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We generalize the semiclassical treatment of graviton radiation to gravitational scattering at very large
energies

ffiffiffi
s

p
≫ mP and finite scattering angles Θs, so as to approach the collapse regime of impact

parameters b≃ bc ∼ R≡ 2G
ffiffiffi
s

p
. Our basic tool is the extension of the recently proposed, unified form of

radiation to the Amati Ciafaloni Veneziano (ACV) reduced-action model and to its resummed-eikonal
exchange. By superimposing that radiation all over eikonal scattering, we are able to derive the
corresponding (unitary) coherent-state operator. The resulting graviton spectrum, tuned on the gravitational
radius R, fully agrees with previous calculations for small angles Θs ≪ 1 but, for sizeable angles
ΘsðbÞ ≤ Θc ¼ Oð1Þ, acquires an exponential cutoff of the large ωR region, due to energy conservation, so
as to emit a finite fraction of the total energy. In the approach-to-collapse regime of b → bþc , we find a
radiation enhancement due to large tidal forces, so that the whole energy is radiated off, with a large
multiplicity hNi ∼ Gs ≫ 1 and a well-defined frequency cutoff of order R−1. The latter corresponds to the
Hawking temperature for a black hole of mass notably smaller than

ffiffiffi
s

p
.
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I. INTRODUCTION

The investigation of trans-Planckian–energy gravita-
tional scattering performed since the 1980s [1–8] and
applied to the collapse regime [9–12] has been recently
revived at both the classical [13] and quantum levels
[14,15] with the purpose of describing the radiation
associated to extreme energies and of gaining a better
understanding of a possibly collapsing system. A bridge
between the different approaches of Refs. [14,15] has also
been devised [16].
Here, we follow essentially the ACV path [5,7–9], that is

mostly an effective theory based on s-channel iteration
(eikonal scattering) and motivated by the smallness of
fixed-angle amplitudes in string gravity [4] and by the high-
energy dominance of the spin-2 graviton exchange, at small
momentum transfers [1–3]. In fact, a key feature of eikonal
scattering is that the large momentum transfers built up at a
fixed scattering angle (e.g. the Einstein deflection angle
ΘE ≡ 2R=b)—R≡ 2G

ffiffiffi
s

p
being the gravitational radius—

is due to a large number hni ¼ Gs=ℏ≡ αG ≫ 1 of single
hits with very small scattering angle θm ∼ ℏ=bE. By
following these lines, ACV [8] proposed an all-order
generalization of the semiclassical approach based on an
effective action [6,17], that allows one in principle to
compute corrections to the eikonal functions depending on

the expansion parameter R2=b2 [by neglecting, in string
gravity, the smaller ones Oðl2s=b2Þ [5,18] if lP < ls ≪ R].
In its axisymmetric formulation, the eikonal resummation
reduces to a solvable model in one-dimensional radial
space, that was worked out explicitly in Ref. [9]. Such a
reduced-action model allows one to treat sizeable angles

R=b, up to a singularity point bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffi
3

p
=2

q
R where a

branch point of critical index 3=2 occurs in the action, as
signal of a possible classical collapse.
The main purpose of the present paper is to extend the

radiation treatment of Refs. [15,19] to larger angles, by
applying it to the ACV-resummed eikonal, in order to
achieve comparable progress at the radiation level. We shall
then use it to study the extreme energy regime of a possible
classical collapse b → bþc ∼ R.
Let us recall that the main qualitative understanding of

Ref. [15], compared to previous approaches, was to
disentangle the role of the gravitational radius R in the
radiation process. In fact, by superimposing the radiation
amplitudes associated to the various eikonal exchanges
and by combining the large number hni ∼ αG ¼ ER of
emitters with the relatively small energy fraction ℏω=E,
Ciafaloni Colferai Veneziano (CCV) found that the
relevant variable becomes ωR, which is thus needed
to describe the interference pattern of the whole ampli-
tude (Sec. II). In the present paper, we follow the same
strategy, by replacing the leading eikonal (single-graviton
exchange) by the resummed one (Sec. III).
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There is, however, an important technical point to be
understood. The single-exchange radiation amplitude was
determined in Refs. [15,19] by unifying in the E ≫ ℏω
regime the Regge region of large emission angles with the
soft one. Such a unifying relationship involves a simple
rescaling E → ℏω of the soft amplitude and is exact for
single-graviton exchange. Here, we wish to generalize the
soft-based representation so obtained to all subleading
eikonal contributions. No real proof of that statement is
available yet. Nevertheless, we shall argue in Sec. III that,
starting from the H diagram [7], the dominant Regge
contributions are confined to the deep fragmentation
regions of the incoming particles, thus allowing the
approximate use of the unifying relationship mentioned
before and of the ensuing soft-based representation.
By entering the large-angle region, we meet the issue of

energy conservation, also [20–23]. Indeed, the coherent
radiation state obtained by the soft-based formulation treats
the fast particles as sources and thus neglects, in a first
instance, conservation constraints. By introducing them
explicitly in Sec. IV, we keep neglecting correlations that
we argue to be small (Sec. III D). However, the overall effect
of energy conservation is quite important, in the large-angle
region, because it introduces an exponential cutoff which—
though preserving quantum coherence—plays a role similar
to the temperature in a statistical ensemble.
The validity of the exponential behavior and its role in

approaching collapse are carefully discussed in Sec. IV C.
The final outcome is that the whole energy is radiated off in
the approach-to-collapse regime, by fixing the analog of the
Hawking temperature [24,25] for our energetic sample of
(coherent) radiation.

II. GRAVITON RADIATION IN SMALL-ANGLE
TRANS-PLANCKIAN SCATTERING

The approach to gravitational scattering and radiation
advocated in Ref. [19] is based on a semiclassical approxi-
mation to the S-matrix of the form

S≃ exp

�
2iδ̂

�
αG;

R
b
; aλð~qÞ

��
; ð2:1Þ

where the eikonal operator δ̂ is a function of the effective
coupling αG ≡ Gs=ℏ and of the angular variable R=b
(where R≡ 2G

ffiffiffi
s

p
is the gravitational radius and b is

the impact parameter) and a functional of the graviton step
operators aλð~qÞ with helicity λ and momentum ~q.
The semiclassical form (2.1) was argued in Ref. [9]

to be valid in the strong-gravity regime αG ≫ 1 with
R ≫ b ≫ ls > lP, where ls is the string length and lP ≡ffiffiffiffiffiffiffi
ℏG

p
is the Planck length. This means that we are, to start

with, in the trans-Planckian regime
ffiffiffi
s

p
≫ mP ¼ ℏ=lP at

small scattering angles Θs ≃ ΘE ≡ 2R=b, where ΘE is
the Einstein deflection angle. Quantum corrections to (2.1)

will involve the parameter l2P=b
2 (and l2s=b2 if working

within string gravity) and will be partly considered later on.
The eikonal operator is then obtained by resumming an

infinite series of effective diagrams which include virtual
graviton exchanges and real graviton emissions, as will be
shortly reviewed in the following. In the small-angle and
low-density limit, it is composed by two terms: (i) a
c-number phase shift δ0 generated by graviton exchanges
between the external particles undergoing the scattering
process and (ii) a linear superposition of creation and
destruction operators which is responsible for graviton
bremsstrahlung and associated quantum virtual corrections,

δ̂

�
αG;

R
b
; aλð~qÞ

�
¼ δ0ðbÞ þ

Z
d3q

ℏ3
ffiffiffiffiffiffi
2ω

p

×
X
λ¼�2

½Mλðb; ~qÞa†λð~qÞ þ H:c:�

þOða2λÞ; ð2:2Þ

where higher powers of aλ provide high-density corrections.
This structure, which is valid for large impact parameters,
i.e., for small values of the ratioR=b ≪ 1, provides a unitary
S-matrix describing the Einstein deflection of the scattered
particles as well as its associated graviton radiation and its
metric fields [9,26] and time delays [27].
Actually, the subject of this paper is to extend the

above picture to smaller impact parameters b ∼ R where
the gravitational interaction becomes really strong and a
gravitational collapse is expected on classical grounds.
We will show that, decreasing the impact parameter b up to
some critical parameter bc ∼ R of the order of the gravi-
tational radius R, the form of the S-matrix maintains the
form (2.1), (2.2) with calculable corrections to both the
phase shift δ0 (Sec. III A) and to the emission amplitudeM
(Sec. III C). We shall then discuss in detail (Sec. IV) what
happens in the limit b → bc from above.

A. Eikonal scattering

ACV [7] have shown that the leading contributions to the
high-energy elastic scattering amplitude p1 þ p2 → p0

1 þ
p0
2 come from the s-channel iteration of soft-graviton

exchanges, which can be represented by effective ladder
diagrams as in Fig. 1. The generic ladder is built by iteration
[i.e., four-dimensional (4D) convolution] of the basic rung

R1ðp1; p2; QÞ ¼ iM1ðQ2; sÞ2πδþððp1 −QÞ2Þ
× 2πδþððp2 þQÞ2Þ;

M1ðQ2; sÞ≡ −
8πGs2

Q2
; ð2:3Þ

which embodies the on-shell conditions of the scattered
particles and the Newton-like elastic scattering amplitude
M1 in momentum space. The on-shell conditions and the
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particular form ofM1 make it possible to express the n-rung
amplitude as a 2D convolution in the form

iMnðQ2; sÞ ¼ in

n!

Z
d2q
ð2πÞ2Mn−1ð−ðQ − qÞ2; sÞ 4πGs

q2

¼ 2s
n!

�
⊗
n i4πGs

Q2

�
; ð2:4Þ

where boldface variables denote 2D Euclidean transverse
components. By Fourier transforming from transverse
momentum Q to impact parameter b, the full eikonal
scattering amplitude can be diagonalized and exponentiated,

i
2s

MðQ2; sÞ≡ i
2s

X∞
n¼0

MnðQ2; sÞ ¼
Z

d2beiQ·bei2δ0ðb;sÞ;

ð2:5Þ

in terms of the eikonal phase shift δ0ðb; sÞ defined as the
Fourier transform of the single-exchange amplitude

2δ0ðb; sÞ ¼
Z

d2Q
ð2πÞ2 e

−iQ·b 4πGs
Q2

ΘðQ2 −Q2
0Þ

¼ 2Gs ln
L
b
þO

�
b
L

�
2

; ð2:6Þ

where b≡ jbj and L≡ 2e−γE=Q0 is a factorized—and
thus irrelevant—infrared cutoff needed to regularize the
“Coulomb” divergence typical of long-range interactions.
In order to go beyond the leading eikonal approxima-

tion, one has to consider other diagrams providing
corrections of relative order ðR=bÞ2 to elastic scattering
and also inelastic processes (graviton bremsstrahlung).
The former will be dealt with in Sec. III; in the following
in this section, we shall review graviton bremsstrahlung as
derived in Ref. [19].

B. Unified emission amplitude from
single-graviton exchange

In this subsection, we review the derivation of the unified
emission amplitude for the basic process 2 → 2þ graviton.
“Unified”means that such an amplitude is accurate for both

large (Regge region) and small (collinear region) graviton
emission angles.
Consider the basic emission process p1 þ p2 → p0

1 þ
p0
2 þ q at tree level (Fig. 2) of a graviton of momentum

qμ∶q ¼ ℏωθ and helicity λ, assuming a relatively soft-
emission energy ℏω ≪ E. Note that this restriction still
allows for a huge graviton phase space, corresponding to
classical frequencies potentially much larger than the
characteristic scale R−1, due to the large gravitational
charge αG ≡ Gs=ℏ ≫ 1.
We denote with qs the single-hit transverse momentum

exchanged between particles 1 and 2, and with θs ¼
jθsjðcosϕs; sinϕsÞ ¼ qs=E, we denote the corresponding
2D scattering angle (including azimuth). For not too
large emission angles jθj ≪ ðE=ℏωÞjθsj, corresponding
to jqj ≪ jqsj, Weinberg’s theorem expresses the emission
amplitude as the product of the elastic amplitudeM1 and of

the external-line insertion factor JðλÞW ≡ JμνW ϵðλÞ�μν , where ϵðλÞμν

is the polarization tensor of the emitted graviton (see
Ref. [19] for details) and JμνW is the Weinberg current
[28] [ηi ¼ þ1ð−1Þ for incoming (outgoing) lines]

JμνW ¼ κ
X
i

ηi
pμ
i p

ν
i

pi · q

¼ κ

�
pμ
1p

ν
1

p1 · q
−
p0
1
μp0

1
ν

p0
1 · q

þ pμ
2p

ν
2

p2 · q
−
p0
2
μp0

2
ν

p0
2 · q

�
: ð2:7Þ

By referring, for definiteness, to the forward hemisphere
and restricting ourselves to the forward region jθj, jθsj ≪ 1,
one obtains the following explicit result [19] in the c.m.
frame with p1 ¼ 0,

JðλÞW ðq3 > 0; θ; θsÞ ¼ κ
E
ℏω

ðeiλðϕθ−ϕθ−θs Þ − 1Þ; ð2:8Þ

leading to a factorized soft-emission amplitude

Msoftðθs; E; θ;ωÞ ¼ MelðE;QÞJðλÞW

�
E
ℏω

; θ; θs

�

¼ κ3s2
1

Eℏωθ2s
ðeiλðϕθ−ϕθ−θs Þ − 1Þ: ð2:9Þ
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FIG. 1. (a) One- and (b) two-rung effective ladder diagrams
determining the elastic S-matrix in the eikonal approximation.
Solid lines: on-shell external particles; dashed lines: eikonal
gravitational exchanges.
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FIG. 2. (a) Diagram representing graviton emission (wavy line)
in trans-Planckian scattering of two sources (straight lines).
(b) Kinematics in the spatial momentum space.

RADIATION ENHANCEMENT AND TEMPERATURE IN THE … PHYSICAL REVIEW D 95, 086003 (2017)

086003-3



The simple expression (2.8) shows a 1=ω dependence, but
no singularities at either θ ¼ 0 or θ ¼ θs as we might have
expected from the pi · q denominators occurring in (2.7).
This is due to the helicity conservation zeros in the physical
projections of the tensor numerators in (2.7).
The soft amplitude in impact parameter space is readily

obtained by Fourier transforming with respect to Q ¼ qs ¼
Eθs and reads

MðλÞ
softðb; E; θ;ωÞ≡ 1

ð2πÞ3=2
1

4s

Z
d2qs
ð2πÞ2 e

iqs·bMsoftðqsÞ

¼ ffiffiffiffiffiffi
αG

p R
π

Z
d2θs
2πθ2s

ei
E
ℏb·θs

×
E
ℏω

1

2
ðeiλðϕθ−ϕθ−θs Þ − 1Þ

¼ ffiffiffiffiffiffi
αG

p R
π
eiλϕθ

Z
d2z

2πjzj2eiλϕz

× eibωz·θ
E
ℏω

log

				b̂ − ℏω
E

z

				; ð2:10Þ

where in the last line we have used an integral representa-
tion which will be very useful in the sequel.
For large emission angles jθj≳ ðE=ℏωÞjθsj such that

jqj≳ jqsj, graviton emission from internal insertions is no
longer negligible, and Weinberg’s formula cannot be
applied. However, this region of phase space is a subset
of the so-called Regge region, characterized by emission
angles jθj ≫ jθsj. In the Regge limit, the emission ampli-
tude has a different factorized structure and a different
emission current: Lipatov’s current JμνL [29]. Furthermore,
one has to distinguish two transferred momenta q1ð2Þ ≡
p1ð2Þ − p0

1ð2Þ such that q ¼ q1 þ q2. In the c.m. frame with

zero incidence angle (p1 ¼ EΘi ¼ 0) and in the forward
region jθj, jθsj ≪ 1 (where we identify qs ¼ q2), the
helicity amplitude takes the form [19]

MðλÞ
Reggeðθs; E; θ;ωÞ ¼

κ2s2

jq1j2jq2j2
JμνL ϵðλÞ�μν

¼ κ3s2
1 − eiλðϕq2

−ϕq−q2 Þ

q2
; ð2:11Þ

MðλÞ
Reggeðb; E; θ;ωÞ ¼

ffiffiffiffiffiffi
αG

p R
π
eiλϕθ

Z
d2z

2πjzj2eiλϕz
eibωz·θ

× ð−b̂ · z − log jb̂ − zjÞ: ð2:12Þ

It is not difficult to verify that the soft and Regge
amplitudes (2.9), (2.11) agree in the overlapping region
of validity jθsj ≪ θ ≪ ðE=ℏωÞjθsj. By exploiting the
above expressions, we obtained a unifying amplitude that
accurately describes both regimes and that can be written in
terms of the soft amplitude only:

MðλÞ
matchedffiffiffiffiffiffi

αG
p R

π e
iλϕθ

¼
Z

d2z
2πjzj2eiλϕz

eibωz·θ

×

�
E
ℏω

log

				b̂ − ℏω
E

z

				 − log jb̂ − zj
�

¼ softjE − softjℏω: ð2:13Þ
The result (2.13) is expressed in terms of the

(ω-dependent) “soft” field1

hðλÞs ðω; zÞ≡ 1

π2jzj2eiλϕz

�
E
ℏω

log

				b̂ − ℏω
E

z

				 − log jb̂ − zj
�

≡ −
Φðω; zÞ
π2jzj2eiλϕz

; ð2:14Þ

in which the function Φ turns out to be useful for the
treatment of rescattering, too (Sec. II C). Furthermore, for
relatively large angles [jθj ≫ θm ≡ ℏ=ðEbÞ], Eq. (2.13)
involves values of ℏωjzj=E≲ θm=jθj which are uniformly
small, and the expressions (2.14) can be replaced by their
ω → 0 limits

hðλÞs ðzÞ ¼ −
ΦclðzÞ

π2jzj2eiλϕz
;

ΦclðzÞ≡ lim
ω→0

Φ ¼ b̂ · zþ log jb̂ − zj; ð2:15Þ

which is the field occurring in the Regge amplitude (2.12);
the modulating function Φcl appears also in the classical
analysis of radiation [13].
The last aspect we have to take into account in order to

determine the general 2 → 3 high-energy emission ampli-
tude at lowest order is to consider the case of incoming
particles with a generic direction of momenta. Since we
always work in the c.m. frame, we parametrize ~p1 ¼
EðΘi;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Θ2

i

p
Þ, where Θi ¼ jΘijðcosϕi; sinϕiÞ is a 2D

vector that describes both polar and azimuthal angles of
the incoming particles. In Ref. [19], we proved the trans-
formation formula for the generic helicity amplitude

MðλÞðb; E; θ;ω;ΘiÞ
¼ eiλðϕθ−ϕθ−Θi

ÞMðλÞðb; E; θ −Θi;ω; 0Þ: ð2:16Þ
By applying Eq. (2.16) to the matched amplitude (2.13),
one immediately finds

Mmatchedðb; E; θ;ω;ΘiÞ ¼
ffiffiffiffiffiffi
αG

p R
2
eiλϕθ

×
Z

d2zeibωz·ðθ−ΘiÞhðλÞs ðω; zÞ;

ð2:17Þ

1Notation: the 2D vectors Q, q, θ, z, etc., are denoted with
boldface characters; their complex representation, e.g., z ¼ z1 þ
iz2 ¼ jzjeiϕz is denoted with italic font. Note, however, that
b ¼ jbj is a real quantity.
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and the whole Θi dependence amounts to a shift in the
exponential factor.

C. Eikonal emission and rescattering

The physics of trans-Planckian scattering is captured, at
leading level, by the resummation of eikonal diagrams, as
illustrated in Sec. II A. In order to compute the associated
graviton radiation, it is therefore mandatory to consider
graviton emission from all ladder diagrams, as depicted
in Fig. 3.
As we shew in Ref. [19], the crucial fact is that

all internal lines insertions—for fast particles and
exchanged particles alike—can be accounted for by
calculating n diagrams for the eikonal contribution with
n exchanged gravitons, where the matched amplitude
(2.17) is inserted in turn in correspondence to the jth
exchanged graviton (Fig. 3), adjusting for the local
incidence angle Θi ¼ θj−1.
The ladderlike structure of such an amplitude in

momentum space is a convolution in the Qj-variables,
with Q1 þ � � � þ Qn ¼ Q. Thus, in impact parameter
space, the amplitude is obtained as a product of
j − 1 elastic amplitudes, the emission amplitude from
the jth leg, and n − j elastic amplitudes, the upper particle
of which, by energy conservation, has reduced energy
E → E − ℏω.
Let us express the elastic amplitude in terms of the

dimensionless function ΔðbÞ such that

Melðb; EÞ ¼ 2δðb; s ¼ 4EE0Þ

≡ 2R
E
ℏ
ΔðbÞ;

Δ0ðbÞ ¼ log
�
L
b

�
; ð2:18Þ

so as to explicitly show the linear proportionality of the
amplitude on the upper (jet 1) particle energy E (which
varies after graviton emission). The energy E0 of the lower
particle (jet 2) stays unchanged, and its dependence has
been absorbed in the constant R ¼ 4GE0.
The n-rung amplitude for emission of a graviton with

momentum q from the jth exchange of the ladder can then
be expressed by the z-representation

iM½n;j�
λ ðb;ω; θÞ

¼ eiλϕθ
ffiffiffiffiffiffi
αG

p R
2

in

n!

Z
d2zeibωθ·z

×

�
Mel

�
b −

ℏω
E

bz; E

��
j−1

× hðλÞs ðω; zÞ½Melðb; E − ℏωÞ�n−j: ð2:19Þ

Note the effect of the incidence angle Θi ¼ θj−1 ¼ ðQ1 þ
� � � þ Qj−1Þ=E in the exponent of Eq. (2.17) which, after
Fourier transform, has shifted the impact parameters of the
first elastic amplitudes by the amount − ℏω

E bz. In addition,
as already mentioned, the energy of the upper particle after
the emission has the reduced value E − ℏω, and this
modifies the second argument of the elastic amplitudes
after the emission.
Before summing all ladder diagrams, we take into

account the rescattering of the emitted graviton with the
external particles pj∶j ¼ 1, 2. This interaction is propor-
tional to Gðpj þ qÞ2 and is dominated by the exchange of
gravitons between q and p2, since ðp1 þ qÞ2 ∼ ℏωEjθ −
θjj2 ≪ ðp2 þ qÞ2 ∼ ℏωE in the region of forward emission
that we are considering. In practice, we add to the rightmost
factor ½Melðb; E − ℏωÞ�n−j in Eq. (2.19) [represented by
the ladder of Fig. 4(a)] the contributions coming from
rescattering diagrams where graviton exchanges between
p1 and p2 are replaced by exchanges between q and p2 in
all possible ways [Figs. 4(b), 4(c), and 4(d)]. Since the
ordering among eikonal exchanges and rescattering factors
is irrelevant, the inclusion of such additional contributions
amounts to the replacement (N ¼ n − j)

½Melðb; E − ℏωÞ�N →
XN
r¼0

�
N

r

�
½Melðb; E − ℏωÞ�N−r

× ½Melðb − x;ℏωÞ�r
¼ ½Melðb; E − ℏωÞ þMelðb − x;ℏωÞ�N
¼ f2R½ðE=ℏ − ωÞΔðbÞ þ ωΔðb − xÞ�gN; ð2:20Þ

where we took into account that in diagrams with N
exchanged gravitons there are ðNrÞ distinct diagrams with
r rescattering gravitons and that in each rescattering factor
the energy of the upper particle (i.e., the emitted graviton) is
ℏω. Furthermore, we took into account that the transverse
position of the emitted graviton with respect to the lower
particle (i.e., p2) is b − x, where x ¼ bz is the variable
conjugated to q ¼ ωθ [cf. Eq. (2.19)], hence to be inter-
preted as the transverse position of the emitted graviton
with respect to p1.
Substituting the expression of Eq. (2.20) into Eq. (2.19),

we can perform the sum over n and j of all diagrams with
the aid of the formula

θj−1θj sΘθ1

p’
2

p’
Q

j

p

p

1
p

2
p p’

2
p’p’

p’
1

p’p’

Q
1 n

−1θn

Q q

n,j
Σ=

p

p
2

p

1
p p’

1
p’

q

FIG. 3. Graviton emission from the eikonal ladder. The n-rung
diagram with the emission from the jth exchange is denoted by
M½n;j� in the text.
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X∞
n¼1

1

n!

Xn
j¼1

Aj−1Bn−j ¼
X∞
n¼0

1

n!
An − Bn

A − B
¼ eA − eB

A − B
: ð2:21Þ

It is also convenient to express the A and B quantities as the
elastic amplitude (2.18) plus a quantum correction ΦA;B as
follows:

A≡ iMel

�
b −

ℏω
E

x; E

�
¼ 2iαG

�
ΔðbÞ þ ℏω

E
ΦAðxÞ

�
B≡ i½Melðb; E − ℏωÞ þMelðb − x;ℏωÞ�

¼ 2iαG

�
ΔðbÞ þ ℏω

E
ΦBðxÞ

�

ΦAðxÞ≡ E
ℏω

�
Δ
�
b −

ℏω
E

x

�
− ΔðbÞ

�

¼ −Δ0ðbÞ · xþO
�
ℏω
E

�
ð2:22aÞ

ΦBðxÞ≡ Δðb − xÞ − ΔðbÞ� ¼ ΦAðxÞjE→ℏω: ð2:22bÞ

We note that the denominator in Eq. (2.21) is proportional
to the Φ-function defined in Eq. (2.14),

A − B ¼ 2iαG
ℏω
E

½ΦA −ΦB� ¼ 2iωRΦ; ð2:23Þ

and is therefore intimately related to the soft field hs.
From the technical point of view, such a relation provides

the cancellation between hs in Eq. (2.19) and the mentioned
denominator A − B of (2.21), to yield finally the one-
graviton emission amplitude

iMλðb;ω; θÞ ¼ eiαG2ΔðbÞMλðb;ω; θÞ
Mλðb;ω; θÞ

eiλϕθ
≡ ffiffiffiffiffiffi

αG
p R

π

Z
d2z

2πjzj2eiλϕz

× eibωθ·ze2iωRΦA
e−2iωRΦ − 1

2iωR
; ð2:24Þ

which reduces to the classical expression (4.11) of
Ref. [13] in the limit ℏω=E → 0, λ ¼ −2 and Δ ¼ Δ0,
since Φ → Φcl [cf. Eq. (2.15)] and 2RΦA → 2Rb̂ · z ¼
−bΘs · z.

From the conceptual point of view, the identity (2.23) is
surprising because it relates the exponents (which describe
elastic plus rescattering exchanges) to the soft field ∼Φ
(which describes graviton emission). The explanation lies
in the derivation [19] of the soft-based representation (2.13)
of which the form

Mmatched ¼ softjE − softjℏω ≃ ReggejE ð2:25Þ
has the alternative interpretations of external plus internal
insertions in the soft-emission language and of elastic plus
rescattering ones in the Regge language.
We shall base on that representation the generalized

emission amplitude including subleading corrections, that
will be investigated in Sec. III [Eqs. (3.26) and (3.29)].

D. Multigraviton emission and linear coherent state

In order to compute the multigraviton emission
amplitude from eikonal ladder diagrams, let us start from
the two-graviton emission process. We exploit again the
b-space factorization formula of Regge amplitudes.
Referring to Fig. 5, if graviton 1 is emitted first from
the j1th rung and then graviton 2 is emitted from the j2th
rung (j1 < j2) of an n-rung ladder, the corresponding
amplitude reads

iM½n;ðj1<j2Þ�ð1; 2Þ ¼ in

2!n!
eiðλ1ϕθ1

þλ2ϕθ2
Þ
� ffiffiffiffiffiffi

αG
p R

2

�
2

×
Z

d2x1d2x2eiðω1θ1·x1þω2θ2·x2Þ

× Aj1−1hsðb; x1;ω1ÞBj2−j1−1

× hsðb; x2;ω2ÞCn−j2 ð2:26Þ

(a) (b) (c) (d)

FIG. 4. Rescattering contributions (b,c,d) to eikonal graviton emission (a).

θ1 2j2
θ −11

θj11−1 1
θj 2j22

θ

1ωhh hhω2

hh 1ω hhω2

sΘ
E E−hhE−h

B CA

−1nθ

FIG. 5. Double-graviton emission from the eikonal ladder. A
denotes eikonal exchanges before graviton emissions, B denotes
eikonal exchanges and rescattering of graviton 1, and C includes
also rescattering of graviton 2.
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where, as before, the fields hs describe real graviton
production, while graviton exchanges and rescattering
are encoded by the quantities

A ¼ iMel

�
b −

ℏω1x1 þ ℏω2x2
E

;E

�

B ¼ iMel

�
b −

ℏω2

E
x2; E − ℏω1

�
þ iMelðb − x1;ℏω1Þ

C ¼ iMelðb; E − ℏω1 − ℏω2Þ þ iMelðb − x1;ℏω1Þ
þ iMelðb − x2;ℏω2Þ: ð2:27Þ

The quantity A denotes the eikonal exchanges before any
graviton emission and is given by the elastic amplitudeMel
with a shift in its first argument due to the effect of the
incidence angles Θj1−1;Θj2−1 of both gravitons, an effect
that propagates backward in the ladder, as explained in the
previous section.
The quantity B describes the interactions occurring in the

middle of the ladder, i.e., after the emission of graviton 1
and before that of graviton 2. It consists in the sum of two
terms: the first one describes the eikonal exchanges
between p1 and p2 and includes both the effect of the
incidence angle Θj2−1 (shift in the first argument) and also
the reduced gravitational coupling E → E − ℏω1 in the
upper vertices due to energy conservation. The second term
describes the rescattering of graviton 1 with p2.
Finally, the first of the three terms building C represents

the eikonal exchanges between p1 and p2 with reduced
coupling E → E − ℏðω1 þ ω2Þ in the upper vertices, while
the other two terms take into account rescattering correc-
tions of both gravitons.
The sum over all such ladder diagrams amounts to

Sð1; 2Þ≡X∞
n¼2

1

n!

Xn−1
j1¼1

Xn
j2¼j1þ1

Aj1−1Bj2−j1−1Cn−j2

¼ eA

ðA − BÞðA − CÞ þ
eB

ðB − AÞðB − CÞ

þ eC

ðC − AÞðC − BÞ : ð2:28Þ

By swapping the graviton indices 1 ↔ 2, one immediately
obtains the symmetric contribution with graviton 2 emitted
“before” graviton 1.
Now, the sum of these two contributions does not

factorize exactly in two independent factors. It would if
A − B ¼ ½B − C�1↔2, but this is not the case. However,
A − B ¼ ½B − C�1↔2 þOðAℏ2ω2

i =E
2Þ; therefore, factori-

zation can be recovered by neglecting contributions of
relative order Oðℏ2ω2

i =E
2Þ. In fact, thanks to Eqs. (2.22),

we have

A¼2iαGΔ
�
b−

ℏω1x1þℏω2x2
E

�

¼2iαG

�
ΔðbÞ−Δ0ðbÞ ·ℏω1x1þℏω2x2

E
þO

�
ℏ2ω2

i

E2

��
¼2ifαGΔðbÞþω1RΦAðx1Þþω2RΦAðx2ÞþOðGℏ2ω2

i Þg

B¼2iαG

��
1−

ℏω1x1
E

�
Δ
�
b−

ℏω2x2
E

�
þℏω1x1

E
Δðb−x1Þ

�
¼2ifαGΔðbÞþω2RΦAðx2Þþω1RΦBðx1ÞþOðGℏ2ω2

i Þg

C¼ i2αG

��
1−

ℏω1x1
E

−
ℏω2x2
E

�
ΔðbÞþℏω1x1

E
Δðb−x1Þ

þℏω1x2
E

Δðb−x2Þ
�

¼2ifαGΔðbÞþω1RΦBðx1Þþω2RΦBðx2Þg: ð2:29Þ

By noting that the elastic amplitude e2iαGΔðbÞ is a common
factor in all exponentials, we can approximate the infinite
sum (2.28) in the form

Sð1; 2Þ≃ e2iαGΔ
�

eφA1þφA2

φ1ðφ1 þ φ2Þ
−
eφB1þφA2

φ1φ2

þ eφB1þφB2

ðφ1 þ φ2Þφ2

�
;

ð2:30Þ

where we used the shortcuts φA1 ≡ 2iω1RΦAðx1Þ and
analogous ones.
At this point, it is straightforward to check that

Sð1; 2Þ þSð2; 1Þ≃ e2iαGΔ
eφA1ðe−φ1 − 1Þ

φ1

eφA2ðe−φ2 − 1Þ
φ2

ð2:31Þ

and to obtain the two-graviton emission amplitude in the
factorized form,

iMλ1λ2ðb;ω1; θ1;ω2θ2Þ
≃ eiαG2ΔðbÞMλ1ðb;ω1; θ1ÞMλ2ðb;ω2; θ2Þ; ð2:32Þ

in terms of the one-graviton amplitude and of the elastic
S-matrix. It is clear from Eqs. (2.29) that such an
approximate relation neglects terms of relative order
Oðℏ2ω2=E2Þ ¼ OðωR=αGÞ2, which are negligible in the
regime we are considering and are subleading not only with
respect to terms ∼αG [like the eikonal phase δðbÞ] but also
with respect to the terms ∼ωR.
We expect an analogous factorization formula to hold for

the generic N-graviton emission amplitude off eikonal
ladders (we explicitly checked the three-graviton case),
in the form
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iMðb; q1;…; qNÞ≃ eiαG2ΔðbÞ
YN
r¼1

Mλrðb;ωr; θrÞ: ð2:33Þ

Such an independent emission pattern corresponds to the
final state

jgravitons; outi

¼
ffiffiffiffiffiffi
P0

p
exp

�Z
d3q

ℏ3
ffiffiffiffiffiffi
2ω

p 2i
X
λ

Mλðb; ~qÞa†λð~qÞ
�
j0i

ð2:34Þ
in the Fock space of gravitons, with P0 ¼ 1, and creation
(a†λð~qÞ) and destruction [aλð~qÞ] operators of definite helicity
λ are normalized to a wave number δ-function commutator
½aλð~qÞ; a†λ0 ð~q0Þ� ¼ ℏ3δ3ð~q − ~q0Þδλλ0 . However, this state takes
into account only real emission. Virtual corrections can then
be incorporated by exponentiating both creation and destruc-
tion operators in a (unitary) coherent-state operator acting on
the graviton vacuum j0i (the initial state of gravitons). We
thus obtain the full S-matrix

Ŝ ¼ e2iδ exp

�Z
d3q

ℏ3
ffiffiffiffiffiffi
2ω

p 2i

�X
λ

Mλðb; ~qÞa†λð~qÞ þ H:c:

��

ð2:35Þ

that is unitary, because of the anti-Hermitian exponent,
when b > bc.
By normal ordering Eq. (2.35) when acting on the initial

state j0i, we find that the final state of the graviton is still
given by Eq. (2.34), but with P0 given by

P0 ¼ exp

�
−2

Z
d3q
ℏ3ω

X
λ

jMλðb; ~qÞj2
�
; ð2:36Þ

which is just the no-emission probability, coming from the
a, a† commutators.
Due to the factorized structure of Eq. (2.34), it is

straightforward to derive the inclusive distributions of
gravitons and even their generating functional

G½zλð~qÞ� ¼ exp
�
2

Z
Δω

d3q
ℏ3ω

X
λ

jMðλÞ
b ð~qÞj2½zλð~qÞ − 1�

�
:

ð2:37Þ
In particular, the polarized energy emission distribution in
the solid angle Ω and its multiplicity density are given by

dEGW
λ

dωdΩ
¼ ℏω

dN λ

dωdΩ
¼ 2ω2ℏjMλðb; ~qÞj2;

dN
dω

¼ pðωÞ ¼ 1

ℏω
dEGW

dω
: ð2:38Þ

Both quantities will be discussed in the next section.

E. Large ωR emission amplitude

In this section, we analyze the graviton emission
amplitude (2.24) and its spectrum (2.38) generated by a
small-angle (Θs ≪ 1) scattering in the frequency region
ω≳ R−1 and in the classical limit ℏω ≪ E.
We recall that the frequency spectrum integrated in the

solid angle was already studied in Ref. [19] for large impact
parameters b ≫ R, i.e., for small deflection angles Θs ≪ 1,
both with and without rescattering corrections. We briefly
report the main results:

(i) For ωR≲ Θs, the spectrum is flat and agrees with
the zero-frequency limit (ZFL).

(ii) For Θs ≲ ωR≲ 1, the spectrum shows a slow
(logarithmic) decrease with frequency. The behavior
in these two regions is rather insensitive to the
inclusion of rescattering and can be summarized by

dEGW

dω
≃ GsΘ2

E

�
2

π
logmin

�
1

Θs
;
1

ωR

�
þ const

�
ðωR≲ 1Þ: ð2:39Þ

(iii) For ωR≳ 1, the amplitude (2.24) is dominated by
small-z values, and the z-integration can be safely
extended to arbitrary large values without introduc-
ing spurious effects. The frequency distribution of
radiated energy can then be well approximated by
computing the square modulus of the amplitude
(2.24) by means of the Parseval identity, yielding

dEGW

dω
¼ 2Gs

Θ2
E

π2

Z
d2z
jzj4

�
sinωRΦðzÞ

ωR

�
2

ðωR≳ 1Þ; ð2:40Þ

the asymptotic behavior of which provides a spec-
trum decreasing like 1=ω; more precisely,

dEGW

dω
≃GsΘ2

E
1

πωR
ðωR ≫ 1Þ: ð2:41Þ

In this region, the inclusion of rescattering has the
effect of lowering the spectrum by about 20%. In
any case, the total radiated-energy fraction up to the
kinematical bound ωM ¼ E=ℏ becomes

EGWffiffiffi
s

p ¼ Θ2
E

2π
log αG ð2:42Þ

and may exceed unity, thus signalling the need for
energy-conservation corrections at sizeable angles
(cf. Sec. IV).

In Fig. 6, we show the energy spectrum (divided by GsΘ2
E)

for various values of Θs. It is apparent that, for ωR ≫ 1, its
shape is almost independent of Θs. As we will show in
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Sec. III, there will be qualitative differences when
approaching the strong-coupling region Θs ∼ 1 where
subleading contributions become important.
On the contrary, the angular distribution of graviton

radiation studied in Ref. [19] did not take into account
rescattering contributions. The latter are actually irrelevant
for ωR ≪ 1 but change drastically the angular pattern for
ωR ≫ 1. In fact, the graviton exchanges between the
outgoing graviton q and p2 (see Fig. 4) have the main
effect of deflecting the direction of q, just like the eikonal
exchanges between p1 and p2 are responsible for the
deflection of p1 (and p2). It turns out that the graviton
radiation is collimated around the direction Θs of the
outgoing particle(s).
Quantitatively, the resummed emission amplitude (2.24)

in the classical limit ℏω ≪ E and, say, for helicity λ ¼ −2
reads

Mclðb; θÞ ¼
ffiffiffiffiffiffi
αG

p R
π
e−2iϕθ

×
Z

d2z
2πz�2

eiωbz·ðθ−ΘsÞ

2iωR
ðe−2iωRΦclðzÞ − 1Þ;

ð2:43Þ

where Θs is the fast-particle scattering angle and Φcl was
defined in Eq. (2.15). We are interested in evaluating such
an amplitude at large ωR. Since in the second exponential
the function

ΦclðzÞ≡ b̂ · zþ log jb̂ − zj ¼ 1

2
ðz22 − z21Þ þOðjzj3Þ

ð2:44Þ

vanishes (quadratically) at the origin, we expect that for
ωR ≫ 1 the dominant contributions to the amplitude come
from the small-z integration region. By substituting the
second-order expansion (2.44) into Eq. (2.43) and by
rescaling the integration variable

ffiffiffiffiffiffiffi
ωR

p
z≡ Z≡ xþ iy,

we obtain

2πωMffiffiffiffiffiffi
αG

p
e−2iϕθ

≡ IðAÞ ¼
Z

d2Z
2πZ�2 e

i2A·Z½eiðx2−y2Þ − 1� 1
i
;

ð2:45Þ

which is a function of the two-dimensional variable,

A≡ jAjðcosϕA; sinϕAÞ≡
ffiffiffiffiffiffiffi
ωR

p θ −Θs

jΘsj
;

A≡ jAjeiϕA ∈ C: ð2:46Þ

Were it not for the factor Z�2 in the denominator, the rhs of
Eq. (2.45) would have the structure of a Gaussian integral
in two dimensions. It is possible, however, to provide a
simple one-dimensional integral representation for the
function IðAÞ in Eq. (2.45) (see Appendix B),

IðAÞ ¼ −
A
2A�

Z
ζ2

ζ1

dζ
ζ2

e−
i
2
A�2ðζ2þ1Þ; ð2:47Þ

where the complex-integration end points ζl ≡ ei2ϕl∶l ¼ 1,
2 are determined by the azimuth ϕA, i.e., the azimuth of θ
with respect to Θs, according to Fig. 7. The function IðAÞ
satisfies some symmetry properties, and in particular, it
vanishes for ϕ ¼ −π=4þ nπ∶n ∈ Z. This relation follows
from the fact that, for ϕA ¼ ðn − 1

4
Þπ∶n ∈ Z, the integration

limits in Eq. (2.47) coincide and thus the integral vanishes.
The intensity of the radiation on the tangent space of

angular directions centered at θ ¼ Θs and parametrized by
A is shown in Fig. 13(a). The main part of the radiation in
the forward hemisphere is concentrated around jAj≲ 1,
which means jθ −Θsj≲ jΘsj=

ffiffiffiffiffiffiffi
ωR

p
, and is more and more

collimated around the direction Θs of the outgoing particle
1 for larger and larger ωR. This feature is a direct
consequence of rescattering processes, through which the
emitted gravitons feel the gravitational attraction of particle
2 and are therefore deflected, on average, in the same way
as particle 1.
At given values of helicity and frequency, we observe a

peculiar interference pattern, with a vanishing amplitude at
ϕA ¼ �π=4þ nπ for helicity�2. Such interference fringes

Log
1

Gs s
2

dE

d

Log R
s 0.3

s 0.1

s 0.01

s 0

4 3 2 1 0 1 2

2.0

1.5

1.0

0.5

0.0

0.5

FIG. 6. Frequency spectrum of gravitational radiation for
various values of Θs. For each Θs > 0, the ZFL value
2
π logð1.65=ΘsÞ is obtained (dashed lines).

π
4

Aφ

π
4

−

FIG. 7. The end points in the integral (2.47) correspond to the
angular interval ½ϕ1;ϕ2� (green region), the latter being deter-
mined by the intersection of the ½−π=4; π=4� interval (black
sector) with the region where sinð2ðϕA − ϕÞÞ is positive (red
sectors).
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are washed out when integrating the intensity over some
frequency range and summing over helicities. On the
whole, the radiation intensity is distributed almost isotropi-
cally around Θs, with an azimuthal periodicity (in ϕA)
resembling a quadrupolar shape.
This angular distribution differs from our prediction in

Ref. [19], where we neglected rescattering and found
graviton radiation distributed in the scattering plane with
angles ranging from zero (incoming particle 1) to Θs
(outgoing particle 1). By comparison, rescattering produces
the above dependence on θ −Θs, by associating in a clearer
way jet 1 to the outgoing particle 1.
Graviton radiation associated to large-angle (jΘsj ∼ 1)

scattering will be analyzed in Sec. IV and compared to the
previous one.

III. RADIATION MODEL WITH ACV
RESUMMATION

In this section, we extend the treatment of graviton
radiation to scattering processes characterized by large
deflection angles Θs ¼ Oð1Þ or, equivalently, to impact
parameters b ∼ R of the order of the gravitational radius,
where the gravitational interaction becomes strong and a
collapse is expected to occur, at least at the classical level.
This requires going beyond the leading eikonal approxi-
mation reviewed in Sec. II and to take into account the
nonlinear interactions which dominate at high energy.
Such corrections to the eikonal approximation have been
identified [7,8] and studied in detail for elastic scattering
[9,30–32]. Their treatment is based on an effective action
model that we are going to summarize in Sec. III A and to
apply to graviton radiation in the rest of the section.

A. Reduced-action model

The model consists in a shock-wave solution of the
effective field theory proposed by ACV [8] in the regime
R ≫ ls of trans-Planckian scattering on the basis of
Lipatov’s action [29]. The effective metric fields of that
solution have basically longitudinal (hþþ; h−−) and trans-
verse (hij∶i; j ¼ 1, 2) components of the form

h−− ¼ 2πRaðxÞδðx−Þ;
hþþ ¼ 2πRāðxÞδðxþÞ;

h ¼ TrðhijÞ ¼ ∇2ϕðxÞ 1
2
Θðxþx−Þ; ð3:1Þ

where we note wave fronts of Aichelburg-Sexl type [33]
with profile functions a and ā and an effective transverse
field with support in xþx− > 0.
A simplified formulation of the solution (3.1) was

obtained in Ref. [9] by an azimuthal averaging procedure
which relates it to a one-dimensional model in a transverse
radial space with the axisymmetric action

A ¼ 2π2Gs
Z

dr2
�
s̄aþ sā − 2ρ _a _̄a−

2

ð2πRÞ2 ð1 − _ρÞ2
�

�
·≡ d

dr2

�
ð3:2Þ

in which r2 plays the role of time parameter. Here, ϕðr2Þ is
replaced by the auxiliary field ρðr2Þ—a sort of renormal-
ized squared distance—defined by

ρ≡ r2½1 − ð2πRÞ2 _ϕ�;

h≡ ∇2ϕ ¼ 4
d
dr2

ðr2 _ϕÞ

¼ 1

ðπRÞ2 ð1 − _ρÞ; ð3:3Þ

which incorporates the basic ϕ, a, ā interaction, with
effective coupling R2. Furthermore, the axisymmetric
sources sðr2Þ ¼ δðr2Þ=π and s̄ðr2Þ ¼ δðr2 − b2Þ=π
describe (approximately) the energetic incident particles,
and ϕðr2Þ is taken to be real valued—as for the transverse-
traceless (TT) polarization only—thus neglecting the infra-
red singular one in the frequency range ω ∼ 1=R we are
interested in.
The equations of motion of (3.2) for the profile functions

admit two constants of motion, yielding the relations

_a ¼ −
1

2πρ
; _̄a ¼ −

1

2πρ
Θðr2 − b2Þ; ð3:4Þ

while that for the field ρ yields

ρ̈ ¼ 2ðπRÞ2 _a _̄a ¼ R2

2ρ2
Θðr2 − b2Þ;

_ρ2 þ R2

ρ
¼ 1 ðr > bÞ: ð3:5Þ

The latter describe the r2-motion of ρðr2Þ in a Coulomb
field, which is repulsive for ρ > 0, and acts for r2 > b2

only, so that b2 actually cuts off that repulsion in the short-
distance region.
The interesting solutions of (3.4) and (3.5) are those

which are ultraviolet safe—for which the effective field
theory makes sense—and are restricted by the regularity
condition ρð0Þ ¼ 0 which avoids a possible r2 ¼ 0 singu-
larity of the ϕ-field.
External (r > b) and internal (0 < r < b) regular

solutions are easily written down for this solvable model,

ρ ¼
�
R2cosh2χðr2Þ ðr2 ≥ b2Þ
ρðb2Þ þ _ρðb2Þðr2 − b2Þ ð0 ≤ r2 ≤ b2Þ

r2 ¼ b2 þ R2ðχ þ sinh χ cosh χ − χb − sinh χb cosh χbÞ
ðχb ≡ χðb2ÞÞ ð3:6Þ
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and are matched at r2 ¼ b2 by the condition (tb ≡ tanh χb)

ρðb2Þ ¼ R2cosh2χb ¼ b2 _ρðb2Þ ¼ b2tb;

R2

b2
¼ tbð1 − t2bÞ: ð3:7Þ

The criticality equation (3.7) is cubic in the tb parameter
and determines the branches of possible solutions with
ρð0Þ ¼ 0. For b2 > b2c ≡ ð3 ffiffiffi

3
p

=2ÞR2, there are two real-
valued, non-negative solutions, and the “perturbative” one
with tb → 1 for b ≫ bc is to be taken. By replacing such a
solution in the action (3.2), we get the nonperturbative on-
shell expression

2δðb; sÞ≡A ¼ αG

Z
L2

0

dr2

R2
;

×

�
R2

ρ
Θðr2 − b2Þ − ð1 − _ρÞ2

�

¼ αG

�
2χL − 2χb þ 1 −

1

tb

�
ðb > bcÞ; ð3:8Þ

where L is an IR cutoff needed to regularize the
Coulomb singularity. The phase shift (3.8) shows the
large-b behavior

δðb; sÞ≃ αG

�
log

L
b
þ R2

4b2
þ � � �

�
; ð3:9Þ

which, however, is only qualitatively correct for the
subleading term of which the full expression is actually [7]

ℜδH ¼ δðb; sÞ − αG log
L
b
¼ αG

R2

2b2
: ð3:10Þ

The difference is due to the various approximations being
made (one polarization and azimuthal averaging).
Despite such approximations, the importance of the

nonperturbative expressions (3.6) and (3.8) for solutions
and action is to provide a resummation of all subleading
contributions ∼ðR2=b2Þn to the eikonal of multi-H type
(Fig. 8) and to exhibit its singularity structure in the
classical collapse regime, on the basis of the criticality
equation (3.7).
In fact, for b < bc, we find that no real-valued solutions

exist and tb acquires an imaginary part. The solution with
negative ℑtb has ℑA > 0, is stable, and is close to the

perturbative solution at large distances. The corresponding
action is found to yield a suppression of the elastic channel
of the type

jSelðb; sÞj2 ≃ exp

�
−
4

ffiffiffi
2

p

3
αG

�
1 −

b2

b2c

�
3=2

�
; ð3:11Þ

which can be related to a tunnel effect [30,31] through the
repulsive Coulomb-potential barrier which is classically
forbidden.
Actually, the action shows a branch-point singularity at

b ¼ bc of index 3=2 with the expansion

A −Ac ¼ αG

� ffiffiffi
3

p �
1 −

b2

b2c

�
� i

2
ffiffiffi
2

p

3

�
1 −

b2

b2c

�
3=2

þ � � �
�
;

tb ¼
1ffiffiffi
3

p ∓ i

ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

b2c

s
þ � � � ; ð3:12Þ

which is thus responsible for the suppression (3.11) just
mentioned. The presence of the index 3=2 seems a robust
feature of this kind of model because the expansion of the
action in tb starts at order ðtb − 1=

ffiffiffi
3

p Þ2, due to the action
stationarity, thus avoiding a square-root behavior.
The result so obtained is puzzling, however, because it

may lead to unitarity loss [31,32], unless some additional
state, or radiation enhancement, is found in the b ≤ bc
region. In fact, it represents a basic motivation of the
present paper and of the following treatment of the
radiation associated to the ACV resummation.

B. Single-graviton emission by H-diagram exchange

Here, we want to argue that the graviton radiation
associated to the H-diagram eikonal exchange is well
described by a generalization of the soft-based representation
in Eq. (2.13). To this purpose, we shall use the dispersive
method of Ref. [7], which consists in relating both
(a) exchange and (b) emission to themulti-Regge amplitudes
[15,29] pictured in the overlap functions of Fig. 9.
For the H diagram [Fig. 9(a)], the CCV helicity amplitude

[15] for emitting a graviton of momentum q0 ¼ q2 − q1

φ +

s
_

+ ...

s
a

a
_

FIG. 8. The H diagram (left) and the first multi-H diagram
(right) starting the series of subleading contributions to the
eikonal.
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FIG. 9. (a) H diagram kinematics and (b) Graviton emission
from the H diagram.
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and helicity λ0, in the center-of-mass frame with incident
momentum along the ẑ axis, is given by [cf. Eq. (2.11)]

MReggeðq0; E;ω; q2Þ ¼
κ2s2JμνL ϵðλ

0Þ
μν

ðq − q2Þ2q22
¼ κ3s2

q02
Fðλ0Þðq2; q2 − q0Þ

FðλÞðq2; q1Þ≡ 1 − eiλðϕq2
−ϕq1

Þ: ð3:13Þ

Correspondingly, the overlap function [Fig. 9(a)], at gen-
erally nonvanishing momentum transfer Q and for the
incidence direction along the ẑ axis in the center-of-mass
frame, is proportional to the Lipatov graviton kernel [29]

Kðq2; q1;QÞ≡
X
λ0
JμνL ðq1; q2Þϵðλ

0Þ
μν ðq0ÞJμ0ν0L ðq01; q02Þϵðλ

0Þ�
μ0ν0 ðq0Þ;

ð3:14Þ

where JL is the Lipatov current [29] and q0i ≡ qi − Q∶i ¼ 1,
2. In two transverse dimensions, where the qi’s are all
coplanar, the explicit result is

Kðq2; q1;QÞ ¼
4q21q

2
2q

0
1
2q02

2

½ðq1 − q2Þ2�2
× 2 sinϕ12 sinϕ1020 cosðϕ12 − ϕ1020 Þ ð3:15Þ

and checks with Ref. [29].
The result (3.15) is valid for on-shell intermediate

particles and provides directly, by integration over qi
and the Fourier transform in Q to b-space, the imaginary
part of the H-diagram amplitude, or [9]

ℑδHðb; sÞ≡ YGsR2

Z
d2q0j ~hðb; q0Þj2; ð3:16Þ

where

~hðb; qÞ ¼ 2

Z
d2q2
ð2πÞ2

eib·q2

jqj2 ½1 − e2iðϕq2−q−ϕq2
Þ�; ð3:17Þ

is the h-field in q-space at λ0 ¼ −2 [15,19].2 The quantity
(3.17) has a logarithmic divergence, because of the known
residual infrared singularity ∼1=q02 of the integrand in
(3.16), due to the longitudinal-transverse (LT) polarization.
Such a divergence is expected and is compensated in
observables by real emission in the usual way, so as to
lead to finite, but resolution-dependent, results.
On the other hand, we are looking for ℜδ2, the

H-diagram contribution to the two-loop eikonal, which is
supposed to be IR safe, because a b-dependent IR diver-
gence would be observable and inconsistent with the

Block-Nordsieck factorization theorem. In Ref. [7], it
was shown that fixed-order dispersion relations plus
S-matrix exponentiation lead indeed to the finite result

ℜδ2ðb; sÞ ¼
π

2Y
ℑδHðb; sÞj

Reg

¼ π

2
GsR2

Z
d2q0j ~hðb; q0Þj2Reg ¼b≫R

αG
R2

2b2

¼ 2G3s2

b2
: ð3:18Þ

Here, the regularization subtraction is due to the second-
order contributions of δ0 and δ1 to the S-matrix exponential.
Our present purpose is actually to compute the graviton

radiation associated to the H diagram, in which a further
Regge graviton vertex is introduced in all possible ways,
as in Fig 9(b) for the upper-left corner. In the limit
jqj ¼ ℏω ≪ E—that we assume throughout the paper—
the dominant contributions are for jqj ≪ jq0j ∼mP, so that
no insertions on the q0-exchange should be considered. As a
consequence, for q in jet 1 and using the CCV gauge [15] in
which jet 2 is switched off, only the upper-left and upper-
right insertions will be considered.
Consider first the upper-left diagram [Fig. 9(b)] at the

imaginary part level. For any fixed values of q, q0, and Q,
the integrand has the form

ffiffiffiffiffiffi
αG

p
R
Z

d2qseiQ·b
�

1

q02

�
2

Fðλ0Þðq0s þ q0;q0sÞFðλ0Þðqs þ q0;qsÞ

× κ
jqsj2
jqj2

�
1−

q�s
qs

qs − q
q�s − q�

�
þ � � � ; ð3:19Þ

where qs ≡ q2 − q0, q0s ¼ qs − Q, and we have taken, for
definiteness, λ ¼ −2. The jqsj2 factor in the numerator is
needed in order to have the proper counting of jqij2
denominators in multi-Regge factorization [29].
We then apply to Eq. (3.19) the same reasoning used in

Sec. II B to match the soft and Regge limits. By the
approximate identity

jqsj2
jqj2

�
1 −

q�s
qs

qs − q
q�s − q�

�

≃ qq�s − q�qs
q

�
1

q� − ℏω
E q�s

−
1

q� − q�s

�
; ð3:20Þ

valid in the region ðℏω=EÞjqsj ≪ jqj, we derive the
relationship between Regge and soft insertion analogous
to Eqs. (2.13) and (2.25),

ReggejE ¼ softjE − softjℏω; ð3:21Þ
in which

softjE ¼ ℏω
E

½e2iðϕq−ℏωE qs
−ϕqÞ − 1� ð3:22Þ

2The quantities h ¼ TrðhijÞ↝hzz� and hs↝hzz, hz�z� are
related to different components of the metric fields hμν ≡ gμν −
ημν in the shock-wave solution (3.1). For a more precise
identification, see Ref. [19].
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for the upper-left case. A similar relationship holds for the
upper-right case and, by including both jets, for any soft
insertions, as pictured in Fig. 10.
We note at this point that in Eq. (3.21), the insertion

factor for the intermediate particle p1 þ qs cancels out
between left and right insertions, so that we get in total the
insertion factor for external legs only, in the form

κ

�
E
ℏω

�
q�

q

q − ℏω
E Q

q� − ℏω
E Q� − 1

�
− fE → ℏωg

�

¼ κ

�
E
ℏω

�
e
2iðϕ

q−ℏωE Q
−ϕqÞ − 1

�
− ðe2iðϕq−Q−ϕqÞ − 1Þ

�
:

ð3:23Þ

The latter replaces in Eq. (3.19) the sum of Regge insertions
and is only dependent on the overall momentum transfer
Q (Fig. 10).
Since the above factorization in Q-space holds for any

fixed values of Q and jq0j > jqj, it is presumably valid for
the IR regularization procedure of Eq. (3.18) also, because
the latter consists in subtracting the IR singularity due to
lower-order eikonal contributions to the S-matrix exponen-
tial. We shall then assume Eq. (3.23) for the full graviton
emission amplitude associated to H-diagram exchange.
This leads to the expression

MHðb; E; qÞ ¼ ffiffiffiffiffiffi
αG

p R
π

Z
d2Q
2π

~ΔHðQÞeiQ·b

×

�
E
ℏω

�
e
2iðϕ

q−ℏωE Q
−ϕqÞ − 1

�

− ðe2iðϕq−Q−ϕqÞ − 1Þ
�
; ð3:24Þ

where αG ~ΔHðQÞ is the (regularized) inverse Fourier trans-
form of ℜδ2ðbÞ in Eq. (3.18).
The main achievement of Eq. (3.24) is its independence

of the detailed structure of the H diagram because of the
factorization of the soft insertions in Q-space. Therefore,
it is the generalization of the soft-based representation of
the unified amplitude to the next-to-leading eikonal
exchange.

C. Soft-based representation
and eikonal resummation

We have just argued that the single-graviton emission
amplitude associated to H-diagram exchange is provided
by Eq. (3.24) which is directly expressible in terms of
the H-diagram amplitude in Q-space. We can even use the
z-representation for the phase transfers

e2iϕθ − e2iϕθ0 ¼ −2
Z

d2z
2πz�2

ðeiAz·θ − eiAz·θ
0 Þ; ðA ∈ R�Þ;

ð3:25Þ

and by exchanging the order of Q- and z-integrals, we
recast Eq. (3.24) in the form

M ¼ ffiffiffiffiffiffi
αG

p R
π
e−2iϕθ

Z
d2z
2πz�2

eibz·q

×

�
E
ℏω

�
Δ
�
b −

ℏω
E

bz

�
− ΔðbÞ

�

− ½Δðb − bzÞ − ΔðbÞ�
�
; ð3:26Þ

where Δ ¼ Δ0 þ ΔH and ΔHðbÞ ¼ R2=2b2, thus general-
izing the soft-based representation of Eq. (2.13) to the next-
to-leading (NL) term. We shall base on Eq. (3.26) the
subsequent formulation of our radiation model.
We note immediately, however, that Eq. (3.26) has a

purely formal meaning in the region jbz − bj ¼ OðRÞ,
because the H-diagram expression (3.18) breaks down
whenever R=b is not small. We are thus led to think that
we have to know something about the behavior of ΔðbÞ in
the large-angle regime b ∼ R before even writing the
representation (3.26) we argued for.
That is precisely what the reduced-action model—as

summarized in Sec. III A—provides for us. Indeed, it
consists in the resummation of the multi-H diagrams
(Fig. 8) of the eikonal, which is the set of two-body
irreducible diagrams without a rescattering subgraph. Such
diagrams are expected to share with the NL term the
property that the central subgraphs have energetic q0-type
exchanges, where jq0j is of the order of the Planck mass or

soft
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FIG. 10. Diagrammatic representation of the soft-based emission amplitude.

RADIATION ENHANCEMENT AND TEMPERATURE IN THE … PHYSICAL REVIEW D 95, 086003 (2017)

086003-13



larger, thus suppressing their contribution to soft insertions
with ω ∼ R−1 ∼m2

P=E.
For that reason, we think we can repeat the argument

with peripheral Regge insertions elaborated before and then
use the soft-Regge identities (3.21) to derive the external-
particles insertion formula (3.24) and the soft-based rep-
resentation (3.26). As a result, we are now able to look at
the integrals in Eq. (3.26) in a realistic way by setting

2ΔðbÞ ¼ 2δðbÞ
αG

¼ −2χb þ 1 −
1

tb
; ð3:27Þ

where δðbÞ is the irreducible eikonal function with ACV
resummation (after factorization of the IR part ∼ logL=b),
which extrapolates the NL behavior to small values of
b ∼ R. The latter is given in terms of the solution (3.8) for
the reduced-action model action, and tb ¼ tanh χb and χb
are determined by the matching condition of Eq. (3.7).
The expressions (3.27) and (3.8) are now well defined

for b2 > b2c ¼ 3
ffiffi
3

p
2
R2, where the role of the singularity at

b ¼ bc will be discussed soon. The result (3.26) contains
the resummed modulating function

ΦRðω; zÞ≡ E
ℏω

�
Δ
�
b −

ℏω
E

bz
�
− ΔðbÞ

�
− ½Δðb − bzÞ − ΔðbÞ�

≃ℏω≪E
− bΔ0ðbÞb̂ · zþ ΔðbÞ

− Δðb − bzÞ≡ΦR;clðzÞ ð3:28Þ
[yielding Φcl of Eq. (2.15) in the classical limit and the
large-b region], which generalizes the expressions (2.14)
and (2.23) for the leading term and enters the correspond-
ing soft field

hðλÞs ðω; zÞ≡ −
ΦRðω; zÞ
π2jzj2eiλϕz

: ð3:29Þ

The next step is to sum up all single-graviton emission
amplitudes from any of the hni ∼ αG ≫ 1 irreducible
eikonal exchanges with ACV resummation, by taking into
account two important effects: (a) the correct phase and
q-dependence for all various incidence angles and (b) the
rescattering of the emitted graviton with the fast particles
themselves.
Both effects can be taken into account by the generalized

b-space factorization formula explained in Sec. II C for the
leading graviton exchange. By replacingMel ¼ 2δ0 by 2δ,
the resummed soft field of Eq. (2.21) becomes

1

z�2
ΦRðω; zÞ

e2iδðb−ℏω
E bzÞ − e2i½δðbÞþℏω

E ðδðb−bzÞ−δðbÞÞ�

2i½δðb− ℏω
E bzÞ− δðbÞ− ℏω

E ðδðb− bzÞ− δðbÞÞ�

¼ 1

z�2
e2iδðbÞ

2iωR
½e2iωR E

ℏω½Δðb−ℏω
E bzÞ−ΔðbÞ� − e2iωR½Δðb−bzÞ−ΔðbÞ��;

ð3:30Þ

where we have canceled out the ΦR-function at the
numerator with the same factor in the denominator and
factored out the eikonal S-matrix e2iδðbÞ.
By applying the definition (2.24), the full graviton

emission probability amplitude becomes

Mλðb;ω;θÞ
eiλϕθ

¼ ffiffiffiffiffiffi
αG

p R
π

Z
d2z

2πjzj2eiλϕz

eibz·q

2iωR

× fe2iωR½Δðb−bzÞ−ΔðbÞ� − e2iωR
E
ℏω½Δðb−ℏω

E bzÞ−ΔðbÞ�g

≃ ffiffiffiffiffiffi
αG

p R
π

Z
d2z

2πjzj2eiλϕz

eibωz·ðθ−ΘsÞ

2iωR

× ðe−2iωRΦR;clðzÞ − 1Þ; ð3:31Þ

where ΘsðbÞ≡ −bΔ0ðbÞΘE ¼ ΘE=tb, ΘE ≡ −ð2R=bÞb̂,
and ΦR;cl is the classical limit of ΦR introduced in
Eq. (3.28).
We note that the ωR-dependent correction factor to naive

b-factorization takes into account in a simple and elegant
way both the incidence-angle dependence and elastic
rescattering with the incident particles including ACV
resummation, too.
One may wonder at this point about the role of the

rescattering contributions to the irreducible eikonal not
included here in δðbÞ and starting at order R4=b4 (Fig. 11).
The latter presumably have a massless three-body discon-
tinuity and have thus the interpretation of 2 → 3 → 2
transition in the rescattering process, leading to a recombi-
nation in a two-body state. This would imply taking into
account inelastic higher-order contributions to rescattering,
a feature which is outside the scope of the present paper.

D. Coherent state and correlation effects

The derivation of the coherent-state operator proceeds
now as in Sec. II D if we stick to the “linear” approxima-
tion, which neglects correlation effects. The only difference
is the replacement of δ0ðbÞ by αGΔðbÞ in the amplitude
Mλðb; ~qÞ of Eq. (3.31), so that we obtain

Ŝ¼ e2iδðbÞ exp
�Z

d3qffiffiffiffiffiffi
2ω

p 2i

�X
λ

Mλðb; ~qÞa†λð~qÞ þH:c:

��
:

ð3:32Þ

We shall base on Eq. (3.32) most of the subsequent
results. But we want to provide a preliminary discussion of

FIG. 11. The first rescattering diagram contributing to the
eikonal phase.
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the limits of that approximation and of the size of
correlations that we can envisage. That is important for
the ACV-resummed model, because we would like to
describe sizeable scattering anglesΘs ∼ R=b ∼Oð1Þ, while
approaching the collapse regime.
We start noticing that many-body correlations are

already present from the start in the many-graviton states
of Sec. II D and are in principle calculable. For instance, the
two-body correlation can be estimated from Eq. (2.29) and
is, order of magnitude like,

c12 ¼ M1M2ðjz1jω1Rjz2jω2RÞ=αG: ð3:33Þ

We note also that the factors jzij ¼ jxi=bj ∼ 1=
ffiffiffiffiffiffiffiffi
ωiR

p
are

small in the dominant integration region for radiation
(Sec. II E), so that c12 becomes of relative order

ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p
=E≃

1=αG ≪ 1 for ωiR ∼Oð1Þ. This means that, within our
assumptions, we can neglect finite-order correlations.
One may wonder, however, whether correlated emission

can be enhanced by multiplicity effects—not only those of
the exchanged gravitons (hni ∼ αG) but also those of the
emitted ones (hNi ∼ αGΘ2

s), a number which may be large,
and even more for Θs ¼ Oð1Þ.
One such effect is certainly present and is due to energy

conservation. Even if energy transfer is explicitly consid-
ered in the treatment of rescattering in Secs. II C and II D,
the kinematical constraints are not explicitly enforced. But
such constraints are needed, because the expected average
emitted energy hωi≡ E=hNi ¼ R−1Θ−2

s is of the order of
the so-called classical cutoff [13,19] and cannot be large if
Θs increases up to Oð1Þ. This means that the larger values
of ωR can be reached only for a smaller number of
gravitons, thus distorting the calculation of inclusive
distributions. That effect is therefore important but can
be included in the coherent state (3.32) and will be
discussed in Sec. IV C.
Another kind of multiplicity effect—not included in

(3.32)—comes from multigraviton emission by a single
exchange. A simple model for that is to consider soft
emission which, according to Ref. [7], Sec. IV, is described
by the operator eikonal

δ̂softðb; aqÞ ¼ αG

Z
d2qs
ð2πÞ2

eiq·b

q2s
Usoft

qsðaqÞ

Usoft
qsðaqÞ≡ exp

�
2

ffiffiffiffi
G

p Z
d3qffiffiffiffiffiffiffiffi
2ωq

p jqsj

×
sinðϕq − ϕqsÞ

jqjb ½a†λðqÞ − aλðqÞ�
�
: ð3:34Þ

Here, we can see the nonlinear structure of the operator
(3.34) as a “coherent state of coherent states” in the soft
limit. Its linear part agrees with the state (3.32) by the
approximate form of

M≃ ffiffiffiffiffiffi
αG

p ΘE

2π

sinðϕq − ϕqsÞ
jqj J0ðjqjbÞ; ð3:35Þ

which is valid in the region ðE=ℏωÞjqj ≫ jqsj ≫ jqj [19].
On the other hand, nonlinear effects in (3.34) are pretty
small, because the exchanged graviton coupling αG
affects only the qs-dependence and not the q-dependence.
Therefore, the single-exchangemultiplicity hN1i∼hNi=αG∼
OðΘ2

sÞ is down by a factor αG and yields a quite limited
enhancement, if any. By comparison, the nontrivial feature of
the state (3.32) is that, though being confined to one emitted
graviton per exchange, it takes into account all exchanged
gravitons' multiplicities and thus produces a reliable ωR
dependence.
To conclude, we stick in the following to the linear

coherent state (3.32) to describe the main radiation features,
but we introduce energy-conservation constraints also, to
better understand the large-ωR part when approaching the
collapse regime.

IV. FINITE-ANGLE RADIATION AND
APPROACH-TO-COLLAPSE

REGIME

A. Emission amplitude in the sizeable angle region

In the following, we concentrate on the analysis of the
amplitude (3.31) in the semihard frequency region ωR≳ 1,
because the very soft gravitons (ω ≪ b−1) are already well
described by the approach of Sec. II.
In that region, the behavior of (3.31) is quite sensitive to

the angular parameter ΘE ≡ 2R=b, which occurs in the
amplitude in two ways: in the overall coupling ΘE

ffiffiffiffiffiffi
αG

p
and in the explicit expression for the action, which is
actually most sensitive, because of the b ¼ bc branch cut
(Sec. III A). Note also the occurrence in the amplitude of
Δðb − bzÞ, which may be in the nonperturbative regime in
the integration region jb − bzj ≲ R in which its S-matrix
factor may be exponentially suppressed as in Eq. (3.11).
For the above reason, we shall cut off the rescattering

contributions by the requirement jb − bzj > bc. IfΔðbÞ is in
the perturbative regimeΘE ≪ 1, that change is subleadingby
a relative power of R2=b2, because of phase-space consid-
erations, and the approach remains perturbative. If instead
0 < ðb − bcÞ=b ≪ 1, the cutoff procedure can be extended
to virtual corrections, by unitarizing the coherent-state
operator, as usual, but our approach becomes nonperturba-
tive. Finally, we shall not discuss at all—in this paper—the
subcritical case b ≤ bc by limiting ourselves to the b → bþc
approach-to-collapse regime. Considering b < bc would
raise a variety of physical effects at both the elastic and
inelastic levels that deserve a separate investigation.
Since we limit ourselves to the b ≥ bc case, we do not

expect real problems with S-matrix unitarity, because the
tunneling suppression of the elastic channel in Eq. (3.11) is
absent. Nevertheless, the associated radiation shows quite
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interesting features, especially in the approach-to-collapse
regime b → bþc , that will be illustrated in the following.
Starting from the energy emission distribution of type

(2.40)

dEGW

dω
¼ 2Gs

Θ2
E

π2

Z
d2z
jzj4

�
sinωRΦR;clðzÞ

ωR

�
2

ðωR≳ 1Þ;

ð4:1Þ
we shall therefore distinguish two cases, in the large ωR
region:
(a) ωR ≫ ð1 − b2c

b2Þ
−3=2 ≡ ð2βÞ−3=2: That is the truly small-

angle regime, far away from the critical region

1 − b2c
b2 → 0, or not too close to it. In that case, ωR

is very large, which means very small z’s
[jyj2 ≃ jxj2= ffiffiffi

β
p ≃Oð1=ωRÞ], so that the qualitative

features of the radiation can be derived from the small-
z approximation of the modulating function

ΦR;cl ≃ −
1

2
½D2ðbÞx2 −D1ðbÞy2� þOðjzj3Þ; ð4:2Þ

where we have used the expansion

ΦR;cl ¼ ΔðbÞ − Δðjb − bzjÞ − Δ0ðbÞb · z ð4:3aÞ

≃ −
1

2

∂2Δ
∂bi∂bj b

2zizj

¼ 1

2
½−Δ00ðbÞb2b̂ib̂j − bΔ0ðbÞðδij − b̂ib̂jÞ�

ð4:3bÞ
yielding [by use of Eqs. (3.7) and (3.8)]

D1 ¼ −bΔ0ðbÞ ¼ 1

tb
; D2 ¼ b2Δ00ðbÞ ¼ 1þ t2b

tbð3t2b − 1Þ :

ð4:4Þ
Here, we note that D1 ≃D2 ≃ 1 for b ≫ bc,
thus recovering Eq. (2.45) discussed before,
while D1 ≃

ffiffiffi
3

p
, D2 ≃

ffiffiffi
2

p ð1 − b2c
b2Þ

−1=2 for β ≪ 1

[Eq. (3.12)], and thus D2 diverges for β → 0. Corre-
spondingly, we get a formula similar to (2.40),

dEGW
cl

dω
¼ 2Gs

Θ2
E

π

Z
d2z
πjzj4

�
sin ðωR

2
ðD2x2 −D1y2ÞÞ

ωR

�
2

;

ð4:5Þ

where, however, we should assume jxj2= ffiffiffi
β

p
≪ jxj3=2

(or jxj ≪ β) whenever β ≪ 1, because the actual
behavior of Δðb − bzÞ is that of a branch cut
with index 3=2, with a small convergence radius in
the x-variable. We should therefore require ωR ≫
β−3=2 ≫ 1, as stated, so that such a regime actually
disappears in the limit β → 0.

(b) 1 ≪ ωR ≪ β−3=2: That region opens up in the critical
regime 0 < β ≪ 1 and is dominant for β → 0. How-
ever, the quadratic small-z expansion is no longer valid
in the x-variable (because of the divergent coefficient),
and the dominant approximation in the jyj≃ jxj ≪ 1
region becomes of the type

−ΦR;clðzÞ≃ −Φ1ðxÞ

≡ 4

�
1

3
ðβ − xÞ3=2 − 1

3
β3=2 þ 1

2
x

ffiffiffi
β

p �

≃jxj≪β x2

2
ffiffiffi
β

p ; ð4:6Þ

where we have neglected, for simplicity, the
y-dependence. We thus obtain what we shall call
the one-dimensional approximation to ΦR, which is
easily derived by expanding all terms in the expression
(3.28) of ΦR;cl for 0 < β ≪ 1, both in β and in z
and making the ðb − bcÞ3=2 behavior explicit by
Eq. (3.12).

The striking feature of (4.6) is that, in the β ≪
jxj ≪ 1 region, the dominant small-x behavior is
Φ1 ≃ ð4=3Þjxj3=2, reflecting the branch cut of the
ACV-resummed action, which is responsible for the
very large second derivative (large tidal force) in
(4.3b). By inserting that behavior in (4.1), the corre-
sponding distribution becomes

1ffiffiffi
s

p dEGW

dω

				
enhanced

¼ Θ2
c

πω

�
ωR
3

�
1=3

Γð2=3Þ;

Θ2
c ≡ Θ2

EðbcÞ ¼
8

3
ffiffiffi
3

p ð4:7Þ

and falls off as ðωRÞ−2=3 only. That radiation enhance-
ment is a direct consequence of the critical index 3=2
of the action branch cut at b ¼ bc.

We thus realize that, with increasing R=b, we quit the
small-angle, weak-coupling regime a, in which the radi-
ated-energy fraction is small (of order Θ2

E) and shows at
most a logðωMRÞ dependence with an upper frequency
cutoff ωM, and we enter the strong-coupling regime b, in
which such a fraction increases like Θ2

EðωMRÞ1=3, thus
endangering the energy-conservation bound.
The possible violation of energy conservation—which is

nevertheless taken into account at the linear level in the ω’s
for rescattering—is related to the fact that the kinematical
constraints are not explicitly incorporated in multigraviton
production amplitudes and that multiparticle correlations
are neglected, also. We shall introduce such constraints in
Sec. IV C.

B. Radiation enhancement and scaling

1. Small-z radiation spectrum

In this section, we present plots of the resummed
amplitude and of the corresponding radiated-energy
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distribution obtained by numerical evaluation. In this way,
we confirm the asymptotic behaviors derived in Sec. IVA
and visualize the shape of such quantities in the transition
regions.
Let us start by displaying the main features of the

gravitational wave spectrum obtained with the ACV
resummation in the classical limit ℏω ≪ E but close to
the collapse region b≳ bc. For ωR≳ 1, this is obtained by
substituting the reduced-action model field (3.28) [actually,
its classical limit ΦR;cl of Eq. (4.3a)] in place of its leading
counterpart Φ inside Eq. (2.40). The results for various
values of β are shown in Fig. 12. According to the estimates
in Sec. IVA, at smaller and smaller β ≪ 1, there is a larger
and larger intermediate region 1 ≪ ωR ≪ β−3=2 of a
reduced decrease of the frequency spectrum ∼ω−2=3,
followed by the typical asymptotic ω−1 falloff at
ωR ≫ β−3=2. In order to better discriminate between the
two regimes, the spectrum has been multiplied by ðωRÞ2=3,
so that in the intermediate enhanced region, the curves are
almost flat.
In the first plot of Fig. 12, the black dotted-dashed curve

(β ¼ 1=2) represents the small-angle spectrum described in
Sec. II E. Decreasing the value of β, we obtain the solid
curves (red, magenta, blue, and green), and we observe the
expected enhancement that amounts to a numerical factor
of order 1 for ωR≲ 1 but becomes much more important
for large ωR≳ 1. It is also clear that the extension of the
enhanced regime increases while decreasing β. In the limit
β → 0, the rescaled spectrum approaches the almost hori-
zontal dashed line.
It is apparent that the shapes of the curves are quite similar

at large ωR, including the transition region between the
enhanced and asymptotic regimes. By rescaling the inde-
pendent variable ωR → ωRβ3=2, the curves at small β go on
top of eachother, as shown in the right plot of Fig. 12. In other
words, the asymptotic shape of the spectrum is a function of

the single variable a≡ ð4βÞ3=2ωR. This scaling property
can be understood by exploiting the small-z expansion (4.6)
that, substituted into Eq. (2.40), provides the approximate
representation

1

GsΘ2
E
ðωRÞ2=3dE

dω

≃2

π
a−1=3

Z
∞

−1
dt
sinfa½1

3
ðð1þ tÞ3=2−1Þ− t

2
�g

jtjð1þ ffiffiffiffiffiffiffiffiffi
1þ t

p Þ →
a→0 2Γð2=3Þ

31=3π

a≡ð4βÞ3=2ωR; ð4:8Þ

which depends only on the scaling variable a. This function
is displayed in the black dashed line on the right plot of
Fig. 12, and it describes well the scaling behavior in the
enhanced region a ≪ 1 and reasonably well the large-ωR
region a ≫ 1.

2. Angular behavior

The angular behavior of graviton radiation associated to
large scattering anglesΘs ∼ 1 can be obtained by numerical
integration of the amplitude (3.31). However, in the main
region of the spectrum, namely ωR≳ 1, it can be more
conveniently described by using the small-z approximation
(4.2) of the modulating function ΦR;cl. The main point here
is that the two dispersion coefficientsD1 andD2, which are
equal for the small scattering angle, become more and more
different when approaching the critical angle Θc. This fact
causes the ensuing distribution of graviton radiation to be
more and more directional, still concentrated at θ≃Θs, but
with a larger dispersion, in particular along the x-direction,
i.e., that of the scattering plane. This is clearly seen in
Fig. 13, where we compare on the A≡ ffiffiffiffiffiffiffi

ωR
p θ−Θs

jΘsj plane the
“isotropic” radiation (a) when D1 ¼ D2 ¼ 1 with the
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FIG. 12. Left: the resummed spectrum for ωR≳ 1 in the approach-to-collapse regime b → bc (β → 0) for various values of β ranging
from 1=2 (b → ∞) to 0 (b → bc). The spectrum has been multiplied by ðωRÞ2=3 in order to highlight the enhancement in the
intermediate regime 1 ≪ ωR ≪ β−3=2, followed by the asymptotic 1=ω falloff. Right: some curves have been shifted horizontally and
somewhat magnified in the neighborhood of the transition region, showing the scaling behavior with respect to the variable
a ¼ ð4βÞ3=2ωR; the black-dashed curve represents the one-dimensional approximate representation (4.8). As usual, spectra are reduced
by the factor k ¼ ðGsΘ2

EÞ−1.
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“anisotropic” case (b) D1 ¼
ffiffiffi
3

p
, D2 ¼ 32 (corresponding

to β≃ 0.001).
We see, first of all, that in the collapse region

[Fig. 13(b)], the radiation is strongly enhanced, still
keeping its correlation with the outgoing particle 1’
in the overall picture of the two jets. Furthermore, the
larger dispersion in θx compared to θy gives a rationale for
the one-dimensional approximation (4.8) in the conju-
gated variables x and y. Finally, such features are valid for
any given frequency range Δω and are thus somewhat
independent of their relative normalization, which is
possibly affected by energy-conservation constraints, to
be discussed next.

C. Energy conservation and temperature

In order to take into account energy-conservation
constraints, we shall calculate coherent-state amplitudes
and distributions by setting—event by event—the explicit
energy bound

P
N
i¼1 ℏωi < E, in which we refer to a

single “jet,” say along p1.
3 Such bounds are effectively

extended to virtual corrections by a factorization
assumption, as proposed by Ref. [23] on the basis of
the Abramovsky Gribov Kancheli (AGK) [34] cutting
rules (see also Sec. 4.3 of Ref. [5]).
More explicitly, we modify the original independent-

particle distributions (2.37) in a radiation sample of
energy up to E by introducing the corresponding kin-
ematical bounds together with a rescaling factor 1=NðEÞ
in probability [or 1=

ffiffiffiffiffiffiffiffiffiffiffi
NðEÞp

in amplitude] to be deter-
mined by unitarity. For instance, by considering for
simplicity the ω-variables only, we define the energy-
conserving distributions

~P0 ¼
P0

NðEÞ ;

d ~PðfωiNigÞ ¼
P0

NðEÞ
Y
i

½pðωiÞΔðωiÞ�Ni

Ni!

× Θ
�
E −

X
i

ℏωiNi

�
; ð4:9Þ

where the pðωÞ density is given by (2.38), with the
amplitude Mλðb; ~qÞ in (3.31). We have also discretized
the Fock space in regions of extension ΔðωiÞ, containing a
number of gravitons Ni each.
The normalization factor NðEÞ > 0 in (4.9) is deter-

mined by the unitarity condition
P

fNig ~PðfNigÞ ¼ 1 and
takes the form [cf. Eq. (2.37)]

NðEÞ ¼
Z þi∞

−i∞

dλ
2πi

eλE

λþ ε
exp

�Z
∞

0

dωpðωÞ½e−ωλ − 1�
�
;

ð4:10Þ
which carries the energy-conservation constraints and is
obtained by summing over all events the (positive) partial
probabilities. We stress the point that E in Eq. (4.10) is the
energy available for the measures being considered, so that
E ¼ ffiffiffi

s
p

=2 if we consider the whole jet, but becomesffiffiffi
s

p
=2 − ℏω if we consider events associated to an observed

graviton ω in that jet, and so on. On the basis of Eqs. (4.9)
and (4.10), it is straightforward to obtain, for the inclusive
distributions,

dN
dω

¼ pðωÞNðE − ℏωÞ
NðEÞ ;

d2N
dω1dω2

¼ pðω1Þpðω2Þ
NðE − ℏω1 − ℏω2Þ

NðEÞ ð4:11Þ

and so on. We notice also that virtual corrections are
explicitly incorporated in (4.10) via the normal ordering of

FIG. 13. Emission pattern of gravitational radiation for λ ¼ −2 on the tangent space centered at Θs, parametrized by A≡ ffiffiffiffiffiffiffi
ωR

p θ−Θs
jΘsj .

(a) the isotropic case D1 ¼ D2 discussed in Sec. II E; (b) anisotropic case with D1 ¼
ffiffiffi
3

p
, D2 ¼ 32.

3The point is that the energy of the forward (backward)
gravitons is essentially taken at the expenses of the sole particle
1 (2).
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the state (3.32) [cf. Eq. (2.36)] and that NðEÞ is actually
infrared safe.
The main point is now that the inclusive distributions

(4.11) carry NðEÞ-dependent correction factors due to the
phase-space restrictions E → E − ℏω;…, and so on, that
will turn out to suppress the large-ωR region by an expo-
nential cutoff. Arguments for a cutoff are provided also in the
approach of Ref. [16] to the trans-Planckian scattering
without impact parameter identification of Ref. [14].
In order to estimate NðEÞ, it is convenient to rewrite it in

terms of the quantity (λ≡ Rτ),

hℏωiτffiffiffi
s

p
=2

≡ FðτÞ ¼
Z

∞

0

dω
ℏωffiffiffi
s

p
=2

pðωÞe−ωRτ; ð4:12Þ

which represents the (exponentially weighted) radiated-
energy fraction, given in our case (3.31) by [cf. Eq. (4.1)]

FðτÞ ¼ Θ2
E

π2

Z
d2z
jzj4

Z
∞

0

sin2ðωRΦR;clÞ
ðωRÞ2 e−ωRτdðωRÞ: ð4:13Þ

We then obtain from Eq. (4.10) (αG ¼ R
ffiffiffi
s

p
=2 ¼ Gs) the

expression

NðEÞ ¼ const
Z

εþi∞

ε−i∞
dτ exp

�
ERτ − log τ

− αG

Z
τ

0

Fðτ0Þdτ0
�
; ð4:14Þ

and we proceed to estimate it by the saddle-point method.
The saddle-point value τ̄ > 0 is determined by the equation
(E ¼ ffiffiffi

s
p

=2)

Fðτ̄Þ ¼ 1 −
1

αGτ̄
; ð4:15Þ

which represents the share between emitted (lhs) and
preserved (1=αGτ̄) energy fractions at the saddle-point
exponent τ̄. Fluctuation corrections are also calculable
(Appendix A) and will be discussed shortly.

The numerical evaluation of (4.15) (Fig. 14) is better
understood by working out Eq. (4.13) in the form

1 −
1

αGτ̄
¼ Fðτ̄Þ ¼ Θ2

E

π2

Z
d2z
jzj4 jΦðzÞjI

�
2jΦðzÞj

τ̄

�
; ð4:16Þ

where, by explicit integration,

tan χIðtan χÞ ¼ χ tanðχÞ þ 1

2
logðcos2χÞ: ð4:17Þ

The result shows that τ̄ ∼Oð1=αGÞ in the small-angle
region (b ≫ R), while τ̄ ¼ Oð1Þ in the collapse regime.
In between, the radiated-energy fraction varies from 0 to 1.
In order to understand the role of τ̄ for the energy-

conservation cutoff, we estimate the inclusive distribution
(4.11) at the saddle point, and we find

dN
dω

¼ pðωÞe−ðτ̄þΔτÞωR; ð4:18Þ

where the τ̄ term in the exponent comes from the explicit
energy dependence of NðE − ωÞ and the correction Δτ
comes from the implicit one through τ̄ðE − ωÞ, to which—
by τ̄-stationarity—mostly fluctuations contribute. We show
in Appendix A that this kind of correction is sizeable when
τ̄ ¼ Oð1=αGÞ is small (where, however, the cutoff is not
really important), while it is small when τ̄ ¼ Oð1Þ is
essential, that is, in the approach-to-collapse regime. The
cutoff exponent τ̄ has already been used in the definitions
(4.13) and (4.16).
In more detail, it is useful to distinguish a very small-

angle regime Θ2
s ≪ Θ̄2 ≡ 1= logαG, in which Θ̄2 acts as

threshold for important energy-conservation effects like
energy fractions of order 0.5, say [Figs. 14(b) and
Eq. (2.42)]. Below it, the radiated fraction ∼Θ2

s is very
small, and so is τ̄ ∼ 1=αG. Furthermore, the exponent τ̄ þ
Δτ ∼ Θ2

s=αG is even smaller than τ̄ because of cancellations
with the term Δτ (Appendix A), thus leading to negligible
conservation corrections.
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On the other hand, for Θ2
s above Θ̄2, both the exponent

part τ̄ and the radiated fraction increase (Fig. 14) up toOð1Þ
for Θ2

E → Θ2
c ¼ Oð1Þ, while Δτ=τ̄ becomesOð1=αGÞ ≪ 1,

that is, small.
In that case—of strong coupling and radiation

enhancement—the whole energy is radiated off, and this
fact fixes τ̄ ¼ τc ¼ 1.2 in a rather precise way. Furthermore,
the same exponent (with Δτ=τ̄ ∼ 1=αG ≪ 1) occurs in all
the graviton distributions (4.11) which—because of such
approximate universality—turn out to be approximately
factorized and thusweakly correlated, even after the inclusion
of energy conservation. In other words, while the rescaling
factor

ffiffiffiffiffiffiffiffiffiffiffi
NðEÞp

keeps the phase relations of the coherent state
(3.32) among the various ω-bins, it also introduces, by the
E-dependence of (4.10) and the ω-dependence of (4.11), an
almost universal frequency cutoff parameter R−1, a “quasi-
temperature” we would say, in the approach-to-collapse
regime. Numerically, the exponent τcR turns out to be of
the order of the inverse Hawking temperature for a black hole
mass≃0.1

ffiffiffi
s

p
, notably smaller than

ffiffiffi
s

p
, and the correspond-

ing spectrum—in each one of the two jets with E ¼ ffiffiffi
s

p
=2 of

which our radiation consists—is given in Fig. 15.
Our semiclassical method does not allow, at present,

a precise interpretation of the features just mentioned in
terms of black hole physics, mostly because of our
ignorance of what a black hole really is in quantum
physics. Nevertheless, we think that, applying our soft-
based representation to the approach-to-collapse regime,
we have constructed a coherent radiation sample which
shares some of its properties with a Hawking radiation, thus
suggesting a deeper relationship. That fact, because of

coherence, goes in the direction of a quantum theory
overcoming the information paradox, even if the details
of such a relationship are not known yet.

V. OUTLOOK

The main technical progress presented here is the
extension of the semiclassical graviton radiation treatment
in trans-Planckian scattering to cover finite scattering
angles ∼R=b. That result is in turn based on the ACV
eikonal resummation and on the validity—for such a
reduced-action model—of the soft-based representation
of the radiation amplitude argued for in Sec. III.
After such steps, we are really able to follow the

approach to the classical collapse regime by a fully explicit,
unitary coherent state, given the fact that collapse is
signalled by a branch cut singularity of the action at b ¼
bc ¼ OðRÞ with some scattering angle Θc ¼ Oð1Þ and
branch-cut index 3=2. While bc and Θc are expected to be
somewhat model dependent, the index 3=2 is expected to
be robust because it yields the first nonanalytic behavior, by
the action stationarity in the angular parameter tb.
The first striking feature that we notice is that, because of

the index 3=2, the action has very large second derivatives
(tidal forces) and thus yields a radiation enhancement
causing almost the whole energy be radiated off for
b → bþc . Actually, it also requires the enforcement of
the kinematical constraints in order to ensure energy
conservation.
Energy-conservation constraints (Sec. IV) are introduced

in real emission event by event and transferred to virtual
corrections in some approximation which amounts to a
factorization assumption, natural for the weakly correlated
coherent state that we have constructed. The outcome is
that energy-conservation effects, which are negligible for
Θs ≪ 1, are instead quite important in the approach-to-
collapse regime and provide an exponential suppression of
the large-ωR region. The latter is approximately universal;
that is, it occurs in all the inclusive distributions, with small
corrections and weak correlations, both depending on the
parameter 1=αG, where αG ¼ Gs=ℏ ≫ 1 is the magnitude
of the final multiplicity.
The conclusive features just mentioned show that our

radiation sample (corresponding to two jets with masses up
to

ffiffiffi
s

p
=2)—though coherent by construction—is charac-

terized by an almost universal, exponential frequency
cutoff close to 1=R, which plays a role analogous to the
Hawking temperature (at a mass notably smaller than

ffiffiffi
s

p
).

Such a fact suggests a deeper relationship with the possible
collapse dynamics, the boundaries of which are, however,
difficult to pinpoint, in view of both our approximations
and our ignorance about the nature of a quantum black
hole. We nevertheless think, because of coherence, that our
results go in the direction of a quantum theory overcoming
the information paradox, even if details of their relationship
to black hole physics are not known yet.

FIG. 15. Frequency spectrum of graviton radiation in various
contexts. Three curves have no energy-conservation constraints
and correspond to large b=R where subleading effects are
negligible (blue), b close to the critical parameter bc where
subleading effects causes the enhancement (thin red), and the
limit b → bþc (dashed black). The last curve (thick red) shows the
suppression due to energy-conservation constraints in the case of
b close to bc.
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APPENDIX A: FLUCTUATION CORRECTIONS
TO INCLUSIVE DISTRIBUTIONS

It is straightforward to introduce a quadratic fluctuation
expansion in Eq. (4.14) to yield the normalization factor

NðEÞ ¼
Z

τ̄þi∞

τ̄−i∞

dτ
2πi

exp

�
ERτ̄ − log τ̄ − αG

Z
τ̄

0

Fðτ0Þdτ0

þ 1

2
ðτ − τ̄Þ2

�
1

τ̄2
− αGF0ðτ̄Þ

��

≃ const exp

��
ERτ̄ − αG

Z
τ̄

0

Fðτ0Þdτ0
�

−
1

2
logð1 − αGτ̄

2F0ðτ̄ÞÞ
�
: ðA1Þ

We note that the log τ̄ term cancels out, so that the overall
size of fluctuations is determined by the function

fðτ̄Þ≡ −αGτ̄2F0ðτ̄Þ≃
( Θ2

E
2π αGτ̄ ðΘE ≪ 1Þ
1
3
αGτ̄

2=3τ1=3c ðΘE ≃ ΘcÞ:
ðA2Þ

Although this function is pretty small (large) in the small-
(large-)angle regime, its relative importance with respect to
the exponent part τ̄ goes just in the opposite. In fact, in
the small-τ̄ regime (where the cutoff is unimportant), the
expansion of the remaining log term produces contributions
of order comparable to those in square brackets.
To better understand this point, we combine Eq. (A1)

with the saddle-point equations

ER ¼ αGFðτ̄Þ þ
1

τ̄
; τ̄0ðEÞ ¼ −Rτ̄2

1

1þ fðτ̄Þ ðA3Þ

to get, after some algebra,

d logNðE − ωÞ
dE

				
ω¼0

¼ Rτ̄ðEÞ þ ∂ logN
∂ τ̄

				
τ̄ðEÞ

τ̄0ðEÞ

¼ Rτ̄ðEÞ
�

fðτ̄Þ
1þ fðτ̄Þ þ

τ̄f0ðτ̄Þ
2ð1þ fðτ̄ÞÞ2

�

¼ Rτ̄

�
1þ τ̄

2

∂
∂ τ̄
��

f
1þ f

�
: ðA4Þ

Consider first the strong coupling regime in which
τ̄ ¼ Oð1Þ. It is clear that fðτ̄Þ is OðαGÞ, so that

dN
dω

≃ pðωÞe−ωRðτ̄þΔτÞ ≃ pðωÞe−ωRτ̄ ðA5Þ

with a correction

Δτ
τ̄

¼
�
1þ τ̄

2

∂
∂ τ̄
��

−1
1þ f

�
; ðA6Þ

which is small, Δτ=τ̄ ¼ Oð1=αGÞ, leading to an approx-
imately universal exponent τ̄.
On the other hand, in the weak coupling regime,

ΘE ≪ 1, τ̄ is small, starting Oð1=αGÞ, so that f ¼
OðΘ2

EÞ is small, too. As a consequence, relative corrections
are large, so as to allow cancellations with the leading term
and an even smaller exponent. That is fortunately unim-
portant, because energy-conservation corrections are
small in that regime. For instance, in the regime Θ2

E ≪ 1
and τ̄ ¼ Oð1=αGÞ, we get

τ̄ þ Δτ≃ τ̄
f

1þ f
¼ OðΘ2

E=αGÞ; ðA7Þ

yielding negligible corrections to the naive inclusive dis-
tribution. We conclude that for ΘE ≪ 1, inclusive distri-
butions avoid the energy-conservation cutoff, while for
ΘE ≃ Θc ¼ Oð1Þ, such a cutoff is provided by τ̄ and is
approximately universal. The final multiplicity is provided
by (A5) and is of OðαGÞ with a finite coefficient.

APPENDIX B: ONE-DIMENSIONAL INTEGRAL
REPRESENTATION OF THE AMPLITUDE

AT LARGE ωR

We want to give a simple representation of the graviton
emission amplitude for large ωR ≫ 1. According to the
discussion in Sec. II E, the emission amplitude M is
dominated by the small-z region, where the modulation
function ΦR can be approximated by its quadratic expan-
sion (4.2). We can therefore expressM in terms of the two-
dimensional complex integral

IðAÞ ¼
Z

d2Z
2πi

eiðZA�þZ�AÞ

Z�2 ½eiðD2x2−D1y2Þ − 1�;

ðZ ¼ xþ iyÞ; ðB1Þ

as in Eq. (2.45). For the resummed amplitude, we note the
presence of the two dispersion coefficients D1 and D2 that
are different for finite b.
Our aim here then is to provide a simple representation of

IðAÞ. Gaussian integration is possible by eliminating the
double pole by derivation with respect to A:
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−
∂2

∂A2
IðA; A�Þ ¼

Z
dxdy
2πi

eið2xA1þ2yA2Þ½eiðD2x2−D1y2Þ − 1�

¼ 1

2i
ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

p e−i
A2
1

D2
þi

A2
2

D1

¼ 1

2i
ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

p e−i
ðAþA�Þ2

4D2
−iðA−A

�Þ2
4D1

¼ eiA
þA−

2i
ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

p ;

A� ≡ A2ffiffiffiffiffiffi
D1

p � A1ffiffiffiffiffiffi
D2

p : ðB2Þ

The integral can be reconstructed if we knew the boundary
conditions.
An alternative method is to perform one of the x, y

integrals in (B1) by noticing that the exponent is bilinear in
ξ; η≡ ffiffiffiffiffiffi

D2

p
x ∓ ffiffiffiffiffiffi

D1

p
y, so that one variable ξ or η can be

kept fixed and real, while the other is complexified and
deformed on the pole. By using

x ¼ ξþ η

2
ffiffiffiffiffiffi
D2

p ;

y ¼ η − ξ

2
ffiffiffiffiffiffi
D1

p ;

x − iy ¼ ξdþ ηd�

2
ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

p ;

d≡ ffiffiffiffiffiffi
D1

p
þ i

ffiffiffiffiffiffi
D2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 þD2

p
eiχ ;

2z · A ¼ A1

ξþ ηffiffiffiffiffiffi
D2

p þ A2

η − ξffiffiffiffiffiffi
D1

p

¼ ξ

�
A1ffiffiffiffiffiffi
D2

p −
A2ffiffiffiffiffiffi
D1

p
�

þ η

�
A1ffiffiffiffiffiffi
D2

p þ A2ffiffiffiffiffiffi
D1

p
�

and integrating over η at fixed real ξ at the double
pole η ¼ e−i2γξ, γ ¼ π=2 − χ, we obtain (in the case
Aþ > 0)

I ¼
Z

dξdη
4πi

ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

p eiηξ − 1

ðξdþ ηd�Þ2 4D1D2e
iη



A1ffiffiffiffi
D2

p þ A2ffiffiffiffi
D1

p
�
þiξ



A1ffiffiffiffi
D2

p − A2ffiffiffiffi
D1

p
�

¼
Z

0

−∞
dξ

2i
ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
d�2

½eiξe−i2γðξþAþÞ−iξA−ðξþ AþÞΘðξþ AþÞ − eiξðe−i2γAþ−A−ÞAþ�

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
D1 þD2

�
e−i2γAþ

e−i2γAþ − A− − ie−i2γAþ2

Z
1

0

dρð1 − ρÞe−ie−i2γAþ2ρð1−ρÞþiρAþA−

�
: ðB3Þ

By performing a partial integration of the second term (so as to subtract the term linear in ρ of the integrand), we finally
obtain

I ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
D1 þD2

�
1

2

�
eiA

þA− −
A− þ Aþe−i2γ

A− − Aþe−i2γ

�
−
i
2
AþðAþe−i2γ þ A−Þ

Z
1

0

dρe−i½Aþ2e−i2γρð1−ρÞ−AþA−ρ�
�

¼ C
2

�
e−

i
2
ðA2þ ~A2Þ − i

A
~A
þ iA

Z
A

−i ~A
dA0e− i

2
ð ~A2þA02Þ

�
ðB4Þ

with the following variables:

A≡ iffiffiffi
2

p ðAþe−iγ þ A−eiγÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 þD2

2D1D2

s �
Aþ A� D1 −D2

D1 þD2

�
; ðB5Þ

~A≡ 1ffiffiffi
2

p ðAþe−iγ − A−eiγÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

D1 þD2

s
A� ðB6Þ

A0 ≡ −i ~Aþ i
ffiffiffi
2

p
Aþe−iγρ; C ¼ sinð2γÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
D1 þD2

:

ðB7Þ

Finally, an integration by parts shows that I is identically
given by

I ¼ −C
A
2

Z
A

−i ~A

dA0

A02 e
− i
2
ð ~A2−A02Þ∶ ðB8Þ

(i) It is easily verified that Eq. (B8), with the identi-
fication (B5), is the solution of the differential
equation (B2) with boundary condition Ain ¼ −i ~A.

(ii) If D1 ¼ 1 ¼ D2, as in the case of the emission
amplitude discussed in Sec. II E, C ¼ 1, A ¼ A,
and ~A ¼ A�. In particular, Eq. (B8) reduces to
Eq. (2.47).

(iii) A and ~A are not complex conjugate for
D1 ≠ D2.
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(iv) The amplitude vanishes when the integration limits
coincide, i.e., A ¼ −i ~A, corresponding to Aþ ¼
A2=

ffiffiffiffiffiffi
D1

p þ A1=
ffiffiffiffiffiffi
D2

p ¼ 0, or equivalently ϕA ¼ −γ.
In the limit D1 ¼ D2, such a nodal line corresponds

to the azimuthal direction ϕA ¼ −π=4, while γ
becomes possibly small for D1 ≪ D2, as depicted
in Fig. 13.
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