þ

¼ ĴavðxiÞ þ δĴahðxiÞ0: ð55Þ

The Hamiltonian is

Ĥ ¼ αδab
XN
i¼1

ð−Ĵahðxi − δ=2ÞĴbvðxiÞ þ Ĵahðxi − δ=2ÞĴbhðxi þ δ=2Þ þ ĴavðxiÞĴbhðxi þ δ=2ÞÞ

¼ α
XN
i¼1

�
ĴhðxiÞ2 þ δĴvðxiÞ · ĴhðxiÞ0 þ

1

4
δ2ðĴhðxiÞ · ĴhðxiÞ00 − ðĴhðxiÞ0Þ2Þ

�
: ð56Þ

Solving the constraint, the Hamiltonian becomes

Ĥ¼ α
XN
i¼1

�
ĴhðxiÞ2 þ

1

4
δ2ðĴhðxiÞ · ĴhðxiÞ00 − 5ðĴhðxiÞ0Þ2Þ

�

ð57Þ

and gives rise to the continuum limit

EĤð1Þ
cont ¼

α

δ

Z
dx

�
Ĵ2h þ

1

4
δ2ðĴh · Ĵ00h − 5ðĴ0hÞ2Þ

�
ð58Þ

¼ α

δ

Z
dx

�
Ĵ2h −

3

2
δ2ðĴ0hÞ2

�
þ 1

4
αδĴh · Ĵ

0
hj∂ ð59Þ

with a boundary term denoted by a subscript ∂. The
continuum limit for the reduced Hamiltonian (4) is the
same as (59).
The minisuperspace model obtained from this con-

tinuum Hamiltonian is

Hð1Þ
mini ¼

α

δ
L0Ĵ

2
h ¼ αNĴ2h: ð60Þ

It is identical with the Hamiltonian in our minimal
minisuperspace model. Any reference to the averaging
length L0 can be expressed in terms of the number N of
vertices of the fundamental discrete theory, which has
physical meaning free of truncation choices. Therefore,
there are no such problems as may be related to the
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appearance of V0 in minisuperspace models derived from
classical continuum theories.

2. Interacting minisuperspace models

If we do distinguish between Ĵh1ðxiÞ and Ĵh2ðxiÞ, we
obtain the continuum Hamiltonian

Ĥð2Þ
cont ¼

α

δ

Z
dxð−Ĵh1 · Ĵv þ Ĵh1 · Ĵh2 þ Ĵv · Ĵh2Þ ð61Þ

with constraint

Ĉ ¼ −Ĵh1 þ Ĵv þ Ĵh2 ¼ 0: ð62Þ
Solving the constraint gives the Hamiltonian

Ĥð2Þ
cont ¼

α

δ

Z
dxð−Ĵ2h1 þ 3Ĵh1 · Ĵh2 − Ĵ2h2Þ; ð63Þ

from which we obtain the interacting minisuperspace

Hamiltonian Ĥð2Þ
mini.

For the second interacting model, we do not distinguish
between Ĵh1ðxiÞ and Ĵh2ðxiÞ, but introduce two averaging
regions of length L0=2 each in which we have the constant
fields Ĵ1 and Ĵ2, respectively. Starting with the first
continuum theory with Hamiltonian (59), we obtain

Ĥð3Þ
hom ¼ α

δ

L0

2
ðĴ21 þ Ĵ22Þ þ

1

4
αδðĴ1 − Ĵ2Þ · Ĵ0: ð64Þ

The last term, originating from the boundary term, needs
further discussion. We have left a Ĵ0 in the equation, still
referring to an inhomogeneous continuum field. It gives us
the difference between the two averaged fields Ĵ1 and Ĵ2. It is
infinite if we have two constant fields taking different values
in the two regions, but it is multiplied with the spacing δ
which goes to zero in the continuum limit.We can regularize
this product to a finite number by defining it as

lim
δ→0

ðδĴ0Þ ¼ lim
δ→0

�
δ
Ĵ2 − Ĵ1

δ

�
¼ Ĵ2 − Ĵ1: ð65Þ

The minisuperspace Hamiltonian is then equal to

Ĥð3Þ
mini ¼

α

δ

L0

2
ðĴ21 þ Ĵ22Þ −

1

4
αðĴ1 − Ĵ2Þ2 ð66Þ

¼ αðN=2 − 1=4ÞðĴ21 þ Ĵ22Þ þ
1

2
αĴ1 · Ĵ2: ð67Þ

Unlikewhat we saw for Ĥð2Þ
mini, this result is not identical with

the previous derivation (26) from the discrete theory.
However, if we slightly modify our boundary regularization
by introducing an additional factor of six in the definition
(65), the minisuperspace Hamiltonians are the same. The
initial disagreement is a result only of the fact that the
boundary regularization is ambiguous, which is necessary

for Ĥð3Þ
mini derived from the continuum theory, but not for

Ĥð2Þ
mini. Notice that the final agreement is nontrivial, because

changing the factor in (65)modifies the interacting aswell as

noninteracting terms in the resulting Ĥð3Þ
mini, which then both

agree with (26).

V. EFFECTIVE ANALYSIS OF THE
DISCRETE THEORY

So far, we have analyzed different minisuperspace
models, their ground states and effective potentials, as
well as relations with continuum theories. Minisuperspace
models of quantum gravity are used to analyze homo-
geneous solutions, which necessarily have long-range
correlations as seen from the fundamental theory because
distant degrees of freedom are identified. Nonzero fluctua-
tions of a single minisuperspace variable are, therefore, the
same as long-range correlations in the fundamental theory.
Homogeneity and long-range correlations can easily be

achieved in the ground state of the fundamental theory.
However, discrete ground states are not suitable as nearly
classical geometries of a discrete model of quantum gravity,
in which degrees of freedom must be excited in order to
have nondegenerate geometries. We, therefore, need
excited states with approximate homogeneity and long-
range correlations, which poses a question very different
from just finding ground states. Long-range correlations
related to homogeneity easily build up us a system settles
down to its ground state, but it is not guaranteed that this
can happen also in an excited state of an isolated system
(such as the whole universe) which does not have a drain
for surplus energy. In our discrete model, the evolution of
long-range correlations can be studied in qualitative terms.

A. Effective dynamics

For the full or reduced discrete theories, we have large
systems of coupled equations generated by the effective
Hamiltonians

Heff ¼ αδab
XN
i¼1

ð−hĴa2i−1ihĴb2ii þ hĴa2i−1ihĴb2iþ1i

þ hĴa2iihĴb2iþ1i − ΔðJa2i−1Jb2iÞ
þ ΔðJa2i−1Jb2iþ1Þ þ ΔðJa2iJb2iþ1ÞÞ ð68Þ

and

Heff;red ¼ αδab
XN
i¼1

ð−hĴa2i−1ihĴb2i−1i þ 3hĴa2i−1ihĴb2iþ1i

− hĴa2iþ1ihĴb2iþ1i − ΔðJa2i−1Jb2i−1Þ
þ 3ΔðJa2i−1Jb2iþ1Þ − ΔðJa2iþ1J

b
2iþ1ÞÞ; ð69Þ

respectively. The Poisson brackets between expectation
values and moments are as in (33), except that the subscript
takes values in a larger set.
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For the unreduced system, we have effective constraints
in addition to the effective Hamiltonian. A single constraint
operator generates infinitely many effective constraints
because it restricts not only expectation values but also
the associated moments [40,41]. In states annihilated by the
constraint, we have

Ca
i ≔ hĈa

i i ¼ −hĴa2i−1i þ hĴa2ii þ hĴa2iþ1i ¼ 0 ð70Þ

as well as

Ca
i;Jbj

≔ hðĴbj − hĴbj iÞĈa
i i

¼ −ΔðJbj Ja2i−1Þ þ ΔðJbj Ja2iÞ þ ΔðJbj Ja2iþ1Þ ¼ 0 ð71Þ

and higher-order constraints.
For the boundary expectation values, the equations of

motion are

dhĴa1i
dt

¼ αϵabcðhĴb3ihĴc1i þ ΔðJb3Jc1Þ − hĴb2ihĴc1i − ΔðJb2Jc1ÞÞ
ð72Þ

and

dhĴa2Nþ1i
dt

¼ αϵabcðhĴb2NihĴc2Nþ1i þ ΔðJb2NJc2Nþ1Þ
− hĴb2N−1ihĴc2Nþ1i − ΔðJb2N−1J

c
2Nþ1ÞÞ: ð73Þ

Implementing the constraint, we obtain

dhĴa1i
dt

¼ 2αϵabcðhĴb3ihĴc1i þ ΔðJb3Jc1ÞÞ ð74Þ

and

dhĴa2Nþ1i
dt

¼ 2αϵabcðhĴb2N−1ihĴc2Nþ1i þ ΔðJb2N−1J
c
2Nþ1ÞÞ:

ð75Þ

The reduced equations for internal spins are

dhĴa2iþ1i
dt

¼ 2αϵabcðhĴb2i−1ihĴc2iþ1i þ ΔðJb2i−1Jc2iþ1Þ
þ hĴb2iþ3ihĴc2iþ1i þ ΔðJb2iþ3J

c
2iþ1ÞÞ ð76Þ

where i ¼ f2;…; N − 1g. The equation of motion gener-
ated by the effective version of the reduced quantum
Hamiltonian (69) are

dhĴred;a2iþ1i
dt

¼ 3αϵabcðhĴb2i−1ihĴc2iþ1i þ ΔðJb2i−1Jc2iþ1Þ
þ hĴb2iþ3ihĴc2iþ1i þ ΔðJb2iþ3J

c
2iþ1ÞÞ: ð77Þ

As in the case of operator equations, the equations can be
mapped into each other by a constant rescaling of the time
coordinate. We note that these equations are exact as no
truncation by moments has been necessary. However,
equations of motion for second-order moments depend
on third-order moments and have to be truncated for a self-
contained semiclassical approximation to first order in ℏ.
Analytical solutions of these nonlinear equations for large

N are difficult to find. However, it is possible to analyze
some general properties of interest in the context of long-
range correlations. In particular, we are interested in corre-
lations between spins at the two boundaries of the graph,
which are certainly long-range for large N. We will assume
that initially there are no correlations between different
spins, but they will build up over time as the system evolves.
The reduced equation of motion for the correlation

ΔðJa1Jb2iþ1Þ is

dΔðJa1Jb2iþ1Þ
dt

¼ 2αfϵacdðhĴd1iΔðJc3Jb2iþ1Þ þ hĴc3iΔðJd1Jb2iþ1Þ
þ ϵbefðhĴe2i−1iΔðJa1Jf2iþ1Þ
þ hĴf2iþ1iΔðJa1Je2i−1ÞÞg: ð78Þ

If we start with an uncorrelated state, the initial conditions
are such that the only nonzero initial values are the
expectation value of Ĵ1 and Ĵ2Nþ1 and their variances
chosen such that uncertainty relations are respected. For
interior spins, only the fluctuations are assumed nonzero
(although they would be allowed to be zero for a general
spin system).
The expectation values and second-order moments of the

state for all spins are coupled to one another through the
evolution equations. One may solve them perturbatively by
orders of α. To zeroth order, all expectation values and
moments are constant and no correlations build up. To first
order, using (78), dΔðJ1J3Þ=dt has a nonzero contribution
of the form αhĴ1iΔðJ3J3Þ and after some time ΔðJ1J3Þ is
nonzero to first order in α. The expectation value hĴ3i has a
time derivative of the form (76) or (77) with one nonzero
term of the form αΔðJ1J3Þ and after some time is nonzero
to second order in α. We can iterate this procedure and
generate nonzero expectation values on all links, as well as
nonzero correlations between the links. The first step has
generated a covariance ΔðJ1J3Þ ¼ OðαℏÞ because we used
one solution perturbative in α and one fluctuation. For the
next step, moving up toΔðJ1J5Þ, we first need to generate a
nonzero hĴ3i and ΔðJ3J5Þ, using one additional fluctuation
and repeated perturbative solutions. We, therefore, obtain a
nonzero ΔðJ1J5Þ ¼ Oðα4ℏ2Þ. By iteration, we obtain a
nonzero ΔðJ1J2iþ1Þ ¼ Oðα3i−2ℏiÞ. For long-range corre-
lations between the boundary spins, we need to apply the
procedure up to i ¼ N=2, after which all spins are
correlated from nonzero seed expectation values on both
boundaries; see Figs. 3 and 4. A small number of iterations,
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M ≪ N, does not lead to strong long-range correlations.
The building-up of long-range correlations from local
dynamics can, therefore, be seen only to high perturbative
orders, or nonperturbatively, and it requires high orders in
an ℏ expansion.

B. Dynamical stability for small number of vertices

We now return to the question of dynamical stability of
states of the spin chain as an isolated system. We will
consider discrete theories with small number of vertices
and choose initial values corresponding to the different
ground states found in our minisuperspace models. The
effective evolution equations can be solved perturbatively
and indicate dynamical stability in some cases. (We will
not analyze stability under perturbations of initial con-
figurations.) Although we present explicit solutions only
for small numbers of vertices, the relevant features are
generic and can be seen also for large numbers of
vertices, but it is more cumbersome to produce explicit
expressions Fig. 5.

1. Single-vertex graph

For N ¼ 1, we have two horizontal spins which
we can identify with the spins in our two interacting

minisuperspace models, or view as a theory beyond the
minimal minisuperspace model. In this case, correlations
between the boundary spins are next-neighbour correla-
tions. The reduced equations of motion are

dhĴx1i
dt

¼ 2αðhĴz1ihĴy3i − hĴy1ihĴz3i þ ΔðJz1Jy3Þ − ΔðJy1Jz3ÞÞ
ð79Þ

and cyclic for the y and z components. For the second
horizontal spin, J3, we have

dhĴx3i
dt

¼ 2αðhĴy1ihĴz3i − hĴz1ihĴy3i þ ΔðJy1Jz3Þ − ΔðJz1Jy3ÞÞ

¼ −
dhĴx1i
dt

ð80Þ

and again cyclic for the y and z components. The equality
dhĴ1i=dt ¼ −dhĴ3i=dt can be read off from the equations
of motion, but it also follows directly from the conservation
of (2). The vertical spin can be obtained from the horizontal
ones by the simple constraint hĴ2i ¼ hĴ1i − hĴ3i.
We will first solve the corresponding classical equations,

which are as above but with zero covariances. We proceed
by perturbation theory with respect to α, so that we have
constant spins to zeroth order. Upon repeatedly inserting
lower-order solutions in the equations of motion, we
proceed up to second order and obtain

Jð2Þ1 ðtÞ ¼ A1 þ 2αB1tþ 4α2C1t2 þ � � � ð81ÞFIG. 5. A one-dimensional two-vertex graph.

FIG. 3. Correlations between the farthest spin sets for Ĵ1 and Ĵ2Nþ1 after solving the equationsM times iteratively for a graph with N
vertices for 2M ≤ N þ 1. The semicircles represent nonzero covariances ΔðJa1Jb2Mþ1Þ and ΔðJa2Nþ1J

b
2Nþ1−2MÞ.

FIG. 4. Correlations between the farthest spin sets for Ĵ1 and Ĵ2Nþ1 after solving the equationsM times iteratively for a graph with N
vertices for N < 2M. The semicircles represent nonzero covariances ΔðJa1Jb2Mþ1Þ and ΔðJa2Nþ1J

b
2Nþ1−2MÞ.

BEKIR BAYTAŞ and MARTIN BOJOWALD PHYSICAL REVIEW D 95, 086007 (2017)

086007-12



Jð2Þ3 ðtÞ ¼ A3 þ 2αB3tþ 4α2C3t2 þ � � � ; ð82Þ

where Ai are free constant vectors. These approximate
solutions are valid up to t ∼ 1=α, respecting the perturbative
regime.
The remaining coefficients

Bx
1 ¼ Az

1A
y
3 − Ay

1A
z
3 ð83Þ

and

Cx
1 ¼ −Ay

1B
z
3 − By

1A
z
3 þ Az

1B
y
3 þ Bz

1A
y
3; ð84Þ

and cyclic for the y and z components, are also constant but
strictly related to Ai. From (80), we have that B1 ¼ −B3

and C1 ¼ −C3. Therefore,

Cx
1 ¼ ðAz

1A
x
3 − Ax

1A
z
3ÞAz

3 − Ay
1ðAx

1A
y
3 − Ay

1A
x
3Þ

− ðAx
1A

y
3 − Ay

1A
x
3ÞAy

3 þ Az
1ðAz

1A
x
3 − Ax

1A
z
3Þ

¼ −Ax
1ððAy

3Þ2 þ ðAz
3Þ2Þ þ Ax

3ððAy
1Þ2 þ ðAz

1Þ2Þ
þ Az

1A
z
3ðAx

3 − Ax
1Þ þ Ay

1A
y
3ðAx

3 − Ax
1Þ

¼ Ax
3jA1j2 − Ax

1jA3j2 þ ðA1 ·A3ÞðAx
3 − Ax

1Þ; ð85Þ

which enables the vector coefficient C3 expressing purely
in terms of constant vectors Ai ¼ AiÂi:

C3 ¼ −C1 ¼ A2
3A1 − A2

1A3 þ ðA1 ·A3ÞðA1 −A3Þ
¼ A1A3½ðA3 þ ðÂ1 · Â3ÞA1ÞÂ1

− ðA1 þ ðÂ1 · Â3ÞA3ÞÂ3�: ð86Þ

As one possible choice of initial conditions, we could
impose that all spins other than the boundary ones (that is,
only the vertical spin in the present model) are zero.
Therefore, for a single vertex, J2ð0Þ ¼ 0 and A1 ¼ A3.
Equations (83) and (84) then imply that Bi ¼ 0 ¼ Ci, and
all spins remain constant in time. This result, although it is
classical, agrees with the trivial dynamics in our minimal
minisuperspace model.
We now include moment terms and find solutions of the

quantum theory, again perturbative in α. In order to obtain
information about the boundary correlations, we should
compute quantities such as ΔðJx1Jy3Þ from

dΔðJx1Jy3Þ
dt

¼ 2αð−hĴy1iΔðJy3Jz3Þ þ hĴy3iΔðJz1Jy3Þ
þ hĴz1iΔððJy3Þ2Þ − hĴz3iΔðJy1Jy3Þ
þ hĴz1iΔðJx1Jx3Þ − hĴx1iΔðJx1Jz3Þ
− hĴz3iΔððJx1Þ2Þ þ hĴx3iΔðJx1Jz1ÞÞ: ð87Þ

We will also need to consider

dΔðJy1Jz3Þ
dt

¼ 2αð−hĴz1iΔðJz3Jx3Þ þ hĴz3iΔðJx1Jz3Þ
þ hĴx1iΔððJz3Þ2Þ − hĴx3iΔðJz1Jz3Þ
þ hĴx1iΔðJy1Jy3Þ − hĴy1iΔðJy1Jx3Þ
− hĴx3iΔððJy1Þ2Þ þ hĴy3iΔðJy1Jx1ÞÞ: ð88Þ

and

dΔðJx1Jz3Þ
dt

¼ 2αð−hĴy1iΔððJz3Þ2Þ þ hĴy3iΔðJz1Jz3Þ
þ hĴz1iΔðJy3Jz3Þ − hĴz3iΔðJy1Jz3Þ
þ hĴx1iΔðJx1Jy3Þ − hĴy1iΔðJx1Jx3Þ
− hĴx3iΔðJx1Jy1Þ þ hĴy3iΔððJx1Þ2ÞÞ: ð89Þ

For generic initial conditions, these covariances will
have the same quadratic form to second order in α, using
nonzero initial fluctuations. However, in some specific
cases the covariances remain constant, corresponding to
stable initial configurations. In particular, we are interested
in whether our classical solutions (81) are perturbatively
stable within a semiclassical treatment of the quantum
dynamics. We must then test whether the covariance terms
in (79) change the behavior.
As before, we first assume that the initial expectation

values are such that J2ð0Þ ¼ 0, or A1 ¼ A3. Moreover, we
assume fluctuations and covariances as we found them for
the corresponding ground state in the minimal minisuper-
space model, given by (37): ΔððJxÞ2Þ ¼ ΔððJyÞ2Þ ¼
1
2
ℏjhĴzij, now for both horizontal spins in the single-vertex

model. This result had been derived by assuming the spin
expectation values to point in the z direction, which we will
also do now. Moreover, we have initially zero covariances
between components of the two spins.
Assuming the spin expectation values to point in the z

direction leaves only three nonzero terms in (87), two of
which vanish for zero initial covariances. We are left with
hĴz1iΔððJy3Þ2Þ − hĴz3iΔððJy1Þ2Þ. This difference is zero ini-
tially because the fluctuations and expectation values on the
two horizontal links are the same. Therefore, dΔðJx1Jy3Þ=
dt ¼ 0 and this covariance remains zero to the orders
considered here. Similarly, (88) and (89) remain zero, and
the covariance terms in (79) do not contribute for this
choice of initial values. The configuration corresponding to
the minimal minisuperspace model is, therefore, dynami-
cally stable within the single-vertex model.
For the ground-state configurations of the interacting

minisuperspace models we also obtain perturbative stabil-
ity, but the arguments are slightly different in the case of
antiparallel alignment. In (87), the fluctuation terms no
longer cancel out because hĴz3i ¼ −hĴz1i. However, there
are now two nonzero covariance terms in (87) because
ΔðJx1Jx3Þ ¼ ΔðJy1Jy3Þ ¼ − 1

2
ℏjhĴzij from (47), where hĴzi on
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the right could now refer to either Ĵz1 or Ĵz3 because their
absolute values are equal. We now have four nonzero
individual terms in (87), but they all cancel out for the given
initial values. Again, we have dynamical stability of the
ground state.
Before we move on to two vertices, we confirm the

ground-state covariances for a spin-1=2 system. For γ < 0
and spins pointing in the z direction, the ground state
jJz1; Jz3i ¼ j1=2; 1=2i is uncorrelated and has zero spin-spin
covariance ΔðJx1Jx3Þ as used. For γ < 0, the ground state is
the singlet 2−1=2ðj1=2;−1=2i − j − 1=2; 1=2i, which is
correlated and leads to hĴx1Ĵx3i ¼ − 1

4
ℏ2 by standard calcu-

lations. Since hĴx1i ¼ 0 ¼ hĴx3i in this state, we have
ΔðJx1Jx3Þ ¼ − 1

4
ℏ2 ¼ − 1

2
ℏjhĴz3ij as derived in (47).

2. Two-vertex graph and beyond

For the two-vertex graph, the evolution equations of the
boundary spins at the edges are of a similar form as in the
case of a single-vertex graph:

dhĴx1i
dt

¼ 2αðhĴz1ihĴy3i − hĴy1ihĴz3i þ ΔðJz1Jy3Þ − ΔðJy1Jz3ÞÞ
ð90Þ

dhĴx5i
dt

¼ 2αðhĴy3ihĴz5i − hĴz3ihĴy5i þ ΔðJy3Jz5Þ − ΔðJz3Jy5ÞÞ
ð91Þ

but now they couple to internal spins. For the internal
horizontal spin, Ĵ3, we have

dhĴx3i
dt

¼ 2αððhĴy1i þ hĴy5iÞhĴz3i − ðhĴz1i þ hĴz5iÞhĴy3i
þ ΔðJy1Jz3Þ − ΔðJz1Jy3Þ þ ΔðJz3Jy5Þ − ΔðJy3Jz5ÞÞ

¼ −
dhĴx1i
dt

−
dhĴx5i
dt

: ð92Þ

Classical solutions up to second order in α are

Jð2Þ1 ðtÞ ¼ A1 þ 2αB1tþ 4α2C1t2 þ � � � ð93Þ

Jð2Þ5 ðtÞ ¼ A5 þ 2αB5tþ 4α2C5t2 þ � � � : ð94Þ

With (92), the solution for the internal spin is

Jð2Þ3 ðtÞ ¼ A3 þ 2αB3tþ 4α2C3t2 þ � � � ; ð95Þ

where B3 ¼ −ðB1 þ B5Þ and C3 ¼ −ðC1 þC5Þ follow
from the conversation of the total spin. The coefficients C3

can be obtained by replacing A1 → A1 þA5 in (86):

C3 ¼ A2
3ðA1 þA5Þ − jA1 þA5j2A3

þ ½ðA1 þA5Þ ·A3�ðA1 þA5 −A3Þ: ð96Þ
For the vertical spins J2 and J4 we then have

Jð2Þ2 ðtÞ ¼ Jð2Þ1 ðtÞ − Jð2Þ3 ðtÞ
¼ A1 −A3 þ 2αð2B1 þB5Þt
þ 4α2ð2C1 þC5Þt2 þ � � � ð97Þ

Jð2Þ4 ðtÞ ¼ Jð2Þ3 ðtÞ − Jð2Þ5 ðtÞ
¼ A3 −A5 − 2αðB1 þ 2B5Þt
− 4α2ðC1 þ 2C5Þt2 þ � � � : ð98Þ

We need equations of motion for covariances in order to
extend the classical solutions to the semiclassical regime.
These equations for correlations of neighboring spins are
very similar to the equations of the single-vertex case, but
we can now also have changing values of more distant
spins, such as

dΔðJx1Jy5Þ
dt

¼ 2αð−hĴy1iΔðJz3Jy5Þ þ hĴy3iΔðJz1Jy5Þ
þ hĴz1iΔðJy3Jy5Þ − hĴz3iΔðJy1Jy5Þ
− hĴx3iΔðJx1Jz5Þ − hĴz5iΔðJx1Jx3Þ
þ hĴz3iΔðJx1Jx5Þ þ hĴx5iΔðJx1Jz3ÞÞ ð99Þ

for the boundary spins of the two-vertex graph. For spin
expectation values pointing in the z direction, there are four
potentially nonzero terms, hĴz1iΔðJy3Jy5Þ − hĴz5iΔðJx1Jx3Þþ
hĴz3iðΔðJx1Jx5Þ − ΔðJy1Jy5ÞÞ. The covariances are zero unless
we have a state with antiparallel orientation of neighboring
spins. The four remaining terms then cancel out because
hĴz1i ¼ −hĴz3i ¼ hĴz5i and ΔðJx1Jx5Þ ¼ ΔðJy1Jy5Þ.
At this point we have to be careful when we compare

minisuperspace configurations with the exact ground state
(s) of the two-vertex model, which is an odd-number spin
chain and has strong finite-size effects. Diagonalizing the
Hamiltonian αðĴ1 · Ĵ3 þ Ĵ3 · Ĵ5Þ in the spin-1=2 case leads
to the degenerate ground states ψ1 ¼ 6−1=2ðj − 1=2; 1=2;
1=2i − 2j1=2;−1=2; 1=2i þ j1=2; 1=2;−1=2iÞ and ψ2 ¼
6−1=2ðj − 1=2;−1=2; 1=2i − 2j − 1=2; 1=2;−1=2i þ j1=2;
−1=2;−1=2iÞ. Choosing the first state to be specific, one
can then compute the expectation values hĴz1i ¼ 1

3
ℏ ¼ hĴz5i

and hĴz3i ¼ − 1
6
ℏ. These values are next-neighbor antipar-

allel, but do not obey hĴz1i ¼ −hĴz3i ¼ hĴz5i. Moreover, we
have the covariances ΔðJx1Jx3Þ ¼ − 1

6
ℏ2 ¼ ΔðJy1Jy3Þ which

do not obey (47), and we have ΔðJz1Jz3Þ ¼ − 1
9
ℏ2. There are

also distant covariances such as ΔðJx1Jx5Þ ¼ 1
12
ℏ2 ¼

ΔðJy1Jy5Þ and ΔðJz1Jz5Þ ¼ − 1
36
ℏ2. Although these values

do not show the generic antiparallel behavior, one can still
see that all terms in (99) cancel out.
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The expressions for Bi and Ci in terms of Ai are very
similar to those in (83) and (84), just with different labels.
(The relation (85) for Ci in terms of Ai, however, has a
different form for multiple vertices because it has been
derived for the single-vertex graph using B3 ¼ −B1.) For
ground-state configurations of minisuperspace models we,
therefore, obtain the same cancelations as in the single-
vertex model because these considerations depend only on
the expectation values and moments of horizontal spins on
neighboring links. In the two-vertex model, one can choose
initial conditions such that all vertical spins have zero
expectation values and covariances with any other spins.

Therefore, Jð2Þ4 ð0Þ ¼ Jð2Þ2 ð0Þ ¼ 0 and Að0Þ
1 ¼ Að0Þ

3 ¼ Að0Þ
5 .

This implies that Bi ¼ 0 ¼ Ci, and all spins remain
constant in time as in the single-vertex.
The same pattern is then realized also for more vertices,

and we conclude that the various ground states are dynami-
cally stable. The minisuperspace models with Hamiltonians

Ĥð1Þ
mini and Ĥ

ð2Þ
mini predict the sameground-state configurations

as the discrete theory, and these minisuperspace states are,
therefore, stable within the discrete model. The minisuper-

spacemodelwithHamiltonian Ĥð3Þ
mini, however, is unstable. It

not only predicts a ground-state configuration that does not
agreewith any fundamental ground state, it also has unstable
dynamics when its ground-state configuration is embedded
in a fundamental spin chain. Unlike in the other twomodels,
there are then three neighboring spins J2ic−3, J2ic−1 and
J2icþ1 around the central vertex at ic ¼ ðN þ 1Þ=2, such that
hĴ2ic−3i ¼ hĴ2ic−1i ¼ −hĴ2icþ1i, and no cancellations hap-
pen in (99).

VI. POSSIBLE IMPLICATIONS FOR
QUANTUM COSMOLOGY

We have analyzed four different minisuperspace models
of a spin system related to the Heisenberg spin chain. The
first model resembles the traditional construction of quan-
tum-cosmology models in which only homogeneous
degrees od freedom without spatial variation are consid-
ered. In the present context, such a model does not capture
the dynamical nature of coupled spins. The second model is
a more recent proposal to apply mathematical constructions
of condensate states to quantum cosmology. The dynamics
is then quite different from a traditional minisuperspace
model. In particular, a nontrivial dynamics is now realized
even though the degrees of freedom included in the model
are the same. The remaining models incorporate additional
degrees of freedom in two different ways. They both lead to
nontrivial dynamics and in this sense improve the reduc-
tion. However, details of ground states and stability are very
different in the two models, indicating that good knowledge
of the fundamental dynamics is important for a successful
construction of minisuperspace models. This conclusion is
our first result in an application to quantum cosmology:
Traditional minisuperspace models start with a reduction of

the classical theory, and then quantize by using some ideas
related to candidates for full quantum gravity. But if they do
not directly address the full dynamics, they may be in
danger of missing crucial information, just as our model
Hamiltonian Ĥð4Þ

mini does compared with Ĥð3Þ
mini.

Our successful Hamiltonian Ĥð3Þ
mini is similar to the

sublattice Hamiltonians introduced in [28] for Heisenberg
spin chains. The detailed analysis of this paper showed that
such an approximation, for given chain lengthN, is better for
larger spin lengths s on the chain. If a similar statement is
true for the dynamics of quantum cosmology, it would
indicate that a coarse-graining procedure applied before
symmetry reduction could improve models of quantum
cosmology, for such a procedure would combine the small
fundamental spins of s ¼ 1=2 to systems of larger spin
lengths. Coarse graining in gravitational, and in particular
background-independent theories, is not well-understood,
but proposals have beenmade, for instance, in [4,5]. It is also
encouraging that sublattice structures can be found in spin
systems with more than one dimension [42,43].
Our minisuperspace Hamiltonian Ĥð4Þ

mini is based on a
construction similar to the separate-universe approximation
of classical cosmology. Its failure to model properties of
ground states and stability indicates that it is not a good
quantum approximation for all kinds of fundamental
dynamics. Its lack of stability is of particular concern,
resulting from the fact that in this model the minisuperspace
ground state does not correspond to the ground state of the
discrete theory. We, therefore, have provided an explicit
example of important fundamental properties not captured
by a minisuperspace model. Such models are unstable if
energy can be exchanged with an environment, and one
might conclude that they are unreliable.
However, not just ground states but also excited states

may be stable in an isolated system if no energy can be
exchanged with an environment. This is the situation
usually realized in models of quantum cosmology, where
the state represents the whole universe with nothing out-
side. The stability of excited states then results in a large
variety of candidates for homogeneous configurations.
Nevertheless, some caution toward such minisuperspace
states used in quantum cosmology is still required: Our spin
system can be taken as a model for quantum space, in
which near homogeneity should be possible and stable
under evolution. However, there should also be matter, with
additional degrees of freedom that could be placed on the
same graph used for our spin chain but representing a
different system of degrees of freedom. There could then be
energy exchange between the spin system analyzed here
and the new matter system. We would be back at the
question whether a homogeneous spin configuration, rep-
resenting quantum space, can be stable within the coupled
system if it does not capture the correct ground state. The
question of how matter is coupled to quantum space,
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therefore, seems important in the context of the emergence
and stability of correlated quantum-cosmology states.

VII. DISCUSSION

We have analyzed a discrete spin model with different
methods used in recent years in canonical quantum gravity.
Our aim is to test the latter, rather than revealing new
properties of spin systems in general. We have found new
results in three different classes: minisuperspace truncations,
effective theories, and dynamical long-range correlations.
We have derived different minisuperspace models

directly from the discrete theory, which is a new procedure
compared with the usual construction of minisuperspace
models by quantizing homogeneous configurations of a
continuum theory. Several novel features could be seen,
such as the existence of different minisuperspace models of
the same discrete theory, paralleling the existence of
different continuum limits of one discrete theory. In our
specific constructions, starting with the discrete theory has
the advantage that no problems related to infrared scales of
traditional minisuperspace models occur. We have seen that
it can be of advantage to keep more degrees of freedom in a
minisuperspace model than simple homogeneous configu-
rations would suggest, in particular when nontrivial
dynamical properties should be obtained. Good knowledge
of the fundamental theory is required in order to select a
reliable minisuperspace model. Alternatively, nontrivial
dynamics can be obtained by using condensate states, as

employed also in cosmological models of group-field
theories [19–26].
In several examples of our minisuperspace models, we

have computed canonical effective potentials and equations
and found good agreement with known ground-state
energies and configurations. Our results provide further
support for the canonical effective methods proposed for
quantum gravity in [36,37], with an extension to the
computation of effective potentials in [44].
We have also analyzed the discrete spin system directly,

with an emphasis on properties that should be important for
the dynamical building-up of long-range correlations as
they are likely to be relevant for the dynamical emergence
of states that may be described by minisuperspace models,
a question related to the continuum limit of discrete
quantum gravity. Our analysis, based on rather general
properties of the underlying equations of motion, suggests
that such features can only be seen in a full nonperturbative
treatment of the dynamics. An application of our results in a
quantum-cosmological context has further highlighted
important questions which are usually not addressed in
minisuperspace constructions, related, for instance, to
coarse graining and stability.
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