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We generalize the semiclassical treatment of graviton radiation to gravitational scattering at very large
energies /s > mp and finite scattering angles ©,, so as to approach the collapse regime of impact
parameters b = b, ~ R = 2G+/s. Our basic tool is the extension of the recently proposed, unified form of
radiation to the Amati Ciafaloni Veneziano (ACV) reduced-action model and to its resummed-eikonal
exchange. By superimposing that radiation all over eikonal scattering, we are able to derive the
corresponding (unitary) coherent-state operator. The resulting graviton spectrum, tuned on the gravitational
radius R, fully agrees with previous calculations for small angles ®; < 1 but, for sizeable angles
0,(b) <O, = O(1), acquires an exponential cutoff of the large wR region, due to energy conservation, so
as to emit a finite fraction of the total energy. In the approach-to-collapse regime of b — b, we find a
radiation enhancement due to large tidal forces, so that the whole energy is radiated off, with a large
multiplicity (N) ~ Gs > 1 and a well-defined frequency cutoff of order R~!. The latter corresponds to the
Hawking temperature for a black hole of mass notably smaller than /.
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I. INTRODUCTION

The investigation of trans-Planckian—energy gravita-
tional scattering performed since the 1980s [1-8] and
applied to the collapse regime [9-12] has been recently
revived at both the classical [13] and quantum levels
[14,15] with the purpose of describing the radiation
associated to extreme energies and of gaining a better
understanding of a possibly collapsing system. A bridge
between the different approaches of Refs. [14,15] has also
been devised [16].

Here, we follow essentially the ACV path [5,7-9], that is
mostly an effective theory based on s-channel iteration
(eikonal scattering) and motivated by the smallness of
fixed-angle amplitudes in string gravity [4] and by the high-
energy dominance of the spin-2 graviton exchange, at small
momentum transfers [1-3]. In fact, a key feature of eikonal
scattering is that the large momentum transfers built up at a
fixed scattering angle (e.g. the Einstein deflection angle
®r =2R/b)—R = 2G /s being the gravitational radius—
is due to a large number (n) = Gs/h = ag > 1 of single
hits with very small scattering angle 0,, ~2/bE. By
following these lines, ACV [8] proposed an all-order
generalization of the semiclassical approach based on an
effective action [6,17], that allows one in principle to
compute corrections to the eikonal functions depending on
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the expansion parameter R>/b* [by neglecting, in string
gravity, the smaller ones O(I2/b%) [5,18] if [, < I, < R].
In its axisymmetric formulation, the eikonal resummation
reduces to a solvable model in one-dimensional radial
space, that was worked out explicitly in Ref. [9]. Such a
reduced-action model allows one to treat sizeable angles

R/b, up to a singularity point b, = 1/3v/3/2R where a
branch point of critical index 3/2 occurs in the action, as
signal of a possible classical collapse.

The main purpose of the present paper is to extend the
radiation treatment of Refs. [15,19] to larger angles, by
applying it to the ACV-resummed eikonal, in order to
achieve comparable progress at the radiation level. We shall
then use it to study the extreme energy regime of a possible
classical collapse b — b ~ R.

Let us recall that the main qualitative understanding of
Ref. [15], compared to previous approaches, was to
disentangle the role of the gravitational radius R in the
radiation process. In fact, by superimposing the radiation
amplitudes associated to the various eikonal exchanges
and by combining the large number (n) ~a; = ER of
emitters with the relatively small energy fraction Aw/E,
Ciafaloni Colferai Veneziano (CCV) found that the
relevant variable becomes wR, which is thus needed
to describe the interference pattern of the whole ampli-
tude (Sec. II). In the present paper, we follow the same
strategy, by replacing the leading eikonal (single-graviton
exchange) by the resummed one (Sec. III).
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There is, however, an important technical point to be
understood. The single-exchange radiation amplitude was
determined in Refs. [15,19] by unifying in the E > hw
regime the Regge region of large emission angles with the
soft one. Such a unifying relationship involves a simple
rescaling £ — Aw of the soft amplitude and is exact for
single-graviton exchange. Here, we wish to generalize the
soft-based representation so obtained to all subleading
eikonal contributions. No real proof of that statement is
available yet. Nevertheless, we shall argue in Sec. III that,
starting from the H diagram [7], the dominant Regge
contributions are confined to the deep fragmentation
regions of the incoming particles, thus allowing the
approximate use of the unifying relationship mentioned
before and of the ensuing soft-based representation.

By entering the large-angle region, we meet the issue of
energy conservation, also [20-23]. Indeed, the coherent
radiation state obtained by the soft-based formulation treats
the fast particles as sources and thus neglects, in a first
instance, conservation constraints. By introducing them
explicitly in Sec. IV, we keep neglecting correlations that
we argue to be small (Sec. III D). However, the overall effect
of energy conservation is quite important, in the large-angle
region, because it introduces an exponential cutoff which—
though preserving quantum coherence—plays a role similar
to the temperature in a statistical ensemble.

The validity of the exponential behavior and its role in
approaching collapse are carefully discussed in Sec. IV C.
The final outcome is that the whole energy is radiated off in
the approach-to-collapse regime, by fixing the analog of the
Hawking temperature [24,25] for our energetic sample of
(coherent) radiation.

II. GRAVITON RADIATION IN SMALL-ANGLE
TRANS-PLANCKIAN SCATTERING

The approach to gravitational scattering and radiation
advocated in Ref. [19] is based on a semiclassical approxi-
mation to the S-matrix of the form

~ R -
S = exXp {2i5<(ZG,E, Cli(q)) },

where the eikonal operator & is a function of the effective
coupling a; = Gs/h and of the angular variable R/b
(where R =2G,/s is the gravitational radius and b is
the impact parameter) and a functional of the graviton step
operators a,(g) with helicity 4 and momentum g.

The semiclassical form (2.1) was argued in Ref. [9]
to be valid in the strong-gravity regime ag > 1 with
R>b> [, > lp, where [ is the string length and /p =
\/ﬁ is the Planck length. This means that we are, to start
with, in the trans-Planckian regime /s > mp = f1/lp at
small scattering angles ®, = @ = 2R/b, where O is
the Einstein deflection angle. Quantum corrections to (2.1)

(2.1)
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will involve the parameter [%/b* (and [2/b* if working
within string gravity) and will be partly considered later on.

The eikonal operator is then obtained by resumming an
infinite series of effective diagrams which include virtual
graviton exchanges and real graviton emissions, as will be
shortly reviewed in the following. In the small-angle and
low-density limit, it is composed by two terms: (i) a
c-number phase shift d, generated by graviton exchanges
between the external particles undergoing the scattering
process and (ii) a linear superposition of creation and
destruction operators which is responsible for graviton
bremsstrahlung and associated quantum virtual corrections,

3
(e as@)) = (o) + [ 5o
3 0, 8)a)(@) + Hec]

i=%2
+0(a3), (2.2)
where higher powers of a, provide high-density corrections.
This structure, which is valid for large impact parameters,
i.e., for small values of the ratio R/b < 1, provides a unitary
S-matrix describing the Einstein deflection of the scattered
particles as well as its associated graviton radiation and its
metric fields [9,26] and time delays [27].

Actually, the subject of this paper is to extend the
above picture to smaller impact parameters b ~ R where
the gravitational interaction becomes really strong and a
gravitational collapse is expected on classical grounds.
We will show that, decreasing the impact parameter b up to
some critical parameter b, ~ R of the order of the gravi-
tational radius R, the form of the S-matrix maintains the
form (2.1), (2.2) with calculable corrections to both the
phase shift &, (Sec. III A) and to the emission amplitude I
(Sec. IIT C). We shall then discuss in detail (Sec. IV) what
happens in the limit » — b. from above.

A. Eikonal scattering

ACYV [7] have shown that the leading contributions to the
high-energy elastic scattering amplitude p; + p, — p} +
p, come from the s-channel iteration of soft-graviton
exchanges, which can be represented by effective ladder
diagrams as in Fig. 1. The generic ladder is built by iteration
[i.e., four-dimensional (4D) convolution] of the basic rung

7?'l (plv P2, Q) = iMl(sz S)2ﬂ5+((pl - Q)z)

x 276, ((p2 + Q)?).

87Gs?

M 1 (Qz’ S) = - Q2 5
which embodies the on-shell conditions of the scattered
particles and the Newton-like elastic scattering amplitude
M in momentum space. The on-shell conditions and the

(2.3)
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FIG. 1. (a) One- and (b) two-rung effective ladder diagrams

determining the elastic S-matrix in the eikonal approximation.
Solid lines: on-shell external particles; dashed lines: eikonal
gravitational exchanges.

particular form of M; make it possible to express the n-rung
amplitude as a 2D convolution in the form

d*q 4nGs
M(0%5) = [ 5w, (@ =09
(27)? '
2s | n 147xGs
“wl®er )
where boldface variables denote 2D Euclidean transverse
components. By Fourier transforming from transverse

momentum @ to impact parameter b, the full eikonal
scattering amplitude can be diagonalized and exponentiated,

= (2.4)

b _i 2 Qb A28, (b.5)
25M 2SZMn /d be'elel=00lbs)

(2.5)

in terms of the eikonal phase shift 5y(b, s) defined as the
Fourier transform of the single-exchange amplitude

d? o2 4G
280(b.5) = / (Zﬂgze—lQb 22S

L b\?2
=2GsIn—+0O(—| ,
snb—i- <L>

where b= |b| and L =2e7:/Q, is a factorized—and
thus irrelevant—infrared cutoff needed to regularize the
“Coulomb” divergence typical of long-range interactions.

In order to go beyond the leading eikonal approxima-
tion, one has to consider other diagrams providing
corrections of relative order (R/b)? to elastic scattering
and also inelastic processes (graviton bremsstrahlung).
The former will be dealt with in Sec. III; in the following
in this section, we shall review graviton bremsstrahlung as
derived in Ref. [19].

0(Q* - 0f)

(2.6)

B. Unified emission amplitude from
single-graviton exchange

In this subsection, we review the derivation of the unified
emission amplitude for the basic process 2 — 2 + graviton.
“Unified” means that such an amplitude is accurate for both
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large (Regge region) and small (collinear region) graviton
emission angles.

Consider the basic emission process p; + p, = p| +
P5 + g at tree level (Fig. 2) of a graviton of momentum
q":q = hw@ and helicity A, assuming a relatively soft-
emission energy hw < E. Note that this restriction still
allows for a huge graviton phase space, corresponding to
classical frequencies potentially much larger than the
characteristic scale R™!, due to the large gravitational
charge ag = Gs/h > 1.

We denote with g, the single-hit transverse momentum
exchanged between particles 1 and 2, and with 8, =
|0|(cos ¢y, sinp,) = q,/E, we denote the corresponding
2D scattering angle (including azimuth). For not too
large emission angles |0 < (E/hw)|@|, corresponding
to |g| < |q,|, Weinberg’s theorem expresses the emission
amplitude as the product of the elastic amplitude M, and of

the external-line insertion factor J (vf/) =Jy e,(,/,l,)* where efﬁ)
is the polarization tensor of the emitted graviton (see

Ref. [19] for details) and J’;; is the Weinberg current

[28] [7; = +1(—1) for incoming (outgoing) lines]
P P,
=y

14 My U
_ K<P1P1 _ Pl/ P

pPi-q D14
By referring, for definiteness, to the forward hemisphere
and restricting ourselves to the forward region (0], |0,| < 1,

one obtains the following explicit result [19] in the c.m.
frame with p; = 0,

pz‘q Py q

E .
](V{I/)(q3 >0:0,0,) = k— (e'l(%—(ﬁo—as) -1), (2.8)
®
leading to a factorized soft-emission amplitude
7 w(E
MSOft(os’ Ea0$ (I)) - MCI(E’ Q)JW %’0’03
1 by
. o (etbo~to-0) — 1), (2.9)
_ Ioon
1 0 Oy Z
2
(b)

FIG. 2. (a) Diagram representing graviton emission (wavy line)
in trans-Planckian scattering of two sources (straight lines).
(b) Kinematics in the spatial momentum space.
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The simple expression (2.8) shows a 1/@ dependence, but
no singularities at either @ = 0 or @ = @, as we might have
expected from the p; - ¢ denominators occurring in (2.7).
This is due to the helicity conservation zeros in the physical
projections of the tensor numerators in (2.7).

The soft amplitude in impact parameter space is readily
obtained by Fourier transforming with respectto Q = g, =
E@, and reads

Msoft(b E 0 a)) soft(qs)

11 [ &g,
J— Ll qu'b
2 )3/24s/(2n)2e M

Y1—110

_( iA(do—do-0,) — 1)

ha)
R . d’z
_eWﬁa /7
o 27|z |l
. E ~ ho
ibozd ~_Jog | — = 2.10
X e " og 3 zl, ( )

where in the last line we have used an integral representa-
tion which will be very useful in the sequel.

For large emission angles |@| = (E/Aw)|@| such that
Iq| = |g,|, graviton emission from internal insertions is no
longer negligible, and Weinberg’s formula cannot be
applied. However, this region of phase space is a subset
of the so-called Regge region, characterized by emission
angles || > |6,|. In the Regge limit, the emission ampli-
tude has a different factorized structure and a different
emission current: Lipatov’s current J5* [29]. Furthermore,
one has to distinguish two transferred momenta g, =

Pi2) _P,1(2) such that ¢ = ¢, + ¢,. In the c.m. frame with

zero incidence angle (p; = E®; = 0) and in the forward

region ||, |6,| <1 (where we identify ¢, = gq,), the
helicity amplitude takes the form [19]
252 N
M e e(a_wE 0 a)) JMD (u*
e g1 PlgP -
1- i4(¢ 2_¢ — z)
:;(3_;2#7 (2_11)
q
M (b,E.0,0) = \/a Beiﬂfﬁe Lébwz@
Regge G, 27t|z|2ei’1‘/’f
x (=b-z—log b —z|). (2.12)

It is not difficult to verify that the soft and Regge
amplitudes (2.9), (2.11) agree in the overlapping region
of validity |0,] <6 < (E/hw)|@,|. By exploiting the
above expressions, we obtained a unifying amplitude that
accurately describes both regimes and that can be written in
terms of the soft amplitude only:

PHYSICAL REVIEW D 95, 086003 (2017)

Mr(iz)ltched _ / dzz‘ eiba)z.@
\/a_Gg elﬂ(/)g 271’|Z‘261M)<'
E ~  hw N
X <%log b e xde log |b —z|>

= soft|; — soft|,, - (2.13)

The result (2.13) is expressed in terms of the
(w-dependent) “soft” field'

() B 1 E 3 -
hy (O),Z) :W <fla)10g b lOg |b Z|>
D(w,z)
= 2.14
22|z ( )

in which the function @ turns out to be useful for the
treatment of rescattering, too (Sec. II C). Furthermore, for
relatively large angles [|@] > 6,, = h/(Eb)], Eq. (2.13)
involves values of hw|z|/E < 0,,/]0] which are uniformly
small, and the expressions (2.14) can be replaced by their
@ — 0 limits

_ (Dcl (Z)

72|z Pei:”

D, (2) E(Lii%q) =b-z+loglb—z. (2.15)
which is the field occurring in the Regge amplitude (2.12);
the modulating function @ appears also in the classical
analysis of radiation [13].

The last aspect we have to take into account in order to
determine the general 2 — 3 high-energy emission ampli-
tude at lowest order is to consider the case of incoming
particles with a generic direction of momenta. Since we
always work in the c.m. frame, we parametrize p; =
E(©;, /1 —0?), where ©; = |@;|(cos ¢;,sin¢,) is a 2D
vector that describes both polar and azimuthal angles of
the incoming particles. In Ref. [19], we proved the trans-
formation formula for the generic helicity amplitude

MW (b, E,0, w;0,)
= Hhdo0) MW (b E.0 — O, 0;0).  (2.16)

By applying Eq. (2.16) to the matched amplitude (2.13),
one immediately finds

R .
Mmatched(b’E’ 0. w; ®,) = \/(ZGEGWIJ"

/d2zelbwz (0-0; )h( )((1) Z)

(2.17)

'Notation: the 2D vectors 0, q, 0, z, etc., are denoted with
boldface characters; their complex representation, e.g., z = z; +
iz, = |z|e“/’ is denoted with italic font. Note, however, that
b = |b| is a real quantity.
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and the whole @; dependence amounts to a shift in the
exponential factor.

C. Eikonal emission and rescattering

The physics of trans-Planckian scattering is captured, at
leading level, by the resummation of eikonal diagrams, as
illustrated in Sec. IT A. In order to compute the associated
graviton radiation, it is therefore mandatory to consider
graviton emission from all ladder diagrams, as depicted
in Fig. 3.

As we shew in Ref. [19], the crucial fact is that
all internal lines insertions—for fast particles and
exchanged particles alike—can be accounted for by
calculating n diagrams for the eikonal contribution with
n exchanged gravitons, where the matched amplitude
(2.17) is inserted in turn in correspondence to the jth
exchanged graviton (Fig. 3), adjusting for the local
incidence angle ©; =6,_;.

The ladderlike structure of such an amplitude in
momentum space is a convolution in the Q;-variables,
with @ +---+ 0, = 0. Thus, in impact parameter
space, the amplitude is obtained as a product of
j— 1 elastic amplitudes, the emission amplitude from
the jth leg, and n — j elastic amplitudes, the upper particle
of which, by energy conservation, has reduced energy
E - E — ho.

Let us express the elastic amplitude in terms of the
dimensionless function A(b) such that

My (b, E) =25(b,s = 4EE')

E
=2R—A(b
fl ( )’

Ay(B) = log <%> (2.18)

so as to explicitly show the linear proportionality of the
amplitude on the upper (jet 1) particle energy E (which
varies after graviton emission). The energy E’ of the lower
particle (jet 2) stays unchanged, and its dependence has
been absorbed in the constant R = 4GE'.

The n-rung amplitude for emission of a graviton with
momentum ¢ from the jth exchange of the ladder can then
be expressed by the z-representation

FIG. 3. Graviton emission from the eikonal ladder. The n-rung
diagram with the emission from the jth exchange is denoted by
Ml in the text.
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iMM (b, .6)

. Ri" .
_ allgy 2, aibwb-z
=", Jag — d<ze
G2 n! z

hw J-1
X |:Mel (b - Ebz, E>:|

x K (@, 2)[Ma(b.E - ho)"™™.  (2.19)

Note the effect of the incidence angle ®; = 0;_; = (Q; +
-+ +Q,_1)/E in the exponent of Eq. (2.17) which, after
Fourier transform, has shifted the impact parameters of the
first elastic amplitudes by the amount — %2 bz. In addition,
as already mentioned, the energy of the upper particle after
the emission has the reduced value E — Aw, and this
modifies the second argument of the elastic amplitudes
after the emission.

Before summing all ladder diagrams, we take into
account the rescattering of the emitted graviton with the
external particles p;:j = 1, 2. This interaction is propor-
tional to G(p; + ¢)* and is dominated by the exchange of
gravitons between ¢ and p,, since (p; + ¢)* ~ hwE|0 —
;> < (p2 + q)* ~ hwE in the region of forward emission
that we are considering. In practice, we add to the rightmost
factor [M¢ (b, E — hw)]"~/ in Eq. (2.19) [represented by
the ladder of Fig. 4(a)] the contributions coming from
rescattering diagrams where graviton exchanges between
p1 and p, are replaced by exchanges between ¢ and p, in
all possible ways [Figs. 4(b), 4(c), and 4(d)]. Since the
ordering among eikonal exchanges and rescattering factors
is irrelevant, the inclusion of such additional contributions
amounts to the replacement (N = n — j)

N
Ma.E= o) = > () a0 £ -

X [My(b - x, ho)]"
= [Mel(b, E— ha)) + Mel(b - X, ha))]N
— [2R[(E/h — 0)A(B) + wAb —x)]}V, (2.20)

where we took into account that in diagrams with N
exchanged gravitons there are (V) distinct diagrams with
r rescattering gravitons and that in each rescattering factor
the energy of the upper particle (i.e., the emitted graviton) is
hw. Furthermore, we took into account that the transverse
position of the emitted graviton with respect to the lower
particle (i.e., p,) is b —x, where x = bz is the variable
conjugated to ¢ = w@ [cf. Eq. (2.19)], hence to be inter-
preted as the transverse position of the emitted graviton
with respect to p;.

Substituting the expression of Eq. (2.20) into Eq. (2.19),
we can perform the sum over n and j of all diagrams with
the aid of the formula
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E .E_h(n. . . . .
el 4 R P R
(a) (b) (©) (d)

FIG. 4. Rescattering contributions (b,c,d) to eikonal graviton emission (a).

1<~ . N Y L L
— Al-lpr=i = — = .
Zn! A—-B A-B

(2.21)
n=1"""j=1 n=0

It is also convenient to express the A and B quantities as the
elastic amplitude (2.18) plus a quantum correction ®, 5 as
follows:

IM 1 b —h—wx, E) = ZiaG |:A(b) +hfw¢)A(x):|
i

¢ E
(M (b, E — how) + My (b - x, ho))
~ Jiag [A(b) 4 %“’@B(x)}

O, (x) = = [A <b —%‘“x> - A(b)]

A
B

" ho

= —A(b)-x+0 (%‘") (2.22a)

p(x) = Ab —x) = AD)] = Pp(¥) |50 (2.22b)

We note that the denominator in Eq. (2.21) is proportional
to the ®-function defined in Eq. (2.14),

)
A-B= 2iawa (@, — Dy] = 2iwRD,  (2.23)

and is therefore intimately related to the soft field A;.

From the technical point of view, such a relation provides
the cancellation between /4 in Eq. (2.19) and the mentioned
denominator A — B of (2.21), to yield finally the one-
graviton emission amplitude

iM,(b; 0,0) = e*>2XO)M, (b; w,0)

M, (b; o, 0) _ R d’z
e VI | al e
—2iwRD __ 1
x eibw02g2i0RD, . (2.24)
2iwR

which reduces to the classical expression (4.11) of
Ref. [13] in the limit Aiw/E — 0, A = =2 and A = A,
since ® —» @ [cf. Eq. (2.15)] and 2RD, — 2Rb -7 =
—bO; - z.

From the conceptual point of view, the identity (2.23) is
surprising because it relates the exponents (which describe
elastic plus rescattering exchanges) to the soft field ~®
(which describes graviton emission). The explanation lies
in the derivation [19] of the soft-based representation (2.13)
of which the form

(2.25)

has the alternative interpretations of external plus internal
insertions in the soft-emission language and of elastic plus
rescattering ones in the Regge language.

We shall base on that representation the generalized
emission amplitude including subleading corrections, that
will be investigated in Sec. III [Egs. (3.26) and (3.29)].

Mmatched = SOft|E - SOft|hw = Regge|E

D. Multigraviton emission and linear coherent state

In order to compute the multigraviton emission
amplitude from eikonal ladder diagrams, let us start from
the two-graviton emission process. We exploit again the
b-space factorization formula of Regge amplitudes.
Referring to Fig. 5, if graviton 1 is emitted first from
the j;th rung and then graviton 2 is emitted from the j,th
rung (j; < j,) of an n-rung ladder, the corresponding
amplitude reads

n 5
i/\/l[n’(j'<j2)](1, 2) — %ei(ll¢01+12¢92) <\/a_§)
n:

% / dle d2xzei(a)101 X1 +wy0,x5)

X Aj'_lhs(b,xl, w])sz_jl_l
X hs(b,xz, a)z)C”_j2

(2.26)

FIG. 5. Double-graviton emission from the eikonal ladder. A
denotes eikonal exchanges before graviton emissions, B denotes
eikonal exchanges and rescattering of graviton 1, and C includes
also rescattering of graviton 2.
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where, as before, the fields h, describe real graviton
production, while graviton exchanges and rescattering
are encoded by the quantities

A=iMy (b _ hoyx + heox, Jbi hwyts E)

h
B =iM, <b - %xz, E- ha)1> +iMy(b —x,. hoy)

C= iMel(b, E - h(l)l — fla)z)
+ lMel(b —X2, flwz)

+ i./\/lel(b — Xy, ha)l)
(2.27)

The quantity A denotes the eikonal exchanges before any
graviton emission and is given by the elastic amplitude M
with a shift in its first argument due to the effect of the
incidence angles ©®; _;,0; _; of both gravitons, an effect
that propagates backward in the ladder, as explained in the
previous section.

The quantity B describes the interactions occurring in the
middle of the ladder, i.e., after the emission of graviton 1
and before that of graviton 2. It consists in the sum of two
terms: the first one describes the eikonal exchanges
between p; and p, and includes both the effect of the
incidence angle ©;,_; (shift in the first argument) and also
the reduced gravitational coupling E — E — hw; in the
upper vertices due to energy conservation. The second term
describes the rescattering of graviton 1 with p,.

Finally, the first of the three terms building C represents
the eikonal exchanges between p; and p, with reduced
coupling E — E — h(w, + ®,) in the upper vertices, while
the other two terms take into account rescattering correc-
tions of both gravitons.

The sum over all such ladder diagrams amounts to

& n—1 n
EZ%Z Z AJi=1gi=ii=1cn=j»
n=2"j1=ljp=ji+1
et e
(A-B)(A-C) (B-A)(B-C)
oC

By swapping the graviton indices 1 <> 2, one immediately
obtains the symmetric contribution with graviton 2 emitted
“before” graviton 1.

Now, the sum of these two contributions does not
factorize exactly in two independent factors. It would if
A — B = [B-C],_,, but this is not the case. However,
A—B=[B-C]\,,+O(AR*w?/E?); therefore, factori-
zation can be recovered by neglecting contributions of
relative order O(A?w?/E?). In fact, thanks to Egs. (2.22),
we have
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A_ZiaGA<,,_M>
E
[ n n W w?
= 2iag A(b)—A’(b)-erO( E‘;’z)]

=2i{agA (D) +@ RO (X)) + @R (x;) + O(GHw7) }
A [ hw1x1 hw2x2 ha)lxl

B—210{G_(1 : )A(b : )+ U xl)]
=2i{agA(b) + 0 RPA(x,) + @ RPp(x)) + O(GH* w7} ) }

. [ hw1x1 fla)2x2 hw1x1
C—12(ZG _(1 E E A(b)‘I‘ E A(b x])

hw1x2

A(b —xz)}

=2i{agA(b) + @, ROy (x)) + R (x,) ). (2.29)

By noting that the elastic amplitude e2%¢2®) is a common

factor in all exponentials, we can approximate the infinite
sum (2.28) in the form

@(1 2) N ePAa1TPa e?1tPa e?1+9m
s =g 106G — N
piler+ @) @ (o1 + @)
(2.30)

where we used the shortcuts ¢4, = 2iw;R®4(x;) and
analogous ones.
At this point, it is straightforward to check that

ePal (e—(ﬂl — 1) ePa2 (e—fl’z — 1)

P1 %)

210(‘ A

&(1,2) +&(2, 1) =

(2.31)

and to obtain the two-graviton emission amplitude in the
factorized form,

iMmz (b; w,0;; wzoz)

=~ eiaGZA(b)gmll (b;a)l,al)fmgz (b; ,,0,), (2.32)

in terms of the one-graviton amplitude and of the elastic
S-matrix. It is clear from Egs. (2.29) that such an
approximate relation neglects terms of relative order
O(h*w?/E?) = O(wR/ag)?, which are negligible in the
regime we are considering and are subleading not only with
respect to terms ~a [like the eikonal phase §(b)] but also
with respect to the terms ~wR.

We expect an analogous factorization formula to hold for
the generic N-graviton emission amplitude off eikonal
ladders (we explicitly checked the three-graviton case),
in the form
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N
iM(b:q,.....qy) = 2O T M, (b:0,.0,).  (2.33)

r=1

Such an independent emission pattern corresponds to the
final state

|gravitons; out)

P, exp{/ \/_lemg(b q 0,1(4)}’0>
(2.34)

in the Fock space of gravitons, with P, = 1, and creation
(a](g)) and destruction [a,(q)] operators of definite helicity
A are normalized to a wave number §-function commutator
[a;(9). a,, ()] = B*8*(§ — §')5,,. However, this state takes
into account only real emission. Virtual corrections can then
be incorporated by exponentiating both creation and destruc-
tion operators in a (unitary) coherent-state operator acting on
the graviton vacuum |0) (the initial state of gravitons). We
thus obtain the full S-matrix

S:eziﬁexp{/ 'q 21{Zimibqaﬂ —|—Hc]}
(2.35)

that is unitary, because of the anti-Hermitian exponent,
when b > b,.

By normal ordering Eq. (2.35) when acting on the initial
state |0), we find that the final state of the graviton is still
given by Eq. (2.34), but with P, given by

d? -
Py = eXP{—2/%Z|§m1(b’Q)|Z}7
7

which is just the no-emission probability, coming from the
a, a' commutators.

Due to the factorized structure of Eq. (2.34), it is
straightforward to derive the inclusive distributions of
gravitons and even their generating functional

@ -1}

ol = {2 [ S5m0
(2.37)

(2.36)

In particular, the polarized energy emission distribution in
the solid angle € and its multiplicity density are given by

dESW dN;,
— ho — 20h|IM, (b,
dwdQ dode — 2RI B 9P,
aN 1 dESY
do p(w) T ho do (2.38)

Both quantities will be discussed in the next section.
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E. Large wR emission amplitude

In this section, we analyze the graviton emission
amplitude (2.24) and its spectrum (2.38) generated by a
small-angle (®; <« 1) scattering in the frequency region
® = R7! and in the classical limit Ao < E.

We recall that the frequency spectrum integrated in the
solid angle was already studied in Ref. [19] for large impact
parameters b > R, i.e., for small deflection angles ©; « 1,
both with and without rescattering corrections. We briefly
report the main results:

(1) For wR < ©,, the spectrum is flat and agrees with

the zero-frequency limit (ZFL).

(i) For O, SwR <1, the spectrum shows a slow
(logarithmic) decrease with frequency. The behavior
in these two regions is rather insensitive to the
inclusion of rescattering and can be summarized by

d EGW

2 1 1
= GsO? [— log min (— —> + Const}
b2 wR
(2.39)

(iii) For wR Z 1, the amplitude (2.24) is dominated by
small-z values, and the z-integration can be safely
extended to arbitrary large values without introduc-
ing spurious effects. The frequency distribution of
radiated energy can then be well approximated by
computing the square modulus of the amplitude
(2.24) by means of the Parseval identity, yielding

dESW 0% [ d*z [sinwR®(z)\?
N oR
(2.40)

the asymptotic behavior of which provides a spec-
trum decreasing like 1/w; more precisely,

d EGW

=G @2
dw Ezw

(woR>1). (241)

In this region, the inclusion of rescattering has the
effect of lowering the spectrum by about 20%. In
any case, the total radiated-energy fraction up to the
kinematical bound w,, = E/h becomes

EGW @2
—Elogag

\/32271'

and may exceed unity, thus signalling the need for
energy-conservation corrections at sizeable angles
(cf. Sec. 1IV).
In Fig. 6, we show the energy spectrum (divided by Gs@%)
for various values of ©;. It is apparent that, for ®R > 1, its
shape is almost independent of ®,. As we will show in

(2.42)
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105
1 dE
Log( —)~ 0.0
Gs0,? dw ]
4-0.5
Q,-0
—  0,=0.01 1-1.0
— 6,=01 115
— 0,=03
Log(wR) 1-2.0
-4 -3 -2 -1 0 1 2

FIG. 6. Frequency spectrum of gravitational radiation for
various values of ©;. For each ©®; >0, the ZFL value
210g(1.65/©;) is obtained (dashed lines).

Sec. III, there will be qualitative differences when
approaching the strong-coupling region ®; ~ 1 where
subleading contributions become important.

On the contrary, the angular distribution of graviton
radiation studied in Ref. [19] did not take into account
rescattering contributions. The latter are actually irrelevant
for wR < 1 but change drastically the angular pattern for
wR > 1. In fact, the graviton exchanges between the
outgoing graviton ¢ and p, (see Fig. 4) have the main
effect of deflecting the direction of ¢, just like the eikonal
exchanges between p; and p, are responsible for the
deflection of p; (and p,). It turns out that the graviton
radiation is collimated around the direction ®; of the
outgoing particle(s).

Quantitatively, the resummed emission amplitude (2.24)
in the classical limit 7w < E and, say, for helicity 4 = -2
reads

R .
M (b,0) = \Jag—e 2t
b3

2 iwbz-(0—0;
« /&L(e—ZinQC](Z) _ 1)’

27z-z*2 2iwR
(2.43)

where @, is the fast-particle scattering angle and @ was
defined in Eq. (2.15). We are interested in evaluating such
an amplitude at large wR. Since in the second exponential
the function

(23 = 21) + O(Iz)

l\)l'—‘

dy(z) = b- z+log|b—z| =

(2.44)

vanishes (quadratically) at the origin, we expect that for
@R > 1 the dominant contributions to the amplitude come
from the small-z integration region. By substituting the
second-order expansion (2.44) into Eq. (2.43) and by
rescaling the integration variable vwRz =Z = x + iy,
we obtain

PHYSICAL REVIEW D 95, 086003 (2017)

FIG. 7. The end points in the integral (2.47) correspond to the
angular interval [, ¢,]| (green region), the latter being deter-
mined by the intersection of the [—z/4,7/4] interval (black
sector) with the region where sin(2(¢4 — ¢)) is positive (red
sectors).

2rawIN d*z . . 1
L—Z = I(A) — / 3 CIZA'Z[eI(XZ—,Vz) _ 1] -,
Jage e 2nZ* i

(2.45)
which is a function of the two-dimensional variable,

0—-0,

VoOR ———,
O]

A= |A|(cos gy, sing,) =

A=|Ale’ € C. (2.46)
Were it not for the factor Z*? in the denominator, the rhs of
Eq. (2.45) would have the structure of a Gaussian integral
in two dimensions. It is possible, however, to provide a
simple one-dimensional integral representation for the
function 1(A) in Eq. (2.45) (see Appendix B),

Czdé’
1w =5 [

where the complex-integration end points {; = el?#1:] = 1,
2 are determined by the azimuth ¢, i.e., the azimuth of @
with respect to O, according to Fig. 7. The function /(A)
satisfies some symmetry properties, and in particular, it

IA*Z §2+1)

(2.47)

vanishes for ¢ = —z/4 + nz:n € Z. This relation follows
from the fact that, for ¢, = (n — })w:n € Z, the integration

limits in Eq. (2.47) coincide and thus the integral vanishes.

The intensity of the radiation on the tangent space of
angular directions centered at @ = @, and parametrized by
A is shown in Fig. 13(a). The main part of the radiation in
the forward hemisphere is concentrated around |A| < 1
which means |0 — ©,| < |®,|/v/®R, and is more and more
collimated around the direction ®, of the outgoing particle
1 for larger and larger wR. This feature is a direct
consequence of rescattering processes, through which the
emitted gravitons feel the gravitational attraction of particle
2 and are therefore deflected, on average, in the same way
as particle 1.

At given values of helicity and frequency, we observe a
peculiar interference pattern, with a vanishing amplitude at
¢4 = £r/4 + nx for helicity £2. Such interference fringes
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are washed out when integrating the intensity over some
frequency range and summing over helicities. On the
whole, the radiation intensity is distributed almost isotropi-
cally around @O, with an azimuthal periodicity (in ¢,)
resembling a quadrupolar shape.

This angular distribution differs from our prediction in
Ref. [19], where we neglected rescattering and found
graviton radiation distributed in the scattering plane with
angles ranging from zero (incoming particle 1) to O,
(outgoing particle 1). By comparison, rescattering produces
the above dependence on 8 — @, by associating in a clearer
way jet 1 to the outgoing particle 1.

Graviton radiation associated to large-angle (|@,| ~ 1)
scattering will be analyzed in Sec. IV and compared to the
previous one.

ITII. RADIATION MODEL WITH ACV
RESUMMATION

In this section, we extend the treatment of graviton
radiation to scattering processes characterized by large
deflection angles ®; = O(1) or, equivalently, to impact
parameters b ~ R of the order of the gravitational radius,
where the gravitational interaction becomes strong and a
collapse is expected to occur, at least at the classical level.
This requires going beyond the leading eikonal approxi-
mation reviewed in Sec. II and to take into account the
nonlinear interactions which dominate at high energy.
Such corrections to the eikonal approximation have been
identified [7,8] and studied in detail for elastic scattering
[9,30-32]. Their treatment is based on an effective action
model that we are going to summarize in Sec. III A and to
apply to graviton radiation in the rest of the section.

A. Reduced-action model

The model consists in a shock-wave solution of the
effective field theory proposed by ACV [8] in the regime
R > [, of trans-Planckian scattering on the basis of
Lipatov’s action [29]. The effective metric fields of that
solution have basically longitudinal (%, ,,A__) and trans-
verse (h;;:i, j =1, 2) components of the form

h__ =2rnRa(x)5(x™),
h,, =2xRa(x)5(x"),

h = Tr(h;;) = V%ﬁ(x)%@(x*x‘), (3.1)
where we note wave fronts of Aichelburg-Sexl type [33]
with profile functions a and a and an effective transverse
field with support in x*x~ > 0.

A simplified formulation of the solution (3.1) was
obtained in Ref. [9] by an azimuthal averaging procedure
which relates it to a one-dimensional model in a transverse
radial space with the axisymmetric action

PHYSICAL REVIEW D 95, 086003 (2017)

. 2
A= 27r2Gs/dr2 [Ea+sc‘z—2pila——(1 - p)?

(2zR)?
d
<- = W)

in which 2 plays the role of time parameter. Here, ¢(72) is
replaced by the auxiliary field p(r?)—a sort of renormal-
ized squared distance—defined by

(3.2)

p=r[l - (22R)*¢],

d )
h=V2p =4 5("9)

1

:W(l—/’),

(3.3)
which incorporates the basic ¢, a, a interaction, with
effective coupling R”. Furthermore, the axisymmetric
sources  s(r?) =48(r*)/x  and 5(r?) =6(r* —b?)/x
describe (approximately) the energetic incident particles,
and ¢(r?) is taken to be real valued—as for the transverse-
traceless (TT) polarization only—thus neglecting the infra-
red singular one in the frequency range w ~ 1/R we are
interested in.

The equations of motion of (3.2) for the profile functions
admit two constants of motion, yielding the relations

1 . 1
g =——") a=——0(r*-b?), 34
=5 “=—5- (r"=0%), (34)
while that for the field p yields
. R?
ﬁ = 2(7TR)2aa = ﬁ@(l"z — bz),
R2
P+—=1 (r>b). (3.5)
p

The latter describe the r>-motion of p(r?) in a Coulomb
field, which is repulsive for p > 0, and acts for r> > b?
only, so that b? actually cuts off that repulsion in the short-
distance region.

The interesting solutions of (3.4) and (3.5) are those
which are ultraviolet safe—for which the effective field
theory makes sense—and are restricted by the regularity
condition p(0) = 0 which avoids a possible 7> = 0 singu-
larity of the ¢-field.

External (r > b) and internal (0 < r < b) regular
solutions are easily written down for this solvable model,

B {choshzx(rz) (r? > b?)
- L) + (0?2 = b)) (07 <b?)
r> = b + R*(y + sinh y cosh y — y,, — sinh y, cosh y,,)

s =x(b%)) (3.6)
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FIG. 8. The H diagram (left) and the first multi-H diagram
(right) starting the series of subleading contributions to the
eikonal.

and are matched at > = b? by the condition (¢, = tanh y,,)
p(b*) = R*cosh’y, = b*p(b*) = b1y,

—=1,(1-1). (3.7)

The criticality equation (3.7) is cubic in the #;, parameter
and determines the branches of possible solutions with
p(0) = 0. For b* > b? = (3v/3/2)R?, there are two real-
valued, non-negative solutions, and the “perturbative” one
with 7, — 1 for b > b, is to be taken. By replacing such a
solution in the action (3.2), we get the nonperturbative on-
shell expression

L* dp2
26(b,s)EA:aG/ dr

R2
X [—@(r2 -b*)—(1 —/))2]
p
1
R R T IR SACE)
b

where L is an IR cutoff needed to regularize the
Coulomb singularity. The phase shift (3.8) shows the
large-b behavior

L R
5(b,s)2aG(10gE+m+>,

(3.9)
which, however, is only qualitatively correct for the
subleading term of which the full expression is actually [7]

2

L
?ﬁéH :5<b, S) —aGlogZ: (310)

ag W .
The difference is due to the various approximations being
made (one polarization and azimuthal averaging).

Despite such approximations, the importance of the
nonperturbative expressions (3.6) and (3.8) for solutions
and action is to provide a resummation of all subleading
contributions ~(R?/b*)" to the eikonal of multi-H type
(Fig. 8) and to exhibit its singularity structure in the
classical collapse regime, on the basis of the criticality
equation (3.7).

In fact, for b < b,, we find that no real-valued solutions
exist and ¢, acquires an imaginary part. The solution with
negative 37, has J.A > 0, is stable, and is close to the

PHYSICAL REVIEW D 95, 086003 (2017)

perturbative solution at large distances. The corresponding
action is found to yield a suppression of the elastic channel
of the type

4\/§ b2 3/2
Sel(b,s)|zzexp{—TaG<l —ﬁ> }, (311)

which can be related to a tunnel effect [30,31] through the
repulsive Coulomb-potential barrier which is classically
forbidden.

Actually, the action shows a branch-point singularity at
b = b, of index 3/2 with the expansion

2 2\ 3/2
A—Aczag{\/z_;(l—%> ii?(l—%) +]

1 V2 b?
1£ 1_ﬁ+.."

1, = ——
b \/gZF 3

which is thus responsible for the suppression (3.11) just
mentioned. The presence of the index 3/2 seems a robust
feature of this kind of model because the expansion of the

action in 1, starts at order (7, — 1/4/3)2, due to the action
stationarity, thus avoiding a square-root behavior.

The result so obtained is puzzling, however, because it
may lead to unitarity loss [31,32], unless some additional
state, or radiation enhancement, is found in the b < b,
region. In fact, it represents a basic motivation of the
present paper and of the following treatment of the
radiation associated to the ACV resummation.

(3.12)

B. Single-graviton emission by H-diagram exchange

Here, we want to argue that the graviton radiation
associated to the H-diagram eikonal exchange is well
described by a generalization of the soft-based representation
in Eq. (2.13). To this purpose, we shall use the dispersive
method of Ref. [7], which consists in relating both
(a) exchange and (b) emission to the multi-Regge amplitudes
[15,29] pictured in the overlap functions of Fig. 9.

For the H diagram [Fig. 9(a)], the CCV helicity amplitude
[15] for emitting a graviton of momentum ¢’ = ¢, — ¢q

\l—)_/ \l—)_/
Py . T pr0 Py . T p+0
[ [ = —q s [
4=4,9' va-Q H=as qilw&q 1 q-0Q
LN : :
g qs A ,

; ; L Mg
H ' MAAANA

9 ? 9,70 q, 4 v 9,70
172/.'_,_!\ [?2/.'_,_!\
(@) (b)

FIG. 9. (a) H diagram kinematics and (b) Graviton emission

from the H diagram.
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and helicity 1/, in the center-of-mass frame with incident
momentum along the Z axis, is given by [cf. Eq. (2.11)]

l/
K252 elh) Ks?

a-arg - aee-a)

F)(gy,q,) = 1= )

MRegge(q/v E, w, q2> =
(3.13)
Correspondingly, the overlap function [Fig. 9(a)], at gen-
erally nonvanishing momentum transfer  and for the

incidence direction along the Z axis in the center-of-mass
frame, is proportional to the Lipatov graviton kernel [29]

v s 7 M)
K(g2.41:0) = > Tt (a1 a2)ei (@)T5 (qh.4)els) (@),
l’
(3.14)

where J; is the Lipatov current [29] and ¢} = ¢; — Q:i = 1,
2. In two transverse dimensions, where the ¢;’s are all
coplanar, the explicit result is

491439 *q5*
K(q2.9:;0) = @ -

X 2sin ¢y sin gy cos(gyy — pra) (3.15)

and checks with Ref. [29].

The result (3.15) is valid for on-shell intermediate
particles and provides directly, by integration over g;
and the Fourier transform in Q to b-space, the imaginary
part of the H-diagram amplitude, or [9]

I6y(b. s) EYGst/dzq’m(b,q’) 2, (3.16)
where
~ d2q eiqu . _
h(b,q) =2/ﬁw[1 —eilloat0)] (3.17)

is the h-field in g-space at A/ = —2 [15,19].> The quantity
(3.17) has a logarithmic divergence, because of the known
residual infrared singularity ~1/g'> of the integrand in
(3.16), due to the longitudinal-transverse (LT) polarization.
Such a divergence is expected and is compensated in
observables by real emission in the usual way, so as to
lead to finite, but resolution-dependent, results.

On the other hand, we are looking for Né,, the
H-diagram contribution to the two-loop eikonal, which is
supposed to be IR safe, because a b-dependent IR diver-
gence would be observable and inconsistent with the

*The quantities h = Tr(h;j)~>h, and hg~>h,, h,.. are
related to different components of the metric fields 4, = g, —
Nw in the shock-wave solution (3.1). For a more precise
identification, see Ref. [19].
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Block-Nordsieck factorization theorem. In Ref. [7], it
was shown that fixed-order dispersion relations plus
S-matrix exponentiation lead indeed to the finite result

ﬂ o~
m(sZ(b?s) = ﬁ“éH(b’ S)l

Reg
T ~ b>R R2
= ZGst/dzq’h(b,q’)@eg = G 52
2G3s?

Here, the regularization subtraction is due to the second-
order contributions of §; and §, to the S-matrix exponential.

Our present purpose is actually to compute the graviton
radiation associated to the H diagram, in which a further
Regge graviton vertex is introduced in all possible ways,
as in Fig 9(b) for the upper-left corner. In the limit
|g| = hw < E—that we assume throughout the paper—
the dominant contributions are for |q| < |¢’| ~ mp, so that
no insertions on the ¢’-exchange should be considered. As a
consequence, for ¢ in jet 1 and using the CCV gauge [15] in
which jet 2 is switched off, only the upper-left and upper-
right insertions will be considered.

Consider first the upper-left diagram [Fig. 9(b)] at the
imaginary part level. For any fixed values of ¢, ¢’, and Q,
the integrand has the form

. 1\2 )
\/aGR/(quelQ'b <P> Fu)(‘l's+q’,q§)F(“(qs+q’,qs)

2 * —
K‘Qv‘z (1_&%5 q*>_|_,
|Q| ds49s — 4

where ¢, =¢q, — ¢, ¢, = q, — Q, and we have taken, for
definiteness, A = —2. The |q,|? factor in the numerator is
needed in order to have the proper counting of |g;|?
denominators in multi-Regge factorization [29].

We then apply to Eq. (3.19) the same reasoning used in
Sec. IIB to match the soft and Regge limits. By the
approximate identity

|9, (1_q?§ qs—q>
lql? a9 = 4"
_ 4995 — q°4; { 1 1
q q

(3.19)

} . (320

_
“g g -4

valid in the region (hAw/E)|q,| < |q|, we derive the
relationship between Regge and soft insertion analogous
to Egs. (2.13) and (2.25),

Regge|; = soft|z — soft|,,,. (3.21)

in which

hw

soft|; = o [ezw"‘%‘“_(ﬁ") —1]

(3.22)
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FIG. 10. Diagrammatic representation of the soft-based emission amplitude.

for the upper-left case. A similar relationship holds for the
upper-right case and, by including both jets, for any soft
insertions, as pictured in Fig. 10.

We note at this point that in Eq. (3.21), the insertion
factor for the intermediate particle p; 4+ ¢, cancels out
between left and right insertions, so that we get in total the
insertion factor for external legs only, in the form

(Gt ) e

E

E - .
_ K|:% <e (¢q hTaQ ?y) _ 1> _ <621(¢‘1‘Q_¢‘1> _ 1):| )

(3.23)

The latter replaces in Eq. (3.19) the sum of Regge insertions
and is only dependent on the overall momentum transfer
0 (Fig. 10).

Since the above factorization in @-space holds for any

the IR regularization procedure of Eq. (3.18) also, because
the latter consists in subtracting the IR singularity due to
lower-order eikonal contributions to the S-matrix exponen-
tial. We shall then assume Eq. (3.23) for the full graviton
emission amplitude associated to H-diagram exchange.
This leads to the expression

d?Q - :
Mulb.E.0) = Vg [ 52 Bu(@)ee?

o | E (2ot _
ho

— (e%(Pr-0=t0) — 1)], (3.24)

where agAy (Q) is the (regularized) inverse Fourier trans-
form of MN6,(») in Eq. (3.18).

The main achievement of Eq. (3.24) is its independence
of the detailed structure of the H diagram because of the
factorization of the soft insertions in Q-space. Therefore,
it is the generalization of the soft-based representation of
the unified amplitude to the next-to-leading eikonal
exchange.

C. Soft-based representation
and eikonal resummation

We have just argued that the single-graviton emission
amplitude associated to H-diagram exchange is provided
by Eq. (3.24) which is directly expressible in terms of
the H-diagram amplitude in Q-space. We can even use the
z-representation for the phase transfers

2
62i¢6 — eZi¢H’ = —2/ d z2
2rz*

and by exchanging the order of Q- and z-integrals, we
recast Eq. (3.24) in the form

R i d’z
M = e ﬂ/zﬂz*ze
E ho
— |A[b——0bz ) —A(b
X{nw[ (o~ ") - a0

N —A(b)]},

(eiAz~0 _ eiAz-G’)’

(A eR),

(3.25)

ibz-q

(3.26)

where A = Ay + Ay and Ay (b) = R?/2b?, thus general-
izing the soft-based representation of Eq. (2.13) to the next-
to-leading (NL) term. We shall base on Eq. (3.26) the
subsequent formulation of our radiation model.

We note immediately, however, that Eq. (3.26) has a
purely formal meaning in the region |bz—b|= O(R),
because the H-diagram expression (3.18) breaks down
whenever R/b is not small. We are thus led to think that
we have to know something about the behavior of A(b) in
the large-angle regime b ~ R before even writing the
representation (3.26) we argued for.

That is precisely what the reduced-action model—as
summarized in Sec. IIl A—provides for us. Indeed, it
consists in the resummation of the multi-H diagrams
(Fig. 8) of the eikonal, which is the set of two-body
irreducible diagrams without a rescattering subgraph. Such
diagrams are expected to share with the NL term the
property that the central subgraphs have energetic ¢’-type
exchanges, where |¢| is of the order of the Planck mass or
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larger, thus suppressing their contribution to soft insertions
with @ ~ R™! ~ m} /E.

For that reason, we think we can repeat the argument
with peripheral Regge insertions elaborated before and then
use the soft-Regge identities (3.21) to derive the external-
particles insertion formula (3.24) and the soft-based rep-
resentation (3.26). As a result, we are now able to look at
the integrals in Eq. (3.26) in a realistic way by setting

26(b 1
ag Iy

2A(b) (3.27)
where §(b) is the irreducible eikonal function with ACV
resummation (after factorization of the IR part ~log L/b),
which extrapolates the NL behavior to small values of
b ~ R. The latter is given in terms of the solution (3.8) for
the reduced-action model action, and t, = tanh y, and y,
are determined by the matching condition of Eq. (3.7).

The expressions (3.27) and (3.8) are now well defined
for b*> > b2 = %ng, where the role of the singularity at
b = b, will be discussed soon. The result (3.26) contains
the resummed modulating function

Dp(w,z) = % [A (b - %bz) - A(b)}

— [A(b - bz) — A(D)]
"= _ bA'(bYb -7+ A(D)
— A(b - bz) = Oy (2)

[yielding @ of Eq. (2.15) in the classical limit and the
large-b region], which generalizes the expressions (2.14)
and (2.23) for the leading term and enters the correspond-
ing soft field

(3.28)

DO (w,2)

) —
hy 7)) = ——
(w Z) 2|Z|261/I</):

(3.29)

The next step is to sum up all single-graviton emission
amplitudes from any of the (n) ~ag > 1 irreducible
eikonal exchanges with ACV resummation, by taking into
account two important effects: (a) the correct phase and
g-dependence for all various incidence angles and (b) the
rescattering of the emitted graviton with the fast particles
themselves.

Both effects can be taken into account by the generalized
b-space factorization formula explained in Sec. II C for the
leading graviton exchange. By replacing M, = 25, by 26,
the resummed soft field of Eq. (2.21) becomes

1 e2i6(b-12bz) _ J2i[6(b)+1(5(b~bz)~6(b))]
2 (I)R (60, Z) : hw hw
z 2i[6(b — "2 bz) — 5(b) — 22 (8(b — bz) — 5(b))]
1 emw) . pE i1 :
= [GZIa)RE[A(b—%bz)—A(b)] _ eZla}R[A(b—hz)—A(b)]]’
72 2iwR

(3.30)
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FIG. 11. The first rescattering diagram contributing to the
eikonal phase.

where we have canceled out the ®gi-function at the
numerator with the same factor in the denominator and
factored out the eikonal S-matrix eZ9(®),

By applying the definition (2.24), the full graviton

emission probability amplitude becomes

M, (b; w,0) R / d?z  eibr4
Fo\B.e) _ pen 8L v
et “x ] 2|z]?e: 2iwR

% {ezin[A(b—bz)—A(b)] _ eZin%[A(b—%bz)—A(b)]}
R d?z eibwz:(0-0;)
=aG— / 200b. 0j
7 ) 2zx|z|*e“?:  2iwR

x (e~ HeRPral2) 1), (3.31)
where ©,(b) = —bA'(b)Oy = O/t,, Op =—(2R/b)b,
and Py is the classical limit of ®p introduced in
Eq. (3.28).

We note that the wR-dependent correction factor to naive
b-factorization takes into account in a simple and elegant
way both the incidence-angle dependence and -elastic
rescattering with the incident particles including ACV
resummation, too.

One may wonder at this point about the role of the
rescattering contributions to the irreducible eikonal not
included here in §(b) and starting at order R*/b* (Fig. 11).
The latter presumably have a massless three-body discon-
tinuity and have thus the interpretation of 2 —» 3 — 2
transition in the rescattering process, leading to a recombi-
nation in a two-body state. This would imply taking into
account inelastic higher-order contributions to rescattering,
a feature which is outside the scope of the present paper.

D. Coherent state and correlation effects

The derivation of the coherent-state operator proceeds
now as in Sec. II D if we stick to the “linear” approxima-
tion, which neglects correlation effects. The only difference
is the replacement of 5y(b) by agA(b) in the amplitude
M, (b, q) of Eq. (3.31), so that we obtain

Lo (i@ ne) )
(3.32)

S = e29() exp {

We shall base on Eq. (3.32) most of the subsequent
results. But we want to provide a preliminary discussion of
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the limits of that approximation and of the size of
correlations that we can envisage. That is important for
the ACV-resummed model, because we would like to
describe sizeable scattering angles ®;, ~ R/b ~ O(1), while
approaching the collapse regime.

We start noticing that many-body correlations are
already present from the start in the many-graviton states
of Sec. II D and are in principle calculable. For instance, the
two-body correlation can be estimated from Eq. (2.29) and
is, order of magnitude like,

cin = MMy (|21 |1 R[za|waR) /ag. (3.33)
We note also that the factors |z;| = |x;/b| ~ 1/y/w;R are
small in the dominant integration region for radiation
(Sec. I E), so that ¢}, becomes of relative order | /@ @,/ E =
1/ag < 1 for ;R ~O(1). This means that, within our
assumptions, we can neglect finite-order correlations.

One may wonder, however, whether correlated emission
can be enhanced by multiplicity effects—not only those of
the exchanged gravitons ({n) ~ ag) but also those of the
emitted ones ((N) ~ a;©?), a number which may be large,
and even more for @, = O(1).

One such effect is certainly present and is due to energy
conservation. Even if energy transfer is explicitly consid-
ered in the treatment of rescattering in Secs. II C and 11 D,
the kinematical constraints are not explicitly enforced. But
such constraints are needed, because the expected average
emitted energy (w) = E/(N) = R7'©;? is of the order of
the so-called classical cutoff [13,19] and cannot be large if
O, increases up to O(1). This means that the larger values
of wR can be reached only for a smaller number of
gravitons, thus distorting the calculation of inclusive
distributions. That effect is therefore important but can
be included in the coherent state (3.32) and will be
discussed in Sec. IV C.

Another kind of multiplicity effect—not included in
(3.32)——comes from multigraviton emission by a single
exchange. A simple model for that is to consider soft
emission which, according to Ref. [7], Sec. IV, is described
by the operator eikonal

. quY eiq-b
Osoti(b, ag) = aG/(Z—JT)QFUsoftq“(aq)

— d*q
usof‘tqs<aq) = exXp 2VG |q9|
V2w,

in(¢p, —
(NI SR
lq|b
Here, we can see the nonlinear structure of the operator
(3.34) as a “coherent state of coherent states” in the soft
limit. Its linear part agrees with the state (3.32) by the
approximate form of

PHYSICAL REVIEW D 95, 086003 (2017)

% Sin(d’q - ¢qi\.)

M= gt d(gle). (3.3

which is valid in the region (E/hw)|q| > |q,| > |q]| [19].
On the other hand, nonlinear effects in (3.34) are pretty
small, because the exchanged graviton coupling ag
affects only the g,-dependence and not the g-dependence.
Therefore, the single-exchange multiplicity (N ) ~ (N)/ag~
O(©?) is down by a factor a; and yields a quite limited
enhancement, if any. By comparison, the nontrivial feature of
the state (3.32) is that, though being confined to one emitted
graviton per exchange, it takes into account all exchanged
gravitons' multiplicities and thus produces a reliable @R
dependence.

To conclude, we stick in the following to the linear
coherent state (3.32) to describe the main radiation features,
but we introduce energy-conservation constraints also, to
better understand the large-wR part when approaching the
collapse regime.

IV. FINITE-ANGLE RADIATION AND
APPROACH-TO-COLLAPSE
REGIME

A. Emission amplitude in the sizeable angle region

In the following, we concentrate on the analysis of the
amplitude (3.31) in the semihard frequency region wR 2 1,
because the very soft gravitons (o < b~') are already well
described by the approach of Sec. II.

In that region, the behavior of (3.31) is quite sensitive to
the angular parameter ®; = 2R /b, which occurs in the
amplitude in two ways: in the overall coupling Of,/ag
and in the explicit expression for the action, which is
actually most sensitive, because of the b = b, branch cut
(Sec. IIT A). Note also the occurrence in the amplitude of
A(b — bz), which may be in the nonperturbative regime in
the integration region |b — bz| <R in which its S-matrix
factor may be exponentially suppressed as in Eq. (3.11).

For the above reason, we shall cut off the rescattering
contributions by the requirement |b — bz| > b..If A(b) isin
the perturbative regime ® < 1, that change is subleading by
a relative power of R?/b?, because of phase-space consid-
erations, and the approach remains perturbative. If instead
0 < (b-0.)/b < 1, the cutoff procedure can be extended
to virtual corrections, by unitarizing the coherent-state
operator, as usual, but our approach becomes nonperturba-
tive. Finally, we shall not discuss at all—in this paper—the
subcritical case b < b, by limiting ourselves to the b — b
approach-to-collapse regime. Considering b < b, would
raise a variety of physical effects at both the elastic and
inelastic levels that deserve a separate investigation.

Since we limit ourselves to the b > b,. case, we do not
expect real problems with S-matrix unitarity, because the
tunneling suppression of the elastic channel in Eq. (3.11) is
absent. Nevertheless, the associated radiation shows quite
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interesting features, especially in the approach-to-collapse
regime b — b/, that will be illustrated in the following.

Starting from the energy emission distribution of type
(2.40)

dECGW @% d2Z <Sin wR(DR.C] (Z) 2

=2Gs—% | — R>1),
dw sn'2 |z|4 R > (@R 2 1)
(4.1)

we shall therefore distinguish two cases, in the large wR

region: 3 .

(@) @R> (1-3)""" = (26)7%/2: Thatis the truly small-
angle regime, far away from the critical region
1 —Z—E — 0, or not too close to it. In that case, wR
is very large, which means very small z’s
[ly]> = [x|*/v/B = O(1/wR)], so that the qualitative
features of the radiation can be derived from the small-
z approximation of the modulating function

1
Dpa = —5[D2(b)x* = Dy(b)y?] + O(Iz),  (4.2)
where we have used the expansion
Dpg=A0Db)—A(b—bz|]) - A'(b)b-z (4.3a)
1 0%A
~__ b2z.z.
20b,0b,
1 A n R
(4.3Db)
yielding [by use of Egs. (3.7) and (3.8)]
1 1+
D, =-bA(b)=—, D,=bA'(b)=—73"—.
= bAB) = 1 Dy=BA(E) = s
(4.4)

Here, we note that D;=D,=1 for b> b,
thus recovering Eq. (2.45) discussed before,
while D=3, D,=+v2(1-%7"" for p<1
[Eq. (3.12)], and thus D, diverges for f — 0. Corre-
spondingly, we get a formula similar to (2.40),

dEGY 2GS®_%/ d?z [sin (48 (Dox? — Dyy?))]?
dw r ) zmlz]* ®R '

(4.5)

where, however, we should assume |x|?/v/f < |x[>/?
(or |x| < ) whenever f§ < 1, because the actual
behavior of A(b —bz) is that of a branch cut
with index 3/2, with a small convergence radius in
the x-variable. We should therefore require wR >
p~3/2 > 1, as stated, so that such a regime actually
disappears in the limit f — O.

PHYSICAL REVIEW D 95, 086003 (2017)

(b) 1 < wR < B73/%: That region opens up in the critical
regime 0 < # <« 1 and is dominant for f — 0. How-
ever, the quadratic small-z expansion is no longer valid
in the x-variable (because of the divergent coefficient),
and the dominant approximation in the |y| = |x| <1
region becomes of the type

—Dg (z) = —@(x)

1

1 1
— 4| (B2 4
43 =27 =2p +2x\/ﬁ

Mffﬂ X

2B’

where we have neglected, for simplicity, the

y-dependence. We thus obtain what we shall call

the one-dimensional approximation to ®g, which is

easily derived by expanding all terms in the expression

(3.28) of Py for 0 < fx 1, both in f and in 2

and making the (b —b.)%? behavior explicit by
Eq. (3.12).

The striking feature of (4.6) is that, in the f <
|x| < 1 region, the dominant small-x behavior is
®, = (4/3)|x|*/?, reflecting the branch cut of the
ACV-resummed action, which is responsible for the
very large second derivative (large tidal force) in
(4.3b). By inserting that behavior in (4.1), the corre-
sponding distribution becomes

i (4.6)

1 dECWY @2 (wR\ /3
LA O (08 Py
\/E @ |enhanced nw 3
8

and falls off as (wR)~>/? only. That radiation enhance-
ment is a direct consequence of the critical index 3/2
of the action branch cut at b = b,.

We thus realize that, with increasing R/b, we quit the
small-angle, weak-coupling regime a, in which the radi-
ated-energy fraction is small (of order ©2) and shows at
most a log(wyR) dependence with an upper frequency
cutoff w,,;, and we enter the strong-coupling regime b, in
which such a fraction increases like ©%(wyR)'/3, thus
endangering the energy-conservation bound.

The possible violation of energy conservation—which is
nevertheless taken into account at the linear level in the @’s
for rescattering—is related to the fact that the kinematical
constraints are not explicitly incorporated in multigraviton
production amplitudes and that multiparticle correlations
are neglected, also. We shall introduce such constraints in
Sec. IV C.

B. Radiation enhancement and scaling

1. Small-7 radiation spectrum

In this section, we present plots of the resummed
amplitude and of the corresponding radiated-energy
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FIG. 12. Left: the resummed spectrum for @R 2 1 in the approach-to-collapse regime b — b, (f — 0) for various values of ff ranging
from 1/2 (b — o) to 0 (b = b,). The spectrum has been multiplied by (wR)*? in order to highlight the enhancement in the
intermediate regime 1 < wR < /2, followed by the asymptotic 1/ falloff. Right: some curves have been shifted horizontally and
somewhat magnified in the neighborhood of the transition region, showing the scaling behavior with respect to the variable
a = (48)*?wR; the black-dashed curve represents the one-dimensional approximate representation (4.8). As usual, spectra are reduced

by the factor k = (Gs®%)~\.

distribution obtained by numerical evaluation. In this way,
we confirm the asymptotic behaviors derived in Sec. IVA
and visualize the shape of such quantities in the transition
regions.

Let us start by displaying the main features of the
gravitational wave spectrum obtained with the ACV
resummation in the classical limit 2w < E but close to
the collapse region b 2 b,.. For R = 1, this is obtained by
substituting the reduced-action model field (3.28) [actually,
its classical limit @y .y of Eq. (4.3a)] in place of its leading
counterpart @ inside Eq. (2.40). The results for various
values of § are shown in Fig. 12. According to the estimates
in Sec. IVA, at smaller and smaller § < 1, there is a larger
and larger intermediate region 1 < @R < =3/ of a
reduced decrease of the frequency spectrum ~w@~2/3,
followed by the typical asymptotic ™' falloff at
@R > 73/2. In order to better discriminate between the
two regimes, the spectrum has been multiplied by (wR)?/3,
so that in the intermediate enhanced region, the curves are
almost flat.

In the first plot of Fig. 12, the black dotted-dashed curve
(f = 1/2) represents the small-angle spectrum described in
Sec. I E. Decreasing the value of 5, we obtain the solid
curves (red, magenta, blue, and green), and we observe the
expected enhancement that amounts to a numerical factor
of order 1 for R < 1 but becomes much more important
for large wR = 1. It is also clear that the extension of the
enhanced regime increases while decreasing $. In the limit
p — 0, the rescaled spectrum approaches the almost hori-
zontal dashed line.

It is apparent that the shapes of the curves are quite similar
at large wR, including the transition region between the
enhanced and asymptotic regimes. By rescaling the inde-
pendent variable wR — @R/, the curves at small 8 go on
top of each other, as shown in the right plot of Fig. 12. In other
words, the asymptotic shape of the spectrum is a function of

the single variable a = (4f8)*?wR. This scaling property
can be understood by exploiting the small-z expansion (4.6)
that, substituted into Eq. (2.40), provides the approximate
representation

1 dE
R 2/3° "~
A
2 [ P05 ey 21
1/3
T -1 [7](1++v141) 313x
a=(4p)* wR, (4.8)

which depends only on the scaling variable a. This function
is displayed in the black dashed line on the right plot of
Fig. 12, and it describes well the scaling behavior in the
enhanced region a < | and reasonably well the large-wR
region a > 1.

2. Angular behavior

The angular behavior of graviton radiation associated to
large scattering angles ®; ~ 1 can be obtained by numerical
integration of the amplitude (3.31). However, in the main
region of the spectrum, namely wR Z 1, it can be more
conveniently described by using the small-z approximation
(4.2) of the modulating function ®y ;. The main point here
is that the two dispersion coefficients D and D,, which are
equal for the small scattering angle, become more and more
different when approaching the critical angle ©,. This fact
causes the ensuing distribution of graviton radiation to be
more and more directional, still concentrated at @ = @, but
with a larger dispersion, in particular along the x-direction,
i.e., that of the scattering plane. This is clearly seen in

Fig. 13, where we compare on the A = v wR % plane the
“isotropic” radiation (a) when D; =D, =1 with the
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Ay
(@) (b)
FIG. 13. Emission pattern of gravitational radiation for 4 = —2 on the tangent space centered at @, parametrized by A = vV @R GIE)@\S‘
(a) the isotropic case D, = D, discussed in Sec. Il E; (b) anisotropic case with D; = /3, D, = 32.
“anisotropic” case (b) D; = /3, D, = 32 (corresponding ~0 _ Py
to B =0.001). N(E)’
We see, first of all, that in the collapse region P A N;
. C . z P \w;)A(w;
[Fig. 13(b)], the radiation is strongly enhanced, still dP({w;N;}) = N(;)E) H L I>N(, al
keeping its correlation with the outgoing particle 1’ r
in the overall picture of the two jets. Furthermore, the
larger dispersion in 8, compared to 6, gives a rationale for xO|E- Zhw‘N" ’ (4.9)
- ]

the one-dimensional approximation (4.8) in the conju-
gated variables x and y. Finally, such features are valid for
any given frequency range Aw and are thus somewhat
independent of their relative normalization, which is
possibly affected by energy-conservation constraints, to
be discussed next.

C. Energy conservation and temperature

In order to take into account energy-conservation
constraints, we shall calculate coherent-state amplitudes
and distributions by setting—event by event—the explicit
energy bound > ¥, fiw; < E, in which we refer to a
single “jet,” say along p1.3 Such bounds are effectively
extended to virtual corrections by a factorization
assumption, as proposed by Ref. [23] on the basis of
the Abramovsky Gribov Kancheli (AGK) [34] cutting
rules (see also Sec. 4.3 of Ref. [5]).

More explicitly, we modify the original independent-
particle distributions (2.37) in a radiation sample of
energy up to E by introducing the corresponding kin-
ematical bounds together with a rescaling factor 1/N(E)
in probability [or 1/4/N(E) in amplitude] to be deter-
mined by unitarity. For instance, by considering for
simplicity the w-variables only, we define the energy-
conserving distributions

The point is that the energy of the forward (backward)
gravitons is essentially taken at the expenses of the sole particle
1 (2).

where the p(w) density is given by (2.38), with the
amplitude M, (b, g) in (3.31). We have also discretized
the Fock space in regions of extension A(w;), containing a
number of gravitons N; each.

The normalization factor N(E) > 0 in (4.9) is deter-
mined by the unitarity condition )y, P({N;}) =1 and
takes the form [cf. Eq. (2.37)]

I exp{ / °°dwp<w>[e-ﬂ“—1]},

—ico 2_7'[1/1 +e
(4.10)

which carries the energy-conservation constraints and is
obtained by summing over all events the (positive) partial
probabilities. We stress the point that £ in Eq. (4.10) is the
energy available for the measures being considered, so that
E = /s/2 if we consider the whole jet, but becomes
\/5/2 — haw if we consider events associated to an observed
graviton o in that jet, and so on. On the basis of Egs. (4.9)
and (4.10), it is straightforward to obtain, for the inclusive
distributions,

dNv N(E - ho)
2 —hw| — ho
dj)lfl\;z :P(wl)P(wz)N(E Zil/(E) faoz) (4.11)

and so on. We notice also that virtual corrections are
explicitly incorporated in (4.10) via the normal ordering of
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FIG. 14.
for various values of ag.

the state (3.32) [cf. Eq. (2.36)] and that N(E) is actually
infrared safe.

The main point is now that the inclusive distributions
(4.11) carry N(E)-dependent correction factors due to the
phase-space restrictions £ — E — hw, ..., and so on, that
will turn out to suppress the large-wR region by an expo-
nential cutoff. Arguments for a cutoff are provided also in the
approach of Ref. [16] to the trans-Planckian scattering
without impact parameter identification of Ref. [14].

In order to estimate N(E), it is convenient to rewrite it in
terms of the quantity (1 = Rx1),

<h — —wRt
T R

which represents the (exponentially weighted) radiated-
energy fraction, given in our case (3.31) by [cf. Eq. (4.1)]

d’z /oo sin? (@R ®g )

F(r) = G (OR)? e “®"d(wR).

(4.13)

We then obtain from Eq. (4.10) (ag = R\/s/2 = Gs) the
expression

e+ioo

N(E) = const/

e—ico

—ag A TF(r’)dr’},

and we proceed to estimate it by the saddle-point method.
The saddle-point value 7 > 0 is determined by the equation

(E = /5/2)

dz exp{ERT —logz

(4.14)

1
Fe)=1-—.
agT

(4.15)
which represents the share between emitted (lhs) and
preserved (1/a;7) energy fractions at the saddle-point
exponent 7. Fluctuation corrections are also calculable
(Appendix A) and will be discussed shortly.
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(a) Dependence of the saddle point 7 on the impact parameter b2, for various values of ag; (b) emitted-energy fraction vs ©2

The numerical evaluation of (4.15) (Fig. 14) is better
understood by working out Eq. (4.13) in the form

o (22). )

where, by explicit integration,

2
1-#:17(%) Ok

aGT |Z

1
tan yI(tany) = ytan(y) + Elog(coszx). (4.17)

The result shows that 7~ O(1/ag;) in the small-angle
region (b > R), while 7= O(1) in the collapse regime.
In between, the radiated-energy fraction varies from O to 1.

In order to understand the role of 7 for the energy-
conservation cutoff, we estimate the inclusive distribution
(4.11) at the saddle point, and we find

(z+A7)wR

= p(w)e” , (4.18)

dw

where the 7 term in the exponent comes from the explicit
energy dependence of N(E —w) and the correction Az
comes from the implicit one through 7(E — ), to which—
by 7-stationarity—mostly fluctuations contribute. We show
in Appendix A that this kind of correction is sizeable when
7= 0(1/ag) is small (where, however, the cutoff is not
really important), while it is small when 7= O(1) is
essential, that is, in the approach-to-collapse regime. The
cutoff exponent 7 has already been used in the definitions
(4.13) and (4.16).

In more detail, it is useful to distinguish a very small-
angle regime ®? < > = 1/logag, in which © acts as
threshold for important energy-conservation effects like
energy fractions of order 0.5, say [Figs. 14(b) and
Eq. (2.42)]. Below it, the radiated fraction ~@? is very
small, and so is 7 ~ 1/a. Furthermore, the exponent 7 +
At ~ ®2/ag; is even smaller than 7 because of cancellations
with the term Az (Appendix A), thus leading to negligible
conservation corrections.
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FIG. 15. Frequency spectrum of graviton radiation in various
contexts. Three curves have no energy-conservation constraints
and correspond to large b/R where subleading effects are
negligible (blue), b close to the critical parameter b. where
subleading effects causes the enhancement (thin red), and the
limit » — b/ (dashed black). The last curve (thick red) shows the
suppression due to energy-conservation constraints in the case of
b close to b..

On the other hand, for ® above ®2, both the exponent
part 7 and the radiated fraction increase (Fig. 14) up to O(1)
for % — ©2 = O(1), while Az/7 becomes O(1/ag) < 1,
that is, small.

In that case—of strong coupling and radiation
enhancement—the whole energy is radiated off, and this
fact fixes 7 = 7. = 1.2 in a rather precise way. Furthermore,
the same exponent (with Az/7 ~ 1/ag; < 1) occurs in all
the graviton distributions (4.11) which—because of such
approximate universality—turn out to be approximately
factorized and thus weakly correlated, even after the inclusion
of energy conservation. In other words, while the rescaling

factor /N (E) keeps the phase relations of the coherent state
(3.32) among the various w-bins, it also introduces, by the
E-dependence of (4.10) and the w-dependence of (4.11), an
almost universal frequency cutoff parameter R~!, a “quasi-
temperature” we would say, in the approach-to-collapse
regime. Numerically, the exponent z.R turns out to be of
the order of the inverse Hawking temperature for a black hole
mass =0.1/s, notably smaller than /s, and the correspond-
ing spectrum—in each one of the two jets with E = /s /2 of
which our radiation consists—is given in Fig. 15.

Our semiclassical method does not allow, at present,
a precise interpretation of the features just mentioned in
terms of black hole physics, mostly because of our
ignorance of what a black hole really is in quantum
physics. Nevertheless, we think that, applying our soft-
based representation to the approach-to-collapse regime,
we have constructed a coherent radiation sample which
shares some of its properties with a Hawking radiation, thus
suggesting a deeper relationship. That fact, because of
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coherence, goes in the direction of a quantum theory
overcoming the information paradox, even if the details
of such a relationship are not known yet.

V. OUTLOOK

The main technical progress presented here is the
extension of the semiclassical graviton radiation treatment
in trans-Planckian scattering to cover finite scattering
angles ~R/b. That result is in turn based on the ACV
eikonal resummation and on the validity—for such a
reduced-action model—of the soft-based representation
of the radiation amplitude argued for in Sec. III.

After such steps, we are really able to follow the
approach to the classical collapse regime by a fully explicit,
unitary coherent state, given the fact that collapse is
signalled by a branch cut singularity of the action at b =
b. = O(R) with some scattering angle ®, = O(1) and
branch-cut index 3/2. While b, and ©, are expected to be
somewhat model dependent, the index 3/2 is expected to
be robust because it yields the first nonanalytic behavior, by
the action stationarity in the angular parameter ¢,,.

The first striking feature that we notice is that, because of
the index 3/2, the action has very large second derivatives
(tidal forces) and thus yields a radiation enhancement
causing almost the whole energy be radiated off for
b — b}. Actually, it also requires the enforcement of
the kinematical constraints in order to ensure energy
conservation.

Energy-conservation constraints (Sec. [V) are introduced
in real emission event by event and transferred to virtual
corrections in some approximation which amounts to a
factorization assumption, natural for the weakly correlated
coherent state that we have constructed. The outcome is
that energy-conservation effects, which are negligible for
O, <« 1, are instead quite important in the approach-to-
collapse regime and provide an exponential suppression of
the large-wR region. The latter is approximately universal;
that is, it occurs in all the inclusive distributions, with small
corrections and weak correlations, both depending on the
parameter 1/ag, where ag = Gs/h > 1 is the magnitude
of the final multiplicity.

The conclusive features just mentioned show that our
radiation sample (corresponding to two jets with masses up
to +/s/2)—though coherent by construction—is charac-
terized by an almost universal, exponential frequency
cutoff close to 1/R, which plays a role analogous to the
Hawking temperature (at a mass notably smaller than +/s).
Such a fact suggests a deeper relationship with the possible
collapse dynamics, the boundaries of which are, however,
difficult to pinpoint, in view of both our approximations
and our ignorance about the nature of a quantum black
hole. We nevertheless think, because of coherence, that our
results go in the direction of a quantum theory overcoming
the information paradox, even if details of their relationship
to black hole physics are not known yet.
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APPENDIX A: FLUCTUATION CORRECTIONS
TO INCLUSIVE DISTRIBUTIONS

It is straightforward to introduce a quadratic fluctuation
expansion in Eq. (4.14) to yield the normalization factor

T+ico d z
N(E) = / —Texp{ER%—log%—aG / F(7)d?
T 0

T—ico 1

+ % (r—7)° F - aGF’(%)] }

=)
= const exp{ {ER% —ag /T F(T’)dr’]
0

—%log(l - aGizF’(%))}. (A1)

We note that the log 7 term cancels out, so that the overall
size of fluctuations is determined by the function
% gt (Opx1)
f(7) = ~ag?F'(7) = { e ‘ (A2)
%(ZG%Z/:;TE/S (®E = ®C)
Although this function is pretty small (large) in the small-
(large-)angle regime, its relative importance with respect to
the exponent part 7 goes just in the opposite. In fact, in
the small-7 regime (where the cutoff is unimportant), the
expansion of the remaining log term produces contributions
of order comparable to those in square brackets.

To better understand this point, we combine Eq. (Al)
with the saddle-point equations

1

1
ER = agF(7) + = 7(E) = —R%ZTf(%)

(A3)

to get, after some algebra,

dlog N(E — w)

. OlogN
dE 7

7(E
ot #(E) (E)
RO
= &e(E) L ORI f(%))z}

70 f
=RT(14+-=)[——).
T( +2a%> (1 +f>
Consider first the strong coupling regime in which
7= 0O(1). It is clear that f(7) is O(ag), so that

(A4)
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AV o _
d —wR(T+A7) —wR7T A
= pla)e plo)e (A3)

with a correction

T 70 -1
e <1 +28%) <1+f> (A9)

which is small, Az/7 = O(1/ag), leading to an approx-
imately universal exponent 7.

On the other hand, in the weak coupling regime,
O <1, 7 is small, starting O(1/ag), so that f =
O(©2%) is small, too. As a consequence, relative corrections
are large, so as to allow cancellations with the leading term
and an even smaller exponent. That is fortunately unim-
portant, because energy-conservation corrections are
small in that regime. For instance, in the regime 02 < 1
and 7 = O(1/ag), we get

f

_+A ~ =
T T Tl—|—f

= O(0%/ag). (A7)

yielding negligible corrections to the naive inclusive dis-
tribution. We conclude that for ®; < 1, inclusive distri-
butions avoid the energy-conservation cutoff, while for
O =0, = O(1), such a cutoff is provided by 7 and is
approximately universal. The final multiplicity is provided
by (A5) and is of O(ag) with a finite coefficient.

APPENDIX B: ONE-DIMENSIONAL INTEGRAL
REPRESENTATION OF THE AMPLITUDE
AT LARGE wR

We want to give a simple representation of the graviton
emission amplitude for large @R > 1. According to the
discussion in Sec. IIE, the emission amplitude IN is
dominated by the small-z region, where the modulation
function ® can be approximated by its quadratic expan-
sion (4.2). We can therefore express I in terms of the two-
dimensional complex integral

d27 eilZA*+7°A)
27 77
(Z = x+1iy),

1(4) = [ef(P2x*=P1y) — 1],

(B1)

as in Eq. (2.45). For the resummed amplitude, we note the
presence of the two dispersion coefficients D; and D, that
are different for finite b.

Our aim here then is to provide a simple representation of
I(A). Gaussian integration is possible by eliminating the
double pole by derivation with respect to A:
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2
0 I(AA*)—/dxdy

(2xA;+2yA;) [ei(szz—Dlyz) _ 1]

T 0A? 27i
2 2
L i
21\/ D1D2
1 _AtAn? a2
=——— ¢ M| 4D,
21\/ D1D2
elATAT
~2iyD,D,’
Ay A
At = + . (B2)
vD1 VD,

The integral can be reconstructed if we knew the boundary
conditions.

An alternative method is to perform one of the x, y
integrals in (B1) by noticing that the exponent is bilinear in
&, n=+/Dyx F /Dy, so that one variable & or 5 can be
kept fixed and real, while the other is complexified and
deformed on the pole. By using
|

- / dédn et — 1

| 4xiy/D|D, (d + nd*)?
0 2iy/DD,

= dfT

_ 2D/D,
-~ D,+D,

e—i2yA+
e AT — A

[l EADTA (£ AT)O(E +AT)

_ ie—i2yA+2 /1 dp(l _ p)e—ieizVA“p(l—p)—&-ipA*A:| ]
0
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&+
2Dy’
_n—=<
Y= 37D
oy o 4 tnd
YT 2yDiD,
d=/D; +i\/D, = \/D, + Dye",
2z-A:A1i/+_n+A2\/_§
§<A1 Az)
vD, /D{
175+ 75)
vD> /Dy

and integrating over 5 at fixed real £ at the double
pole 5 =e7%¢ y=n1/2—y, we obtain (in the case
AT > 0)

4 e () < (3 25)

elé(e77AT A7) At]

(B3)

By performing a partial integration of the second term (so as to subtract the term linear in p of the integrand), we finally

obtain

_2yD\D, [2 ( At _

A~ +A+e—i2y
- Dy +D, )

A= —Ate ) 2

C

2

with the following variables:

L (Ate™ + Ae)

A=5

D D -D
= 2t Doy p Do Dy (BS)
2D.D, D1 D,
A= 1 (Ate™” — A=elr) = #A* (B6)
V2 Dy + D,
o~ . 2v/D D,
A'=—iA+iV24Tep,  C=sin(2y) = —22
i i e 7p sin(2y) = D 1D,
(B7)

e

Cletoreity 124 44 / ! dA/e—MM’”]
A —iA

0

(A+e—i27+A_)/1dpe_i[A+26_|27p(l_p)_A+A—p]:|

(B4)

Finally, an integration by parts shows that 7 is identically
given by

= A A e, (BS)
ik A/Q

(1) It is easily verified that Eq. (B8), with the identi-
fication (BS5), is the solution of the differential
equation (B2) with boundary condition A;, = —i.A.

(i) If D; =1 = D,, as in the case of the emission
amplitude discussed in Sec. IIE, C =1, A=A,

and A= A*. In particular, Eq. (B8) reduces to
Eq. (2.47)._

(iii)) A and A are not complex conjugate for
D] Sé Dz.
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(iv) The amplitude vanishes when the integration limits
coincide, i.e., A= —iA, corresponding to AT =

Ay/\/Di + A /\/D; =0, or equivalently ¢4 = —y.
In the limit D; = D,, such a nodal line corresponds

PHYSICAL REVIEW D 95, 086003 (2017)

to the azimuthal direction ¢, = —z/4, while y
becomes possibly small for D; <« D,, as depicted
in Fig. 13.
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